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Given a graph G, the zero forcing number of G, Z(G), is the smallest cardinality
of any set S of vertices on which repeated applications of the color change rule
results in all vertices joining S. The color change rule is: if a vertex v is in S, and
exactly one neighbor u of v is not in S, then u joins S in the next iteration.

In this paper, we introduce a new graph parameter, the failed zero forcing
number of a graph. The failed zero forcing number of G, F(G), is the maximum
cardinality of any set of vertices on which repeated applications of the color
change rule will never result in all vertices joining the set.

We establish bounds on the failed zero forcing number of a graph, both in
general and for connected graphs. We also classify connected graphs that achieve
the upper bound, graphs whose failed zero forcing numbers are zero or one, and
unusual graphs with smaller failed zero forcing number than zero forcing number.
We determine formulas for the failed zero forcing numbers of several families
of graphs and provide a lower bound on the failed zero forcing number of the
Cartesian product of two graphs.

We conclude by presenting open questions about the failed zero forcing number
and zero forcing in general.

1. Introduction

The concept of zero forcing has been explored over the past few years because of
its application to minimum rank problems in linear algebra [Barioli et al. 2008;
2010]. For an introduction to minimum rank problems, see [Fallat and Hogben
2007]. While we do not discuss the details of minimum rank problems here, the zero
forcing number of a graph provides an upper bound on the maximum nullity of any
matrix associated with the graph, which in turn leads to a bound on the minimum
rank of these matrices. This has led to active research on zero forcing, particularly
on graphs for which the minimum rank is difficult to determine. Programs have
been developed to determine the zero forcing number of a graph in Sage [DeLoss
et al. 2008].
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Figure 1. A starting set S and three iterations of the color change rule.

In this paper, we explore the other side of the problem, sets that fail to zero force.

Definitions. Let G be a simple finite graph with vertex set V (G) and edge set E(G).
We specify a coloring by choosing a set, usually called S, of vertices. The vertices
in the set are filled in, and the others are left blank. Hence, our coloring consists
only of two colors: filled, or unfilled. In much of the existing literature, the color
black is used to represent filled in, and white is used to represent blank. We simply
use filled and unfilled.

Unlike proper colorings, there are no rules to determine how we choose our
initial set or coloring. Instead, we are interested in what happens when we apply
the color change rule to our initial set. The standard color change rule, as described
in [Barioli et al. 2008; 2010] among others, works as follows. Examine each filled
vertex, one at a time. If a filled vertex u has exactly one unfilled neighbor, v, then
we will fill v at the next iteration. In this case, we say that u forces v. Once we
have examined all filled vertices, we iterate, and repeat. We repeat this process until
no more color changes are possible. In Figure 1 we show a starting set S followed
by three iterations of the color change rule.

We use the following term when no more color changes are possible.

Definition 1.1. Let S be a set of vertices in a graph. Suppose that no color changes
are possible from S. Then we say that S is stalled.

If S is stalled, there are two possible scenarios: either S = V (G) or there are
some unfilled vertices that can never be filled. That is, we may be stuck. The two
possible conditions under which a set is stalled distinguish a zero forcing set from
a failed zero forcing set.

The next two definitions were formalized in [Barioli et al. 2008], although we
use slightly different terminology.

Definition 1.2. Let S be a set of vertices in a graph such that repeated applications
of the color change rule to S result in all vertices in the graph becoming filled.
Then S is a zero forcing set.

It is easy to see that V (G) itself is a trivial zero forcing set. The difficult problem
is to find the smallest zero forcing set in G. There is considerable work in the
literature on this problem, specifically because this parameter provides a bound
useful in minimum rank problems [Barioli et al. 2008; 2010].
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Figure 2. A failed zero forcing set, a zero forcing set, and a stalled
failed zero forcing set.

Definition 1.3. The zero forcing number of a graph G, denoted Z(G), is the cardi-
nality of a smallest zero forcing set in the graph.

In this paper, we are interested in subsets of a graph’s vertex set that are not zero
forcing sets. If a set of vertices is not a zero forcing set, then we will call it failed.

Definition 1.4. A failed zero forcing set is an initial set S of vertices in a graph
such that, no matter how many times we apply the color change rule, some vertices
in the graph will never be filled.

In Figure 2 we show a failed zero forcing set that is not stalled, a zero forcing
set, and a failed zero forcing set that is stalled.

This new concept of failed zero forcing sets is the main topic of this paper. In
particular, we are interested in maximum failed zero forcing sets, that is, finding
failed zero forcing sets of largest cardinality in a graph. We define this parameter.

Definition 1.5. The failed zero forcing number of a graph G, denoted F(G), is the
maximum cardinality of any failed zero forcing set in the graph.

At times, we will be interested in the concept of maximal failed zero forcing
sets. Note the difference between maximum and maximal failed zero forcing sets.
A maximal failed zero forcing set S is a set of vertices such that adding any other
vertex in V (G) to S will change S into a zero forcing set. A maximal failed zero
forcing set may not be maximum, but a maximum failed zero forcing set is maximal.

We use the concept of a subgraph, as well as an induced subgraph, in this paper.
If G is a graph and G ′ is a subgraph of G, then V (G ′) ⊆ V (G), and any two
vertices u, v ∈ V (G ′) may be adjacent in G ′ if they are adjacent in V (G), but they
may not. If H is an induced subgraph of G, however, then if we have two vertices
u, v ∈ V (H) and uv ∈ E(G), then uv ∈ E(H) as well. If S ⊆ V (G), then we use
the notation G[S] for the induced subgraph of G with vertex set S.

The concept of a module will be important in this paper.

Definition 1.6. A set X of vertices in V (G) is a module if all vertices in X have
the same set of neighbors among vertices not in X .

For example, in Figure 3 the set {a, b, c} is a module of order 3; {b, c} is a
module of order 2.
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Figure 3. S = {a, b, c} is a module.

Throughout the paper, we assume that G is a simple finite graph and use
n = |V (G)|, unless n is otherwise defined. We now move on to exploring the
basic properties of failed zero forcing sets.

Basic properties of failed zero forcing sets. We establish some fundamental ob-
servations about failed zero forcing sets. We compare these to known properties of
zero forcing sets.

Note that any subset of V (G) is either a zero forcing set or a failed zero forcing
set. If S is a zero forcing set of a graph G, then note that any superset of S is also a
zero forcing set. We can make a similar statement about failed zero forcing sets.

Observation 1.7. Suppose that G is a graph with failed zero forcing set S ⊆ V (G).
Then any subset of S is also a failed zero forcing set.

Next we consider how the color change rule may or may not act on a set of
vertices. Let G be a graph, and suppose that S is a proper subset of V (G). If S is
a zero forcing set, then a color change must be possible from S. For failed zero
forcing sets in general, we cannot make such a statement. For maximum failed zero
forcing sets, however, we can.

Observation 1.8. If S is a maximum failed zero forcing set in a graph G, then S
is stalled.

To see this, note that since S is a failed zero forcing set, it will not force all
vertices in G. Therefore, at some iteration, no more color changes are possible.
However, since S is maximum, it must also be maximal. Put simply, if a color
change is possible from S, and S is a failed zero forcing set, then clearly, S is not
maximum. Hence, any maximum failed zero forcing set S is stalled.

We also note two observations about subgraphs.

Observation 1.9. Let G be a graph with failed zero forcing set S, and let H be a
subgraph of G. Then S restricted to H may not be a failed zero forcing set of H .

For example, let G = P4, and let S = {v}, where v is an internal vertex. If we
construct H by deleting the leaf adjacent to v, then S restricted to H is a zero
forcing set. However, in a special case, the property is hereditary.
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Observation 1.10. Let G be a graph with failed zero forcing set S, and let H be an
induced subgraph of G where all vertices in V (G)\V (H) are in S. Then S∩V (H)
is a failed zero forcing set in H .

Goals of this paper. While the zero forcing numbers of many graphs have been
determined, the introduction of this relatively new topic has brought with it a large
collection of open questions. Note that we can consider zero forcing to be a graph
labeling problem with only two labels: filled or unfilled.

One major difference between zero forcing and other graph labeling problems is
that the question of which labelings do not work is interesting. In proper coloring, for
example, we can construct a failed proper coloring simply by coloring two adjacent
vertices the same color. Thus, any graph with an edge has a trivial failed proper
coloring. For zero forcing, however, there is no rule to determine how the vertices
are labeled. We can choose any starting labeling; whether the labeling is successful
or not depends on whether the color change rule leads to all vertices eventually being
filled in. Therefore, in general it is not trivial to construct a failed zero forcing set.

Zero forcing opens up a wealth of new problems in graph theory. In this paper,
we focus on the failed zero forcing number of different graph families and how
these numbers relate to zero forcing numbers. In Section 2, we provide bounds on
the failed zero forcing number of a graph, classify graphs with extreme failed zero
forcing numbers, such as F(G)= 0, 1, n−2 or n−1, and classify the unusual set of
graphs for which F(G)<Z(G). In Section 3, we establish this parameter for several
classes of graphs. In Section 4, we explore the failed zero forcing number of the
Cartesian product of graphs, including a lower bound in general and determination
of the explicit value of the parameter for certain graph families.

We end with a set of open questions about zero forcing in general. While zero
forcing numbers have been well studied for their applications to linear algebra, they
have also opened up a new area of problems. We list some of these open questions
in Section 5.

2. Bounds on failed zero forcing numbers

Whether G is connected or not, there are some fairly immediate bounds on the
maximum failed zero forcing number.

Observation 2.1. For any graph G, we have Z(G)− 1≤ F(G)≤ n− 1.

We explain both sides of the inequality here. If Z(G)− 1> F(G), then any set
of order Z(G)− 1 forces the graph, contradicting the definition of Z(G) as the
minimum order of any zero forcing set. This gives us the lower bound. The upper
bound is trivial: if a set S has order n= V (G), then the set is not failed by definition.

It is fairly straightforward to see that F(G) = n − 1 if and only if G has an
isolated vertex. For the reverse direction, note that if G has an isolated vertex v0,
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letting S = V (G)\{v0} makes S a failed zero forcing set. For the forward direction,
assume that F(G)= n− 1. Then there is some set S of n− 1 vertices that does not
force the lone vertex v ∈ V (G)\S. If any vertex u ∈ S is adjacent to v, however, u
would force v. Hence, no vertex in S is adjacent to v; that is, v is an isolated vertex.

Hence, if G is connected, we can improve our bound from Observation 2.1.

Lemma 2.2. Let G be a connected graph on n vertices where n ≥ 2. Then

Z(G)− 1≤ F(G)≤ n− 2.

Extreme values. We will show that the upper bound is sharp, that is, that there is a
graph G that achieves F(G)= n−2. In fact, we will classify such graphs. First, we
prove a related lemma that will help us in classifying graphs with the upper bound.

Lemma 2.3. Let G be a graph with module X of order k > 1. Then F(G)≥ n− k.

Proof. Let S = V (G)\X . No vertices in X can be forced by vertices in S since
if w is a vertex in S that is adjacent to some vertex v ∈ X , then w is adjacent to all
vertices in X , of which there are k > 1. Hence, we have found a failed zero forcing
set of order n− k. �

Note that if G[X ] is connected, we can improve this by letting S= (V (G)\X)∪X ′,
where X ′ is a failed zero forcing set of G[X ].

We now use Lemma 2.3 to classify connected graphs with failed zero forcing
number n− 2.

Theorem 2.4. Let G be connected. Then F(G) = n − 2 if and only if G has a
module of order 2.

Proof. Suppose F(G)= n− 2. Let S be a maximum failed zero forcing set. Then
V (G)\S = {u, v} for some vertices u and v. Since neither u nor v can be forced,
every neighbor of u in S must also be a neighbor of v, and vice versa. Thus, {u, v}
is a module of order 2.

The converse follows from Lemmas 2.2 and 2.3. �

For trees, we can be even more specific.

Corollary 2.5. Let T be a tree. Then F(T )= n− 2 if and only if either T has two
leaves adjacent to a single vertex or T = K2.

Proof. We know by Theorem 2.4 that F(T )= n− 2 if and only if T has a module
X = {u, v} of order 2. If u and v each have two neighbors x and y, then uxvyu
forms a cycle; therefore u and v have at most one neighbor. It follows that T has
a module X = {u, v} if and only if u and v have one or less neighbors. That is, u
and v are adjacent to a single common vertex or T = K2. �
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We now examine the lower bound from Lemma 2.2. This is of particular interest
because a graph G that achieves this bound has F(G) < Z(G), while we intuitively
expect that the failed zero forcing number should be at least as large as the zero
forcing number. This property is indeed unusual. Before providing our classification
of graphs with F(G)= Z(G)− 1, we state two results that will be of use.

Observation 2.6 [Row 2011]. Z(G)= 1 if and only if G = Pn for some n ≥ 1.

Theorem 2.7 [Row 2011]. Let G be a connected graph with n= |V (G)| ≥ 2. Then
Z(G)= n− 1 if and only if G = Kn .

It turns out that complete graphs and their complements are the only graphs with
F(G) < Z(G), as we now show.

Theorem 2.8. For any graph G, F(G) < Z(G) if and only if G = Kn or G = K n .

Proof. We start with the reverse direction. By Theorem 2.7, the zero forcing number
of a complete graph is n− 1. We also see from Theorem 2.4 that F(Kn)= n− 2
since any pair of vertices forms a module. Hence, F(Kn)= Z(Kn)−1. For the null
graph (the complement of the complete graph), note that any zero forcing set must
consist of the entire vertex set. To fail, we must remove one vertex from this set.
Hence, F(K n)= Z(K n)− 1.

We now prove the forward direction. Let G be a graph with F(G) < Z(G). Then
we know that F(G)= Z(G)− 1 by Observation 2.1.

It follows that any set of cardinality Z(G) must be a zero forcing set. Otherwise,
we would have a failed zero forcing set of cardinality Z(G), which would contradict
our assumption that F(G)<Z(G). Similarly, any set of cardinality F(G)=Z(G)−1
is a failed zero forcing set. Otherwise, we would have a zero forcing set of cardinality
Z(G)− 1, which contradicts the definition of Z(G).

Let S⊆V (G)with |S|=Z(G). If |S|=1, then G is a path Pn by Observation 2.6.
By our assumption, any vertex in G is a zero forcing set. But no internal vertex
of Pn can force Pn , which means that G has no internal vertices. That is, n = 2.
Since P2 = K2, in this case, the proof is complete.

Hence, we assume that |S| ≥ 2. Now, S is a zero forcing set, which means that
either some color change is possible from S or S = V (G). If S = V (G), then by
assumption, any set of cardinality n− 1 or less fails to force the graph. That is, G
must have no edges and is therefore K n , which completes the proof. Otherwise,
some color change is possible from S. This means that there exists at least one
vertex in S that is adjacent to exactly one vertex in V (G)\S. Let S′ be this nonempty
set of vertices,

S′ =
{
v ∈ S | uv ∈ E(G) for exactly one u ∈ V (G)\S

}
.

Let w ∈ S. Note that S\{w} is stalled since |S\{w}| = Z(G)− 1 = F(G), and
we saw above that any set of cardinality F(G) is a maximum failed zero forcing set.
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Figure 4. F(K5)= 3< Z(K5)= 4; F(K 5)= 4< Z(K 5)= 5.

Therefore, by Observation 1.8, S\{w} is stalled. It follows that w is adjacent to
every vertex in S′ (except w itself, if w ∈ S′). Hence, every vertex in S is adjacent
to every vertex in S′. Additionally, by assumption, any set of cardinality Z(G)= |S|
is a zero forcing set. Therefore, we can swap any vertex u ∈ V (G)\S with any
vertex w ∈ S. Therefore, every vertex u ∈ V (G)\S is adjacent to every vertex in S′.

However, by the definition of S′, each vertex in S′ is adjacent to exactly one
vertex in V (G)\S. Hence, we must have that |V (G)\S| = 1. That is, Z(G)= n−1.
By Theorem 2.7, G = Kn , completing the proof. �

In Figure 4 we illustrate that the failed zero forcing number of the complete
graph on five vertices is less than its zero forcing number and that the failed zero
forcing number of the null graph on five vertices is less than its zero forcing number.

Corollary 2.9. A graph has F(G) < Z(G) if and only if the automorphism group
of G is doubly transitive.

This is a result of the fact that only the complete graph and its complement have
doubly transitive automorphism groups [Babai 1995].

Very small values. We have determined which graphs have large failed zero forcing
numbers, such as F(G)= n− 2 or n− 1. We now look at which graphs have very
small failed zero forcing numbers.

Theorem 2.10. Let G be a nonempty graph. Then F(G) = 0 if and only if G is
either a single vertex or K2.

Proof. The reverse direction is clear: For the case that G is a single vertex v, if we
allow v to be in S, then the graph is forced; therefore F(G)= 0. For the case that
G = K2, allowing either of the vertices to be in S will force the other vertex in the
next iteration; therefore F(G)= 0.

For the forward case, assume G is a graph with F(G)=0. Then any set S⊆V (G)
with |S| = 1 forces the graph. This means that G consists of a single vertex, or
every vertex in G has degree one, and G is connected. But the only connected
graph with every vertex of degree one is K2. Hence the theorem. �

Theorem 2.11. F(G)= 1 if and only if G is one of the following graphs: a pair of
isolated vertices, K3, P3 or P4.
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Proof. The reverse direction is clear: if G is a pair of isolated vertices, then we can
pick at most one of them to be in the set, otherwise the graph is trivially forced. If
G = K3, then any pair of vertices is a module of order 2, and if G = P3, the end
vertices form a module of order 2. Hence, in both cases, F(G) = n− 2 = 1. For
G = P4, note that a single internal vertex is the largest subset of V (P4) that is not a
zero forcing set.

For the forward direction, assume F(G)= 1. If we allow G to be disconnected, it
follows that G has at most two maximal connected components because if there are
three nonempty components, we can take one vertex each from two of them, and
this set will fail to force the third component. Since any pair of vertices in G can
force G, each component has at most one vertex because otherwise we could take
two vertices in a single component, leaving the other component unforced. Hence,
if G is not connected, G is a pair of isolated vertices, and the proof is complete.

We now assume that G is connected. Since F(G)= 1, any pair of vertices in G
can force. We know that F(Kn)= n− 2 for any n; thus, if G = Kn , then n− 2= 1
implies that G = K3, completing the proof. Assume that G 6= Kn . Then there is
some pair of vertices, u and v, that are not adjacent. Let P be the shortest path
from u to v. Since the set S = {u, v} forces the graph by assumption, either u or v
must force a vertex w in G. Assume without loss of generality that u forces w.
Then u is adjacent only to w. Hence, w is the vertex along P that is adjacent to u.
The vertex w can force the next vertex along the path (and continue this process)
until we reach a vertex w′ possibly with w′ = w, where either w′ is adjacent to
an unforced vertex not on P in addition to the next vertex on P or the next vertex
along P is already forced.

Assume the former. That is, assume that w′ is adjacent to the next vertex on P
as well as a vertex not on P . Since we assume that S is a zero forcing set, and must
therefore eventually force the graph, it follows that one of these two vertices will
be forced by some other vertex than w. But so far, the u−w′ path is forced, with
no vertex except w′ adjacent to any other vertex; we also have v forced. Hence, we
must have that from v, a sequence of vertices is forced, resulting in one of the two
vertices adjacent to w′ being forced. Hence, v is only adjacent to a single vertex,
and since we assume P is a path from u to v, it must be the vertex along P . By a
similar argument, we have that no other vertices along P are adjacent to vertices
not on P , except w′. Thus, G consists of P and a set of vertices connected to P
only through w′, as in Figure 5, where zigzag lines indicate paths. But then, we
could take S = {u, w}, which will fail to force G, contradicting our assumption.

Similarly, if we assume that u forces a sequence of vertices until reaching w′,
which is adjacent to some vertex already forced, we have either G = P or the
situation from Figure 5 again, which leads to a contradiction. If G = P , then G is
a path on n vertices. If G = P3 or G = P4, we’re done. Otherwise, we can take any
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u w w′ v

Figure 5. {u, v} is a zero forcing set, but {u, w} is not.

Figure 6. A maximum failed zero forcing set of P8.

pair of nonadjacent vertices of degree 2 in G to be S, contradicting our assumption.
Hence, G = P3 or P4. �

There are many examples of graphs with F(G)= 2. For example, three isolated
vertices, two copies of K2, or an isolated vertex and K2 all have failed zero forcing
numbers of 2. Also, any connected graph G on four vertices, except for P4, has
F(G)= 2, as does any connected graph on five vertices that does not have a module
of order two, such as P5 or the house graph. However, there are many such graphs.
We stop at F(G)= 1 and move on to determining failed zero forcing numbers of
different families of graphs.

3. Failed zero forcing numbers of various families of graphs

We have already seen the failed zero forcing numbers of several graphs, including
that of complete graphs, F(Kn)= n−2. We now consider several families of graphs,
including paths, cycles, complete bipartite graphs, binary trees, wheels, and the
Petersen graph. We also give a formula for the failed zero forcing number of graphs
with multiple connected components.

Theorem 3.1. The failed zero forcing number of a path Pn on n vertices is

F(Pn)=

⌈
n−2

2

⌉
.

Proof. If S is a failed zero forcing set in Pn , then neither end vertex is in S because
either end vertex is a zero forcing set. Further, S contains no pairs of adjacent
vertices because any pair of adjacent vertices is a zero forcing set. Therefore, S can
have at most d(n− 2)/2e vertices in it. We construct such a set by starting with the
vertex adjacent to either end vertex in Pn and adding it to S. From there, we take
every other vertex until we reach the other end vertex, which we do not add to S.
Thus, |S| = d(n− 2)/2e, and it does not force the graph because every vertex in S
has exactly two neighbors not in S. �

In Figure 6, the construction of a maximum failed zero forcing set in P8 is shown.
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Figure 7. The failed zero forcing number of a binary tree with n
vertices is n− 2.

Theorem 3.2. The failed zero forcing number of a cycle Cn on n vertices is

F(Cn)=

⌊
n
2

⌋
.

Proof. Suppose S is a failed zero forcing set. Then there are no adjacent vertices
in S since any pair of adjacent vertices forces Cn . Hence, |S| ≤ bn/2c. We can
construct such a set by starting with any vertex in Cn and adding every other vertex
to S. Since every vertex in S has two neighbors in V (G)\S, the set S will not force
the graph. Therefore, F(Cn)= bn/2c. �

We use Km,n to denote the complete bipartite graph with partite sets V1 and V2,
where |V1| = m ≥ 1 and |V2| = n ≥ 1.

Theorem 3.3. If m+ n ≥ 3, then F(Km,n)= m+ n− 2.

Proof. Since m+ n ≥ 3, it follows that m ≥ 2 or n ≥ 2. Without loss of generality,
assume that n ≥ 2. Then any pair of vertices in V2 is a module of order 2 since both
vertices have the same sets of neighbors, V1. Hence, by Theorem 2.4, F(Km,n)=

m+ n− 2. �

A full m-ary tree T is a rooted tree whose vertices have m or 0 children, where
m is a positive integer of at least 2. Note that if m = 2, then T is a full binary tree.

Theorem 3.4. The failed zero forcing number of a full m-ary tree T with n > 1 is
F(T )= n− 2.

Proof. Take any two vertices u and v of degree one that have the same parent, w.
We know that u and v exist because T is finite and m ≥ 2. Then, u and v form a
module of order two because they each have exactly the same neighbor, w. Hence,
by Theorem 2.4, F(T )= n− 2. �

In Figure 7, a binary tree with a maximum failed zero forcing set is shown.
The join of graphs G1 and G2, denoted G1∨G2, consists of a copy of G1, a copy

of G2, and an edge between every pair of vertices u and v such that u ∈ V (G1) and
v ∈ V (G2).
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u

v

Figure 8. The graph G if k = 1.

Lemma 3.5. Let G be a connected graph, and let H = G ∨ {v0}. That is, H
consists of G and a single vertex v0 that is adjacent to all vertices in G. Then
F(H)≥ F(G)+ 1.

Proof. Let S ( V (G) be stalled. Let S′ ⊆ V (H) be defined S′ = S ∪ {v0}.
Since S is a failed zero forcing set in G, there are at least two vertices u, v∈V (G)

that are not forced by S. Any vertex in S′\{v0} that is adjacent to v in H must also
be adjacent to some other unforced vertex, otherwise it would force v in G. Also,
v0 is adjacent to both v and u, so it will not force v. Hence, S′ is a failed zero
forcing set of H . Since |S′| = |S| + 1, we have that F(H)≥ F(G)+ 1. �

For any positive integer k, we can construct a graph G such that F(G ∨ {v0})≥

F(G)+ k. Let G consist of a path Pl , where l = 3(k + 1), and a vertex v that is
adjacent to all vertices in Pl except for one end vertex, u. An example of G for
k = 1 is shown in Figure 8. We claim that F(G)≤ b(2/3)lc. First, suppose that S is
a maximum failed zero forcing set. If v ∈ S, then no adjacent vertices from the path
can be in S and neither end vertex can be in the path. Hence, if v ∈ S, this implies
that F(G) ≤ bl/2c + 1. If v /∈ S, then no more than two consecutive vertices on
the path can be in S because if three are in S, then the middle vertex will force v.
Hence, F(G)≤b(2/3)lc. Since l= 3(k+1)≥ 6, it follows that bl/2c+1≤b(2/3)lc.
Hence, F(G)≤ b(2/3)lc.

Letting H = G ∨{v0} for a single vertex v0, however, we find that F(H)≥ l− 1.
Let S = Pl\{u}. That is, S = H\{u, v, v0}. Note that S is stalled because every
vertex in S is adjacent to both v and v0, which are not in S. Hence, S is a failed
zero forcing set. Thus, we have that F(H) ≥ l − 1 = 3(k + 1)− 1 = 3k + 2, and
F(G)≤ b(2/3)lc = 2k+ 2. Thus, F(H)−F(G)≥ k.

Therefore, joining an additional vertex to a graph will certainly increase the
failed zero forcing number of the graph, and the increase may be large.

We use Lemma 3.5 to examine another graph family. Let Wn be a wheel on n+1
vertices consisting of Cn and an additional vertex v0 adjacent to all vertices in Cn .

Theorem 3.6. Let n ≥ 3. Then F(Wn)= b2n/3c if n 6= 4, and F(W4)= 3.

Proof. We know by Theorem 3.2 and Lemma 3.5 that F(Wn) ≥ bn/2c + 1. We
construct a failed zero forcing set S on Wn as follows. Starting with any vertex
along the cycle, add the vertex and one of its neighbors to S. Continuing around
the cycle, leave out the third vertex, add the next two to S, and leave out the next,
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Figure 9. Left: A failed zero forcing set in W8. Right: A zero
forcing set in W8.

as long as vertices are remaining, making sure at the end not to add any three
consecutive vertices to S. Also, v0 /∈ S. Figure 9 shows this construction for W8.
Since there are no three consecutive vertices along the cycle in our set and v0 is not
in this set, it follows that every vertex in the set is adjacent to at least two vertices
not in the set: v0 and one vertex along the cycle. Hence, F(Wn)≥ b2n/3c.

First, consider the special case that n = 4. Since F(Wn)≥ bn/2c+ 1, we know
that F(W4)≥ 3, but since |V (W4)| = 5, by Lemma 2.2, we know that F(W4)≤ 3.
Hence, F(W4)= 3.

We continue with the remaining cases, assuming for the remainder of the proof
that n 6= 4. If n ≥ 6, then b2n/3c ≥ bn/2c+ 1 because

b2n/3c = bn/2+ n/6c ≥ bn/2c+ 1.

Also, for the special cases n=3 and n=5, we see that b2n/3c=2 and 3 respectively.
Similarly, for the same cases of n = 3 and n = 5, we have bn/2c + 1 = 2 and 3
respectively. Hence, if n 6= 4, we know that F(Wn)≥ b2n/3c ≥ bn/2c+ 1.

Before proceeding, note that if at least three consecutive vertices along the cycle
are in S and v0 is in S, then S is a zero forcing set, as shown in Figure 9.

Finally, we show that F(Wn) ≤ b2n/3c. Let S be a set of vertices in Wn with
|S|> b2n/3c. Then, either v0 ∈ S or there is some set of at least three consecutive
vertices along the cycle that are in S. Assume that v0 ∈ S. Since |S| > b2n/3c,
there exists at least one pair of adjacent vertices along the cycle. Let u be in one
such pair. If both neighbors of u along the cycle are in S, then we know that S is a
zero forcing set and we’re done. Otherwise, u has exactly one neighbor, w, not in S.
Then, u will force w in the next iteration, and S is not a maximum zero forcing set.

The last possibility is that there is some set of three consecutive vertices, v1, v2,
and v3, along the cycle that are in S. Then v0 is the only neighbor of v2 that is not
in S. Hence, v2 forces v0 in the next iteration, and S is a zero forcing set.

Hence, if n 6= 4, we have that F(Wn)= b2n/3c. �

We have found the failed zero forcing numbers of several families of graphs. We
now describe how the failed zero forcing number of a disconnected graph can be
determined by the failed zero forcing numbers and orders of its components.
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Figure 10. The Petersen graph with a maximum failed zero forcing set.

Theorem 3.7. Let G be a disconnected graph, that is, a graph with at least two
disjoint maximal connected components. Let G1,G2, . . . ,Gk be the k maximal
connected components of the graph. Then

F(G)=max
k

(
F(Gk)+

∑
l 6=k

|V (Gl)|

)
.

Proof. Since the graph is disconnected, if we allow S to consist of all vertices in
the graph except those vertices in the component Gk , then clearly, Gk is not forced.
We can add any failed zero forcing set of Gk to S, and still not force all vertices
in Gk . This will work for any component Gk . Hence, we can pick the component
that maximizes the cardinality of the set S. If S′ is a set with

|S′|>max
k

(
F(Gk)+

∑
l 6=k

|V (Gl)|

)
,

then every component Gl must have |S′∩V (Gl)|> F(Gl), forcing all components.
Hence, S′ is a zero forcing set. �

Theorem 3.8. Let G be the Petersen graph. Then F(G)= 6.

Proof. We can find a failed zero forcing set of cardinality six: for example, let
S = {a, b, e, f, g, j}, as in Figure 10. This is clearly a failed zero forcing set, since
a and f have all three neighbors in S, while all other vertices have exactly two
neighbors in V (G)\S. Hence, F(G)≥ 6.

To prove that F(G) ≤ 6, suppose S is a maximum failed zero forcing set, and
|S| ≥ 7. By the pigeonhole principle, there are at least four vertices in S that are in
the cycle {a, b, c, d, e} or in { f, g, h, i, j}. Since there is an automorphism between
these sets, assume without loss of generality that there are at least four from the set
{a, b, c, d, e} in S. Note that all five vertices cannot be in S because this would force
the entire graph. Because of the symmetry, we can assume that {a, b, c, d} ⊆ S.
Since S is a maximum failed zero forcing set, S is stalled. Thus, we must have
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i, g ∈ S. Otherwise, b and c would force them. Now, i and g each have exactly
two neighbors remaining that we have not assigned to S. These neighbors are f , h
and j . If any one of f , h or j is in S, the others will be forced, which will force
the graph. Hence, { f, h, j} ⊆ V (G)\S. But we already know that e ∈ V (G)\S for
the same reason, leaving us with |S| = 6. Hence, F(G)= 6. �

4. Cartesian products

We first give a bound on the failed zero forcing number of a Cartesian product
graph in terms of the failed zero forcing numbers of the graphs in the product.

Theorem 4.1. For any graphs G and H ,

F(G � H)≥max
{
F(G)|V (H)|,F(H)|V (G)|

}
.

Proof. Consider the Cartesian product G � H , where n = |V (G)| and k = |V (H)|.
Label the vertices of G, u1 through un and the vertices of H , w1 through wk . We
refer to each vertex in G � H as vi, j where i denotes in which copy of G and j
denotes in which copy of H the vertex lies.

Let S be a stalled failed zero forcing set in G. We construct a stalled failed zero
forcing set S′ in G � H as follows. Suppose uα ∈ S. Then for all i ∈ {1, 2, . . . k},
let vi,α ∈ S′. Then |S′| = |S||V (H)|. We show that S′ is a failed zero forcing set
of G � H .

Suppose vî,α is in S′. Then uα ∈ S by construction. Since S is a failed zero
forcing set in G, then uα is either adjacent to no vertices in V (G)\S or uα is adjacent
to two or more vertices in V (G)\S, uβ and uγ . In this latter case, it follows that
vî,α is adjacent to vî,β and vî,γ as well. In the former case, if uα is adjacent to no
vertices in V (G)\S, then any neighbors of vî,α of the form vî, j for some j are in S′.
Since vi,α ∈ S′ for all i by construction, it follows that vî,α has no neighbors in
V (G � H)\S′. Thus, S′ is a stalled failed zero forcing set.

Since this construction works for any stalled failed zero forcing set in G, and
similarly in H , it follows that we can construct in G � H a failed zero forcing
set of cardinality F(G)|V (H)| and similarly a failed zero forcing set of cardinality
F(H)|V (G)|. Hence the result. �

Note that the above bound is sharp if G = P2 and H = Kn for n ≥ 4. Recall that
F(Kn)= n− 2 and F(P2)= 0. Thus, max{F(G)|V (H)|,F(H)|V (G)|} = 2(n− 2).
If we try to construct a failed zero forcing set S of G � H with more vertices than
2(n−2), by the pigeonhole principle, one copy of Kn must have at least n−1 vertices
in S. If one copy has n vertices, then G � H is forced. Therefore, one copy, H1,
must have n− 1 vertices, and the other, H2, then must have at least n− 2 in S. So
every vertex in S∩V (H1) is adjacent to the single vertex v in V (H1)\S. That means
that every vertex in S∩V (H1) must have at least one neighbor in V (H2) that is not
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Figure 11. A maximum failed zero forcing set of the square grid
P4 � P4.

in S. But there are only at most two such vertices, and each has one distinct neighbor
in H1. Since n ≥ 4, we know that n− 1≥ 3, which means that there is at least one
vertex in S ∩ V (H1) that has only one neighbor v in V (G � H)\S. Thus, v will be
forced, which means that V (H1) will be completely forced, which will in turn force
all vertices in the graph. Hence, F(P2 � Kn) = max{F(G)|V (H)|,F(H)|V (G)|},
showing that our bound from Theorem 4.1 is sharp.

For most cases, the failed zero forcing number of a Cartesian product of graphs
is much greater than our bound. The following theorem establishes an exact value
for the square grid graph.

Theorem 4.2. Let n ≥ 2. The failed zero forcing number of a square grid, Pn � Pn ,
is F(Pn � Pn)= n2

− n.

Proof. We can construct such a failed zero forcing set by putting in the set every
vertex in the graph, except those vertices along a single main diagonal. That is, if we
label every vertex in the graph vi, j , where i denotes the row and j denotes the column
of the vertex, we let vi, j be in S if and only if i 6= j . See Figure 11 for an example.

We will show that S is indeed a failed zero forcing set. The only vertices that
can be forced — because they are not in S — are vi,i for i = 1, 2, . . . n. Take any
such vi,i . Then vi,i is adjacent to four vertices: vi,i+1, vi+1,i , vi,i−1 and vi−1,i . Note
that if i = 1 or i = n, only the first two or the last two vertices (respectively) will
be adjacent to vi,i .

Now, vi,i+1 is also adjacent to vi+1,i+1, as is vi+1,i . Therefore, neither vi,i+1 nor
vi+1,i will force vi,i . Similarly, vi,i−1 and vi−1,i are both also adjacent to vi−1,i−1,
and therefore do not force vi,i . Hence, the set is a failed zero forcing set.

It remains to show that S is a maximum zero forcing set. We will show that any
set S′ with cardinality |S′|> n2

− n is not a failed zero forcing set.
By the pigeonhole principle, if |S′|> n2

− n, there must be a column in G, say
column ĵ , such that vi, ĵ ∈ S′ for all i = 1, 2, . . . n. Note that 1 < ĵ < n because
any end column alone would force G. If every vertex in the first row to the right
of column ĵ is in S′, then the entire graph will be forced; similarly, if all vertices in
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Figure 12. Failed zero forcing sets of K3 � K3 and of K3 � K2.

any two adjacent rows to the right of column ĵ are in S′, then the entire graph will
be forced. The same holds for the left of column ĵ . Therefore, there are at least
d(n + 1)/2e vertices not in S′ on either side of column ĵ , or at least n + 1 in G,
contradicting the assumption that |S′|> n2

− n.
Therefore, F(Pn � Pn)= n2

− n. �

The same construction works for Pn � Pm if m = n + (n − 1)k for a positive
integer k. However, the construction does not work for rectangular grids in general.

For Cartesian products of complete graphs, Kn � Km , we have determined
F(Kn � Km) for all cases. Before providing the general result, we must look at two
special cases, K3 � K2 and K3 � K3. Figure 12 shows failed zero forcing sets for
each graph. To see that these are optimal, note that neither graph has a module of
order two; therefore F(K3 � K2) ≤ 3 and F(K3 � K3) ≤ 6, coinciding with the
construction in Figure 12. We now move on to determining F(Kn � Km) in general.

Theorem 4.3. The failed zero forcing number of the rook’s graph, Kn � Km , is
F(Kn � Km)= nm− 4, where n ≥ 4 and m ≥ 2.

Proof. First, we construct a failed zero forcing set S in G= Kn�Km with cardinality
nm−4. Let each vertex in the graph be labeled vi, j , where i denotes in which copy
of Kn and j denotes in which copy of Km the vertex lies. Let all vertices be in S
except v1,1, v1,2, v2,1 and v2,2.

We show that S is a failed zero forcing set. The only vertices in S that are adjacent
to the vertices in V (G)\S are vertices v1,k , v2,k , vl,1 and vl,2, where 3 ≤ k ≤ n
and 3≤ l ≤ m. However, v1,k is adjacent to both v1,1 and v1,2; v2,k is adjacent to
both v2,1 and v2,2; vl,1 is adjacent to both v1,1 and v2,1; finally, vl,2 is adjacent to
both v1,2 and v2,2. Therefore, S is a failed zero forcing set.

We now show that there is no failed zero forcing set larger than S. First, we show
that there is no module of order 2 in G. Any two vertices in the same copy of Kn

share all the same neighbors in Kn but lie in different copies of Km and therefore
have some distinct neighbors. Similarly, any two vertices in different copies of Kn

have different neighbors in their respective copies of Kn . Hence, there is no module
of order 2 in G, giving us, by Theorem 2.4, that nm− 4≤ F(G)≤ nm− 3.
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Suppose that S′ is a set of vertices in G of cardinality nm− 3. Let V (G)\S′ =
{x, y, z}. If {x, y, z} is contained in a single copy of Kn , then take any other copy
of Kn . There exist vertices x ′, y′ and z′ in this copy such that x ′ is adjacent to x
but not y or z, and similarly for y′ and z′. Thus, x ′ will force x , y′ will force y, and
z′ will force z.

If there exists a copy of Kn , call it H , such that V (H)\S′ consists of exactly one
vertex, z, then z will be forced by another vertex in H because at most two of the
vertices in H can be adjacent to an unforced vertex in any other copy of Kn . Since
{x, y} is not a module, it will be forced as well. Hence, F(G)= nm− 4. �

5. Conclusion and open questions

In this paper, we have defined a new graph parameter, the failed zero forcing
number F(G), and established some properties of this parameter as well as the value
of this parameter for several families of graphs. There are many questions about this
parameter that remain. More generally, there are many questions that remain about
the concept of zero forcing in general. We outline some of these questions here.

As we touched on in the introduction of this paper, the motivation for study of
the zero forcing number is minimum rank problems. The maximum nullity of a set
of a matrices associated with a graph is bounded above by the zero forcing number
of the graph. We would like to know if the failed zero forcing number has any such
connection to linear algebra.

There are many graph families whose failed zero forcing numbers are unknown.
For example, while we found a value of F(Pn � Pn), we have no formula for
F(Pn � Pm) in general. Also, we have not determined the failed zero forcing
number of Cn � Cm or any Cartesian products of pairs of graphs from different
graph families, such as paths and cycles. We know for certain trees — those who
have two leaves adjacent to the same vertex — we have F(T ) = n − 2. Trees in
general, however, are open.

We can also look at graphs with failed zero forcing number of 2. We characterized
graphs with F(G)= 0 or 1, but many more graphs have F(G)= 2. While we listed
some of these, it would be nice to have a full characterization of all graphs with
this property. More generally, given a positive integer k, is there an integer l such
that any graph G with |V (G)|> l has F(G) > k?

Many graph labeling problems that search for the minimum number of labels
required for a given graph are accompanied by a second question: what is the
maximum cardinality of any minimal labeling? In proper coloring, this is known as
the achromatic number [Harary and Hedetniemi 1970]. Failed zero forcing has an
analogous problem: the afailed zero forcing number. The question is: what is the
minimum cardinality of any maximal failed zero forcing set?
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Finally, while we were able to classify graphs for which F(G) < Z(G), it would
be interesting to classify graphs for which F(G)= Z(G), since these graphs seem
to be unusual.
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