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We consider a family of simple graphs known as PS ear-decomposable graphs.
These graphs are one-dimensional specializations of the more general class of
PS ear-decomposable simplicial complexes, which were by Chari as a means of
understanding matroid simplicial complexes. We outline a shifting algorithm for
PS ear-decomposable graphs that allows us to explicitly show that the h-vector of
a PS ear-decomposable graph is a pure O-sequence.

1. Introduction

This paper concerns the combinatorial structure of a certain family of simple graphs
known as PS ear-decomposable graphs. PS ear-decomposable graphs and, more
generally, PS ear-decomposable simplicial complexes, were introduced by Chari
[1997] and provide a unified framework for proving a number of combinatorial
results about the combinatorial structure of matroid simplicial complexes.

Stanley [1977] conjectured that the h-vector of a matroid simplicial complex is
a pure O-sequence. Broadly speaking, the h-vector of a graph (or more generally a
simplicial complex) encodes combinatorial information about its number of vertices
and edges (respectively, the number of vertices, edges, and higher-dimensional faces
in a simplicial complex), and a (pure) O-sequence is the degree sequence of a (pure)
family of monomials that is closed under divisibility. Thus Stanley’s conjecture
would impose extra structure on the number of vertices and edges that a graph in
this family can have (or the number of vertices, edges, and higher-dimensional
faces for the family of simplicial complexes).

Chari proved that all matroid simplicial complexes are PS ear-decomposable
and used this extra structure to prove a number of results on h-vectors of matroid
complexes. Thus it seems natural to conjecture that the h-vector of a PS ear-
decomposable simplicial complex is a pure O-sequence [Chari 1997, Conjecture 3],

MSC2010: primary 05E40, 05E45; secondary 05C75.
Keywords: matroid, O-sequence, multicomplex, ear-decomposition.

743

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2014.7-6


744 IMANI, JOHNSON, KEELING-GARCIA, KLEE AND PINCKNEY

meaning that Stanley’s conjecture would hold for this larger class of simplicial
complexes.

In this paper, we focus our attention on the family of PS ear-decomposable
graphs, which contains the family of all rank-2 matroids. The family of rank-2
matroids corresponds exactly to the family of complete multipartite graphs; but, as
we will see, the family of PS ear-decomposable graphs is considerably larger. For
any PS ear-decomposable graph 0, we will define a canonical PS ear-decomposable
graph S(0) with the same number of vertices and edges as 0, called a shifted PS
ear-decomposable graph. Having defined this shifted PS ear-decomposable graph,
it will be easy to find a corresponding pure multicomplex whose F-vector is the
h-vector of S(0). This approach of defining a shifting algorithm as a means of
preserving combinatorial data while simplifying the algebraic or geometric structure
of a simplicial complex is not new, and we refer to [Kalai 2002] and the references
therein for further information. It is our hope that the shifting approach presented
in this paper could be generalized to higher-dimensional PS ear-decomposable
simplicial complexes as an alternative approach to solving Stanley’s conjecture.

2. Background and definitions

We will be interested in studying two families of combinatorial objects in this paper.
The first is the family of PS ear-decomposable graphs, and the second is the family
of pure multicomplexes.

2.1. Graphs and PS ear-decompositions. In this paper we only consider finite,
simple graphs, which we typically denote by 0. The most natural combinatorial
data that can be counted for a graph 0 are its number of vertices and edges, which
we denote by f0(0) and f1(0) respectively. Here the subscripts indicate that a
vertex is zero-dimensional and an edge is one-dimensional when we draw a graph.
We are interested in studying certain integer linear transformations of these numbers,
which are called the h-numbers of 0. The h-numbers are defined by

h0(0)= 1, h1(0)= f0(0)− 2, h2(0)= f1(0)− f0(0)+ 1.

Notice that f1(0) = h0(0)+ h1(0)+ h2(0) and f0(0) = h1(0)+ 2, so knowing
the h-numbers of 0 is equivalent to knowing the number of vertices and edges in 0.
We encode the h-numbers of 0 in a vector called the h-vector, which is defined as
h(0)= (h0(0), h1(0), h2(0)).

Following [Chari 1997], we will study a certain family of simple graphs known
as PS1 ear-decomposable graphs, which are defined inductively as follows.

1Chari chose the name “PS ear-decomposable simplicial complexes” because products of simplices
and their boundaries are fundamental to the construction.
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PS cycle h-vector PS ear h-vector contribution

Type 1

(1, 1, 1) (0, 1, 1)

Type 2

(1, 2, 1) (0, 0, 1)

Table 1. PS cycles and ears.

A PS cycle is a graph that is either a 3-cycle or a 4-cycle. A PS ear is a graph
that is either a path of length two or a path of length one (a single edge). We call
these PS ears of Type 1 and PS ears of Type 2 respectively. The boundary of a PS
ear is defined as the set of vertices that are only incident to a single edge. It may
seem counterintuitive to define an ear of Type 1 as a path of length two and an ear
of Type 2 as a path of length one, but it will be more natural to consider ears of
Type 1 first in our constructions later in the paper. Table 1 illustrates all possible
PS cycles and PS ears. When illustrating PS ear-decompositions of graphs, we will
adopt the practice of drawing the boundary vertices of a PS ear as unfilled circles
and drawing all other vertices as filled circles.

Definition 2.1 [Chari 1997, Section 3.3]. A graph 0 is PS ear-decomposable if it
can be decomposed as a union of the form 0 =60 ∪61 ∪ · · · ∪6m , such that

(1) 60 is a PS cycle,

(2) 6 j is a PS ear for all 0< j ≤ m, and

(3) the intersection 6 j ∩
⋃
i< j
6i consists precisely of the boundary vertices of 6 j

for all 0< j ≤ m.

One advantage to studying PS ear-decomposable graphs is that their h-vectors can
also be computed inductively in terms of the ears of the decomposition. Specifically,
adding an ear of Type 1 adds one vertex and two new edges to the graph, so it
contributes (0, 1, 1) to the h-vector. Similarly, adding an ear of Type 2 adds one
edge and zero vertices to the graph, so it contributes (0, 0, 1) to the h-vector.

Example 2.2. Consider the graph 0 on the top of page 746.
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v1

v2

v3

v4

v5

v6

We exhibit the PS ear-decomposition of 0.

v1

v2

v3

∪

v2

v3

v4 ∪

v4

v2 v5

∪

v4

v6v3

∪

v5

v6

∪ v1 v4

Since 0 has 6 vertices and 11 edges, we can directly compute h(0)= (1, 4, 6).
We can also compute h(0) in terms of the given PS ear-decomposition:

h(0)= (1, 1, 1)+ (0, 1, 1)+ (0, 1, 1)+ (0, 1, 1)+ (0, 0, 1)+ (0, 0, 1)= (1, 4, 6).

We note that not all graphs are PS ear-decomposable (e.g., a tree or a graph
containing an induced cycle of length at least five), and some graphs may admit
several combinatorially distinct PS ear-decompositions. The family of graphs that
are matroid simplicial complexes is precisely the family of complete multipartite
graphs, while the family of PS ear-decomposable graphs is larger, as is exhibited in
Example 2.2. Furthermore, any PS ear-decomposable graph is 2-connected, and a
classical theorem of Whitney [1932, Theorem 19] states that any 2-connected graph
admits an ear-decomposition. This definition extends that of a PS ear-decomposition
by allowing one to begin with a cycle of arbitrary length (not just a 3-cycle or
4-cycle) and inductively attach paths of arbitrary length (not just paths of length
one or two) along their boundary vertices. Thus the family of PS ear-decomposable
graphs properly contains the family of all rank-2 matroids, and is properly contained
within the family of all 2-connected graphs.

2.2. Multicomplexes. A collection of monomials M in the variables x0, x1, . . . , xm

is called a multicomplex if, whenever µ ∈M and ν divides µ, then ν ∈M as well.
The name multicomplex comes from the fact that a simplicial complex is a family
of sets that is closed under inclusion, so a multicomplex is a multiset analog of a
simplicial complex. We refer to [Stanley 1996, Section II.2] for more information.

We say that a multicomplex M has rank d if d is the maximal degree of any
monomial in M. A multicomplex M is pure of rank d if each monomial in M divides
into some monomial of degree d in M.

For a given multicomplex M of rank d, we gather combinatorial data on M

in the form of the F-vector, written F(M)= (F0(M), F1(M), . . . , Fd(M)), where
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degree monomials

2 x2
0 x2

1 x2
2 x2

3 x0x1 x0x2

1 x0 x1 x2 x3

0 1

Table 2. A pure multicomplex with F-vector (1, 4, 6).

F j (M) counts the number of monomials of degree j in M. An integer vector
F = (F0, F1, . . . , Fd) is a (pure) O-sequence if there is a (pure) multicomplex M

such that F= F(M).

Example 2.3. The vector F= (1, 3, 1) is an O-sequence, but not a pure O-sequence.
The multicomplex M= {1, x0, x1, x2, x0x1} has F-vector F(M)= (1, 3, 1), but F
is not a pure O-sequence since a pure multicomplex with one monomial of degree
two supports at most two monomials of degree one.

Example 2.4. The vector (1, 4, 6) is a pure O-sequence. Table 2 exhibits a pure
multicomplex whose F-vector is (1, 4, 6).

3. h-vectors of PS ear-decomposable graphs

Stanley [1977] conjectured that the h-vector of any matroid simplicial complex is a
pure O-sequence. We will not define matroid simplicial complexes or their h-vectors
here, but we refer to [Stanley 1996] for further details. Chari [1997] proved that any
matroid simplicial complex is PS ear-decomposable, a definition that specializes to
the given Definition 2.1 for graphs. Our main contribution in this paper is to show
that Stanley’s conjecture continues to hold for PS ear-decomposable graphs.

Theorem 3.1. Let 0 be a PS ear-decomposable graph on n+3 vertices. Then there
is a pure multicomplex M such that h(0)= F(M). Moreover, there is a canonical
PS ear-decomposable graph S(0) such that

(1) h(0)= h(S(0)),

(2) the vertices of S(0) are labeled as {u, v, x0, x1, . . . , xn}, and

(3) the multicomplex M arises naturally from the PS ear-decomposition of S(0)

as a pure multicomplex on {x0, x1, . . . , xn}.

Proof. We will prove Theorem 3.1 in two main steps. The first step is motivated
by the observation that the h-vector of a PS ear-decomposable graph 0 depends
only on the types of ears that are used in the PS ear-decomposition of 0 and is
independent of the how these ears are attached. We begin by defining the graph
S(0), which we call a shifted PS ear-decomposable graph.
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Let 0 be a PS ear-decomposable graph on n+3 vertices with PS ear-decomposi-
tion 0 =60∪61∪· · ·∪6m . For any 0< j <m, let 0j :=60∪61∪· · ·∪6 j . We
define a new PS ear-decomposable graph S(0) satisfying conditions (1) and (2) of
Theorem 3.1 by induction on the number of ears in the PS ear-decomposition of 0.

If 60 is a 3-cycle, we define S(0)0 to be a 3-cycle whose vertices are labeled
u, v, and x0. On the other hand, if 60 is a 4-cycle, we define S(0)0 to be 4-cycle
whose vertices are cyclically labeled u, v, x0, and x1 as follows.

x1

x0

u

v

For 0< j ≤m, suppose we have inductively constructed a PS ear-decomposable
graph S(0) j−1 that satisfies conditions (1) and (2) of Theorem 3.1. Suppose the
vertices of S(0) j−1 are labeled as {u, v, x0, x1, . . . , xi }. If 6 j is a PS ear of Type 1,
we obtain S(0) j from S(0) j−1 by adding a new vertex labeled xi+1 that is adjacent
to vertices u and v. Otherwise, if 6 j is a PS ear of Type 2, observe that there is a
missing edge in S(0) j−1 because (i) S(0) j−1 has the same number of vertices and
edges as 0j−1 and (ii) 0j is obtained from 0j−1 by adding a single edge. To form
S(0) j , we add the lexicographically smallest missing edge to S(0) j−1 according
to the alphabet order u < v < x0 < x1 < · · ·< xn . Recall that an edge {a, b} with
a < b precedes an edge {c, d} with c< d lexicographically if either a < c, or a = c
and b < d . By our construction it is clear that h(0j )= h(S(0) j ).

In order to complete the proof of Theorem 3.1, we need to show that h(S(0))
is a pure O-sequence. Again, this will follow by induction on the number of ears
in the PS ear-decomposition of 0. For each 0 ≤ j ≤ m, we will construct a pure
multicomplex M j such that F(M j )= h(S(0) j ).

We begin with the PS cycle 60. If 60 is a 3-cycle, then h(60)= (1, 1, 1), which
is the F-vector of the pure multicomplex M0= {1, x0, x2

0}. On the other hand, if 60

is a 4-cycle, then h(60)= (1, 2, 1), which is the F-vector of the pure multicomplex
M0 = {1, x0, x1, x0x1}.

Inductively, for 0< j ≤ m, suppose we have constructed a pure multicomplex
M j−1 on variables {x0, . . . , xi } such that F(M j−1)= h(S(0) j−1). We define a pure
multicomplex M j such that F(M j )= h(S(0) j ) as follows:

(1) If 6 j is a PS ear of Type 1, define M j :=M j−1∪{xi+1, x2
i+1}. Clearly F(M j )=

F(M j−1)+ (0, 1, 1), and hence h(S(0) j )= F(M j ). Moreover, it is clear that M j

is a pure multicomplex since M j−1 was a pure multicomplex, and we have added a
new monomial of degree one and its square.
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(2) If6 j is a PS ear of Type 2, define M j :=M j−1∪X, where we define X according
to the following rule.

(a) If the missing edge added to S(0) j−1 has the form {xk, x`}, then X := {xk x`}.
In this case, M j is a multicomplex because the monomials of degree one that
divide xk x`, which are xk and x`, belong to M j−1 by construction; and M j is
pure because we have simply added another monomial of maximal degree.

(b) If the missing edge added to S(0) j−1 is {u, x0}, then X := {x2
0}; if the missing

edge is {v, x1}, then X := {x2
1}. This only arises in the case that 60 is a 4-cycle.

The monomials x2
0 and x2

1 do not belong to M0 in this case, but their divisors,
x0 and x1 respectively, do. Thus M j is a multicomplex, and it is pure because
we have only added a monomial of maximal degree to M j−1.

In either case, it is again clear that F(M j )= F(M j−1)+ (0, 0, 1) so h(S(0) j )=

F(M j ).

This construction of the resulting pure multicomplex M is well-defined because
we do not allow multiple edges in our graphs. In the case that 60 is a 3-cycle, a
monomial x2

k is introduced when the corresponding vertex labeled xk is introduced,
and this only happens when an ear of Type 1 is attached. Otherwise, all other
monomials that are introduced have the form xk x` with k 6= `, and correspond to
an edge {xk, x`} being introduced to the graph. The same argument applies when
60 is a 4-cycle except that x2

0 and x2
1 are introduced to the multicomplex when the

edges {v, x0} and {u, x1} are introduced. �

Here, we say that the graph S(0) is shifted for the following reason. At each
step in the PS ear-decomposition, an ear is attached in such a way that its boundary
vertices are the lexicographically smallest pair of vertices that support the required
type of ear when we order the vertices u < v < x0 < · · ·< xn .

Example 3.2. Let 0 be the PS ear-decomposable graph presented in Example 2.2.
The shifted PS ear-decomposable graph S(0) is shown in Figure 2. We exhibit the
PS ear-decomposition outlined in Theorem 3.1, as well as the corresponding pure
multicomplex encoded by S(0) in Figure 3.

x0

u

v

x1 x2 x3

Figure 2. The shifted graph S(0).
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Ears x0

v

u

⋃
v

u

x1
⋃

v

x2

u

⋃
v

x3

u

⋃
x0

x1

⋃
x0

x2

Monomials {1, x0, x2
0} ∪ {x1, x2

1} ∪ {x2, x2
2} ∪ {x3, x2

3} ∪ {x0x1} ∪ {x0x2}

Figure 3. Decomposing the shifted graph S(0).
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