\bullet
 involve

 a journal of mathematicsQuadratic forms representing all primes
Justin DeBenedetto

Quadratic forms representing all primes

Justin DeBenedetto
(Communicated by Kenneth S. Berenhaut)

Abstract

Building on the method used by Bhargava to prove "the fifteen theorem", we show that every integer-valued positive definite quadratic form which represents all prime numbers must also represent 205 . We further this result by proving that 205 is the smallest nontrivial composite number which must be represented by all such quadratic forms.

1. Introduction and statement of results

The study of quadratic forms in various fashions dates back to the third century works of Diophantus. Diophantus worked with ways to rewrite sums of squares and found that $\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c \pm b d)^{2}+(a d \mp b c)^{2}$ and that numbers of the form $4 n-1$ are not able to be represented as a sum of two squares. It was not until 1625 that Albert Girard (Fermat came to the same result a few years later) wrote that a number is the sum of two squares if and only if when divided by its largest square factor, the result is a product of primes of the form $4 n+1$ or twice the product of such primes [Dickson 1920].

Further exploration into representation of numbers by squares led to Lagrange proving in 1770 that every natural number is the sum of four integer squares, $n=a^{2}+b^{2}+c^{2}+d^{2}$. Ramanujan [1917] furthered this result by conjecturing ${ }^{1}$ that there are exactly 55 sets of values for a, b, c, d such that $a x^{2}+b y^{2}+c z^{2}+d u^{2}$ represents all positive integers.

Willerding [1948] used an extension of Ramanujan's work to prove the following:
Theorem 1. There are exactly 178 classes of universal positive definite integer matrix quaternary quadratic forms.

Here positive definite indicates that the quadratic form represents only nonnegative integers, and only represents 0 when every variable is equal to 0 . A universal quadratic form represents every number in its range, thus a universal

[^0]positive definite quadratic form represents all positive integers. Integer matrix means that the coefficients on all cross terms are even.

Bhargava [2000] showed that there are actually 204 universal quaternary forms and enumerated those forms. In the same paper, Bhargava gave a proof of a theorem stated in 1993 by Conway and Schneeberger known as "the fifteen theorem".

Theorem 2. If a positive definite quadratic form having an integer matrix represents every positive integer up to 15 then it represents every positive integer.

Building on the methods used by Bhargava, we look specifically at integer-valued positive definite quadratic forms representing all prime numbers. Our goal is to determine if there are composite numbers which are represented by every such quadratic form, and if so to find the smallest such composite. Our result is a proof that there are nontrivial composites which are represented by all quadratic forms representing every prime number.

We restrict the composite numbers we are considering to composites which are not a square times a prime. This is due to the fact that all primes are represented by prime universal quadratic forms, and if n is represented then $n x^{2}$ is also represented. For this reason, we consider a square times a prime to be a trivial composite number, and search for nontrivial composite numbers which are represented by these quadratic forms.

Theorem 3. Every integer-valued positive definite quadratic form, Q, representing all prime numbers, must represent 205. Furthermore, if n is a composite number less than 205 and n is represented by all quadratic forms which represent all prime numbers, then n must be a square times a prime.

Remark. An analogous statement may be made for integer matrix positive definite quadratic forms. The same process is used, but the calculations are simpler and 66 is the smallest non-trivial composite which must be represented in that case.

2. Definitions

First, we define lattices as they pertain to quadratic forms throughout this paper. The set of all integers is denoted \mathbb{Z}. An n-dimensional lattice L is a subset $L \subseteq \mathbb{R}^{n}$, together with an inner product that gives a way of measuring distances and angles. Here are the properties that it must satisfy:
(i) The set L must span \mathbb{R}^{n}.
(ii) The set L must have the form $L=\left\{\sum_{i=1}^{n} a_{i} \vec{v}_{i}: a_{i} \in \mathbb{Z}\right\}$.
(iii) The inner product $\langle\vec{v}, \vec{w}\rangle$ is a function from $L \times L \rightarrow \mathbb{R}$.
(iv) For any $\vec{v} \in L,\langle\vec{v}, \vec{v}\rangle \geq 0$ with $\langle\vec{v}, \vec{v}\rangle=0$ if and only if $\vec{v}=0$.
(v) For any $\vec{v}, \vec{w}, \vec{x} \in L$, we have $\langle\vec{v}, \vec{w}\rangle=\langle\vec{w}, \vec{v}\rangle$ and $\langle\vec{v}+\vec{w}, \vec{x}\rangle=\langle\vec{v}, \vec{x}\rangle+\langle\vec{w}, \vec{x}\rangle$.

Note that property (iv) enforces positive definiteness.
Given a lattice L, the function

$$
Q\left(a_{1}, \ldots, a_{n}\right)=\left\langle\sum_{i=1}^{n} a_{i} \vec{v}_{i}, \sum_{i=1}^{n} a_{i} \vec{v}_{i}\right\rangle
$$

is a quadratic form. Moreover, every quadratic form arises in this way.
A quadratic form is called integer-valued if

$$
Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \sum_{j=i}^{n} a_{i j} x_{i} x_{j}, \quad a_{i j} \in \mathbb{Z} .
$$

Furthermore, an integer-valued quadratic form is called integer matrix if $a_{i j}$ is even for all $i \neq j$.

The Gram matrix of a quadratic form, Q, is the matrix A such that we can write $Q=x^{t} A x$. The Gram matrix of an integer-valued quadratic form has entries has integer diagonal entries and half integer off diagonal entries. Similarly, the Gram matrix of an integer matrix quadratic form has integer entries.

Next, we set forth some definitions which are based upon the definitions used in [Bhargava 2000]. We first define the prime truant of a quadratic form to be the smallest prime not represented by the quadratic form. We also define a prime escalation of a lattice to be a lattice generated by the original lattice and a vector with norm equal to the prime truant of the original lattice. The dimension of a prime escalation is either equal to the dimension of the original lattice or greater by 1. A prime escalator lattice is a lattice which is generated by any number of prime escalations of the zero-dimensional lattice. Similarly, a quadratic form is considered to be prime universal if it represents all prime numbers.

Two quadratic forms, Q_{1} and Q_{2}, are considered equivalent if there is an integral invertible change of variables which sends Q_{1} to Q_{2}.

If Q is a positive definite quadratic form, let $r_{Q}(n)$ be the number of representations of n by Q. The theta series of Q is the power series

$$
\Theta_{Q}(q)=\sum_{n=0}^{\infty} r_{Q}(n) q^{n} .
$$

3. Prime escalations

We begin by giving an overview of prime escalations. Escalating the zero-dimensional lattice gives us [2] which leads to the form $2 x^{2}$. This represents 2 but not 3 , so our two-dimensional prime escalator lattices are

$$
\left[\begin{array}{ll}
2 & x \\
x & 3
\end{array}\right],
$$

with $x^{2} \leq 6$ by the Cauchy-Schwarz inequality. Since we are looking for integervalued quadratic forms, we allow x to be of the form $x=y / 2, y \in \mathbb{Z}$. Thus we have the lattices with matrices

$$
\left[\begin{array}{cc}
2 & \pm \frac{1}{2} \\
\pm \frac{1}{2} & 3
\end{array}\right], \quad\left[\begin{array}{cc}
2 & \pm 1 \\
\pm 1 & 3
\end{array}\right], \quad\left[\begin{array}{cc}
2 & \pm \frac{3}{2} \\
\pm \frac{3}{2} & 3
\end{array}\right], \quad\left[\begin{array}{cc}
2 & \pm 2 \\
\pm 2 & 3
\end{array}\right], \quad\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right],
$$

corresponding to the quadratic forms

$$
\begin{gathered}
2 x^{2} \pm x y+3 y^{2}, \quad 2 x^{2} \pm 2 x y+3 y^{2}, \quad 2 x^{2} \pm 3 x y+3 y^{2} \\
2 x^{2} \pm 4 x y+3 y^{2}, \quad 2 x^{2}+3 y^{2} .
\end{gathered}
$$

The form $2 x^{2}+3 x y+3 y^{2}$ is equivalent to $2 x^{2}+x y+2 y^{2}$, and $2 x^{2}+4 x y+3 y^{2}$ is equivalent to $x^{2}+2 y^{2}$. For binary quadratic forms, we may ignore the sign of the cross term since sending x to $-x$ makes the forms equivalent.

To automate this process we ran this through a math program called Magma. The Magma script began with the zero-dimensional lattice and followed the prime escalation process as above. When checking for prime truants, each form was checked for unrepresented primes beginning with 2 and checking each prime until one was unrepresented. Since prime escalator lattices of dimension two are not prime universal, every lattice was escalated at least three times. Some of these lattices were escalated a fourth time if they failed to represent a prime below 1000 .

We define two sets, A and B, as follows. If a third escalation prime escalator lattice, L, represents every prime below 1000 , then let $L \in A$. If the third escalation prime escalator lattice fails to represent a prime below 1000 , then let a prime escalation of L be M, and let $M \in B$.
Theorem 4. Every prime universal lattice contains a prime escalator lattice from A or B.
Proof. Suppose L is a prime universal lattice and $L_{0} \subseteq L_{1} \subseteq L_{2} \subseteq L_{3} \subseteq \cdots \subseteq L$ is an ascending chain of escalator lattices, with L_{0} zero-dimensional and L_{i} being a prime escalation of L_{i-1} for each i. Since every prime escalator lattice of dimension 0,1 , or 2 increases in dimension when escalated, L_{3} is a 3-dimensional escalator lattice. If L_{3} has a prime truant below 1000 , then its escalation $L_{4} \in B$. If not, then $L_{3} \in A$. Thus L contains a prime escalator sublattice from A or from B.

Forms in the set A may not be prime universal, but Theorem 5 allows us to make use of these forms.

4. Composite representation methods

Since we are searching for composite numbers which are represented by every prime universal quadratic form, we take advantage of Lagrange's four-square theorem mentioned above to form the following theorem.

Theorem 5. Suppose $Q(\vec{y})$ is a positive definite integer-valued quadratic form and there exists a composite number m such that $Q(\vec{y})$ does not represent m. If $Q(\vec{y})$ represents every prime $p<m$, then the quadratic form
$R\left(\vec{y}, a, b, c, d, x_{0}, \ldots, x_{m-1}\right) Q(\vec{y})+(m+1)\left(a^{2}+b^{2}+c^{2}+d^{2}\right)+\sum_{i=0}^{m-1}(m+1+i) x_{i}^{2}$
is prime universal and does not represent m.
Proof. This result is due to the fact that $\sum_{i=0}^{m-1}(m+1+i) x_{i}^{2}$ represents every number between $m+1$ and $2 m$, and $(m+1)\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$ represents every multiple of $(m+1)$. Thus together these represent every number greater than m. The resultant quadratic form, R, does not represent m due to the fact that Q and each of the two added components are all positive definite. Since the two added components do not represent any numbers less than m and Q does not represent any negative numbers, there is no way to represent m. Finally, since we have shown that our new quadratic form represents every number greater than m and Q represents every prime less than m, R must represent all prime numbers and thus is prime universal.

With these tools in hand we are now ready to handle the proof of our main result.
Proof of Theorem 3. In this way, if we are able to find a quadratic form which represents all primes less than a composite, but does not represent that composite number, we can construct a prime universal quadratic form which fails to represent that composite. Table 1 provides a list of quadratic forms that show that every composite number less than 205 which is not a square times a prime does not have to be represented by a prime universal quadratic form.

Next, we look at which composites are represented by prime universal quadratic forms. After each prime escalation run using Magma, we checked which composites were represented by every prime escalator lattice. In order to do this, we generated the theta series of each lattice and checked the coefficients of the composite power terms. We began this process after two prime escalations, since the zero-dimensional and one-dimensional prime escalator lattices do not represent any composites which are not a square times a prime. By comparing the represented composites for the five two-dimensional prime escalator lattices corresponding to binary quadratic forms, we find that 818 is represented by all of them. As such, we reduced our theta series to only look at which composites below 818 were represented for subsequent prime escalations. We repeated this process for the third and fourth prime escalations of the zero-dimensional lattice.

This process showed that 818 is represented by all second prime escalations, 453 is represented by all third escalations, and 205 is represented by every lattice in sets A and B.

Quadratic form
Integers not represented

$x^{2}+x y+2 y^{2}+3 z^{2}$
$2 x^{2}-2 x z+3 y^{2}+y z+3 z^{2}$
$2 x^{2}-2 x z+3 y^{2}+3 y z+3 z^{2}$
$2 x^{2}-x z+3 y^{2}+4 z^{2}$
$2 x^{2}-x z+3 y^{2}+3 y z+4 z^{2}$
$2 x^{2}+3 y^{2}+y z+5 z^{2}$
$2 x^{2}+3 y^{2}+3 y z+5 z^{2}$
$2 x^{2}-2 x z+3 y^{2}-y z+5 z^{2}$
$x^{2}+x z+y^{2}+2 z^{2}$
$2 x^{2}+x y-x z+3 y^{2}-y z+3 z^{2}$
$x^{2}+x z+y^{2}+3 z^{2}$
$2 x^{2}+2 x y-2 x z+3 y^{2}+y z+5 z^{2}$
$2 x^{2}+2 x y+3 y^{2}+y z+5 z^{2}$
$x^{2}+x y+x z+2 y^{2}+3 z^{2}+19 w^{2}$
$2 x^{2}-2 x z-x w+3 y^{2}-3 y w+3 z^{2}-2 z w+14 w^{2}$
$2 x^{2}-2 x z+3 y^{2}-3 y w+3 z^{2}+15 w^{2}$
$2 x^{2}-2 x z+3 y^{2}+2 y z+3 z^{2}+13 w^{2}$
$2 x^{2}-x z+3 y^{2}-2 y z+3 z^{2}+61 w^{2}$
$2 x^{2}-x y+2 y^{2}-y z+3 z^{2}+43 w^{2}$ 129
$2 x^{2}+x z-x w+3 y^{2}+3 y z-3 y w+6 z^{2}-4 z w+7 w^{2} \quad 55$
$2 x^{2}+x z+2 x w+3 y^{2}+3 y z+6 z^{2}+2 z w+9 w^{2} 95$
$2 x^{2}-2 x z+2 x w+3 y^{2}-3 y w+7 z^{2}-5 z w+11^{2} \quad 130$
$2 x^{2}-2 x z-2 x w+3 y^{2}+2 y z-3 y w+7 z^{2}-z w+9 w^{2} \quad 82$
$2 x^{2}-x z+3 y^{2}-y z+5 z^{2}+23 z^{2}$ 161
$2 x^{2}+2 x y-x z-x w+3 y^{2}-y w+5 z^{2}+66 w^{2} 194$
$2 x^{2}+2 x y-x z-x w+3 y^{2}+2 y z-3 y w+5 z^{2}+z w+26 w^{2} \quad 93$
$2 x^{2}-x y+x w+2 y^{2}-y z-y w+5 z^{2}+70 w^{2} 146$
$2 x^{2}-x y+x z+2 y^{2}-2 y z+5 z^{2}+67 w^{2} 201$
$2 x^{2}-x y-x w+2 y^{2}+2 y w+7 z^{2}+8 w^{2} 196$
$2 x^{2}-x y+x z+x w+2 y^{2}+y z+y w+7 z^{2}+4 z w+11 z^{2}$
145, 203

Table 1. The quadratic forms on the left do not represent the numbers on the right, but represent every prime less than each of those numbers. By Theorem 5, there exists a prime universal quadratic form which represents all primes and does not represent each number listed.

By Theorem 4, every prime universal lattice will contain a prime escalator lattice from sets A or B and thus will represent 205.

5. Conclusions

There are many questions that remain regarding properties of universal quadratic forms, and specifically prime universal quadratic forms.

Question. If we let S be a set of positive integers, T be the set of all positive definite quadratic forms that represent every number in S, and U be the set of numbers represented by everything in T, when does $T=U$ and when is U bigger than T ?

We have answered this question in the case of S being the set of all primes, and found that U is bigger than T since $205 \in U$.

Other questions regarding quadratic forms which have been answered for integers remain open when applied specifically to prime numbers. A similar examination could apply to the "290 theorem" (see [Bhargava and Hanke 2011]).
Theorem 6 (290 theorem). If a positive definite quadratic form with integer coefficients represents the twenty-nine integers $1,2,3,5,6,7,10,13,14,15,17,19$, $21,22,23,26,29,30,31,34,35,37,42,58,93,110,145,203$, and 290 , then it represents all positive integers.

Question. What is the smallest set of prime numbers such that all positive definite integer-valued quadratic forms which represent every prime in the set must be prime universal? (Bhargava has answered this question in the case of positive definite integer matrices.)

Acknowledgements

We used Magma [Bosma et al. 1997] for our escalation computations. I would like to thank Jeremy Rouse for all of his guidance on this project. I would also like to thank the anonymous referee for editing and providing feedback.

References

[Bhargava 2000] M. Bhargava, "On the Conway-Schneeberger fifteen theorem", pp. 27-37 in Quadratic forms and their applications (Dublin, 1999), edited by E. Bayer-Fluckiger et al., Contemp. Math. 272, Amer. Math. Soc., Providence, RI, 2000. MR 2001m:11050
[Bhargava and Hanke 2011] M. Bhargava and J. Hanke, "Universal quadratic forms and the 290theorem", preprint, 2011; see http://wordpress.jonhanke.com/wp-content/uploads/2011/09/ 290-Theorem-preprint.pdf.
[Bosma et al. 1997] W. Bosma, J. Cannon, and C. Playoust, "The Magma algebra system, I: The user language", J. Symbolic Comput. 24:3-4 (1997), 235-265. MR 1484478
[Dickson 1920] L. E. Dickson, History of the theory of numbers, II: Diophantine numbers, Carnegie Institution of Washington, 1920.
[Ramanujan 1917] S. Ramanujan, "On the expression of a number in the form $a x^{2}+b y^{2}+c z^{2}+d u^{2}$ ", Proc. Cambridge Phil. Soc. 19 (1917), 11-21. Reprinted as pp. 169-177 in Collected Papers of Srinivasa Ramanujan, edited by G. H. Hardy et al., Cambridge Univ. Press; reissued Chelsea, New York, 1962. JFM 46.0240.01
[Willerding 1948] M. F. Willerding, "Determination of all classes of positive quaternary quadratic forms which represent all (positive) integers", Bull. Amer. Math. Soc. 54 (1948), 334-337. MR 9,571e

Received: 2013-05-03 Revised: 2013-10-01 Accepted: 2013-12-22
$\begin{array}{ll}\text { debejd0@wfu.edu } & \text { Department of Mathematics, Wake Forest University, } \\ & \text { 127 Manchester Hall, Box 7388, Winston-Salem, NC 27109, } \\ \text { United States }\end{array}$ United States

involve

 msp.org/involve

 msp.org/involve EDITORS

 EDITORS}

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone @latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@ math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2014 is US $\$ 120 /$ year for the electronic version, and $\$ 165 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

involve 2014 vol. 7 no. 5

Infinite cardinalities in the Hausdorff metric geometry 585Alexander Zupan
Computing positive semidefinite minimum rank for small graphs 595
Steven Osborne and Nathan Warnberg
The complement of Fermat curves in the plane 611Seth Dutter, Melissa Haire and Ariel Setniker
Quadratic forms representing all primes 619Justin DeBenedetto
Counting matrices over a finite field with all eigenvalues in the field 627
Lisa Kaylor and David Offner
A not-so-simple Lie bracket expansion 647Julie Beier and McCabe Olsen
On the omega values of generators of embedding dimension-three 657
numerical monoids generated by an intervalScott T. Chapman, Walter Puckett and Katy ShourMatrix coefficients of depth-zero supercuspidal representations of669GL(2)Andrew Knightly and Carl RagsdaleThe sock matching problem691Sarah Gilliand, Charles Johnson, Sam Rush andDeborah WoodSuperlinear convergence via mixed generalized quasilinearization699method and generalized monotone method
Vinchencia Anderson, Courtney Bettis, ShalaBrown, Jacqkis Davis, Naeem Tull-Walker, VinodhChellamuthu and Aghalaya S. Vatsala

[^0]: MSC2010: primary 11E25; secondary 11E20.
 Keywords: quadratic forms, number theory, prime number.
 ${ }^{1}$ Originally it was stated that there are 55 sets of values, but one was later removed when Dickson proved that exactly one of Ramanujan's forms failed to represent all positive integers.

