
inv lve
a journal of mathematics

msp

Seating rearrangements on arbitrary graphs
Daryl DeFord

2014 vol. 7, no. 6



msp
INVOLVE 7:6 (2014)

dx.doi.org/10.2140/involve.2014.7.787

Seating rearrangements on arbitrary graphs
Daryl DeFord

(Communicated by Kenneth S. Berenhaut)

We exhibit a combinatorial model based on seating rearrangements, motivated
by some problems proposed in the 1990s by Kennedy, Cooper, and Honsberger.
We provide a simpler interpretation of their results on rectangular grids, and then
generalize the model to arbitrary graphs. This generalization allows us to pose a
variety of well-motivated counting problems on other frequently studied families
of graphs.

1. Introduction

1.1. Background. In this section we describe the original motivation for our prob-
lems and the original interpretations that are present in the literature.

1.1.1. Original problem. Our interest in this combinatorial model begins with a
problem presented by Honsberger [1997]:

A classroom has 5 rows of 5 desks per row. The teacher requests
each pupil to change his seat by going either to the seat in front, the
one behind, the one to his left, or the one on his right (of course not
all these options are possible for all students). Determine whether
or not this directive can be carried out.

It can easily be shown that this directive is impossible [Honsberger 1997; Kennedy
and Cooper 1993]. Consider coloring the classroom like a checkerboard. Then
every student initially placed on a “white desk” must move to a “black desk” and
vice versa. However, our chessboard coloring has 13 white squares and 12 black
squares. Thus, were such a rearrangement to exist, by the pigeonhole principle
there must be at least one black desk that receives two students from white squares
and this violates the terms of the directive. More generally, this proof obviously
generalizes to any rectangular classroom that has both an odd number of rows and
columns [Otake et al. 1996].
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Figure 1. A 2× 9 seating rearrangement.

1.1.2. Early work. Curtis Cooper and Robert Kennedy [1993] explored some basic
extensions to this rearrangement problem by applying some traditional combinatorial
and linear algebraic techniques (see also [Otake et al. 1996]). Their goal was to
solve the following more general problem:

A classroom has m rows of n desks per row. The teacher requests
each pupil to change his seat by going either to the seat in front,
the one behind, the one to his left, or the one on his right (of course
not all these options are possible for all students). In how many
ways can this directive be carried out?

They began by solving the 2× n and 3× n cases by classifying all possible
endings and constructing matrix systems that represented the interactions among
these endings. For example, Figure 1 shows a 2× 9 seating rearrangement. Then,
the principle of mathematical induction can be used to show that the constructed
matrix systems faithfully represent the counting problem. Of particular interest is
the fact that the number of rearrangements on a 2× n grid is equal to the square
of the (n+ 1)-st Fibonacci number. In Section 2.1 we will give a combinatorial
proof of this fact. However, this method quickly becomes unwieldy, and they were
forced to seek more powerful tools to solve the general case.

In order to count the 2m×n seating rearrangements, Cooper and Kennedy turned
to the theory of matrix permanents [Marcus and Minc 1965; Otake et al. 1996]. By
modifying the adjacency matrix of the underlying grid graph and taking a symbolic
determinant of the resulting block matrix they obtained the following representation
of the number of seating rearrangements of a 2m× n classroom:

22mn
2m∏
t=1

n∏
s=1

(
cos2

(
sπ

n+ 1

)
+ cos2

(
tπ

2m+ 1

))
. (1-1)

This formula is very similar to the expression derived in 1961 by Kasteleyn
[Harary 1967; Kasteleyn 1961], and Temperley and Fisher [1961], that counts
the number of domino tilings of a m× n grid. In Section 2.1 we will justify this
correspondence while in Section 4 we will prove a general theorem that gives this
relationship as an immediate corollary.
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Figure 2. Two cycle covers of a digraph. Left: digraph; middle:
even cover; right: odd cover.

1.2. Mathematical preliminaries. The proofs and results in this paper rely on
techniques from combinatorics, linear algebra, and graph theory. Basic definitions
and notation not presented here can be found in [Chartrand et al. 2011; van Lint
and Wilson 2001; Shilov 1977].

1.2.1. Cycle covers. Given a digraph D = {V, E}, a cycle cover is defined as a
subset of the edges, C ⊆ E , such that the induced digraph on C contains each vertex
of V and each of those vertices lies on exactly one cycle [Harary 1969]. It is easy
to see that each cycle cover of a digraph can be considered a permutation of the set
of vertex labels, and more specifically a derangement, if no self-loops occur in the
digraph. Thus, it is reasonable to consider the parity of a given cycle cover, defined
as the parity of the permutation it represents.

Hence, a cycle cover that contains an even number of even cycles is considered
even, while a cycle cover with an odd number of even cycles is considered odd.
Figure 2 shows a digraph and two of its cycle covers, one of each parity.

1.2.2. Matrix permanents. The permanent of a matrix, M , with elements, Mu,v,
is defined as the unsigned sum over all of the permutations of the matrix [Harary
1969; Marcus and Minc 1965]. Thus,

per M =
∑
π∈Sn

n∏
i=1

Mi,π(i), (1-2)

is a symbolic representation of the matrix permanent. It is computationally difficult
to calculate the permanent of a general 0–1 matrix (technically the problem of
computing the permanent is #P complete) [Aaronson 2011; Lundow 1996; Valiant
1979]. Although the definition of the permanent looks very similar to that of the
determinant, the permanent shares very few of the determinant’s useful algebraic
properties or relations to eigenvalues. Also, the determinant of a matrix can be
calculated in polynomial time by Gaussian elimination, while the permanent cannot.
However, interchanging rows or columns of the matrix does not affect the value of
the permanent of that matrix [Marcus and Minc 1965].
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We are interested in the concept of matrix permanents because the permanent
of the adjacency matrix of a digraph is equal to the number of cycle covers of
that digraph [Harary 1969]. A survey of results in combinatorics based on this
method can be found in [Kuperberg 1998]. However, since the permanent is often
infeasible to compute, a natural question is to ask whether we can change the signs
of some elements of a given adjacency matrix, A, to form a new matrix, A′, with
the property that:

per A = det A′. (1-3)

This question of “convertible” matrices was originally posed by Pólya [1913].
Beineke and Harary [1966] showed that digraphs whose adjacency matrix admits
an orientation satisfying (1-3) are exactly those that contain no odd cycle covers.
Later, Vazarani and Yannakakis [1988] proved that this problem is equivalent to
finding pfaffian orientations of bipartite graphs. The pfaffian of a skew-symmetric
matrix is a sum over signed products of entries in the matrix that can be used to
count the number of perfect matchings in some graphs. For a complete discussion
of pfaffians and their relation to perfect matchings see [Loehr 2011, Chapter 12.12].

This problem of pfaffians was characterized by Little [1975], who showed that a
given bipartite graph, B, admits a pfaffian orientation if and only if B contains no
subgraph homeomorphic to K3,3 (the complete bipartite graph with three vertices
in each partite set). An obvious extension of this question is to ask how difficult it
is to construct such a matrix A′ given A. Finally Roberston, Seymour, and Thomas
[Robertson et al. 1999] settled the issue by giving a polynomial time algorithm
that takes a given graph and either constructs an orientation of its adjacency matrix
that satisfies (1-3), or demonstrates a subgraph of G proving that (1-3) cannot be
satisfied.

2. Seating rearrangements

In this section we motivate and present our basic model through some simple
counting problems.

2.1. Domino tilings. The original problem studied by Cooper and Kennedy can
easily be expressed in terms of perfect matchings or domino tilings, both of which
are very familiar combinatorial objects. We showed previously that if m and n are
both odd there can be no legitimate rearrangements in an m× n classroom, so we
will only consider the cases where at least one of m and n are even. However, note
that the case where there are no legitimate rearrangements trivially satisfies the
following lemma as there are no perfect matchings on Pm × Pn when m and n are
both odd, where Pk is the path graph on k vertices.
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Lemma 1. The number of legitimate seating rearrangements in a 2m×n classroom
is equal to the square of the number of domino tilings of a 2m× n grid.

Proof. Begin by coloring the classroom like a chessboard. Note that we may
consider the rearrangements of the students initially sitting in white desks separately
from the rearrangements of those sitting in black desks since the two groups cannot
interfere with each other. Since there are exactly as many black desks as white
desks, arranged in the same fashion, the total number of rearrangements is equal
to the square of the number of either the black or white rearrangements computed
separately.

To complete the proof, consider tiling a 2m× n board with mn dominoes. We
can construct a bijection between the rearrangements of students initially placed in
black (white) desks with domino tilings by placing a domino in the tiling for each
student that covers that student’s initial desk and their destination desk. Thus, any
seating rearrangement can be deconstructed into two independent domino tilings,
one for each initial color. Figure 3 gives an example of this process.

In order to construct a seating rearrangement from an independently selected
pair of domino tilings we may perform the operation in reverse. Without loss of
generality, associate one of the tilings with movements from white desks to black
desks, and associate the other tiling with movements from black desks to white
desks. Hence, we can combine any two domino tilings to create a unique seating
rearrangement and the proof is complete. �

It is well known (and can be easily seen by comparison to 1× n tilings with
squares and dominoes), that the number of domino tilings of a 2× n rectangle is
equal to the (n + 1)-st Fibonacci number. This observation, combined with the
preceding lemma, provides a combinatorial explanation for the inductive-matrix
result of Cooper and Kennedy mentioned in the introduction:

Corollary 2. The number of seating rearrangements on a 2× n classroom is equal
to the square of the (n+ 1)-st Fibonacci number.

Another natural corollary to this lemma is a special case of Theorem 8, which
will be proved in Section 4.

Corollary 3. The number of legitimate seating rearrangements in an m× 2n class-
room is equal to the square of the number of perfect matchings on P2m × Pn .

2.2. Arbitrary graphs. In order to extend this notion of seating rearrangements to
arbitrary graphs we constructed the following modified problem statement:

Problem. Given a graph, place a marker on each vertex. We want to count the
number of legitimate “rearrangements” of these markers subject to the following
rules:
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Figure 3. A rearrangement/tiling correspondence.

• Each marker must move to an adjacent vertex.

• After all of the markers have moved, each vertex must contain exactly one
marker.

Thus, we define the number of rearrangements on an arbitrary graph to be the
number of ways to satisfy the requirements given above. A related, interesting
problem is to consider rearrangements where the markers are allowed to either
remain in place or move along an edge to an adjacent vertex. To formulate this
problem extension in graph-theoretic terms, we can add a self-loop to each vertex
in the graph and proceed with the problem statement given above, where a vertex
with a self-loop is considered adjacent to itself.

2.3. Digraphs. Given any graph G, we can construct a digraph
↔

G, by replacing
each simple edge of G by a pair of directed edges, one in each orientation. Then,
the following lemma shows that there is a one-to-one correspondence between
rearrangements on G and cycle covers on

↔

G.

Lemma 4. The number of rearrangements on any simple graph G is equal to the
number of cycle covers on

↔

G.

Proof. Consider a legitimate rearrangement on a graph G, under the rules presented
above. To construct a unique cycle cover on

↔

G, place a directed edge in the cycle
cover beginning at each markers initial vertex and ending at that markers terminal
vertex. By the first rule, each vertex must have out-degree equal to 1. Similarly, by
the second rule, each vertex must have in-degree equal to 1. Hence, the constructed
cycle cover spans all vertices of G and has d+(v)= d−(v)= 1 for all v ∈ V (G),
and so is a legitimate cycle cover.
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A unique rearrangement on G can be constructed from a given cycle cover on
↔

G
in a similar fashion. Thus, there exists a bijection between these rearrangements
and cycle covers, which implies that their magnitudes are equal. �

This gives us the following method for counting rearrangements on arbitrary
graphs as well as a combinatorial interpretation of a matrix permanent of the
adjacency matrix of a simple graph.

Lemma 5. Given a graph G, with adjacency matrix A(G), the number of rear-
rangements on G is equal to per(A(G)).

Proof. By construction, the adjacency matrices of G and
↔

G are equal, and the
permanent of the adjacency matrix of

↔

G is equal to the number of cycle covers on
↔

G. Since, by Lemma 4, there is a one-to-one correspondence between cycle covers
on
↔

G and legitimate rearrangements on G, this proof is complete. �

Hence, we have a numerical method to compute the number of rearrangements
on any graph. This method is computationally inefficient in general, but can
provide numerical values of initial conditions for recurrence relations and generating
functions, as well as providing empirical evidence of growth rates and divisibility
properties.

2.4. Notation. For the rest of this paper we will use the notation R(G) to represent
the number of legitimate rearrangements on a given graph G. Similarly, Rs(G)
will represent the number of rearrangements where each marker is allowed to
remain in place. Thus, the statement in the previous lemma could be rewritten as
R(G)= per(A(G)).

Several times throughout this paper, we will use the Fibonacci numbers in our
counting. In these instances we will use the combinatorial Fibonacci numbers
fn = Fn+1, indexed as f0 = 1, f1 = 1 and fn = fn−1 + fn−2 for n ≥ 2. This
indexing is motivated by the traditional counting interpretation of the Fibonacci
numbers as the number of ways to tile a 1× n board with squares and dominoes.
Similarly, we will also employ the Lucas numbers, ln , with ln = fn + fn−2 defined
as the number of ways to tile a 1×n bracelet with “rounded” squares and dominoes
[Benjamin and Quinn 2003].

From graph theory, Kn will represent the complete graph on n vertices, while
Km,n will be the complete bipartite graph with bipartite sets of order m and n. In
addition, Pn and Cn will respectively represent the traditional path and cycle graphs
on n vertices.

3. Basic graphs

We begin by demonstrating our model on some of the simplest possible graphs.
Many more complex and interesting structures in graph theory can be constructed
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from these basic graphs. For many of these problems the number of rearrangements
“with stays”, Rs(G) is the more interesting problem.

The simplest graph we consider is the path graph on n vertices. By comparison
with the Fibonacci tilings of a 1 × n board it is easy to see that Rs(Pn) = fn .
Similarly, we can construct a natural correspondence between Lucas tilings and
rearrangements on Cn that accounts for all rearrangements except the two oriented
cycles where each marker moves in the same direction. Thus, Rs(Cn)= ln + 2.

Counting the rearrangements on the complete graph of order n is also a simple
counting problem. Considering each rearrangement as a permutation, we see that
if each marker must move to a new vertex we have that R(Kn) is equal to the
n-th derangement number, while if the markers are permitted to stay we have
Rs(Kn)= n!.

Rearrangements on complete bipartite graphs are slightly more complex, yet still
yield nice closed form representations.

Proposition 6. The number of rearrangements on Kn,n is equal to (n!)2.

Proof. We begin by coloring the vertices of Kn,n black or white according to
the bipartition. To construct a rearrangement on Kn,n we note that much like the
rectangular classroom problem, we can consider the movements of all of the vertices
in each bipartition independently. Without loss of generality, we may order the
white vertices. Then, the first white marker may move to any of n black vertices,
while the k-th white marker can select any of the n−k+1 remaining black vertices.
A similar method can be independently applied to the markers initially placed on
black vertices.

Thus, the number of rearrangements of the markers that begin on a particular
color is equal to

∏n
i=1 (n− i + 1)= n!. Hence, R(Kn,n)= (n!)2. �

In order to simplify the statement of the following result, we define some addi-
tional notation. Specifically, let (n)i = n(n− 1)(n− 2) · · · (n− i + 1) represent the
standard falling factorial.

Proposition 7. The number of rearrangements with stays on Km,n is equal to∑m
i=0 (m)i (n)i .

Proof. Without loss of generality we can assume that m ≤ n and color the vertices
in the m partition white and the vertices in the n partition black. We can count the
rearrangements by conditioning on the number of markers that move from a white
vertex to a black vertex. Let i represent the number of markers that move from
white to black. Then there are

(m
i

)
ways to choose which white markers to move.

For any 1≤ k ≤ i the k-th moving white marker may select to move to any of
n− k+ 1 black vertices. This gives us (n)i ways to move the

(m
i

)
selected white

markers.
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Graph Rearrangements With stays

Pn 0, 1, 0, 1, 0, . . . fn

Cn 0, 1, 2, 4, 2, 4, . . . ln + 2= fn + fn−2+ 2
Kn D(n) n!
Kn,n (n!)2

∑n
i=0((n)i )

2

Km,n with m < n 0
∑m

i=0(m)i (n)i

Table 1. Rearrangements on basic graphs.

At this point there are i empty white vertices and i black vertices that con-
tain a marker that must be moved. There are i ! ways to construct a legitimate
rearrangement from this scenario. Summing over all possible i ≤ m gives

m∑
i=0

(
m
i

)
(n)i i ! =

m∑
i=0

m!
i !(m− i)!

(n)i i !,

=

m∑
i=0

(m)i (n)i . �

Table 1 summarizes the results of this section, some of which will be referenced
later in this paper.

4. Theorems

In this section we present some theoretical results related to our seating rearrange-
ment model. The first theorem generalizes our earlier results on the original
rectangular seating rearrangement problem and R(Kn,n).

Theorem 8. Let G = ({U, V }, E) be a bipartite graph. The number of rearrange-
ments on G is equal to the square of the number of perfect matchings on G.

Proof. We may construct a bijection between pairs of perfect matchings on G and
cycle covers on

↔

G. Without loss of generality, select two perfect matchings of G,
m1 and m2. For each edge (u1, v1) in m1, place a directed edge in the cycle cover
from u1 to v1. Similarly, for each edge (u2, v2) in m2, place a directed edge in the
cycle cover from v2 to u2. Since m1 and m2 are perfect matchings, by construction,
each vertex in the cycle cover has in-degree and out-degree equal to 1.

Given a cycle cover C on
↔

G construct two perfect matchings on G by taking
the directed edges from vertices in U to vertices in V separately from the directed
edges from V to U . Each of these sets of (undirected) edges corresponds to a
perfect matching by the definition of cycle cover and the bijection is complete.
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Since there is a one-to-one correspondence between cycle covers on
↔

G and
rearrangements on G, the theorem is proved. �

Our next result considers the case where we are counting the number of rear-
rangements with stays on a bipartite graph.

Theorem 9. The number of rearrangements on a bipartite graph G, when the
markers on G are permitted to remain on their vertices, is equal to the number of
perfect matchings on P2×G.

Proof. Observe that P2×G can be considered as two identical copies of G where
each vertex is connected to its copy by a single edge. To construct a bijection
between cycle covers on G and perfect matchings on P2×G, associate each self-
loop in a cycle cover with an edge between a vertex and its copy in the perfect
matching.

Since the graph is bipartite, the remaining cycles in the cycle cover can be
decomposed into matching edges from U to V and from V to U as in the previous
theorem. �

Applying Theorem 9 to the original problem of seating rearrangements gives
that the number of rearrangements in a m× n classroom, where the students are
allowed to remain in place or move, is equal to the number of perfect matchings in
P2× Pm × Pn . The 2× n case is included in the OEIS as A006253 [OEIS 2012].
These matchings are equivalent to tiling a 2×m×n rectangular prism with 1×1×2
tiles. This is a well-known problem that is contained in books on combinatorics,
for example [Graham et al. 1994].

A more direct proof of this equivalence between rectangular seating rearrange-
ments with stays and three-dimensional tilings can be given by associating each
possible student move type — up/down, left/right, or remain in place — with a
particular tile orientation in space. Then, a tiling can be directly constructed from a
given seating rearrangement in a one-to-one fashion.

5. Counting examples

We conclude by presenting some examples of the types of counting problems
that may be generated with this model. Especially noteworthy are the number of
different techniques that may be used to solve these problems.

5.1. Prism graphs. The prism graph of order n, denoted prism n, is isomorphic to
Cn × P2. Rearrangements on prism n can be considered as 2× n classroom seating
rearrangements on a cylinder.

Example 10. The number of rearrangements on prism n is equal to (ln + 2)2 when
n is even.
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Figure 4. The prism graph of order 12.

Proof. Let n be an even natural number. Then it is easy to see that prism n is a
bipartite graph, since each Cn is bipartite, and any cycle that includes edges in both
Cn must also be of even length. Since the graph is bipartite, by Theorem 8, the
number of rearrangements is equal to the square of the number of perfect matchings.
Furthermore, by Theorem 9, the number of perfect matchings on Cn × P2 is equal
to the number of rearrangements with stays on Cn , which we showed in Section 3
was equal to ln + 2. Squaring this quantity gives the result. �

Example 11. The number of rearrangements on prism n is equal to l2n + 2 when n
is odd.

Proof. Let n be an odd natural number. In this case prism n is not bipartite, so we
must make a different argument. First note that we can divide the rearrangements
into two classes by whether a marker moves between the two Cn in the rearrangement.
There are exactly four rearrangements for each n where no markers move between
the two Cn , as these correspond to simple cycles where each marker on a Cn moves
exactly one square in one direction.

The remaining rearrangements can be placed into a bijection with two indepen-
dently selected Lucas tilings of order n where a square in a Lucas tiling represents
a move between the Cn . Note that since n is odd, any Lucas tiling of order n must
contain at least one square so we are not counting the rearrangements in the first
class twice.

Combining these two cases, we have R(prism n)= l2
n + 4. Using a well-known

Lucas identity we can simplify this expression as:

l2
n + 4= (l2

n + 2)+ 2= l2n + 2. �

Computing the number of rearrangements with stays on a prism graph is a
much more difficult problem. Considering all of the possible ways to rearrange
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n 3 4 5 6 7 8

No stays 20 81 125 400 845 2401
With stays 82 272 890 3108 11042 39952

n 9 10 11 12 13 14

No stays 5780 15625 39605 104976 271445 714025
With stays 146026 537636 1988722 7379216 27436250 102144036

Table 2. Rearrangements on prism graphs.

an arbitrary pair of adjacent markers each in a separate Cn gives a system of
11 homogeneous, linear recurrence relations. This system is fully derived and
demonstrated in Appendix A. This system can then be solved, using the successor
operator method due to DeTemple and Webb [2014], to give the following solution:

an =10an−1− 36an−2+ 50an−3+ 11an−4− 108an−5+ 96an−6

+ 20an−7− 75an−8+ 34an−9+ 4an−10− 6an−11+ an−12,

with initial conditions given in Table 2.
Using these initial conditions we were further able to construct a generalized

power sum by solving a linear equation in the eigenvalues of the recurrence to
determine the coefficients:

Rs(prism n)= 6+4
(
−1
)n
+
(
2+
√

3
)n
+
(
2−
√

3
)n
+2

(
1+
√

2
)n
+2

(
1−
√

2
)n
.

Since the repeated eigenvalues have coefficients of 0 in the generalized power
sum, our sequence must also satisfy a recurrence of order 6. By computing the
implied characteristic polynomial, we get the following minimal recurrence for this
sequence:

an = 6an−1− 7an−2− 8an−3+ 9an−4+ 2an−5− an−6.

5.2. Dutch windmills. A Dutch windmill, Dwm
n , consists of m copies of an n cycle

all joined at a single vertex. For example, the friendship graphs are Fk = Dwk
3 .

Counting the rearrangements on Dutch windmills highlights some of the Fibonacci
relations of these counting problems.

Example 12. The number of rearrangements on Dwm
n is 0 when n is even and 2m

when n is odd.

Proof. We may condition on the movement of the marker initially positioned on
the center vertex. The center vertex is adjacent to 2m other vertices, and every
rearrangement on Dwm

n must consist of a single n-cycle containing the center vertex
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Figure 5. A Dutch windmill Dw4
5 .

and (m− 1)(n− 1)/2 two-cycles pairing up the remaining vertices as there are no
other cycles remaining in the graph.

When n is even, removing the center vertex from all but one of the n-cycles
leaves an odd number of vertices, which cannot be satisfactorily paired together.
Thus, there can be no legitimate rearrangements when n is even.

In the case where n is odd, the movement of the center marker onto one of its
2m neighbors completely determines the rearrangement. �

Example 13. The number of rearrangements with stays permitted on Dwm
n is

( fn−1)
m
+ 2m( fn−2+ 1)( fn−1)

m−1.

Proof. We may again condition on the behavior of the center marker. There are two
cases: either the center marker moves to an adjacent vertex or it remains in place.

When the center marker does not move, the remaining markers form m copies
of Pn−1, which may each be rearranged independently in fn−1 ways.

When the center marker moves onto one of the 2m adjacent vertices, it either lies
on a two-cycle, in which case there are fn−2 ways for the other vertices on that cycle
to rearrange themselves, or it lies on the entire n-cycle. The m−1 remaining n-cycles
that were not selected are again each reduced to Pn−1, contributing ( fn−1)

m−1 to
the rearrangement total.

Combining these two cases gives the desired result:

Rs(Dwm
n )= ( fn−1)

m
+ 2m( fn−2+ 1)( fn−1)

m−1. �

5.3. Hypercubes. Hypercubes are a commonly studied mathematical object, and
enumerating the perfect matchings on an arbitrarily large hypercube is an open
problem in combinatorics [Lundow 1996]. Rearrangements, both with and without
stays, have interesting connections to this problem.

The hypercube of order n can be constructed as a graph whose vertices are
labeled with the 2n binary strings of length n, with an edge between two vertices
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Figure 6. The hypercube of order 4.

1 2 3 4 5

R(Hn) 1 4 81 73984 347138964225
Rs(Hn) 2 9 272 589185 16332454526976

Table 3. Hypercube rearrangements.

when the respective labels differ in only one location. More importantly for our
purposes, if Hn represents the hypercube of order n, then Hn ∼= Hn−1× P2.

Thus, the relations below follow directly from Theorem 8 and Theorem 9.

Corollary 14. The number of rearrangements on Hn is equal to the square of the
number of perfect matchings on Hn .

Corollary 15. The number of rearrangements with stays on Hn is equal to the
number of perfect matchings on Hn+1.

Appendix A. Computing Rs(prism n)

In this appendix, we give the full derivation of the generalized power sum for
Rs(prism n). Recall that prism n is isomorphic to Cn × P2 and may be considered
a discrete 2× n cylinder. Thus, this problem is equivalent to the original seating
rearrangement problem in a cylindrical classroom. Our goal is to construct a system
of linear recurrences representing the ways that the (arbitrarily chosen) first column
of desks can be filled.

We begin by letting an represent the number of rearrangements on prism n.
Figure 7 shows all of the possible endings that we need to account for in our system.
The dots in the figure represent students that have not moved, while the crosses
represent students that have already moved. Note that the endings are representations
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of classes of endings, up to symmetry. Thus, for example, an ending counts as
a cn regardless of whether the completed desk is in the top or bottom row, since
the number of rearrangements is the same. To see how the system is constructed
consider the possible movements of the students in the first column of a bn:

• The two students may elect to either remain in their seats or swaps seats with
each other; either of these choices leaves a bn−1.

• Both students may swap seats with the next student in their row, leaving a bn−2.

• One of the students may remain in his seat, while the other swaps with his
horizontal neighbor. This can happen in two ways, so we have 2cn−1.

• One of the students may move vertically, while the other moves horizontally.
Again this can happen in two ways, and our sum gains a term of 2dn−1.

Similarly, consider the possibilities for a classroom ending set-up as gn . As shown
in Figure 7, we will assume that the desk with two students is in the upper left
while the empty desk is in the lower right. However, this analysis extends to any
rotation or reflection of gn .

• The student yet to move in the upper left may move vertically forcing the
student in the bottom left to move horizontally. This leaves a fn−1.

• The student yet to move in the upper left may move horizontally while the
student below remains in place. The remaining situation is a gn−1.

• The student yet to move in the upper left may move horizontally while the
student below swaps places horizontally, which forces a gn−2.

Extending this reasoning to all of the endings under consideration leads to the
following system of recurrences:

an = 2bn−1+ 2bn−2+ 4cn−1+ 2en−1

+ 4 fn−1+ 4gn−1+ 4hn−1+ 2in−1+ 2 jn−1+ 2kn−1,

bn = 2bn−1+ bn−2+ 2cn−1+ 2dn−1, cn = bn−1+ cn−1,

dn = bn−1+ dn−1, en = cn−1+ en−1,

fn = fn−1+ fn−2+ gn−1, gn = fn−1+ gn−1+ gn−2,

hn = bn−1+ hn−1, in = in−1,

jn = fn−1, kn = kn−1+ hn−1.

Applying the successor operator, E , to this system gives us the following symbolic
matrix whose determinant is the characteristic polynomial of the recurrence relation
we are seeking.
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Figure 7. Prism endings.
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M =

E2
−2E−2 −4E 0 −2E −4E −4E −4E −2E −2E −2E

0 E2
−2E−1 −2E −2E 0 0 0 0 0 0 0

0 −1 E−1 0 0 0 0 0 0 0 0
0 −1 0 E−1 0 0 0 0 0 0 0
0 0 −1 0 E−1 0 0 0 0 0 0
0 0 0 0 0 E2

−E−1 −E 0 0 0 0
0 0 0 0 0 −E E2

−E−1 0 0 0 0
0 −1 0 0 0 0 0 E−1 0 0 0
0 0 0 0 0 0 0 0 E−1 0 0
0 0 0 0 0 −1 0 0 0 E 0
0 0 0 0 0 0 0 −1 0 0 E−1


Note that M is defined to satisfy the following equation as the successor operator
acts on each sequence in turn:

M
[
an bn cn dn en fn gn hn in jn kn

]>
=
[
0 0 0 0 0 0 0 0 0 0 0

]>
We can now calculate the determinant of M and construct our recurrence relation,

det M = E15
− 10E14

+ 36E13
− 50E12

− 11E11
+ 108E10

−96E9
− 20E8

+ 75E7
− 34E6

− 4E5
+ 6E4

− E3.

The coefficients of this characteristic polynomial give us our first recurrence re-
lation (Section 5), while the roots of the polynomial are the eigenvalues of our
recurrence. After removing the zeros, these eigenvalues and their multiplicities are
{16,−12, 1+

√
2, 1−

√
2, 2+

√
3, 2−

√
3}. Thus, our characteristic polynomial

factors to:
E3(E − 1)6(E + 1)2(E2

− 4E + 1)(E2
− 2E − 1).

To find the generalized power sum, we solve the linear system Ax = b, where A
represents the eigenvalues matrix (with elements multiplied by powers of n where
necessary to preserve linear independence), x represents the coefficients vector, and
b the initial conditions as shown in Table 2. The coefficients obtained as a solution
to this system give the generalized power sum described previously in Section 5.

Taking a product of only the factors corresponding to the eigenvalues in the
generalized power sum gives us the following characteristic polynomial of degree 6:

(E2
−4E+1)(E2

−2E−1)(E−1)(E+1)= E6
−6E5

+7E4
+8E3

−9E2
−2E+1.

Since this polynomial also annihilates our sequence, its corresponding recurrence
relation must also be satisfied by our sequence. This gives the second recurrence
relation in Section 5. By exhaustively examining the factors of this polynomial we
find that it is the polynomial of minimal degree that represents our sequence.
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