\bullet
 in Olve

 a journal of mathematicsNonultrametric triangles in diametral additive metric spaces

Timothy Faver, Katelynn Kochalski, Mathav Kishore Murugan, Heidi Verheggen, Elizabeth Wesson and Anthony Weston

Nonultrametric triangles in diametral additive metric spaces

Timothy Faver, Katelynn Kochalski, Mathav Kishore Murugan, Heidi Verheggen, Elizabeth Wesson and Anthony Weston
(Communicated by Toka Diagana)

We prove that a diametral additive metric space is not ultrametric if and only if it contains a diameter attaining nonultrametric triangle.

1. Introduction

Diameter and diametrical pairs of points in ultrametric spaces have been the subject of recent extensive studies, including [Dordovskyi et al. 2011]. In this paper we show that if a diametral additive metric space of diameter Δ is not ultrametric, then it must contain a nonultrametric triangle of diameter Δ.

We begin by recalling some preliminary definitions and background information.
Definition 1.1. A metric space (X, d) is said to be ultrametric if for all $x, y, z \in X$, we have

$$
d(x, y) \leq \max \{d(x, z), d(y, z)\}
$$

Equivalently, a metric space (X, d) is ultrametric if and only if any given three points in X can be relabeled as x, y, z so that $d(x, y) \leq d(x, z)=d(y, z)$.

Interesting examples of ultrametric spaces include the rings Z_{p} of p-adic integers, the Baire space $B_{\aleph_{0}}$, non-Archimedean normed fields and rings of meromorphic functions on open regions of the complex plane. There is an immense literature surrounding ultrametrics, as they have been intensively studied by topologists, analysts, number theorists and theoretical biologists. For example, [de Groot 1956] characterized ultrametric spaces up to homeomorphism as the strongly zerodimensional metric spaces. In numerical taxonomy, on the other hand, every finite

[^0]ultrametric space is known to admit a natural hierarchical description called a dendogram. This has significant ramifications in theoretical biology. See, for instance, [Gordon 1987].

In fact, ultrametrics are special instances of a more general class of metrics which are termed additive. As we have noted in Definition 1.1, ultrametrics are defined by a stringent three point criterion. The class of additive metrics satisfy a more relaxed four point criterion. The formal definition is as follows.
Definition 1.2. A metric space (X, d) is said to be additive if for all x, y, z, w in X, we have

$$
d(x, y)+d(z, w) \leq \max \{d(x, z)+d(y, w), d(x, w)+d(y, z)\} .
$$

Equivalently, a metric space (X, d) is additive if and only if any given four points in X can be relabeled as x, y, z, w so that $d(x, y)+d(z, w) \leq d(x, z)+d(y, w)=$ $d(x, w)+d(y, z)$.

Recall that a metric tree is a connected graph (T, E) without cycles or loops in which each edge $e \in E$ is assigned a positive length $|e|$. The distance $d_{T}(x, y)$ between any two vertices $x, y \in T$ is then defined to be the sum of the lengths of the edges that make up the unique minimal geodesic from x to y. A brief but important paper, [Buneman 1974, Theorem 2], showed that a finite metric space is additive if and only if it is a tree metric in the sense of the following definition.

Definition 1.3. A metric d on a set X is said to be a tree metric if there exists a finite metric tree (T, E, d_{T}) such that
(1) X is contained in the vertex set T of the tree, and
(2) $d(x, y)=d_{T}(x, y)$ for all $x, y \in X$.

In other words, d is a tree metric if (X, d) is isometric to a metric subspace of some metric tree.

Ultrametrics form a very special subclass of the collection of all additive metrics. Indeed, there is a close relationship between ultrametric spaces and the leaf sets or end spaces of certain trees. This type of identification is discussed more formally in [Holly 2001; Fiedler 1998].

The notion of a diametral metric space is recalled in the following definition. It is a well-known result of mathematical analysis that all compact metric spaces are diametral [Kaplansky 1977, Theorem 68].
Definition 1.4. Let (X, d) be a metric space.
(1) The diameter of a metric space (X, d) is defined to be the quantity $\Delta=$ $\sup \{d(x, y): x, y \in X\}$. If we need to be more explicit about the underlying metric space, we will write $\operatorname{diam} X$ or $\operatorname{diam}(X, d)$ instead of Δ.
(2) (X, d) is diametral if there exist points $x, y \in X$ such that $d(x, y)=\Delta$.

A metric space (X, d) is not ultrametric if it contains a "bad" triangle $\{x, y, z\} \subseteq$ X; i.e., x, y, z such that

$$
d(x, y)>\max \{d(x, z), d(y, z)\}
$$

In the case of a nonultrametric diametral additive metric space (X, d), we will see that there is always a bad triangle whose base length equals diam X. Such triangles are the subject of the following definition.

Definition 1.5. Let (X, d) be a metric space of diameter $\Delta<\infty$. We say that a subset $T=\{x, y, z\}$ of three distinct points from X forms a diameter nonultrametric triangle if (T, d) is not ultrametric and diam $T=\operatorname{diam} X$.

2. Nonultrametric triangles in diametral additive metric spaces

In this section we show that every nonultrametric diametral additive metric space (X, d) contains a diameter nonultrametric triangle. We further note that this result is not true in the more general class of diametral metric spaces. Thus the assumption of additivity is necessary.

Henceforth we will assume that $|X| \geq 3$. The following lemma treats the cases $|X|=3$ or 4 .
Lemma 2.1. Let (X, d) be a three or four point additive metric space. If X is not ultrametric, then X contains a diameter nonultrametric triangle.

Proof. The lemma is true by inspection if $|X|=3$, so we will assume that $|X|=4$. Let $X=\{x, y, z, a\}$ and suppose that $d(a, z)=\Delta$, where Δ is the diameter of X. If X is not ultrametric, then there exist three distinct points in X that do not satisfy the ultrametric inequality. That is, there exists a three point subset of X that is not ultrametric. Consider the three point subsets of $X:\{x, y, z\},\{x, y, a\},\{y, z, a\},\{x, z, a\}$.
Case 1: $\{y, z, a\}$ is not ultrametric. Since $a, z \in\{y, z, a\}$ and $d(a, z)=\Delta$, we see that $\operatorname{diam}\{y, z, a\}=\Delta$. Then $\{y, z, a\}$ forms a diameter nonultrametric triangle by definition.

Case 2: $\{x, z, a\}$ is not ultrametric. The argument proceeds analogously to Case 1 and is omitted.

Case 3: $\{x, y, z\}$ is not ultrametric. If $\max \{d(a, x), d(x, z)\}<\Delta$, then $\{x, z, a\}$ is not ultrametric, and if $\max \{d(a, y), d(y, z)\}<\Delta$, then $\{y, z, a\}$ is not ultrametric. Then we are reduced to Cases 1 and 2. Suppose that $\max \{d(a, x), d(x, z)\}=$ $\max \{d(a, y), d(y, z)\}=\Delta$. If $d(x, z)=\Delta$, then $\operatorname{diam}\{x, y, z\}=\Delta$ and so $\{x, y, z\}$ forms a diameter nonultrametric triangle. The same occurs if $d(y, z)=\Delta$. Now let $d(a, x)=d(a, y)=\Delta$. As we are assuming that the metric space (X, d) is additive and that $d(a, z)=\Delta$, it follows from [Buneman 1974, Theorem 2] that x, y and z are equidistant from a in some finite metric tree. In particular, no three point subset
of $\{x, y, z, a\}$ that includes a can lie on a common geodesic in this tree. Thus x, y and z must be leaves in the minimal subtree generated by the vertices $\{x, y, z, a\}$. The vertex a may or may not be a leaf in this subtree. However, if a is a leaf in this subtree, we may replace it with the vertex a^{\prime} in the subtree that minimizes $d\left(x, a^{\prime}\right)$ subject to the constraint $d\left(x, a^{\prime}\right)=d\left(y, a^{\prime}\right)=d\left(z, a^{\prime}\right)$. So, by proceeding in this way (if necessary) and by ignoring all irrelevant internal vertices in the subtree, it follows that $\{x, y, z\}$ forms the leaf set of a centered metric tree that has at most five vertices. Thus $\{x, y, z\}$ is ultrametric by [Fiedler 1998, Theorem 2.2].

Case 4: $\{x, y, a\}$ is not ultrametric. The argument proceeds analogously to Case 3 and is omitted.

Theorem 2.2. A diametral additive metric space (X, d) is not ultrametric if and only if X contains a diameter nonultrametric triangle.

Proof. (\Rightarrow) We prove the contrapositive of the forward implication. Let (X, d) be a diametral metric space with diameter Δ. Suppose X contains no diameter nonultrametric triangles. We may choose $a, b \in X$ with $d(a, b)=\Delta$. Let $x, y, z \in X$ be given. We show that the ultrametric inequality holds for x, y, z. Without loss of generality, we may assume that $x \neq a, b$. Consider the set $X^{\prime}=\{a, b, x\}$. Clearly $\operatorname{diam}\left(X^{\prime}, d\right)=\Delta$. If X^{\prime} is not ultrametric, then X^{\prime} forms a diameter nonultrametric triangle in X. So X^{\prime} must be ultrametric. Thus $d(a, x)=\Delta$ or $d(b, x)=\Delta$. Without loss of generality, we may assume that $d(a, x)=\Delta$. Now consider $X^{\prime \prime}=\{a, x, y, z\}$. By construction, $\operatorname{diam}\left(X^{\prime \prime}, d\right)=\Delta$. It follows that any diameter nonultrametric triangle of $X^{\prime \prime}$ is also a diameter nonultrametric triangle of X. However, X contains no diameter nonultrametric triangles. So $X^{\prime \prime}$ contains no diameter nonultrametric triangles. By Lemma 2.1, $X^{\prime \prime}$ is ultrametric. Hence $d(x, y) \leq \max \{d(x, z), d(y, z)\}$, and so X is ultrametric.
(\Leftarrow) Any metric space that contains a diameter nonultrametric triangle is not ultrametric.

The following example shows that the forward implication of Theorem 2.2 may fail if the metric space is not assumed to be additive. Consider any nonultrametric metric triangle $(\{x, y, z\}, d)$. Let Δ denote the diameter of this triangle. We may assume that $\Delta=d(x, y)>\max \{d(x, z), d(y, z)\}$. Now adjoin a fourth point a at distance $\Delta+\varepsilon$ from x, y and z where $\varepsilon>0$. The resulting four point diametral metric space is not additive and contains no diameter nonultrametric triangles.

Acknowledgments

The example following Theorem 2.2 is due to the referee of a previous paper. Comments by that referee motivated this paper in no small measure.

References

[Buneman 1974] P. Buneman, "A note on the metric properties of trees", J. Combinatorial Theory Ser. B 17 (1974), 48-50. MR 51 \#218 Zbl 0286.05102
[Dordovskyi et al. 2011] D. Dordovskyi, O. Dovgoshey, and E. Petrov, "Diameter and diametrical pairs of points in ultrametric spaces", p-Adic Numbers Ultrametric Anal. Appl. 3:4 (2011), 253-262. MR 2012k:54043 Zbl 06105084
[Fiedler 1998] M. Fiedler, "Ultrametric sets in Euclidean point spaces", Electron. J. Linear Algebra 3 (1998), 23-30. MR 99e:51015 Zbl 0897.54020
[Gordon 1987] A. D. Gordon, "A review of hierarchical classification", J. Roy. Statist. Soc. Ser. A 150:2 (1987), 119-137. MR 88d:62104 Zbl 0616.62086
[de Groot 1956] J. de Groot, "Non-archimedean metrics in topology", Proc. Amer. Math. Soc. 7 (1956), 948-953. MR 18,325a Zbl 0072.40201
[Holly 2001] J. E. Holly, "Pictures of ultrametric spaces, the p-adic numbers, and valued fields", Amer. Math. Monthly 108:8 (2001), 721-728. MR 1865659 Zbl 1039.12003
[Kaplansky 1977] I. Kaplansky, Set theory and metric spaces, 2nd ed., Chelsea Publishing Co., New York, 1977. MR 56 \#5297 Zbl 0397.54002

Received: 2012-06-20 Accepted: 2013-01-10

tef36@drexel.edu	Department of Mathematics, Drexel University, Philadelphia, PA 19104, United States
kdk7rn@virginia.edu	Department of Mathematics, University of Virginia, Charlottesville, VA 22904, United States
mkm233@cornell.edu	Center for Applied Mathematics, Cornell University, Ithaca, NY 14853, United States
heidiv@sas.upenn.edu	Department of Economics, University of Pennsylvania, Philadelphia, PA 19104, United State
enw27@cornell.edu	Center for Applied Mathematics, Cornell University, Ithaca, NY 14853, United States
westona@canisius.edu	Faculty of Arts and Sciences, Australian Catholic University, North Sydney, NSW 2060, Australia

and
Department of Mathematics and Statistics, Canisius College, Buffalo, NY 14208, United States

involve

 msp.org/involve

 msp.org/involve EDITORS

 EDITORS}

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone @latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@ math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US $\$ 140 /$ year for the electronic version, and $\$ 190 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

involve 2015 vol. 8 no. 1

Efficient realization of nonzero spectra by polynomial matrices 1Nathan McNew and Nicholas Ormes
The number of convex topologies on a finite totally ordered set 25
Tyler Clark and Tom Richmond
Nonultrametric triangles in diametral additive metric spaces 33
Timothy Faver, Katelynn Kochalski, Mathav Kishore Murugan, Heidi Verheggen, Elizabeth Wesson and Anthony Weston
An elementary approach to characterizing Sheffer A-type 0 orthogonal polynomial 39
sequencesDaniel J. Galiffa and Tanya N. Riston
Average reductions between random tree pairs 63
Sean Cleary, John Passaro and Yasser Toruno
Growth functions of finitely generated algebras 71
Eric Fredette, Dan Kubala, Eric Nelson, Kelsey Wells andHarold W. Ellingsen, Jr.
A note on triangulations of sumsets 75
Károly J. Böröczky and Benjamin Hoffman
An exploration of ideal-divisor graphs 87
Michael Axtell, Joe Stickles, Lane Bloome, Rob Donovan, Paul Milner, Hailee Peck, Abigail Richard and Tristan Williams
The failed zero forcing number of a graph99
Katherine Fetcie, Bonnie Jacob and Daniel Saavedra
An Erdős-Ko-Rado theorem for subset partitions119
Adam Dyck and Karen Meagher
Nonreal zero decreasing operators related to orthogonal polynomials129
Andre Bunton, Nicole Jacobs, Samantha Jenkins, CharlesMcKenry Jr., Andrzej Piotrowski and Louis Scott
Path cover number, maximum nullity, and zero forcing number of oriented graphs147and other simple digraphsAdam Berliner, Cora Brown, Joshua Carlson, Nathanael Cox,Leslie Hogben, Jason Hu, Katrina Jacobs, Kathryn Manternach,Travis Peters, Nathan Warnberg and Michael Young
Braid computations for the crossing number of Klein links169
Michael Bush, Danielle Shepherd, Joseph Smith, Sarah
Smith-Polderman, Jennifer Bowen and John Ramsay

[^0]: MSC2010: primary 54E35; secondary 51F99.
 Keywords: ultrametric spaces, additive metric spaces, tree metrics.
 The research presented in this paper was undertaken at the 2011 Cornell University Summer Mathematics Institute (SMI). The authors would like to thank the Department of Mathematics and the Center for Applied Mathematics at Cornell University for supporting this project, and the National Science Foundation for its financial support of the SMI through NSF grant DMS-0739338.

