\bullet
 in Olve a journal of mathematics

Growth functions of finitely generated algebras
Eric Fredette, Dan Kubala, Eric Nelson, Kelsey Wells and Harold W. Ellingsen, Jr.

Growth functions of finitely generated algebras

Eric Fredette, Dan Kubala, Eric Nelson, Kelsey Wells and Harold W. Ellingsen, Jr.

(Communicated by Joseph A. Gallian)

Abstract

We study the growth of finitely presented two-generator monomial algebras. In particular, we seek to improve an upper bound found by the last author. Our search lead us to a connection to de Bruijn graphs and a drastically improved bound.

The growth of algebras has been long studied by algebraists; it goes hand-in-hand with the Gelfand-Kirillov dimension of algebras. An excellent source is [Krause and Lenagan 2000]. Throughout this paper F denotes a field and $0 \in \mathbb{N}$. We focus our work on the growth of algebras of the form $F\langle x, y\rangle / I$, where I is an ideal of the free algebra $F\langle x, y\rangle$ generated by finitely many monomials. Such an algebra is called a finitely presented two-generator monomial algebra. It is customary to refer to monomials as words. Let A be one of these algebras. We consider the set \mathscr{B} of all words in x and y that do not have any of the words in the generators for I as factors or subwords. It is standard to show that the image of \mathscr{B} is a basis for A. Instead of referring to images of words, we will view the multiplication on A as follows. For any words u and v in $\mathscr{B}, u v$ is simply $u v$ if $u v$ has no generator of I as a subword, and $u v=0$ otherwise. We define the length of a word to be the number of letters in it, counting repetitions. Now we can define a function $g: \mathbb{N} \rightarrow \mathbb{N}$ by setting $g(n)$ to be the number of words in \mathscr{B} of length at most n. This function g is called a growth function for A and the growth of A is essentially the type of function g is, such as a polynomial of some degree or an exponential. Let's consider a couple of examples.

Example 1 (Determine a growth function for $A=F\langle x, y\rangle$, the free algebra in two variables). Then the set \mathscr{B} consists of all of the words in x and y, such as 1 (the word of length zero), $x, y, x^{2}, x y, y x$, and y^{2}. Now, given an $n \in \mathbb{N}$, we see that there are two choices for each of the n letters in a word of length n, and so there are 2^{n} words of length n in \mathscr{B}. Thus $g(n)=\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$. In this case the growth of A is exponential.

MSC2010: 16P90, 68R15.

Keywords: growth of algebras, de Bruijn graphs.
This work was done during the Potsdam/Clarkson REU during Summer 2012, funded by NSF DMS 1004531.

Example 2 (Determine a growth function for $A=F\langle x, y\rangle /(x y)$). Now \mathscr{B} consists of all of the words in x and y that do not have $x y$ as a subword. A few of them are $1, x, y, x^{2}, y x$, and y^{2}. Since $x y$ is a subword of $x^{2} y, x^{2} y \notin \mathscr{B}$. Let $n \in \mathbb{N}$. Since no word having $x y$ as a subword is in \mathscr{B}, the words of length n in \mathscr{B} are of the form $y^{k} x^{n-k}$ for $k=0,1, \ldots, n$. We see that there are $n+1$ of these and thus

$$
g(n)=\sum_{i=0}^{n}(i+1)=\frac{n^{2}+3 n+2}{2} .
$$

The growth function is a quadratic polynomial, so we say that A has quadratic growth.

These two examples were fairly straightforward as there were very few generators for the ideals. We can only imagine how complicated the counting could get when there are several generators. It could easily become a combinatorial nightmare. However we were fortunate that Ufnarovskiĭ [1982] came up a very nice way to overcome this. He considered the cycle structure of a particular directed graph, which is constructed as follows. Consider one of our algebras, with $d+1$ being the maximum length of the words that generate the ideal, where $d \geq 2$. The set of vertices of the directed graph is the set of all words in x and y of length d in \mathscr{B}. We draw an arrow from a vertex u to a vertex v provided $u a=b v \in \mathscr{B}$, where $a, b \in\{x, y\}$. This graph is called the overlap graph for A and will be denoted Γ_{A}. Example 3 (Construct Γ_{A} for $A=F\langle x, y\rangle / I$ where $I=\left(y x^{2}, y^{2} x, x y x, y x y\right)$). Since the maximum length of generators for I is $3, d=2$. Since all of the generators for I have length 3, the vertices for Γ_{A} are the words in \mathscr{B} of length 2: $x^{2}, y^{2}, x y, y x$. Notice that the words in \mathscr{B} of length 3 are $x^{3}, y^{3}, x^{2} y$, and $x y^{2}$. Here is Γ_{A} :

$$
y x
$$

We have an arrow from x^{2} to x^{2} because $x^{3} \in \mathscr{B}$ and $x^{3}=\left(x^{2}\right) x=x\left(x^{2}\right)$. Also we have an arrow from x^{2} to $x y$ as $x^{2} y \in \mathscr{B}$ and $x^{2} y=\left(x^{2}\right) y=x(x y)$. Even though $\left(y^{2}\right) x=y(y x)$, there is no arrow from y^{2} to $y x$, as $y^{2} x \notin \mathscr{B}$.

The following theorem yields the connection between the overlap graph and the growth of the algebra.
Theorem 4 [Ufnarovskiĭ 1982]. Let $A=F\langle x, y\rangle / I$, where I is generated by finitely many monomials of maximum length $d+1$ for some $d \geq 2$, and let Γ_{A} be the overlap graph for A. Then:
(1) There is a one-to-one correspondence between words in \mathscr{B} of length $d+j$ and paths in Γ_{A} of length j for each $j \in \mathbb{N}$. (We define the length of a path to be the number of arrows in it, counting repetitions).
(2) If Γ_{A} has two intersecting cycles, then the growth of A is exponential.
(3) If Γ_{A} has no intersecting cycles, then the growth of A is polynomial of degree s, where s is the maximal number of distinct cycles on a path in Γ_{A}.

Referring to Example 3 above, we see that Γ_{A} has no intersecting cycles, but does have two distinct cycles on a path. So its growth is degree two, or quadratic, as we have already seen. Given $d \geq 2$ in Theorem 4, we wish to determine the highest-possible-degree polynomial that bounds the growth for A. In [Ellingsen Jr. 1993] it was shown that $2^{d}-d+1$ is an upper bound for this degree.

Now we come to the connection to de Bruijn graphs. We are very grateful to Dr. Jo Ellis-Monaghan of St. Michael's College in Vermont for making us aware of them. It turns out that the overlap graphs for our algebras can be considered as subgraphs of de Bruijn graphs, with the only difference being that de Bruijn used 0 and 1 instead of x and y. For a given $d \geq 2$, the vertices of the de Bruijn graph B_{d} are all of the binary d-tuples, and there is an arrow from the binary d-tuple $u=u_{1} u_{2} \cdots u_{d}$ to the binary d-tuple $v=v_{1} v_{2} \cdots v_{d}$ if and only if $u_{2} u_{3} \cdots u_{d}=$ $v_{1} v_{2} \cdots v_{d-1}$, that is, $u_{1} u_{2} \cdots u_{d} v_{d}=u_{1} v_{1} v_{2} \cdots v_{d}$. Replacing 0 and 1 with x and y yields the overlap graph using all the words in x and y of length d with all possible arrows. After some online searching, the student authors found that much work has been done on de Bruijn graphs, the most remarkable of which is the following theorem proven by Mykkeltveit [1972], but originally conjectured by Golomb.

Theorem 5. For any $d \geq 2$, the maximum number of simultaneous disjoint cycles in B_{d} is $Z(d)=(1 / d) \sum_{k \mid d} \phi(k) 2^{d / k}$, where ϕ is Euler's phi function.

Our main theorem follows.
Theorem 6. Let $d \geq 2$ and let I be an ideal of $F\langle x, y\rangle$ generated by finitely many words of maximum length $d+1$. If the growth function for $A=F\langle x, y\rangle / I$ is not exponential, then the maximum possible polynomial degree for the growth of A is $Z(d)$.

Proof. Let $d \geq 2$, let I be an ideal of $F\langle x, y\rangle$ generated by finitely many words of maximum length $d+1$ and let $A=F\langle x, y\rangle / I$. Assume that the growth of A is not exponential. Let Γ be the overlap graph for the words of length d with all possible arrows and Γ_{A} the overlap graph for A. By the previous theorem we know that there are at most $Z(d)$ disjoint cycles in B_{d}, which is identical to Γ. Thus there can be at most $Z(d)$ distinct cycles on any path in Γ. Since Γ_{A} is a subgraph of $\Gamma, Z(d)$ is also the maximum possible number of distinct cycles in Γ_{A}. Hence by Ufnarovskiî's theorem the maximum possible polynomial degree for the growth of A is $Z(d)$. \square

The following table illustrates the drastic improvement of the new upper bound:

d	$2^{d}-d+1$	$Z(d)$
2	3	3
3	6	4
4	13	6
5	28	8
6	59	14
7	122	20
8	249	36
9	504	60

We have found explicitly that this bound is sharp for $d \in\{2,3,4,5,6,7\}$ [Flores et al. 2009; Hunt 2002], and are working on the conjecture that is it sharp for all $d \geq 2$.

References

[Ellingsen Jr. 1993] H. W. Ellingsen Jr., Growth of algebras, words, and graphs, Ph.D. thesis, Virginia Polytechnic Institute and State University, 1993, Available at http://scholar.lib.vt.edu/theses/ available/etd-10242005-124052/restricted/LD5655.V856_1993.E455.pdf.
[Flores et al. 2009] L. A. H. Flores, B. George, and B. Schlomer, "Growth functions of finitely generated algebras", REU paper, SUNY Potsdam/Clarkson, 2009, Available at http://www.uaeh.edu.mx/ docencia/P_Lectura/icbi/asignatura/GrowthFunctionsFinitelyGeneratedAlgebras.pdf.
[Hunt 2002] D. J. Hunt, "Constructing higher-order de Bruijn graphs", Master's thesis, Naval Postgraduate School, 2002, Available at http://www.dtic.mil/dtic/tr/fulltext/u2/a404934.pdf.
[Krause and Lenagan 2000] G. R. Krause and T. H. Lenagan, Growth of algebras and GelfandKirillov dimension, Revised ed., Graduate Studies in Mathematics 22, American Mathematical Society, Providence, RI, 2000. MR 2000j:16035
[Mykkeltveit 1972] J. Mykkeltveit, "A proof of Golomb's conjecture for the de Bruijn graph", J. Combinatorial Theory Ser. B $\mathbf{1 3}$ (1972), 40-45. MR 48 \#1985
[Ufnarovskiĭ 1982] V. A. Ufnarovskiĭ, "Criterion for the growth of graphs and algebras given by words", Mat. Zametki 31:3 (1982), 465-472, 476. In Russian; translated in Math. Notes, 31(3), March 1982, 238-241. MR 83f:05026

Received: 2012-11-19 Revised: 2013-08-30 Accepted: 2013-08-31
fredetee@clarkson.edu Clarkson University, 10 Clarkson Avenue, P.O. Box 7728, Potsdam, NY 13699, United States

djkubala@gmail.com	Providence College, 1 Cunningham Square, Providence, RI 02918, United States
nelsoner193@potsdam.edu	SUNY Potsdam, 44 Pierrepont Avenue, Potsdam, NY 13676, United States
kelseywells@gmail.com	University of Nebraska-Lincoln, 1400 R St, Lincoln, NE 68588, United States
ellinghw@potsdam.edu	SUNY Potsdam, 44 Pierrepont Avenue, Potsdam, NY 13676, United States

involve

 msp.org/involve

 msp.org/involve EDITORS

 EDITORS}

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone @latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@ math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US $\$ 140 /$ year for the electronic version, and $\$ 190 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

involve 2015 vol. 8 no. 1

Efficient realization of nonzero spectra by polynomial matrices 1Nathan McNew and Nicholas Ormes
The number of convex topologies on a finite totally ordered set 25
Tyler Clark and Tom Richmond
Nonultrametric triangles in diametral additive metric spaces 33
Timothy Faver, Katelynn Kochalski, Mathav Kishore Murugan, Heidi Verheggen, Elizabeth Wesson and Anthony Weston
An elementary approach to characterizing Sheffer A-type 0 orthogonal polynomial 39
sequencesDaniel J. Galiffa and Tanya N. Riston
Average reductions between random tree pairs 63
Sean Cleary, John Passaro and Yasser Toruno
Growth functions of finitely generated algebras 71
Eric Fredette, Dan Kubala, Eric Nelson, Kelsey Wells andHarold W. Ellingsen, Jr.
A note on triangulations of sumsets 75
Károly J. Böröczky and Benjamin Hoffman
An exploration of ideal-divisor graphs 87
Michael Axtell, Joe Stickles, Lane Bloome, Rob Donovan, Paul Milner, Hailee Peck, Abigail Richard and Tristan Williams
The failed zero forcing number of a graph99
Katherine Fetcie, Bonnie Jacob and Daniel Saavedra
An Erdős-Ko-Rado theorem for subset partitions119
Adam Dyck and Karen Meagher
Nonreal zero decreasing operators related to orthogonal polynomials129
Andre Bunton, Nicole Jacobs, Samantha Jenkins, CharlesMcKenry Jr., Andrzej Piotrowski and Louis Scott
Path cover number, maximum nullity, and zero forcing number of oriented graphs147and other simple digraphsAdam Berliner, Cora Brown, Joshua Carlson, Nathanael Cox,Leslie Hogben, Jason Hu, Katrina Jacobs, Kathryn Manternach,Travis Peters, Nathan Warnberg and Michael Young
Braid computations for the crossing number of Klein links169
Michael Bush, Danielle Shepherd, Joseph Smith, Sarah
Smith-Polderman, Jennifer Bowen and John Ramsay

