\bullet

 inyolve

 inyolve} a journal of mathematics

On the omega values of generators
of embedding dimension-three numerical monoids generated by an interval

Scott T. Chapman, Walter Puckett and Katy Shour

On the omega values of generators of embedding dimension-three numerical monoids generated by an interval

Scott T. Chapman, Walter Puckett and Katy Shour
(Communicated by Vadim Ponomarenko)

We offer a formula to compute the omega values of the generators of the numerical monoid $S=\langle k, k+1, k+2\rangle$ where k is a positive integer greater than 2.

1. Introduction and the main result

The notion of a prime element is a central focus in the study of algebra and number theory. Several recent papers [Anderson and Chapman 2010; 2012; Anderson et al. 2011] have considered the following generalization of the notion of prime elements in the context of numerical monoids. This definition, which we state for a general commutative cancellative monoid, originally appeared in [Geroldinger and Hassler 2008].
Definition 1.1. Let M be a commutative, cancellative, atomic monoid with set of units M^{\times}and set of irreducibles (or atoms) $\mathscr{A}(M)$. For $x \in M \backslash M^{\times}$, we define $\omega_{M}(x)=n$ if n is the smallest positive integer with the property that whenever $x \mid a_{1} \cdots a_{t}$, where each $a_{i} \in \mathscr{A}(M)$, there is a $T \subseteq\{1,2, \ldots, t\}$ with $|T| \leq n$ such that $x \mid \prod_{k \in T} a_{k}$. If no such n exists, then $\omega_{M}(x)=\infty$. For $x \in M^{\times}$, we define $\omega_{M}(x)=0$.

As in [Anderson et al. 2011], when our context is clear, we will shorten $\omega_{M}(x)$ to $\omega(x)$. It follows easily from the definition that an element $x \in M \backslash M^{\times}$is prime if and only if $\omega(x)=1$. Hence, in some sense the omega function measures how far an element is from being prime. Some basic properties of this function can be found not only in the papers mentioned above, but also in [Geroldinger and Halter-Koch 2006]. Anderson and Chapman [2010; 2012] study the behavior of the omega function in the setting of the multiplicative monoid of a commutative ring.

[^0]Keywords: numerical monoid, omega function, factorizations.
The authors were supported by a 2012 Enhancement Research Grant from Sam Houston State University.

Anderson, Chapman, Kaplan and Torkornoo [Anderson et al. 2011, Section 3] offer a finite time algorithm for computing $\omega(x)$ when x is an element in a numerical monoid S. Recall that a numerical monoid is an additive submonoid of the nonnegative integers (which we denote by \mathbb{N}_{0}). Using elementary number theory, it is easy to show that such a submonoid is finitely generated and possesses a unique minimal (in terms of cardinality) generating set. If $n_{1}, n_{2}, \ldots, n_{t}$ is the minimal generating set for a numerical monoid S, then we write

$$
S=\left\langle n_{1}, \ldots, n_{t}\right\rangle=\left\{x_{1} n_{1}+\cdots+x_{t} n_{t} \mid x_{i} \in \mathbb{N}_{0} \text { for each } i\right\}
$$

The value t is known as the embedding dimension of S. The elements n_{1}, \ldots, n_{t} are the irreducibles of S, and as noted in Definition 1.1, we will write $\mathscr{A}(S)=$ $\left\{n_{1}, \ldots, n_{t}\right\}$. When considering the complete class of numerical monoids, elementary isomorphism arguments allow us to reduce to the case where $\operatorname{gcd}\left(n_{1}, \ldots, n_{t}\right)=$ 1. Such a numerical monoid is called primitive. [Rosales and García-Sánchez 2009] is a good general reference on numerical monoids and semigroups. [Bowles et al. 2006; Chapman et al. 2006; 2009; Omidali 2012] examine factorization properties of numerical monoids which are related in various ways to the omega function.

A version of the algorithm in [Anderson et al. 2011] mentioned above has been programmed and can be found in the numerical semigroups package available for Gap (gap-system.org/Manuals/pkg/numericalsgps/doc/manual.pdf). Using data generated by this program, much of the work in [Anderson et al. 2011] is dedicated to showing that closed forms for particular values of $\omega(x)$ are highly nontrivial to determine. In [Anderson et al. 2011, Propositions 3.1 and 3.2], the authors determine formulas for this when $S=\langle n, n+1, \ldots, 2 n-1\rangle$ and $S=\langle n, n+1, \ldots, 2 n-2\rangle$ (where $n \geq 2$), and in [Anderson et al. 2011, Theorem 4.4] they handle the case where $S=\left\langle n_{1}, n_{2}\right\rangle$. The paper also takes interest in computing the values $\omega\left(n_{1}\right)$, $\omega\left(n_{2}\right)$, and $\omega\left(n_{3}\right)$ when $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ is of embedding dimension 3 . In particular, they offer a chart [Anderson et al. 2011, p. 101] to illustrate how these omega values can differ. We include a modified form in Table 1.

There are 5 possibilities that Table 1 omits. With the programs then available, Anderson et al. [2011] were unable to find examples of these missing orderings. With some improved programming techniques, the present authors were able to compute $\omega\left(n_{1}\right), \omega\left(n_{2}\right)$ and $\omega\left(n_{3}\right)$ for all embedding dimension-three numerical monoids with generators less than or equal to 100 . This yielded two of the remaining five cases.
(i) $S=\langle 6,7,9\rangle$ yields $\omega(6)=3, \omega(7)=5$, and $\omega(9)=3$. Hence, $\omega(6)<\omega(7)$, $\omega(9)<\omega(7)$, and $\omega(6)=\omega(9)$.
(ii) $S=\langle 7,8,20\rangle$ yields $\omega(7)=6, \omega(8)=4$, and $\omega(20)=5$. Hence, $\omega(7)>\omega(8)$, $\omega(8)<\omega(20)$, and $\omega(7)>\omega(20)$.

$\left\langle n_{1}, n_{2}, n_{3}\right\rangle$	$\omega\left(n_{1}\right)$	$\omega\left(n_{2}\right)$	$\omega\left(n_{3}\right)$	Ordering of the omega values
$\langle 6,8,13\rangle$	3	4	7	$\omega(6)<\omega(8)<\omega(13)$
$\langle 5,7,11\rangle$	3	5	5	$\omega(5)<\omega(7)=\omega(11)$
$\langle 4,5,6\rangle$	2	4	3	$\omega(4)<\omega(5), \omega(5)>\omega(6), \omega(4)<\omega(6)$
$\langle 6,9,11\rangle$	3	3	7	$\omega(6)=\omega(9)<\omega(11)$
$\langle 7,11,17\rangle$	5	5	5	$\omega(7)=\omega(11)=\omega(17)$
$\langle 6,7,11\rangle$	4	3	5	$\omega(6)>\omega(7), \omega(7)<\omega(11), \omega(6)<\omega(11)$
$\langle 7,8,12\rangle$	5	4	4	$\omega(7)>\omega(8)=\omega(12)$
$\langle 7,8,13\rangle$	5	4	5	$\omega(7)>\omega(8), \omega(8)<\omega(13), \omega(7)=\omega(13)$

Table 1. Differing values of omega (modified from [Anderson et al. 2011]).
We strongly suspect the final three orderings are not possible. Hence, we state this as a potential problem.

Problem. Let $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ be an embedding dimension-3 numerical monoid. Show that the sequence $\omega\left(n_{1}\right), \omega\left(n_{2}\right)$, and $\omega\left(n_{3}\right)$ does not satisfy any of the following three orderings:

- $\omega\left(n_{1}\right)>\omega\left(n_{2}\right)>\omega\left(n_{3}\right)$.
- $\omega\left(n_{1}\right)=\omega\left(n_{2}\right)>\omega\left(n_{3}\right)$.
- $\omega\left(n_{1}\right)<\omega\left(n_{2}\right), \omega\left(n_{2}\right)>\omega\left(n_{3}\right), \omega\left(n_{3}\right)<\omega\left(n_{1}\right)$.

In the course of attempting to solve this problem, numerous classes of embedding dimension-3 numerical monoids were studied. We encountered one with especially nice omega values on the generators. The remainder of this paper will consist of a proof of the following theorem.
Theorem 1.2. Let k be a positive integer.
(a) If $S_{1}=\langle 2 k+1,2 k+2,2 k+3\rangle$, then

$$
\omega(2 k+1)=k+1 \quad \text { and } \quad \omega(2 k+2)=\omega(2 k+3)=k+2 .
$$

(b) If $k \geq 2$ and $S_{2}=\langle 2 k, 2 k+1,2 k+2\rangle$, then

$$
\omega(2 k)=k, \omega(2 k+1)=k+2 \quad \text { and } \quad \omega(2 k+2)=k+1 .
$$

The proof will require two results from the literature. The first allows one to reduce the definition of $\omega(x)$ from that of checking arbitrary products to checking only products of irreducibles.
Theorem 1.3 [Anderson and Chapman 2010, Theorem 2.1]. Let M be a commutative cancellative monoid and suppose that $x \in M \backslash M^{\times}$. Then the following statements are equivalent:
(a) $\omega(x)=m \in \mathbb{N}$.
(b) m is the least positive integer such that if $x \mid x_{1} \cdots x_{n}$ with each $x_{i} \in M$ irreducible, then $x \mid x_{i_{1}} \cdots x_{i_{t}}$ for some $\left\{i_{1}, \ldots, i_{t}\right\} \subseteq\{1, \ldots, n\}$ with $t \leq m$.
(c) If $x \mid x_{1} \cdots x_{n}$ with each $x_{i} \in M$ irreducible and $n \geq m$, then $x \mid x_{i_{1}} \cdots x_{i_{m}}$ for some $\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}$, and there are irreducible $x_{1}, \ldots, x_{m} \in M$ such that $x \mid x_{1} \cdots x_{m}$, but x divides no proper subproduct of the x_{i}.

For an element $x \in S$, the product $x_{1} \cdots x_{m}$ alluded to in part (c) above will be called a bullet for x.

The second necessary result is an amazing characterization of the membership problem for a numerical monoid generated by an interval of integers.
Theorem 1.4 [García-Sánchez and Rosales 1999, Corollary 2]. An element $n \in \mathbb{N}$ belongs to $S=\langle a, a+1, \ldots, a+x\rangle$ if and only if

$$
n(\bmod a) \leq\left\lfloor\frac{n}{a}\right\rfloor x
$$

where $\lfloor\cdot\rfloor$ represents the greatest integer function and residues are assumed to be least.

To prove Theorem 1.2, we will verify the 6 claimed values of the omega function. To do this, we will pivot on Theorem 1.3(c) and produce a bullet for each of the six elements. The condition in Theorem 1.4 will be vital in these arguments. In the two monoids we consider, the condition will reduce to

$$
n(\bmod 2 k+1) \leq\left\lfloor\frac{n}{2 k+1}\right\rfloor 2
$$

for $S_{1}=\langle 2 k+1,2 k+2,2 k+3\rangle$ and

$$
n(\bmod 2 k) \leq\left\lfloor\frac{n}{2 k}\right\rfloor 2
$$

for $S_{2}=\langle 2 k, 2 k+1,2 k+2\rangle$. To finish the proof, we will then verify the first part of Theorem 1.3(c); namely if the bullet is of length j, then divisibility by a sum of length greater than or equal to j yields divisibility by a subsum of length j or less.

2. Proof of Theorem 1.2 for S_{1}

Lemma 2.1. In S_{1} we have the following divisibility relationships:
(a) $(2 k+1) \mid \sum_{i=1}^{k+1}(2 k+3)$;
(b) $(2 k+2) \mid \sum_{i=1}^{k+2}(2 k+1)$;
(c) $(2 k+3) \mid \sum_{i=1}^{k+2}(2 k+1)$.

Proof. (a) Now, $\sum_{i=1}^{k+1}(2 k+3)=(k+1)(2 k+3)=2 k^{2}+5 k+3$. To prove the claim, we must show that $\left(2 k^{2}+5 k+3\right)-(2 k+1) \in S_{1}$. Now (a) follows since $\left(2 k^{2}+5 k+3\right)-(2 k+1)=2 k^{2}+3 k+2=k(2 k+1)+(2 k+2)$.

For the proof of (b) and (c), note that $\sum_{i=1}^{k+2}(2 k+1)=(k+2)(2 k+1)=2 k^{2}+5 k+2$. For (b), we must show that $\left(2 k^{2}+5 k+2\right)-(2 k+2) \in S_{1}$. Since

$$
\left(2 k^{2}+5 k+2\right)-(2 k+2)=2 k^{2}+3 k=k(2 k+3)
$$

part (b) follows. For (c), we must show that $\left(2 k^{2}+5 k+2\right)-(2 k+3) \in S_{1}$. Since $\left(2 k^{2}+5 k+2\right)-(2 k+3)=2 k^{2}+3 k-1=2 k+2+(k-1)(2 k+3)$, part (c) follows and the proof of the lemma is complete.

In the next three lemmas, we show that the sums produced in Lemma 2.1 are actually bullets for $2 k+1,2 k+2$ and $2 k+3$.
Lemma 2.2. In $S_{1}, 2 k+1$ does not divide any proper subsum of $\sum_{i=1}^{k+1}(2 k+3)$.
Proof. To prove the claim, we must show that $2 k+1$ does not divide $j(2 k+3)$ for $1 \leq j \leq k$. This is equivalent to showing that

$$
j(2 k+3)-(2 k+1) \notin S_{1},
$$

for each $1 \leq j \leq k$. Using Theorem 1.4, we must show that

$$
\begin{equation*}
j(2 k+3)-(2 k+1)(\bmod 2 k+1)>\left\lfloor\frac{j(2 k+3)-(2 k+1)}{2 k+1}\right\rfloor \cdot 2, \tag{1}
\end{equation*}
$$

for each $1 \leq j \leq k$. Now, (1) reduces to

$$
\begin{equation*}
2 j>\left\lfloor\frac{j(2 k+3)-(2 k+1)}{2 k+1}\right\rfloor 2, \tag{2}
\end{equation*}
$$

and hence

$$
\begin{equation*}
j>\left\lfloor j\left(\frac{2 k+3}{2 k+1}\right)-1\right\rfloor . \tag{3}
\end{equation*}
$$

Equation (3) can be rewritten as

$$
j>\left\lfloor j\left(\frac{2 k+3}{2 k+1}\right)-1\right\rfloor=\left\lfloor j-1+j\left(\frac{2}{2 k+1}\right)\right\rfloor=j-1+\left\lfloor\frac{2 j}{2 k+1}\right\rfloor
$$

Since $j \leq k$, we have

$$
\frac{2 j}{2 k+1} \leq \frac{2 k}{2 k+1}<\frac{2 k+1}{2 k+1}=1
$$

so $\lfloor 2 j /(2 k+1)\rfloor=0$ and Equation (3) is true, which completes the proof.

Lemma 2.3. In $S_{1}, 2 k+2$ does not divide any proper subsum of $\sum_{i=1}^{k+2}(2 k+1)$.
Proof. To prove the claim, we must show that $2 k+2$ does not divide $j(2 k+1)$ for $1 \leq j \leq k+1$. This is equivalent to showing that

$$
j(2 k+1)-(2 k+2) \notin S_{1},
$$

for each $1 \leq j \leq k+1$. Using Theorem 1.4 again, we must show that

$$
\begin{equation*}
j(2 k+1)-(2 k+2)(\bmod 2 k+1)>\left\lfloor\frac{j(2 k+1)-(2 k+2)}{2 k+1}\right\rfloor 2 \tag{4}
\end{equation*}
$$

for each $1 \leq j \leq k$. Now,

$$
j(2 k+1)-(2 k+2) \equiv-1 \equiv 2 k(\bmod 2 k+1)
$$

and thus (4) reduces to

$$
\begin{equation*}
k>\left\lfloor j-\frac{2 k+2}{2 k+1}\right\rfloor \tag{5}
\end{equation*}
$$

Note that

$$
\left\lfloor j-\frac{2 k+2}{2 k+1}\right\rfloor=\left\lfloor j-1-\frac{1}{2 k+1}\right\rfloor=j-1+\left\lfloor-\frac{1}{2 k+1}\right\rfloor=j-2
$$

Since $j \leq k$, Equation (5) holds which completes the proof.
Lemma 2.4. In $S_{1}, 2 k+3$ does not divide any proper subsum of $\sum_{i=1}^{k+2}(2 k+1)$.
Proof. To prove the claim, we must show that $2 k+3$ does not divide $j(2 k+1)$ for $1 \leq j \leq k+1$. This is equivalent to showing that

$$
j(2 k+1)-(2 k+3) \notin S_{1},
$$

for each $1 \leq j \leq k+1$. Using Theorem 1.4 again, we must show that

$$
\begin{equation*}
j(2 k+1)-(2 k+3)(\bmod 2 k+1)>\left\lfloor\frac{j(2 k+1)-(2 k+3)}{2 k+1}\right\rfloor 2 \tag{6}
\end{equation*}
$$

for each $1 \leq j \leq k$. Now,

$$
j(2 k+1)-(2 k+3) \equiv-2 \equiv(2 k-1)(\bmod 2 k+1)
$$

and thus (6) reduces to

$$
2 k-1>\left\lfloor j-\frac{2 k+3}{2 k+1}\right\rfloor 2
$$

Notice that $1<(2 k+3) /(2 k+1)<2$, and so $\lfloor j-(2 k+3) /(2 k+1)\rfloor=j-2$. Hence,

$$
2 k-1>2(j-2)=2 j-4,
$$

and thus

$$
k+\frac{3}{2}>j
$$

The last statement is true since $1 \leq j \leq k+1$, which completes the proof of the lemma.

To complete the argument for S_{1}, we must verify that the first condition in Theorem 1.3(c) holds.
Proposition 2.5. (a) If $(2 k+1) \mid \alpha_{1}+\cdots+\alpha_{t}$ where each α_{i} is irreducible in S_{1} and $t \geq k+1$, then there is a proper subsum $\alpha_{i_{1}}+\cdots+\alpha_{i_{r}}$ of $\alpha_{1}+\cdots+\alpha_{t}$ with $r \leq k+1$ such that $(2 k+1) \mid \alpha_{i_{1}}+\cdots+\alpha_{i_{r}}$.
(b) If $(2 k+2) \mid \alpha_{1}+\cdots+\alpha_{t}$ where each α_{i} is irreducible in S_{1} and $t \geq k+2$, then there is a proper subsum $\alpha_{i_{1}}+\cdots+\alpha_{i_{r}}$ of $\alpha_{1}+\cdots+\alpha_{t}$ with $r \leq k+2$ such that $(2 k+2) \mid \alpha_{i_{1}}+\cdots+\alpha_{i_{r}}$.
(c) If $(2 k+3) \mid \alpha_{1}+\cdots+\alpha_{t}$ where each α_{i} is irreducible in S_{1} and $t \geq k+2$, then there is a proper subsum $\alpha_{i_{1}}+\cdots+\alpha_{i_{r}}$ of $\alpha_{1}+\cdots+\alpha_{t}$ with $r \leq k+2$ such that $(2 k+3) \mid \alpha_{i_{1}}+\cdots+\alpha_{i_{r}}$.
Proof. (a) We can clearly reduce to the case where all the α_{i} are of the form $2 k+2$ or $2 k+3$. We also note that since $(2 k+2)+(2 k+2)=4 k+4=(2 k+1)+(2 k+3)$, it follows that $(2 k+1) \mid(2 k+2)+(2 k+2)$. Hence, if the sum $\alpha_{1}+\cdots+\alpha_{t}$ contains two or more irreducibles of the form $2 k+2$, then we are done. Assume that this is not the case. If there are no irreducibles of the form $2 k+2$, then the result follows by Lemma 2.1(a). If there is exactly one copy of $2 k+2$, then consider $k(2 k+3)+(2 k+2)=2 k^{2}+5 k+2$. It follows that

$$
\left(2 k^{2}+5 k+2\right)-(2 k+1)=2 k^{2}+3 k+1=(k+1)(2 k+1)
$$

Hence, $(2 k+1) \mid k(2 k+3)+(2 k+2)$, which completes the proof.
(b) It is only necessary to look at the case where all the α_{i} are of the form $2 k+1$ or $2 k+3$. We first note that since $(2 k+1)+(2 k+3)=4 k+4=2(2 k+2)$, it follows $(2 k+2) \mid(2 k+1)+(2 k+3)$, and if the sum $\alpha_{1}+\cdots+\alpha_{t}$ contains at least one of each irreducible $2 k+1$ and $2 k+3$, then we are done. If the sum contains no copies of $2 k+3$, then the result holds by Lemma 2.1(b). If the sum contains no copies of $2 k+1$, then the equality

$$
(k+1)(2 k+3)-(2 k+2)=2 k^{2}+3 k+1=(k+1)(2 k+1)
$$

completes the proof.
(c) It is only necessary to look at the case where the α_{i} are of the form $2 k+1$ or $2 k+2$. Now, $(2 k+2)+(2 k+2)=(2 k+3)+(2 k+1)$ and thus, if the sum $\alpha_{1}+\cdots+\alpha_{t}$ contains at least 2 irreducibles of the form $2 k+2$, then we are
done. If there are no irreducibles of the form $2 k+2$, then this result follows by Lemma 2.1(c). If there is exactly one irreducible of the form $2 k+2$, then consider $(k+1)(2 k+1)+(2 k+2)=2 k^{2}+5 k+3$. Now,

$$
\left(2 k^{2}+5 k+3\right)-(2 k+3)=2 k^{2}+3 k=k(2 k+3)
$$

and thus $(2 k+3) \mid(k+1)(2 k+1)+(2 k+2)$, which completes the proof.

3. Proof of Theorem $\mathbf{1 . 2}$ for $\boldsymbol{S}_{\mathbf{2}}$

Lemma 3.1. In S_{2}, we have the following divisibility relationships:
(a) $2 k \mid \sum_{i=1}^{k}(2 k+2)$;
(b) $(2 k+1) \mid \sum_{i=1}^{k+2} 2 k$;
(c) $(2 k+2) \mid \sum_{i=1}^{k+1} 2 k$.

Proof. (a) $\sum_{i=1}^{k}(2 k+2)=2 k^{2}+2 k$. Now, $\left(2 k^{2}+2 k\right)-(2 k)=2 k^{2}=2 k(k)$. Thus, $2 k \mid k(2 k+2)$ and the result follows.
(b) $\sum_{i=1}^{k+2}(2 k)=(k+2)(2 k)=2 k^{2}+4 k$. Now, $\left(2 k^{2}+4 k\right)-(2 k+1)=2 k^{2}+2 k-1=$ $(k-1)(2 k+2)+(2 k+1) \in S_{2}$. Thus, $(2 k+1) \mid(k+2)(2 k)$ and the result follows.
(c) $\sum_{i=1}^{k+1}(2 k)=(k+1)(2 k)=2 k^{2}+2 k$. Now, $\left(2 k^{2}+2 k\right)-(2 k+2)=(k-1)(2 k+2) \in$ S_{1}. Thus, $(2 k+2) \mid 2 k(k+1)$ and the result follows.
Lemma 3.2. In $S_{2}, 2 k$ does not divide any proper subsum of $\sum_{i=1}^{k}(2 k+2)$.
Proof. To prove this claim, we must show that $2 k$ does not divide $j(2 k+2)$ for $1 \leq j \leq k-1$. This is equivalent to showing that

$$
j(2 k+2)-2 k \notin S_{2}
$$

for each $1 \leq j \leq k-1$. Using Theorem 1.4, we must show that

$$
j(2 k+2)-2 k(\bmod 2 k)>2\left\lfloor\frac{j(2 k+2)-2 k}{2 k}\right\rfloor
$$

As in the arguments in Section 2, this reduces to

$$
j>\left\lfloor\frac{j k+j-k}{k}\right\rfloor
$$

which is equivalent to

$$
j>\left\lfloor j+\frac{j}{k}-1\right\rfloor
$$

Since $j \leq k-1$, we have $j / k<1$. So,

$$
j-1=\left\lfloor j+\frac{j}{k}-1\right\rfloor \quad \text { and } \quad j>j-1=\left\lfloor j+\frac{j}{k}-1\right\rfloor .
$$

Thus, no subsum is in S_{2}.
Lemma 3.3. In $S_{2}, 2 k+1$ does not divide any proper subsum of $\sum_{i=1}^{k+2}(2 k)$.
Proof. To prove this claim, we must show that $2 k+1$ does not divide $j(2 k)$ for $1 \leq j \leq k+1$. This is equivalent to showing that

$$
j(2 k)-(2 k+1) \notin S_{2}
$$

for each $1 \leq j \leq k-1$. Using Theorem 1.4, we must show that

$$
j(2 k)-(2 k+1)(\bmod 2 k)>2\left\lfloor\frac{j 2 k-(2 k+1)}{2 k}\right\rfloor .
$$

This is equivalent to

$$
(2 k-1)>2\left\lfloor\frac{j 2 k-(2 k+1)}{2 k}\right\rfloor .
$$

Since $1<(2 k+1) / 2 k<2$, we know that

$$
j-2=\lfloor j-2\rfloor=\left\lfloor j-\frac{2 k+1}{2 k}\right\rfloor=\left\lfloor\frac{j 2 k-(2 k+1)}{2 k}\right\rfloor
$$

By the limits on j, it follows that $k-\frac{1}{2}>j-2$. Combining the last two inequalities and multiplying by 2 yields the desired result.
Lemma 3.4. In $S_{2}, 2 k+2$ does not divide any proper subsum of $\sum_{i=1}^{k+1} 2 k$.
Proof. To prove this claim, we must show that $2 k+2$ does not divide $j(2 k)$ for $1 \leq j \leq k$. This is equivalent to showing that

$$
j(2 k)-(2 k+2) \notin S_{2}
$$

for each $1 \leq j \leq k$. Using Theorem 1.4 , we must show that

$$
j(2 k)-(2 k+2)(\bmod 2 k)>2\left\lfloor\frac{j 2 k-(2 k+2)}{2 k}\right\rfloor .
$$

This is equivalent to

$$
k-1>\left\lfloor\frac{j k-k-1}{k}\right\rfloor=\left\lfloor j-1-\frac{1}{k}\right\rfloor=j-2
$$

from which the result follows.

Proposition 3.5. (a) If $2 k \mid \alpha_{1}+\cdots+\alpha_{t}$ where each α_{i} is irreducible in S_{1} and $t \geq k$, then there is a proper subsum $\alpha_{i_{1}}+\cdots+\alpha_{i_{r}}$ of $\alpha_{1}+\cdots+\alpha_{t}$ with $r \leq k$ such that $2 k \mid \alpha_{i_{1}}+\cdots+\alpha_{i_{r}}$.
(b) If $(2 k+1) \mid \alpha_{1}+\cdots+\alpha_{t}$ where each α_{i} is irreducible in S_{1} and $t \geq k+2$, then there is a proper subsum $\alpha_{i_{1}}+\cdots+\alpha_{i_{r}}$ of $\alpha_{1}+\cdots+\alpha_{t}$ with $r \leq k+2$ such that $(2 k+1) \mid \alpha_{i_{1}}+\cdots+\alpha_{i_{r}}$.
(c) If $(2 k+2) \mid \alpha_{1}+\cdots+\alpha_{t}$ where each α_{i} is irreducible in S_{1} and $t \geq k+1$, then there is a proper subsum $\alpha_{i_{1}}+\cdots+\alpha_{i_{r}}$ of $\alpha_{1}+\cdots+\alpha_{t}$ with $r \leq k+1$ such that $(2 k+1) \mid \alpha_{i_{1}}+\cdots+\alpha_{i_{r}}$.

Proof. (a) We can clearly reduce to the case where the α_{i} are of the form $2 k+1$ and $2 k+2$. Also note that we can assume that $t>k$, as the result clearly holds if $t=k$. Since

$$
(2 k+1)+(2 k+1)=4 k+2=(2 k+2)+(2 k),
$$

the result holds if at least two of the α_{i} are of the form $2 k+1$. If at least k of the α_{i} are of the form $2 k+2$, then the result holds by Lemma 3.1(a). If not, then we have at least two of the form $2 k+1$, which completes the proof of (a).
(b) We can clearly reduce to the case where the α_{i} are of the form $2 k$ and $2 k+2$. We proceed as in (a) and assume that $t>k+2$. Note that

$$
(2 k)+(2 k+2)=(2 k+1)+(2 k+1)
$$

Hence if at least one of the α_{i} is of each type, then we are done. If all the α_{i} are of the form $2 k$, then we are done by Lemma 3.1(b). To complete the argument, note that $(k+1)(2 k+2)=2 k^{2}+4 k+2$ and

$$
2 k^{2}+4 k+2-(2 k+1)=2 k^{2}+2 k+1=k(2 k)+(2 k+1) \in S_{2}
$$

(c) We can clearly reduce to the case where the α_{i} are of the form $2 k$ and $2 k+1$. Assume as in (a) and (b) that $t>k+1$. As before,

$$
(2 k+1)+(2 k+1)=4 k+2=(2 k+2)+(2 k),
$$

and if at least two of the α_{i} are of the form $2 k+1$, then we are done. Otherwise, we have at least $2 k+1$ copies of $2 k$, and the result follows by Lemma 3.1(c).

Acknowledgement

The authors wish to thank an anonymous referee for many helpful comments and suggestions.

References

[Anderson and Chapman 2010] D. F. Anderson and S. T. Chapman, "How far is an element from being prime?", J. Algebra Appl. 9:5 (2010), 779-789. MR 2012b:13003 Zbl 1203.13001
[Anderson and Chapman 2012] D. F. Anderson and S. T. Chapman, "On bounding measures of primeness in integral domains", Internat. J. Algebra Comput. 22:5 (2012), 1250040, 15. MR 2949206 Zbl 1251.13002
[Anderson et al. 2011] D. F. Anderson, S. T. Chapman, N. Kaplan, and D. Torkornoo, "An algorithm to compute ω-primality in a numerical monoid", Semigroup Forum 82:1 (2011), 96-108. MR 2012f:20171 Zbl 1218.20038
[Bowles et al. 2006] C. Bowles, S. T. Chapman, N. Kaplan, and D. Reiser, "On delta sets of numerical monoids", J. Algebra Appl. 5:5 (2006), 695-718. MR 2007j:20092 Zbl 1115.20052
[Chapman et al. 2006] S. T. Chapman, M. T. Holden, and T. A. Moore, "Full elasticity in atomic monoids and integral domains", Rocky Mountain J. Math. 36:5 (2006), 1437-1455. MR 2007j:20093 Zbl 1152.20048
[Chapman et al. 2009] S. T. Chapman, R. Hoyer, and N. Kaplan, "Delta sets of numerical monoids are eventually periodic", Aequationes Math. 77:3 (2009), 273-279. MR 2010h:20141 Zbl 1204.20078
[García-Sánchez and Rosales 1999] P. A. García-Sánchez and J. C. Rosales, "Numerical semigroups generated by intervals", Pacific J. Math. 191:1 (1999), 75-83. MR 2000i:20095 Zbl 1009.20069
[Geroldinger and Halter-Koch 2006] A. Geroldinger and F. Halter-Koch, Non-unique factorizations: algebraic, combinatorial and analytic theory, Pure and Applied Mathematics (Boca Raton) 278, Chapman \& Hall/CRC, Boca Raton, FL, 2006. MR 2006k:20001 Zbl 1113.11002
[Geroldinger and Hassler 2008] A. Geroldinger and W. Hassler, "Local tameness of v-Noetherian monoids", J. Pure Appl. Algebra 212:6 (2008), 1509-1524. MR 2009b:20114 Zbl 1133.20047
[Omidali 2012] M. Omidali, "The catenary and tame degree of numerical monoids generated by generalized arithmetic sequences", Forum Math. 24:3 (2012), 627-640. MR 2926638 Zbl 1252.20057
[Rosales and García-Sánchez 2009] J. C. Rosales and P. A. García-Sánchez, Numerical semigroups, Developments in Mathematics 20, Springer, New York, 2009. MR 2010j:20091 Zbl 1220.20047

Received: 2013-05-14	Revised: 2013-11-21 Accepted: 2013-11-21
scott.chapman@shsu.edu	
	Department of Mathematics and Statistics, Lee Drain Building, Room 420, 1900 Avenue I, Sam Houston wbp001@shsu.edu State University, Huntsville, TX 77340, United States
	Department of Mathematics and Statistics, Lee Drain Building, Room 420, 1900 Avenue I, Sam Houston
kns005@shsu.edu	State University, Huntsville, TX 77340, United States

involve

msp.org/involve
EDITORS
MANAGING Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BoARD OF EDITORS			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone@latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2014 is US $\$ 120 /$ year for the electronic version, and $\$ 165 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY

- mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2014 Mathematical Sciences Publishers
Infinite cardinalities in the Hausdorff metric geometry 585Alexander Zupan
Computing positive semidefinite minimum rank for small graphs 595Steven Osborne and Nathan Warnberg
The complement of Fermat curves in the plane 611Seth Dutter, Melissa Haire and Ariel SetnikerQuadratic forms representing all primes619
Justin DeBenedetto
Counting matrices over a finite field with all eigenvalues in the field 627Lisa Kaylor and David Offner
A not-so-simple Lie bracket expansion 647Julie Beier and McCabe Olsen
On the omega values of generators of embedding dimension-three 657
numerical monoids generated by an intervalScott T. Chapman, Walter Puckett and Katy Shour
Matrix coefficients of depth-zero supercuspidal representations of 669 GL(2)Andrew Knightly and Carl RagsdaleThe sock matching problem691Sarah Gilliand, Charles Johnson, Sam Rush andDeborah Wood
Superlinear convergence via mixed generalized quasilinearization 699method and generalized monotone methodVinchencia Anderson, Courtney Bettis, ShalaBrown, JacQkis Davis, Naeem Tull-Walker, VinodhChellamuthu and Aghalaya S. Vatsala

[^0]: MSC2010: 13A05, 13F15, 20 M 14.

