involve

 a journal of mathematicsThe number of convex topologies on a finite totally ordered set
Tyler Clark and Tom Richmond

The number of convex topologies on a finite totally ordered set

Tyler Clark and Tom Richmond
(Communicated by Kenneth S. Berenhaut)

Abstract

We give an algorithm to find the number $T_{\text {cvx }}(n)$ of convex topologies on a totally ordered set X with n elements, and present these numbers for $n \leq 10$.

1. Introduction

A subset B of poset (X, \leq) is increasing if $x \in B$ and $y \geq x$ imply $y \in B$, and is convex if $x, z \in B$ and $x \leq y \leq z$ imply $y \in B$. An n-point totally ordered set X may be labeled $X=\{1,2, \ldots, n\}$, where $1<2<\cdots<n$. This set will be denoted $[1, n]$, and in general, $[a, b]$ will denote $\{a, a+1, \ldots, b\} \subset \mathbb{N}$ with the natural order from \mathbb{N}. A topology on (X, \leq) is convex if it has a base of convex sets, or equivalently, if each point has a neighborhood base of convex sets. Because of these equivalent characterizations, convex topologies are often called locally convex topologies. (See [Nachbin 1965]). For finite sets, every point j has a minimal neighborhood $\mathrm{MN}(j)$, which is the intersection of all neighborhoods of j. It is convenient to identify a topology on $[1, n]$ with its base $\{\mathrm{MN}(j): j \in[1, n]\}$ of minimal neighborhoods of each point. Finite topological spaces are used in computer graphics, where the Euclidean plane is modeled by a topology on a finite set of pixels. If $a<b<c$ in a finite poset with a topology, if c is "near" a and there is any compatibility between the topology and order, we would expect b to also be near a. This is the convexity condition, which is a natural, weak compatibility condition between a topology and order assumed in most applications. We will consider the number of convex topologies on a finite totally ordered set $[1, n]$.

An excellent reference on finding the number $T(n)$ of topologies on an n-element set is [Erné and Stege 1991]. Currently, $T(n)$ is known for $n \leq 18$. A standard approach to counting topologies on a finite set X is to employ the one-to-one correspondence between a topology τ on X and the associated specialization quasiorder defined by $x \leq y$ if and only if x is in the closure of y. This correspondence

[^0]Keywords: convex topology, totally ordered set, number of topologies.
dates back to [Alexandroff 1937]. (See [Richmond 1998] for a survey of this connection.) One approach to counting the convex topologies would be to find a (biordered) characterization of convex topologies using some compatibility between the specialization order and the given total order. Fruitful results in this direction have not been found.

For $j \in[1, n]$, a convex subset $N(j)$ of $[1, n]$ containing j has the form $[a, b]$, where $1 \leq a \leq j \leq b \leq n$. There are j choices for a and $n-j+1$ choices for b, and thus $j(n+j-1)$ choices for $N(j)$. Since a base of minimal neighborhoods for a locally convex topology on $[1, n]$ consists of one convex subset $N(j)$ for each $j \in[1, n]$, we see that

$$
\prod_{j=1}^{n}(j)(n+j-1)=(n!)^{2}
$$

gives an upper bound on $T_{\mathrm{cvx}}(n)$. Of course, arbitrarily selecting a convex set $N(j)$ containing j for each $j \in[1, n]$ is unlikely to give a base for a topology, so this upper bound is not sharp.

2. Nested convex topologies

Stephen [1968] gave a recursive formula for the number of nested topologies (or equivalently, ordered partitions) on an n-point set X, generating the sequence $1,3,13,75,541,4683,47293, \ldots$, which is A000670 in The On-Line Encyclopedia of Integer Sequences (OEIS); see [Sloane 2014]. If $X=[1, n]$ is a totally ordered set with n elements, let $T_{\text {Nest }}(n)$ be the number of nested convex topologies on X, and let $T_{\text {Nest }}(n, k)$ be the number of those convex topologies consisting of k nested nonempty open sets $U_{1}, U_{2}, \ldots, U_{k}$, where $X=U_{1} \supset U_{2} \supset \cdots \supset U_{k} \neq \varnothing$. Since the indiscrete topology is the only nested topology with one nonempty open set, $T_{\text {Nest }}(n, 1)=1$. Suppose we have found $T_{\text {Nest }}(m, j)$ for all $m \leq n$ and $j \leq k$. To find $T_{\text {Nest }}(n, k+1)$, note that $X=U_{1} \supset U_{2} \supset U_{3} \supset \cdots \supset U_{k+1} \neq \varnothing$ implies that U_{2} must contain at least k elements and at most $n-1$ elements. If $\left|U_{2}\right|=j$, there are $n-j+1$ ways to choose U_{2} as a convex subset of X, and $T_{\text {Nest }}(j, k)$ ways to complete the nested convex topology $\left\{U_{2}, \ldots, U_{k+1}\right\}$ on the j-point totally ordered set U_{2}. Thus, we have

$$
T_{\mathrm{Nest}}(n, k+1)=\sum_{j=k}^{n-1}(n-j+1) T_{\mathrm{Nest}}(j, k)=\sum_{m=2}^{n-k+1} m \cdot T_{\mathrm{Nest}}(n-m+1, k),
$$

where the second equality follows from the substitution $m=n-j+1$. In Table 1 , we tabulate the values of $T_{\text {Nest }}(n, k)$ for $n, k \leq 10$.

n	1	2	3	4	5	6	7	8	9	10
1	1									
2	1	2								
3	1	5	4							
4	1	9	16	8						
5	1	14	41	44	16					
6	1	20	85	146	112	32				
7	1	27	155	377	456	272	64			
8	1	35	259	833	1,408	1,312	640	128		
9	1	44	406	1,652	3,649	4,712	3,568	1,472	256	
10	1	54	606	3,024	8,361	14,002	14,608	9,312	3,328	512

Table 1. $T_{\text {Nest }}(n, k)$, the number of topologies on a totally ordered n-point set consisting of k nested convex sets.

This table (sequence A056242 in the OEIS [Mallows 2014]) is also used by Hwang and Mallow [1995] to count the number of order-consecutive partitions of $X=\{1,2, \ldots, n\}$, which they define as follows: An ordered list $S_{1}, S_{2}, \ldots, S_{m}$ of subsets of X is an order-consecutive partition of X if $\left\{S_{1}, \ldots, S_{m}\right\}$ is a partition of X and each of the sets $\bigcup_{j=1}^{k} S_{j}(1 \leq k \leq m)$ is a consecutive set of integers. If $\left\{S_{1}, \ldots, S_{m}\right\}$ is an order-consecutive partition, clearly $\left\{S_{1}, S_{1} \cup S_{2}, S_{1} \cup S_{2} \cup\right.$ $\left.S_{3}, \ldots, X\right\}$ is a nested convex topology on X. Conversely, any nested convex topology $\tau=\left\{U_{1}, U_{2}, \ldots, U_{k}\right\}$ on $X=\{1,2, \ldots n\}$ generates the order-consecutive partition $U_{1}, U_{2} \backslash U_{1}, U_{3} \backslash U_{2}, \ldots, U_{k} \backslash U_{k-1}$.

It is easy to confirm from our formula for $T_{\text {Nest }}(n, k)$ that $T_{\text {Nest }}(n, n)=2^{n-1}$ and $T_{\text {Nest }}(n, 2)=\Delta_{n}-1$, where Δ_{n} is the n-th triangular number.

Now, we note that

$$
T_{\mathrm{Nest}}(n)=\sum_{k=1}^{n} T_{\mathrm{Nest}}(n, k) .
$$

This sequence, whose first few elements are

$$
\left(T_{\text {Nest }}(n)\right)_{n=1}^{10}=(1,3,10,34,116,396,1352,4616,15760,53808)
$$

appears as A007052 in the OEIS [Mallows et al. 2014], where it is noted that

$$
T_{\text {Nest }}(n)=4 T_{\text {Nest }}(n-1)-2 T_{\text {Nest }}(n-2) \quad \text { for } n>2 .
$$

Solving this recurrence relation by standard techniques gives

$$
T_{\text {Nest }}(n)=\frac{(2+\sqrt{2})^{n}+(2-\sqrt{2})^{n}}{4}
$$

Nested convex topologies have as much inclusion as possible. Not only are they totally ordered by inclusion, but they maximize "overlap". The other extreme would be to have as little inclusion and overlap as possible. This suggests considering mutually disjoint collections. A collection \mathscr{D} of mutually disjoint convex subsets of X is not a basis for a topology if $\bigcup \mathscr{D} \neq X$, but $\mathscr{D} \cup\{X\}$ is always a basis for a convex topology on X. The authors have shown that the number of topologies on an n-element totally ordered set having a base consisting of a mutually disjoint collection \mathscr{D} of convex sets, or such a collection \mathscr{D} together with X, is $F_{2 n+1}-1$, where F_{k} is the k-th Fibonacci number [Clark and Richmond 2010].

3. An algorithm for $T_{\mathrm{cvx}}(n)$

We now present a recursive algorithm to find the number $T_{\mathrm{cvx}}(n)$ of convex topologies on a totally ordered set $[1, n]$. It is easy to check that $T_{\mathrm{cvx}}(1)=1=T(1)$ and $T_{\mathrm{cvx}}(2)=4=T(2)$. That is, the only topology on a 1-point set is convex, as are all four topologies on a 2-point set.

Suppose $T_{\mathrm{cvx}}(n)$ is known. To find $T_{\mathrm{cvx}}(n+1)$, note that each convex topology on $[1, n+1]$, when restricted to $[1, n]$, gives a unique convex topology on $[1, n]$. Thus, we may count $T_{\mathrm{cvx}}(n)$ by looping through each topology τ counted in $T_{\mathrm{cvx}}(n)$, adding $n+1$ as the greatest point, adjusting the minimal neighborhoods of $j \in[1, n]$, and defining the minimal neighborhood of $n+1$ so that the subspace topology on $[1, n]$ is still τ. That is, considering how each topology on $[1, n]$ may be appropriately expanded to $[1, n+1]$ gives a complete, unduplicated count of the convex topologies on $[1, n+1]$.

Step 1: Redefining minimal neighborhoods of $\boldsymbol{j} \in[1, n]$. We loop through all convex topologies τ on $[1, n]$. The simplest way to extend τ to $[1, n+1]$ so that the restriction of the extension is still τ would be to keep the minimum neighborhoods of each $j \in[1, n]$ unchanged. However, we may also expand some of the minimal neighborhoods of points $j \in[1, n]$ to include $n+1$. To maintain convexity and to guarantee a topology on $[1, n+1]$ whose restriction to $[1, n]$ agrees with τ, the minimal neighborhood $\mathrm{MN}(j)$ of j can be expanded to include $n+1$ if and only if $\mathrm{MN}(j)$ already includes n. If $n \in \mathrm{MN}(j) \subseteq \mathrm{MN}(k)$ and $\mathrm{MN}(j)$ is expanded to include $n+1$, then $\operatorname{MN}(k)$ must also be expanded to include $n+1$, for otherwise $\mathrm{MN}(k)$ would be a neighborhood of j not including $n+1$, contrary to the hypothesis that the minimal neighborhood of j was to include $n+1$.

As an immediate consequence, if $n \in \mathrm{MN}(j)=\mathrm{MN}(k)$, then $\mathrm{MN}(j)$ is expanded to include $n+1$ if and only if $\mathrm{MN}(k)$ is. That is, a single basis element which happens to be the minimal neighborhood of distinct points j and k is still treated as a single entity in the expansion process.

Figure 1. A sample topology on $[1,8]$.

Figure 2. Possible expansions of minimal neighborhoods containing previous right endpoint: none, outermost one, outermost two, outermost three.

Thus, if $\mathscr{B}=\{\mathrm{MN}(1), \mathrm{MN}(2), \ldots, \mathrm{MN}(n)\}$ has m distinct sets containing n, we expand the outermost k of these to include $n+1$, looping as k goes from 1 to m.

For example, consider the convex topology τ on $[1,8]$ having a base of minimal neighborhoods $\mathscr{B}=\{\{1\},[2,8],[3,4],\{5\},[5,8],\{8\}\}$, as shown in Figure 1.

We may add 9 to this topology without changing any of the minimal neighborhoods of j for $j \in[1,8]$, or since $\mathrm{MN}(2), \mathrm{MN}(6)=\mathrm{MN}(7)$, and $\mathrm{MN}(8)$ include the right endpoint 8 , they may be extended to include the added point 9 . Since $8 \in \mathrm{MN}(8) \subset \mathrm{MN}(7)=\mathrm{MN}(6) \subset \mathrm{MN}(2)$, we note that $\mathrm{MN}(6)$ is expanded if and only if $\mathrm{MN}(7)$ is expanded, so we do not need to treat $\mathrm{MN}(6)$ and $\mathrm{MN}(7)$ as distinct basis elements and we may effectively ignore the duplicate $\mathrm{MN}(7)$. Also, if $\mathrm{MN}(6)$ is expanded, then $\mathrm{MN}(6) \subset \mathrm{MN}(2)$ implies that $\mathrm{MN}(2)$ would also have to be expanded. Repeating this idea, we may expand nothing except the outermost (i.e., longest) minimal neighborhood containing 8 , namely $\mathrm{MN}(2)$, the outermost two minimal neighborhoods containing 8, namely MN(2) and MN(6), or the outermost three, MN(2), MN(6), and MN(8). See Figure 2.

Step 2: Defining the minimal neighborhood of the added point. Having determined the expansion of minimal neighborhoods of $j \in[1, n]$, it remains to define the minimal neighborhood $\mathrm{MN}(n+1)$ of $n+1$. Clearly we must have $n+1 \in \mathrm{MN}(n+1)$. The convexity condition and our need to retain the original topology τ on $[1, n]$ as a subspace imply that $\mathrm{MN}(n+1)$ must be of form $\{n+1\} \cup I$, where I is increasing and open in τ. The final condition is the minimality of the neighborhood $\mathrm{MN}(n+1)$. In Step 1, we may have expanded some neighborhoods of n to contain $n+1$ and, if so, the minimal neighborhood of $n+1$ must be contained in each of these previously defined neighborhoods of $n+1$. Thus, $\mathrm{MN}(n+1)$ must be of the form $\{n+1\} \cup I$,

Figure 3. Possible choices for $\mathrm{MN}(9)$ if no minimal neighborhoods $\mathrm{MN}(j)$ are expanded for $j \in[1,8]$.

Figure 4. Possible choices for $\mathrm{MN}(9)$ if $\mathrm{MN}(2)$ and $\mathrm{MN}(6)$ are expanded to include 9.
where I is increasing and τ-open, and I is contained in the innermost (shortest) neighborhood $\mathrm{MN}(j)$ which was expanded in Step 1.

Continuing the example presented above, we may expand none of the original minimal neighborhoods of $j \in[1,8]$ to include 9 , and then the minimal neighborhood $\mathrm{MN}(9)$ of 9 may be defined as $\{9\} \cup I$, where I is an increasing τ-open set in any of the six ways suggested in Figure 3.

Figure 4 shows the three possible choices for the minimal neighborhood MN(9) if the outermost two minimal neighborhoods containing 8 , namely $\mathrm{MN}(2)$ and $\mathrm{MN}(6)$, have been expanded to include 9.

A computer implementation of this algorithm yields the values for $T_{\mathrm{cvx}}(n)$ shown in Table 2 below. With the $T_{\mathrm{cvx}}(2)=4$ convex topologies on [1,2] as input, the computer implementation loops through all the topologies τ on $[1, n]$, adds $n+1$, determines the number m of distinct minimal neighborhoods of $j \in[1, n]$ containing n, expands the outermost k of these to contain $n+1$ (as k goes from 0 to m), determines the increasing τ-open sets, defines the minimal neighborhood $\mathrm{MN}(n+1)$ of $n+1$ as $\{n+1\} \cup I$, where I is one of the increasing τ-open sets contained in the smallest $\mathrm{MN}(j)$ previously expanded to include $n+1$, and, at each selection of an option above, increments the $T_{\mathrm{cvx}}(n+1)$ counter and records the data for this new topology on $[1, n+1]$ required for the next iteration.

The efficiency of this algorithm can be improved by eliminating duplication of computations. For example, if p is the largest integer with $\mathrm{MN}(p)=X$ for two topologies s and t which agree to the right of p, then the computation for s duplicates that for t, as noted by a helpful referee.

n	$T_{\text {Nest }}(n)$	$T_{\mathrm{cvx}}(n)$	$T(n)$
1	1	1	1
2	3	4	4
3	10	21	29
4	34	129	355
5	116	876	6,942
6	396	6,376	209,527
7	1,352	48,829	$9,535,241$
8	4,616	388,771	$642,779,354$
9	15,760	$3,191,849$	$63,260,289,423$
10	53,808	$26,864,936$	$8,977,053,873,043$

Table 2. The numbers $T_{\text {Nest }}(n)$ and $T_{\text {cvx }}(n)$ of nested convex topologies and convex topologies on an n-point totally ordered set, and the number $T(n)$ of topologies on an n-point set.

The numbers $T_{\mathrm{cvx}}(n)$ in Table 2 were also verified for $n \leq 8$ without the algorithm using an exhaustive generation scheme. For comparison, we also include the number $T_{\text {Nest }}(n)$ of nested convex topologies and the number $T(n)$ of topologies on n points in the table.

References

[Alexandroff 1937] P. Alexandroff, "Diskrete Räume", Mat. Sb. (N.S.) 2:3 (1937), 501-518.
[Clark and Richmond 2010] T. Clark and T. Richmond, "Collections of mutually disjoint convex subsets of a totally ordered set", Fibonacci Quart. 48:1 (2010), 77-79. Currently also at http://people.wku.edu/tom.richmond/Papers/FibQuarterly.pdf. MR 2011e:11029 Zbl 1211.05017
[Erné and Stege 1991] M. Erné and K. Stege, "Counting finite posets and topologies", Order 8:3 (1991), 247-265. MR 93b:06004 Zbl 0752.05002
[Hwang and Mallows 1995] F. K. Hwang and C. L. Mallows, "Enumerating nested and consecutive partitions", J. Combin. Theory Ser. A 70:2 (1995), 323-333. MR 96e:05014 Zbl 0819.05005
[Mallows 2014] C. Mallows, "A056242: Triangle read by rows", entry A056242 in The on-line encyclopedia of integer sequences (http://oeis.org), 2014.
[Mallows et al. 2014] C. Mallows, N. J. A. Sloane, and S. Plouffe, "A007052: Number of orderconsecutive partitions of n ", entry A007052 in The on-line encyclopedia of integer sequences (http://oeis.org), 2014.
[Nachbin 1965] L. Nachbin, Topology and order, Van Nostrand Mathematical Studies 4, D. Van Nostrand, Princeton, N.J., 1965. MR 36 \#2125 Zbl 0131.37903
[Richmond 1998] T. A. Richmond, "Quasiorders, principal topologies, and partially ordered partitions", Internat. J. Math. Math. Sci. 21:2 (1998), 221-234. MR 99h:06003 Zbl 0898.54005
[Sloane 2014] N. J. A. Sloane, "A000670: Fubini numbers", entry A000670 in The on-line encyclopedia of integer sequences (http://oeis.org), 2014.
[Stephen 1968] D. Stephen, "Topology on finite sets", Amer. Math. Monthly 75 (1968), 739-741. MR 38 \#2725 Zbl 0191.20701

Received: 2011-10-19 Revised: 2013-06-14 Accepted: 2013-08-07

thomas.clark973@topper.wku.edu	Department of Mathematics, Western Kentucky University, tom.richmond@wku.edu College Heights Boulevard, Dewling Green, KY 42101, United States College Heights Boulevard, Bown Green, KY 42101, United States

involve

msp.org/involve
EDITORS
MANAGING Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone@latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@ math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US $\$ 140 /$ year for the electronic version, and $\$ 190 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
. mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2015 Mathematical Sciences Publishers

involve
 no. 1

Efficient realization of nonzero spectra by polynomial matrices1
Nathan McNew and Nicholas Ormes
The number of convex topologies on a finite totally ordered set 25Tyler Clark and Tom Richmond
Nonultrametric triangles in diametral additive metric spaces 33
Timothy Faver, Katelynn Kochalski, Mathav KishoreMurugan, Heidi Verheggen, Elizabeth Wesson and AnthonyWeston
An elementary approach to characterizing Sheffer A-type 0 orthogonal polynomial 39
sequencesDaniel J. Galiffa and Tanya N. Riston
Average reductions between random tree pairs 63
Sean Cleary, John Passaro and Yasser Toruno
Growth functions of finitely generated algebras71
Eric Fredette, Dan Kubala, Eric Nelson, Kelsey Wells andHarold W. Ellingsen, Jr.
A note on triangulations of sumsets 75
Károly J. Böröczky and Benjamin Hoffman
An exploration of ideal-divisor graphs 87
Michael Axtell, Joe Stickles, Lane Bloome, Rob Donovan, PaulMilner, Hailee Peck, Abigail Richard and Tristan Williams
The failed zero forcing number of a graph 99
Katherine Fetcie, Bonnie Jacob and Daniel Saavedra
An Erdős-Ko-Rado theorem for subset partitions 119
Adam Dyck and Karen Meagher
Nonreal zero decreasing operators related to orthogonal polynomials129
Andre Bunton, Nicole Jacobs, Samantha Jenkins, CharlesMcKenry Jr., Andrzej Piotrowski and Louis Scott
Path cover number, maximum nullity, and zero forcing number of oriented graphs 147 and other simple digraphsAdam Berliner, Cora Brown, Joshua Carlson, Nathanael Cox,Leslie Hogben, Jason Hu, Katrina Jacobs, KathrynManternach, Travis Peters, Nathan Warnberg and MichaelYoung
Braid computations for the crossing number of Klein links 169
Michael Bush, Danielle Shepherd, Joseph Smith, Sarah Smith-Polderman, Jennifer Bowen and John Ramsay

[^0]: MSC2010: 05A15, 06F30, 54A10, 54F05.

