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This work deals with estimation of parameters of a zero-inflated Poisson (ZIP)
distribution as well as using it to model some natural calamities’ data. First, we
compare the maximum likelihood estimators (MLEs) and the method of moments
estimators (MMEs) in terms of standardized bias (SBias) and standardized mean
squared error (SMSE). We then proceed to show how datasets from some recent
natural disasters can be modeled by the ZIP distribution.

1. Introduction

A random variable X following the usual Poisson distribution with parameter λ,
Poi(λ), with the probability mass function

P(X = k)= exp(−λ)
λk

k!
, k = 0, 1, 2, 3, . . . (1-1)

is widely used to model many naturally occurring events where X represents the
“number of events per unit of time or space”. Note that X takes only nonnegative
integer values. However, the Poi(λ) distribution may not be useful (or it gives a
bad fit) when X takes the value 0 with a high probability. In such a case a modified
version of a regular Poi(λ) distribution known as the zero-inflated Poisson (ZIP)
distribution becomes useful. The ZIP distribution with parameters π and λ, denoted
by ZIP(π, λ), has the following probability mass function:

P(X = k)=

{
π + (1−π) exp(−λ) if k = 0

(1−π) exp(−λ)λk/k! if k ∈ {1, 2, . . .},
(1-2)

where 0≤ π ≤ 1 and λ≥ 0.
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Figure 1. Probability distributions of ZIP and regular Poisson.

The parameter π gives the extra probability thrust at the value 0; when it vanishes,
ZIP(π, λ) reduces to Poi(λ). Figure 1 shows visually the difference between these
two distributions for selected values of π and λ.

The mean and variance of ZIP(π, λ) are

E(X)= λ(1−π),

V (X)= λ(1−π)(1+ λπ).
(1-3)

For example, for ZIP(0.3, 3), these characteristics are E(X)= 3(1−0.3)= 2.1 and
V (X)= 3(1− 0.3)(1+ 3(0.3))= 3.99.

In the following, we provide a brief but comprehensive literature review to show
how other researchers have used the ZIP distribution to model real-life data. Other
important references can be found in these papers as well.

Lambert [1992] shows how a ZIP regression is better than a Poisson regression
in fitting a data set with many zeros. The dataset she uses to compare these models
is the number of manufacturing defects on wiring boards. Lambert concludes that
ZIP regression is a straightforward model to interpret, and is convenient to use.

The decayed, missing and filled teeth (DMFT) index is used in dental epidemi-
ology research to measure the dental health of individuals. The study [Böhning
et al. 1999] used data from Brazilian school children to determine which processes
were the most beneficial in preventing dental cavities. Böhning et. al state that
the Poisson model often underestimates the dispersion of the data, which is why
the ZIP is used instead. The ZIP model was used in this study to account for the
number of children who had a DMFT of 0 (which represents good dental health).
Researchers graphed the distribution of the DMFT values of the children before



ZIP DISTRIBUTION: PARAMETER ESTIMATION AND APPLICATIONS 753

and after the preventive measures were implemented in their respective schools,
in order to compare the results. Besides preventive measures, intervention effects
based on the ZIP model were also discussed.

Böhning [1998] asserts that the simple Poisson distribution is oftentimes inappro-
priate for datasets due to the numerous zeros in the data. As an example, Böhning
refers to a study done with 98 HIV-positive men that provides the number of urinary
tract infections experienced by these men. When the data is seen graphically, we
see a huge spike at zero. We also see that there is a lack of a good fit with the
Poisson model, but a good one with the ZIP model. Thus, Böhning maintains that
the ZIP is a better application when there is an inflation of zeros in the count data.

Ridout, Demetrio and Hinde [1998] argue that the Poisson model does not
account for high occurrences of zeros in the dataset, and therefore a better model
is needed, namely the ZIP. The ZIP distribution is a slight generalization of the
Poisson model, but it gives a better fit for the extra zeros.

The research described in [Davidson 2012] relates to the recurrent colorectal
adenomas and the usage of the ZIP distribution. Davidson mentions that though
the Poisson distribution may be used for estimated recurrences of polyp prevention
trials, the ZIP is the adequate model for dealing with an inflation of zeros. This
inflation was due to the fact that a large number of patients did not have recurring
adenomas after being observed and treated.

The rest of the paper is organized as follows. In Section 2 we discuss the two
estimation techniques and the challenges we face in using them. Section 3 covers
our comprehensive simulation study to compare the two estimation techniques in
terms of standardized bias (SBias) and standardized mean squared error (SMSE). In
Section 4 we present some data from natural calamities where the ZIP distribution
appears to provide a better fit than the usual Poisson model.

2. Estimation of ZIP parameters

Assume that we have independent and identically distributed (i id) observations
X1, X2, . . . , Xn from ZIP(π, λ). Our first objective is to estimate the model parame-
ters π and λ. We are going to follow two estimation techniques, namely the Method
of Moments Estimation (MME) and the Maximum Likelihood Estimation (MLE).

2.1. The MME estimators. Here we obtain the estimators by equating the first two
sample moments with their corresponding theoretical expressions:

E(X)= (1−π)λ≈ X , (2-1)

V (X)= (1−π)λ(1+πλ)≈ s2, (2-2)

X =
n∑

i=1

X i
n

being the sample average and s2
=

n∑
i=1

(X i−X)2

n−1
the sample variance.
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By solving (2-1) and (2-2), the MMEs are found as

λ̂M M = X +
s2

X
− 1 (2-3)

and

π̂M M =
s2

X
−

1

λ̂M M
=

s2
− X

X2+ (s2− X)
. (2-4)

However, it must be noted that the above estimators may have the undesirable
property of being negative though the parameters are nonnegative. When X > s2,
then π̂M M can become negative, whereas the actual parameter π is always between
0 and 1. Therefore we are going to modify the MME by truncating π̂M M at zero
and λ̂M M at X when X ≥ s2. The resultant estimators are called corrected MMEs
(CMMEs) and denoted by

π̂ c
M M =

{
0 if X ≥ s2,

π̂M M otherwise,
and

λ̂
c
M M =

{
X if X ≥ s2,

λ̂M M otherwise.
(2-5)

The above CMMEs make sense because under the ZIP model V (X)> E(X) always
(see (1-3)). Therefore, it is expected to have s2 to be greater than X . Hence, a
corrective measure is taken when X ≥ s2.

2.2. The MLE estimators. For iid observations X̃ = (X1, . . . , Xn) from ZIP(π, λ),
the likelihood function L(π, λ|X̃) is defined as

L(π, λ|X̃)=
n∏

i=1

P(X = X i ). (2-6)

Define Y to be the number of X i ’s taking the value 0. Then

L(π, λ|X̃)= (π + (1−π)e−λ)Y
n∏

i=1
X i 6=0

(1−π)e−λ
λX i

X i !
, (2-7)

so our log likelihood function, denoted by L∗, is

L∗ = Y ln(π + (1−π)e−λ)+ (n− Y ) ln(1−π)− (n− Y )λ

+ nX ln λ− ln
n∏

i=1

X i ! (2-8)

By taking the derivatives of L∗ with respect to π and λ, and setting them equal to
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Figure 2. 3D diagram of L∗ plotted against π and λ.

zero, we get the following system of equations:

nX
λ
=

Y (1−π)e−λ

π + (1−π)e−λ
+ n− Y, (2-9)

Y (1−π)(1− e−λ)
π + (1−π)e−λ

= n− Y. (2-10)

The MLEs of π and λ, henceforth denoted by π̂M L and λ̂M L respectively, are the
solutions of (2-9) and (2-10). Unlike the MMEs (or the CMMEs) we do not have
explicit expressions for π̂M L and λ̂M L .

As a demonstration, we draw a random sample of size n = 15 from ZIP(0.3, 3),
giving us the following dataset: 0, 3, 3, 4, 0, 2, 0, 5, 0, 0, 0, 1, 3, 4, 3. The resultant
log-likelihood function L∗ is plotted against π and λ in Figure 2. The plot appears
to have only one maximum and this has been our experience with all the replications
of our simulation.

All of our computations are done using R. Widely used by statisticians, R is a
free programming software for statistical computations and graphing purposes. It
provides a plethora of both graphing and computational techniques, and is especially
helpful for data analysis.
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3. Comparison of two estimation techniques

In this section, we compare π̂ c
M M against π̂M L and λ̂

c
M M against λ̂M L in terms of

standardized bias (SBias) and standardized MSE (SMSE), which are defined as

SBias(θ̂)= 1
θ

Bias(θ̂)= 1
θ

E(θ̂ − θ),

SMSE(θ̂)= 1
θ2 MSE(θ̂)= 1

θ2 E(θ̂ − θ)2,

where θ̂ is a generic estimator for the parameter θ . (Note that θ can be either π
or λ, and θ̂ can be the corresponding CMME or MLE.)

The usual Bias and MSE of an estimator θ̂ of θ are defined as Bias(θ̂)= E(θ̂−θ)
and MSE(θ̂)= E(θ̂ − θ)2. However, a true picture of the performance of θ̂ can be
judged only through SBias and/or SMSE.

In the following, we provide the SBias and SMSE of each estimator for various
values of n as well as (π, λ). For a fixed n and (π, λ), we generate X1, . . . , Xn

from the specified ZIP(π, λ) 105 times and for each replication we compute the
parameter estimates. Then an expectation is approximated by taking the average of
N replicated expectants. In other words, if in the j -th replication (1≤ j ≤ N = 105)
we estimate a parameter θ by θ̂ ( j), based on X̃ ( j)

=
(
X ( j)

1 , X ( j)
2 , . . . , X ( j)

n
)
, then

the SBias and SMSE are obtained by the approximations

SBias(θ̂)=
1
N

N∑
j=1

θ̂ ( j)
− θ

θ
, SMSE(θ̂)=

1
N

N∑
j=1

(θ̂ ( j)
− θ)2

θ2 .

Figures 3–10 provide the plots of SBias and SMSE of estimators of π and λ.
These are some of the results of our comprehensive simulation study. Every third
plot across the row in each figure shows the difference between the SBias (SMSE)
of CMME and SBias (SMSE) of MLE. The simulated results have been presented
for small (n= 15), moderate (n= 30) and large (n= 50) sample sizes. The findings
of our simulation study have been summarized in the following remark.

Remark 3.1. For λ estimation, it has been observed that:

(i) λ̂M L has mostly smaller |SBias| than that of λ̂
c
M M when plotted against λ.

(ii) When plotted against π , |SBias| of λ̂M L is smaller than that of λ̂
c
M M for

moderate to large sample sizes. For small n, λ̂M L has worse |SBias| than that
of λ̂

c
M M over a small region of π .

(iii) In terms of SMSE, λ̂M L is much superior to λ̂
c
M M for all values of λ, except

for small n when it is the other way around for small λ.

(iv) The MSE of λ estimators, when plotted against π , shows superiority of λ̂M L

over λ̂
c
M M .



ZIP DISTRIBUTION: PARAMETER ESTIMATION AND APPLICATIONS 757

SBias of CMME of λ SBias of MLE of λ Difference of |SBias|

5 10 15 20

−
0

.0
1

0
.0

1
0

.0
3

5 10 15 20

−
0

.0
1

0
.0

1
0

.0
3

5 10 15 20

−
0

.0
2

0
.0

0

5 10 15 20

−
0

.0
4

0
.0

0

5 10 15 20

−
0

.0
4

0
.0

0

5 10 15 20

−
0

.0
1

0
.0

1
0

.0
3

5 10 15 20

−
0

.2
0

−
0

.1
0

0
.0

0

5 10 15 20

−
0

.2
0

−
0

.1
0

0
.0

0

5 10 15 20

0
.0

0
0

.0
4

0
.0

8

Figure 3. SBias study of λ estimators plotted against λ, for π = 0.25
(top row), π = 0.5 (middle), π = 0.75 (bottom)and for n = 15 (solid
black line), 30 (dashed blue), 50 (dotted red).
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Figure 4. SMSE study of λ estimators plotted against λ, for π = 0.25
(top row), π = 0.5 (middle), π = 0.75 (bottom)and for n = 15 (solid
black line), 30 (dashed blue), 50 (dotted red).
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Figure 5. SBias study of λ estimators plotted against π , for λ = 3
(top row), λ = 10 (middle), λ = 50 (bottom)and for n = 15 (solid
black line), 30 (dashed blue), 50 (dotted red).
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Figure 6. SMSE study of λ estimators plotted against π , for λ= 3
(top row), λ = 10 (middle), λ = 50 (bottom)and for n = 15 (solid
black line), 30 (dashed blue), 50 (dotted red).
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Figure 7. SBias study of π estimators plotted against π , for λ = 3
(top row), λ = 10 (middle), λ = 50 (bottom)and for n = 15 (solid
black line), 30 (dashed blue), 50 (dotted red).
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Figure 8. SMSE study of π estimators plotted against π , for λ= 3
(top row), λ = 10 (middle), λ = 50 (bottom)and for n = 15 (solid
black line), 30 (dashed blue), 50 (dotted red).
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Figure 9. SBias study of π estimators plotted against λ, for π = 0.25
(top row), π = 0.5 (middle), π = 0.75 (bottom)and for n = 15 (solid
black line), 30 (dashed blue), 50 (dotted red).
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Figure 10. SMSE study of π estimators plotted against λ, for π =
0.25 (top row), π = 0.5 (middle), π = 0.75 (bottom)and for n = 15
(solid black line), 30 (dashed blue), 50 (dotted red).
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Similar trends hold for π estimators as well:

(i) In terms of |SBias|, both π̂ c
M M and π̂M L are very close for small λ (λ = 3)

when plotted against π but, as λ increases, π̂M L tends to perform better than
π̂ c

M M for most of π values.

(ii) When |SBias| is plotted against λ, again π̂M L tends to perform better than
π̂ c

M M for most values of λ, especially for moderate to large sample sizes.

(iii) In terms of SMSE, except for small n, π̂M L performs better than π̂ c
M M for

most of the λ values.

(iv) When SMSE is plotted against π , π̂M L appears to be superior to π̂ c
M M uni-

formly.

Based on our simulation study, the MLEs of π and λ appear to be superior estima-
tors over their CMME counterparts, and therefore they are recommended for usage
as done in Section 4 where ZIP is used to model data from natural calamities. The
superiority of the MLEs has also been partially corroborated by Schwartz and Giles
[2013], who observed that the MLEs exhibit very little bias even for small samples.

4. Applications with real-life data

In this section we are going to present a few datasets from natural calamities. In
each case we show the empirical probability distribution, the fitted ZIP probability
distribution as well as the fitted regular Poisson probability distribution. In each of
the following figures the estimated λ parameter under ZIP and Poisson models are
denoted by λ̂

z
and λ̂

p
, respectively.

Earthquake dataset. Table 1 shows the number of major US earthquakes (those
of magnitude at least 7.0) per year from 1950 through 2012. Figure 11 shows the
plots using π̂M L = 0.17 and λ̂

z
M L = 0.69 for ZIP and using λ̂

p
= 0.57 for Poisson.

Decade Count of yearly events

1950–1959 0 0 1 1 1 0 0 5 2 1
1960–1969 0 0 0 0 1 2 1 0 0 0
1970–1979 0 0 1 0 0 2 0 0 0 1
1980–1989 1 0 0 0 0 0 1 1 1 0
1990–1999 0 1 2 1 1 0 1 0 0 1
2000–2009 0 0 2 2 0 1 0 1 0 0
2010–2019 0 0 0 - - - - - - -

Table 1. Number of major US earthquakes per year from
1950 through 2012 [USGS 2012].
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Figure 11. Empirical, fitted ZIP, and fitted Poisson models of the
number of major earthquakes per year.

Wildfire dataset. Table 2 shows the number of major US wildfires (covering 400,000
acres or more) per year from 1997 through 2012. Figure 12 shows the plots using
π̂M L = 0.29 and λ̂

z
M L = 1.6 for ZIP and using λ̂

p
= 1.25 for Poisson.

Decade Count of yearly events

1990–1999 - - - - - - - 1 0 0
2000–2009 0 0 3 0 5 1 1 1 0 3
2010–2019 0 1 2 - - - - - - -

Table 2. Number of major US wildfires per year from 1997 through
2012 [NIFC 2012].
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Figure 12. Empirical, fitted ZIP, and fitted Poisson models of the
number of major US wildfires per year.
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Decade Count of yearly events

1980–1989 - - - - - - - 0 0 1
1990–1999 0 0 1 0 0 1 0 0 2 2
2000–2009 0 0 1 1 3 4 0 0 2 0
2010–2019 0 0 0 - - - - - - -

Table 3. Number of major Atlantic hurricanes per year having landfall
in the US from 1987 through 2012 [UNISYS 2012].
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Figure 13. Empirical, fitted ZIP, and fitted Poisson models of the
number of major Atlantic hurricanes per year to have landfall in
the US.

Hurricane dataset. Table 3 shows the number of major Atlantic hurricanes (cat-
egory 4 or 5) per year to have made landfall in the US from 1987 through 2012.
Figure 13 shows the plots using π̂M L = 0.47 and λ̂

z
M L = 1.32 for ZIP and using

λ̂
p
= 0.69 for Poisson.

Tornado dataset. Table 4 shows the number of tornado occurrences in Lafayette
Parish, Louisiana, US per year from 1950 through 2012. Figure 14 shows the plots
using π̂M L = 0.27 and λ̂

z
M L = 0.93 for ZIP and using λ̂

p
= 0.63 for Poisson.

Lightning dataset. Table 5 shows the number of lightning fatalities in Louisiana
caused by a tree, out in the open, on golf courses, and on boats, per year from 1995
through 2012. Figure 15 shows the plots as well as estimated parameters.

Remark 4.1. Table 6 provides the goodness of fit (GOF) test results. For each
dataset, k represents the number of categories (i.e., the values of X ) which is
determined so that each category has at least one frequency, and the last category
has been taken as X ≥ k. The GOF test statistic is 1GOF =

∑k
i=0(Oi − Ei )

2/Ei ,
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Decade Count of yearly events

1950–1959 0 0 0 1 0 0 0 1 0 0
1960–1969 1 0 0 0 1 1 0 0 0 2
1970–1979 0 0 0 0 1 3 0 2 1 0
1980–1989 1 0 0 1 0 1 0 0 2 1
1990–1999 0 1 2 0 0 1 0 1 2 0
2000–2009 0 0 3 0 2 0 1 1 3 0
2010–2019 1 1 1 - - - - - - -

Table 4. Number of tornado occurrences in Lafayette Parish,
Louisiana per year from 1950 through 2012 [NOAA 2012b].

Decade Fatalities by a tree

1990–1999 - - - - - 0 1 0 0 0
2000–2009 0 0 1 0 0 0 0 0 0 0
2010–2019 0 0 2 - - - - - - -

Fatalities in the open

1990–1999 - - - - - 1 0 0 2 1
2000–2009 0 1 1 0 0 1 0 0 0 0
2010–2019 1 0 0 - - - - - - -

Fatalities on golf courses

1990–1999 - - - - - 0 0 0 0 2
2000–2009 0 0 0 0 0 0 0 0 0 0
2010–2019 0 1 0 - - - - - - -

Fatalities on boats

1990–1999 - - - - - 0 0 0 2 1
2000–2009 2 0 0 0 1 0 0 0 0 1
2010–2019 0 0 0 - - - - - - -

Table 5. Number of lightning fatalities by category per year 1995
through 2012 [NOAA 2012a].

where Oi is the observed frequency of the event X = i for i ≤ k− 1, and the event
X ≥ k when i = k, and Ei is the expected frequency obtained by multiplying the
corresponding fitted probability by the sample size n. Note that the p-values are all
more than 75%, and mostly 90% or higher. This clearly shows that the ZIP model
gives a very good fit to model the severe natural calamities which occur rarely.

Remark 4.2. In some of these plots it is seen that the fitted Poisson model comes
very close to the fitted ZIP model, namely when the estimated π is very close to
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Figure 14. Empirical, fitted ZIP, and fitted Poisson models of the
number of tornado occurrences per year in Lafayette, Louisiana.
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Figure 15. Empirical, fitted ZIP, and fitted Poisson models of dhe
number of lightning fatalities in Louisiana for specified situations.

zero. It is reasonable to expect that π̂M L being close to 0 implies that π = 0, i.e., that
the ZIP model reduces to the regular Poisson model. Currently, hypothesis testing
on the ZIP parameters is under consideration, and will be reported in near future.

Concluding remark

Using the fitted ZIP model, one can estimate that in any year, the probability of
having at least one major earthquake in the US is 0.4136 or approximately 41%.
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Observed 1GOF value δ
p-value=

ConclusionP(χ2
k−2 > δ)

Earthquake data δ = .3575, k = 4 .9489 good fit
Wildfire data δ = 1.892, k = 5 .7556 good fit
Hurricane data δ = .3680, k = 5 .9850 good fit
Tornado data δ = .3637, k = 5 .9853 good fit
Lightning data

outside δ = .2628, k = 3 .8769 good fit
near tree δ = .0606, k = 3 .9702 good fit
on a golf course δ = .1218, k = 3 .9409 good fit
on a boat δ = .4158, k = 3 .8123 good fit

Table 6. Goodness of fit results.

Similarly, the probability of Lafayette Parish getting hit by a tornado in any year is
0.4420 or approximately 44%. Hopefully these probabilities may find applications
in the insurance industry, and this study will stimulate further research in this
direction.
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