Average reductions between random tree pairs
Sean Cleary, John Passaro and Yasser Toruno

Average reductions between random tree pairs

Sean Cleary, John Passaro and Yasser Toruno
(Communicated by Robert W. Robinson)

Abstract

There are a number of measures of degrees of similarity between rooted binary trees. Many of these ignore sections of the trees which are in complete agreement. We use computational experiments to investigate the statistical characteristics of such a measure of tree similarity for ordered, rooted, binary trees. We generate the trees used in the experiments iteratively, using the Yule process modeled upon speciation.

1. Introduction

Rooted binary trees arise in a wide range of settings, from biological evolutionary trees to efficient structures for searching datasets. There are a number of measures of tree similarity which arise in these settings. Here we investigate a measure which is relevant for ordered, rooted, binary trees of the same size. Examples of trees satisfying such conditions include some binary search trees. Our approach is to consider pairs of such trees of increasing size n, selected via a random process, and investigate the degree of commonality given by a natural measure of the degree to which they agree completely on peripheral subtrees. Using experimental evidence, we find that the degree of commonality appears to grown linearly with tree size, and we estimate the average behavior.

There are a number of processes for selecting trees randomly. One method that is commonly studied is the uniform distribution on trees, where each tree is equally likely to be selected. Some properties of the reduction behavior of trees selected uniformly at random have been investigated by Cleary, Elder, Rechnitzer and Taback [Cleary et al. 2010] while studying statistical properties of Thompson's group F, showing that a tree pair selected from the uniform distribution on tree pairs is almost surely unreduced in the sense described below. The common subtrees investigated here via reduction are a particular case of common edges, where in the

[^0]common edge case the collections of common edges need not be peripheral. That is, in the more general case they need not include the complete subtree, extending to the leaves. For common edges of all types, the average number of common edges with respect to the uniform selection of trees at random case has been examined experimentally by Chu and Cleary [2013] and asymptotically by Cleary, Rechnitzer and Wong [Cleary et al. 2013]. Asymptotically, the expected number of reductions of a tree pair selected uniformly at random is
$$
\frac{16-5 \pi}{\pi} n+\frac{7 \pi-20}{\pi}+O\left(\frac{\log n}{n}\right),
$$
for reductions of a more general type, which is about
$$
0.092958 n+0.633802+O\left(\frac{\log n}{n}\right)
$$

The experimental results in [Chu and Cleary 2013] show quick convergence to the dominant linear term of $0.092958 n$. For the particular subtree peripheral reductions (that is, subtree reductions) considered here, a similar generating function analysis gives the asymptotic number of trees as $(7-4 \sqrt{3}) n$, which is about $0.0717968 n$ when tree pairs are selected uniformly at random. So on average more than three quarters of the expected common edges lie in expected common peripheral subtrees.

Here, instead of considering trees selected uniformly at random, we study a process for generating trees at random motivated by biological questions, called the Yule process [Yule 1925; Harding 1971], also known as uniform speciation. A tree is grown iteratively from the root. At each step, a leaf is selected uniformly at random from the leaves present at that stage, and a new sibling pair is attached at that leaf, and then the process is iterated until we have a tree with the appropriate number of leaves. Such a distribution of trees also can arise from a variety of insertion scenarios in tree-structured data.

The distribution of the number of sibling pairs ("cherries") of unordered trees was investigated by McKenzie and Steel [2000] for both the uniform and Yule tree distributions - asymptotically, there are $n / 3$ expected sibling pairs for the Yule distribution and $n / 4$ for the uniform distribution. Here we find experimentally that the expected number of subtree reductions is also larger for the Yule distribution than the uniform distribution, with almost 13% expected subtree reduction compared to the expected reduction of about 7% in the uniform case.

2. Background and definitions

We consider rooted binary trees on n leaves with a natural left-to-right order on leaves, numbered from 1 to n. The internal nodes of the trees we refer to as nodes and the external nodes we refer to as leaves. Two children of the same node which
are leaves form a sibling pair and their leaf numbers are necessarily of the form i and $i+1$ for some i.

A tree pair (S, T) is reduced if there are no sibling pairs with leaves numbered i and $i+1$ in S which have a corresponding sibling pair i and $i+1$ as leaves in T. An elementary reduction for a tree pair (S, T) with n leaves with a common sibling pair $(i, i+1)$ is a tree pair (S^{\prime}, T^{\prime}) with $n-1$ leaves, where the common sibling pair has been removed in both S and T and the leaves have been appropriately renumbered. A reduction of a tree pair diagram is a sequence of elementary reductions. There may be many possible elementary reductions for an unreduced tree pair and thus many possible reductions, but for a given tree pair (S, T), there is a unique reduced tree pair ($S^{\prime \prime}, T^{\prime \prime}$) which is itself a reduction of (S, T) and which has the property that any possible sequence of reductions from (S, T) will terminate in that reduced tree pair. An example of tree pair reduction is given in Figure 1.

The subtrees that are eliminated during the reduction process for a tree pair (S, T) are portions of the tree in which S and T agree completely. There are a number of metrics on spaces of trees of interest, coming from biological questions, database efficiency questions and more abstract approaches. For all of the standard metrics on spaces of trees with an order on the leaves, the parts of the trees which are in complete agreement do not contribute to the distance. That is, if a tree pair (S, T) reduces to a tree pair $\left(S^{\prime}, T^{\prime}\right)$, the distance of interest between S and T is the same as the distance between S^{\prime} and T^{\prime}. The fact that the trees S^{\prime} and T^{\prime} may be considerably smaller is of good use, particularly for distances which are

Figure 1. An unreduced tree pair and its reduction to a reduced tree pair. The top unreduced tree pair has a common subtree containing the sibling pair of nodes 1 and 3 in both trees, shown in red, which is then removed and the nodes renumbered, resulting in the lower tree pair which is reduced.
difficult to compute. Given that the best known algorithm for rotation distance is of exponential running time, and that many tree metrics of biological interest are proven to be of class NP, even a marginal reduction in the sizes of trees under consideration is worthwhile. This analysis is an effort to understand the degree to which such reductions typically reduce the size of tree pairs.

We generate trees using the Yule or speciation method as follows. We begin with a single node with two leaves, and then randomly select from the leaves and replace that leaf with a node with its own two leaves, renumbering the leaves as needed. We then choose randomly from the three current leaves, replacing that chosen leaf with a node and two leaves, and continue enlarging the tree in this process until it is the desired size.

As shown in Figure 2, there may be more than one way to generate a given tree using the Yule process. The process is generally more likely to generate balanced trees than stringy ones, so the distribution on trees is different than that for the uniform random selection of trees, as described in [Harding 1971]. This is also related to the difference in expected number of sibling pairs described in [McKenzie and Steel 2000].

Figure 2. Some trees can be generated in several ways via the Yule process, such as this balanced tree with four leaves which can be generated in two ways. Every other tree with four leaves can be generated in just one way, resulting in a nonuniform distribution of random tree selection.

3. Experiments and conclusions

We constructed programs in C to create tree pairs of a specified size and count the reductions, iterating to obtain average values. Tree pairs with trees ranging from size 100 to 29,000 were generated and the total size of common subtrees was calculated and recorded for each pair generated, with the results summarized in Table 1. Generally, there were around 1000 tree pairs of each size generated and analyzed, sufficient to give small error bars in the analysis. The average reductions grew linearly, with about 12.8% average reduction in size, significantly more than the corresponding value of about 7.1% in the corresponding case for trees generated uniformly at random. As indicated in Figures 3 and 4, the relationship appears to be

Tree size range	Average total subtree reduction	σ subtree reduction
$100-2000$	0.12846	0.013829
$2001-8000$	0.12781	0.006034
$8001-15000$	0.12775	0.003462
$15001-29000$	0.12773	0.002402

Table 1. Average total size of common subtrees and corresponding sample standard deviations.

Figure 3. The average number of reductions grows linearly with tree size, with tight error bars from the sample sizes used over this range. The slope of the line of best fit is about 0.127 . Error bars indicate 3 standard deviations from the sample averages.

Figure 4. The average fraction of the tree pairs which are eliminated in the reduction process is close to 0.127 , over the range shown. Error bars indicate 3 standard deviations from the sample averages.
linear, and a linear regression to the data gives an excellent fit with r^{2} value of within one-millionth of 1 . The line of best fit for the experimental data is $0.1277 n+0.268$.

What we find is that the fraction of the trees which reduce appears larger for the Yule distribution than for the uniform distribution.

References

[Chu and Cleary 2013] T. Chu and S. Cleary, "Expected conflicts in pairs of rooted binary trees", Involve 6:3 (2013), 323-332. MR 3101764 Zbl 1274.05066
[Cleary et al. 2010] S. Cleary, M. Elder, A. Rechnitzer, and J. Taback, "Random subgroups of Thompson's group F", Groups Geom. Dyn. 4:1 (2010), 91-126. MR 2011e:20062 Zbl 1226.20034
[Cleary et al. 2013] S. Cleary, A. Rechnitzer, and T. Wong, "Common edges in rooted trees and polygonal triangulations", Electron. J. Combin. 20:1 (2013), Paper 39, 22. MR 3035049 Zbl 1267.05249
[Harding 1971] E. F. Harding, "The probabilities of rooted tree-shapes generated by random bifurcation", Advances in Appl. Probability 3 (1971), 44-77. MR 43 \#8162 Zbl 0241.92012
[McKenzie and Steel 2000] A. McKenzie and M. Steel, "Distributions of cherries for two models of trees", Math. Biosci. 164:1 (2000), 81-92. MR 2001e:92010 Zbl 0947.92021
[Yule 1925] G. Yule, "A mathematical theory of evolution, based upon the conclusions of Dr. J. C. Willis, F.R.S.", Royal Society of London Philosophical Transactions, Series B 213 (1925), 21-87.

cleary@sci.ccny.cuny.edu	Department of Mathematics,
	The City College of New York and the CUNY Graduate Center, City University of New York, NAC R8133,
	160 Convent Avenue, New York, NY 10031, United States
john.a.passaro@gmail.com	Department of Mathematics, The City College of New York, City University of New York, New York, NY 10031, United States
ytoruno@gmail.com	Department of Computer Science,
	The City College of New York, City University of New York, New York, NY 10031, United States

involve

msp.org/involve
EDITORS
MANAGING Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone@latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@ math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US $\$ 140 /$ year for the electronic version, and $\$ 190 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
. mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2015 Mathematical Sciences Publishers

involve
 no. 1

Efficient realization of nonzero spectra by polynomial matrices1
Nathan McNew and Nicholas Ormes
The number of convex topologies on a finite totally ordered set 25Tyler Clark and Tom Richmond
Nonultrametric triangles in diametral additive metric spaces 33
Timothy Faver, Katelynn Kochalski, Mathav KishoreMurugan, Heidi Verheggen, Elizabeth Wesson and AnthonyWeston
An elementary approach to characterizing Sheffer A-type 0 orthogonal polynomial 39
sequencesDaniel J. Galiffa and Tanya N. Riston
Average reductions between random tree pairs 63
Sean Cleary, John Passaro and Yasser Toruno
Growth functions of finitely generated algebras71
Eric Fredette, Dan Kubala, Eric Nelson, Kelsey Wells andHarold W. Ellingsen, Jr.
A note on triangulations of sumsets 75
Károly J. Böröczky and Benjamin Hoffman
An exploration of ideal-divisor graphs 87
Michael Axtell, Joe Stickles, Lane Bloome, Rob Donovan, PaulMilner, Hailee Peck, Abigail Richard and Tristan Williams
The failed zero forcing number of a graph 99
Katherine Fetcie, Bonnie Jacob and Daniel Saavedra
An Erdős-Ko-Rado theorem for subset partitions 119
Adam Dyck and Karen Meagher
Nonreal zero decreasing operators related to orthogonal polynomials129
Andre Bunton, Nicole Jacobs, Samantha Jenkins, CharlesMcKenry Jr., Andrzej Piotrowski and Louis Scott
Path cover number, maximum nullity, and zero forcing number of oriented graphs 147 and other simple digraphsAdam Berliner, Cora Brown, Joshua Carlson, Nathanael Cox,Leslie Hogben, Jason Hu, Katrina Jacobs, KathrynManternach, Travis Peters, Nathan Warnberg and MichaelYoung
Braid computations for the crossing number of Klein links 169
Michael Bush, Danielle Shepherd, Joseph Smith, Sarah Smith-Polderman, Jennifer Bowen and John Ramsay

[^0]: MSC2010: 05C05, 68P05.
 Keywords: random binary tree pairs.
 Partial funding provided by NSF grants 0811002 and 1417820 . Sean Cleary was partially supported by grant 234548 from the Simons Foundation.

