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Building on the method used by Bhargava to prove “the fifteen theorem”, we
show that every integer-valued positive definite quadratic form which represents
all prime numbers must also represent 205. We further this result by proving that
205 is the smallest nontrivial composite number which must be represented by
all such quadratic forms.

1. Introduction and statement of results

The study of quadratic forms in various fashions dates back to the third century
works of Diophantus. Diophantus worked with ways to rewrite sums of squares
and found that (a2

+ b2)(c2
+ d2)= (ac± bd)2

+ (ad ∓ bc)2 and that numbers of
the form 4n− 1 are not able to be represented as a sum of two squares. It was not
until 1625 that Albert Girard (Fermat came to the same result a few years later)
wrote that a number is the sum of two squares if and only if when divided by its
largest square factor, the result is a product of primes of the form 4n+ 1 or twice
the product of such primes [Dickson 1920].

Further exploration into representation of numbers by squares led to Lagrange
proving in 1770 that every natural number is the sum of four integer squares,
n = a2

+b2
+c2
+d2. Ramanujan [1917] furthered this result by conjecturing1 that

there are exactly 55 sets of values for a, b, c, d such that ax2
+ by2

+ cz2
+ du2

represents all positive integers.
Willerding [1948] used an extension of Ramanujan’s work to prove the following:

Theorem 1. There are exactly 178 classes of universal positive definite integer
matrix quaternary quadratic forms.

Here positive definite indicates that the quadratic form represents only non-
negative integers, and only represents 0 when every variable is equal to 0. A
universal quadratic form represents every number in its range, thus a universal

MSC2010: primary 11E25; secondary 11E20.
Keywords: quadratic forms, number theory, prime number.

1Originally it was stated that there are 55 sets of values, but one was later removed when Dickson
proved that exactly one of Ramanujan’s forms failed to represent all positive integers.
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positive definite quadratic form represents all positive integers. Integer matrix
means that the coefficients on all cross terms are even.

Bhargava [2000] showed that there are actually 204 universal quaternary forms
and enumerated those forms. In the same paper, Bhargava gave a proof of a theorem
stated in 1993 by Conway and Schneeberger known as “the fifteen theorem”.

Theorem 2. If a positive definite quadratic form having an integer matrix represents
every positive integer up to 15 then it represents every positive integer.

Building on the methods used by Bhargava, we look specifically at integer-valued
positive definite quadratic forms representing all prime numbers. Our goal is to
determine if there are composite numbers which are represented by every such
quadratic form, and if so to find the smallest such composite. Our result is a proof
that there are nontrivial composites which are represented by all quadratic forms
representing every prime number.

We restrict the composite numbers we are considering to composites which are
not a square times a prime. This is due to the fact that all primes are represented by
prime universal quadratic forms, and if n is represented then nx2 is also represented.
For this reason, we consider a square times a prime to be a trivial composite
number, and search for nontrivial composite numbers which are represented by
these quadratic forms.

Theorem 3. Every integer-valued positive definite quadratic form, Q, representing
all prime numbers, must represent 205. Furthermore, if n is a composite number
less than 205 and n is represented by all quadratic forms which represent all prime
numbers, then n must be a square times a prime.

Remark. An analogous statement may be made for integer matrix positive definite
quadratic forms. The same process is used, but the calculations are simpler and 66
is the smallest non-trivial composite which must be represented in that case.

2. Definitions

First, we define lattices as they pertain to quadratic forms throughout this paper.
The set of all integers is denoted Z. An n-dimensional lattice L is a subset L ⊆ Rn ,
together with an inner product that gives a way of measuring distances and angles.
Here are the properties that it must satisfy:

(i) The set L must span Rn .

(ii) The set L must have the form L =
{∑n

i=1 ai Evi : ai ∈ Z
}
.

(iii) The inner product 〈Ev, Ew〉 is a function from L × L→ R.

(iv) For any Ev ∈ L , 〈Ev, Ev〉 ≥ 0 with 〈Ev, Ev〉 = 0 if and only if Ev = 0.

(v) For any Ev, Ew, Ex ∈ L , we have 〈Ev, Ew〉 = 〈 Ew, Ev〉 and 〈Ev+ Ew, Ex〉 = 〈Ev, Ex〉+〈 Ew, Ex〉.
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Note that property (iv) enforces positive definiteness.
Given a lattice L , the function

Q(a1, . . . , an)=

〈 n∑
i=1

ai Evi ,

n∑
i=1

ai Evi

〉
is a quadratic form. Moreover, every quadratic form arises in this way.

A quadratic form is called integer-valued if

Q(x1, x2, . . . , xn)=

n∑
i=1

n∑
j=i

ai j xi x j , ai j ∈ Z.

Furthermore, an integer-valued quadratic form is called integer matrix if ai j is even
for all i 6= j .

The Gram matrix of a quadratic form, Q, is the matrix A such that we can write
Q = x tA x . The Gram matrix of an integer-valued quadratic form has entries has
integer diagonal entries and half integer off diagonal entries. Similarly, the Gram
matrix of an integer matrix quadratic form has integer entries.

Next, we set forth some definitions which are based upon the definitions used
in [Bhargava 2000]. We first define the prime truant of a quadratic form to be
the smallest prime not represented by the quadratic form. We also define a prime
escalation of a lattice to be a lattice generated by the original lattice and a vector
with norm equal to the prime truant of the original lattice. The dimension of a
prime escalation is either equal to the dimension of the original lattice or greater
by 1. A prime escalator lattice is a lattice which is generated by any number of
prime escalations of the zero-dimensional lattice. Similarly, a quadratic form is
considered to be prime universal if it represents all prime numbers.

Two quadratic forms, Q1 and Q2, are considered equivalent if there is an integral
invertible change of variables which sends Q1 to Q2.

If Q is a positive definite quadratic form, let rQ(n) be the number of representa-
tions of n by Q. The theta series of Q is the power series

2Q(q)=

∞∑
n=0

rQ(n)qn.

3. Prime escalations

We begin by giving an overview of prime escalations. Escalating the zero-dimen-
sional lattice gives us

[
2
]

which leads to the form 2x2. This represents 2 but not 3,
so our two-dimensional prime escalator lattices are[

2 x
x 3

]
,
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with x2
≤ 6 by the Cauchy–Schwarz inequality. Since we are looking for integer-

valued quadratic forms, we allow x to be of the form x = y/2, y ∈ Z. Thus we have
the lattices with matrices[

2 ±
1
2

±
1
2 3

]
,

[
2 ±1
±1 3

]
,

[
2 ±

3
2

±
3
2 3

]
,

[
2 ±2
±2 3

]
,

[
2 0
0 3

]
,

corresponding to the quadratic forms

2x2
± xy+ 3y2, 2x2

± 2xy+ 3y2, 2x2
± 3xy+ 3y2

2x2
± 4xy+ 3y2, 2x2

+ 3y2.

The form 2x2
+3xy+3y2 is equivalent to 2x2

+ xy+2y2, and 2x2
+4xy+3y2 is

equivalent to x2
+ 2y2. For binary quadratic forms, we may ignore the sign of the

cross term since sending x to −x makes the forms equivalent.
To automate this process we ran this through a math program called Magma.

The Magma script began with the zero-dimensional lattice and followed the prime
escalation process as above. When checking for prime truants, each form was
checked for unrepresented primes beginning with 2 and checking each prime until
one was unrepresented. Since prime escalator lattices of dimension two are not
prime universal, every lattice was escalated at least three times. Some of these
lattices were escalated a fourth time if they failed to represent a prime below 1000.

We define two sets, A and B, as follows. If a third escalation prime escalator
lattice, L , represents every prime below 1000, then let L ∈ A. If the third escalation
prime escalator lattice fails to represent a prime below 1000, then let a prime
escalation of L be M , and let M ∈ B.

Theorem 4. Every prime universal lattice contains a prime escalator lattice from
A or B.

Proof. Suppose L is a prime universal lattice and L0 ⊆ L1 ⊆ L2 ⊆ L3 ⊆ · · · ⊆ L is
an ascending chain of escalator lattices, with L0 zero-dimensional and L i being a
prime escalation of L i−1 for each i . Since every prime escalator lattice of dimension
0, 1, or 2 increases in dimension when escalated, L3 is a 3-dimensional escalator
lattice. If L3 has a prime truant below 1000, then its escalation L4 ∈ B. If not, then
L3 ∈ A. Thus L contains a prime escalator sublattice from A or from B. �

Forms in the set A may not be prime universal, but Theorem 5 allows us to make
use of these forms.

4. Composite representation methods

Since we are searching for composite numbers which are represented by every prime
universal quadratic form, we take advantage of Lagrange’s four-square theorem
mentioned above to form the following theorem.



QUADRATIC FORMS REPRESENTING ALL PRIMES 623

Theorem 5. Suppose Q(Ey) is a positive definite integer-valued quadratic form and
there exists a composite number m such that Q(Ey) does not represent m. If Q(Ey)

represents every prime p < m, then the quadratic form

R(Ey, a, b, c, d, x0, . . . , xm−1)Q(Ey)+(m+1)(a2
+b2
+c2
+d2)+

m−1∑
i=0

(m+1+i)x2
i

is prime universal and does not represent m.

Proof. This result is due to the fact that
∑m−1

i=0 (m+1+i)x2
i represents every number

between m+1 and 2m, and (m+1)(a2
+b2
+c2
+d2) represents every multiple of

(m+ 1). Thus together these represent every number greater than m. The resultant
quadratic form, R, does not represent m due to the fact that Q and each of the two
added components are all positive definite. Since the two added components do not
represent any numbers less than m and Q does not represent any negative numbers,
there is no way to represent m. Finally, since we have shown that our new quadratic
form represents every number greater than m and Q represents every prime less
than m, R must represent all prime numbers and thus is prime universal. �

With these tools in hand we are now ready to handle the proof of our main result.

Proof of Theorem 3. In this way, if we are able to find a quadratic form which
represents all primes less than a composite, but does not represent that composite
number, we can construct a prime universal quadratic form which fails to represent
that composite. Table 1 provides a list of quadratic forms that show that every
composite number less than 205 which is not a square times a prime does not have
to be represented by a prime universal quadratic form.

Next, we look at which composites are represented by prime universal quadratic
forms. After each prime escalation run using Magma, we checked which composites
were represented by every prime escalator lattice. In order to do this, we generated
the theta series of each lattice and checked the coefficients of the composite power
terms. We began this process after two prime escalations, since the zero-dimensional
and one-dimensional prime escalator lattices do not represent any composites which
are not a square times a prime. By comparing the represented composites for the five
two-dimensional prime escalator lattices corresponding to binary quadratic forms,
we find that 818 is represented by all of them. As such, we reduced our theta series
to only look at which composites below 818 were represented for subsequent prime
escalations. We repeated this process for the third and fourth prime escalations of
the zero-dimensional lattice.

This process showed that 818 is represented by all second prime escalations, 453
is represented by all third escalations, and 205 is represented by every lattice in sets
A and B.
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Quadratic form Integers not represented

x2
+xy+2y2

+3z2 6, 15, 24, 33, 42, 51, 54, 60, 69, 78, 85,
87, 96, 105, 114, 123, 132, 135, 141,

150, 159, 168, 177, 186, 195, 204
2x2
−2xz+3y2

+yz+3z2 1, 4, 16, 22, 38, 64, 70, 86, 88, 102, 118,
134, 152, 166, 182, 198

2x2
−2xz+3y2

+3yz+3z2 26, 104
2x2
−xz+3y2

+4z2 9, 81
2x2
−xz+3y2

+3yz+4z2 34, 111
2x2
+3y2

+yz+5z2 10, 40, 58, 74, 90, 106, 122, 136, 138,
154, 160, 170, 202

2x2
+3y2

+3yz+5z2 36, 119, 144, 187
2x2
−2xz+3y2

−yz+5z2 46, 178, 184
x2
+xz+y2

+2z2 21, 35, 84, 91, 133, 140, 189
2x2
+xy−xz+3y2

−yz+3z2 25, 30, 65, 110, 115, 155, 165, 185, 190
x2
+xz+y2

+3z2 66, 77, 143
2x2
+2xy−2xz+3y2

+yz+5z2 14, 56, 62, 94, 120, 126, 142, 158, 174
2x2
+2xy+3y2

+yz+5z2 39, 156
x2
+xy+xz+2y2

+3z2
+19w2 57

2x2
−2xz−xw+3y2

−3yw+3z2
−2zw+14w2 49

2x2
−2xz+3y2

−3yw+3z2
+15w2 121

2x2
−2xz+3y2

+2yz+3z2
+13w2 169

2x2
−xz+3y2

−2yz+3z2
+61w2 183

2x2
−xy+2y2

−yz+3z2
+43w2 129

2x2
+xz−xw+3y2

+3yz−3yw+6z2
−4zw+7w2 55

2x2
+xz+2xw+3y2

+3yz+6z2
+2zw+9w2 95

2x2
−2xz+2xw+3y2

−3yw+7z2
−5zw+112 130

2x2
−2xz−2xw+3y2

+2yz−3yw+7z2
−zw+9w2 82

2x2
−xz+3y2

−yz+5z2
+23z2 161

2x2
+2xy−xz−xw+3y2

−yw+5z2
+66w2 194

2x2
+2xy−xz−xw+3y2

+2yz−3yw+5z2
+zw+26w2 93

2x2
−xy+xw+2y2

−yz−yw+5z2
+70w2 146

2x2
−xy+xz+2y2

−2yz+5z2
+67w2 201

2x2
−xy−xw+2y2

+2yw+7z2
+8w2 196

2x2
−xy+xz+xw+2y2

+yz+yw+7z2
+4zw+11z2 100

x2
−xz+2y2

−yz+4z2
+29w2 145, 203

Table 1. The quadratic forms on the left do not represent the
numbers on the right, but represent every prime less than each
of those numbers. By Theorem 5, there exists a prime universal
quadratic form which represents all primes and does not represent
each number listed.
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By Theorem 4, every prime universal lattice will contain a prime escalator lattice
from sets A or B and thus will represent 205. �

5. Conclusions

There are many questions that remain regarding properties of universal quadratic
forms, and specifically prime universal quadratic forms.

Question. If we let S be a set of positive integers, T be the set of all positive definite
quadratic forms that represent every number in S, and U be the set of numbers
represented by everything in T , when does T =U and when is U bigger than T ?

We have answered this question in the case of S being the set of all primes, and
found that U is bigger than T since 205 ∈U .

Other questions regarding quadratic forms which have been answered for integers
remain open when applied specifically to prime numbers. A similar examination
could apply to the “290 theorem” (see [Bhargava and Hanke 2011]).

Theorem 6 (290 theorem). If a positive definite quadratic form with integer coef-
ficients represents the twenty-nine integers 1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19,
21, 22, 23, 26, 29, 30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, and 290, then it
represents all positive integers.

Question. What is the smallest set of prime numbers such that all positive definite
integer-valued quadratic forms which represent every prime in the set must be prime
universal? (Bhargava has answered this question in the case of positive definite
integer matrices.)
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