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A kl-subset partition, or (k, l)-subpartition, is a kl-subset of an n-set that is
partitioned into l distinct blocks, each of size k. Two (k, l)-subpartitions are said
to t-intersect if they have at least t blocks in common. In this paper, we prove
an Erdős–Ko–Rado theorem for intersecting families of (k, l)-subpartitions. We
show that for n ≥ kl, l ≥ 2 and k ≥ 3, the number of (k, l)-subpartitions in the
largest 1-intersecting family is at most

(n−k
k

)(n−2k
k

)
· · ·
(n−(l−1)k

k

)
/(l−1)!, and that

this bound is only attained by the family of (k, l)-subpartitions with a common
fixed block, known as the canonical intersecting family of (k, l)-subpartitions.
Further, provided that n is sufficiently large relative to k, l and t , the largest
t-intersecting family is the family of (k, l)-subpartitions that contain a common
set of t fixed blocks.

1. Introduction

We prove here an Erdős–Ko–Rado theorem for intersecting families of subset
partitions. The EKR theorem gives the size and structure of the largest family
of intersecting sets, all of the same size, from a base set. This theorem has an
interesting history: Erdős [1987] wrote that the work was done in 1938, but due to
lack of interest in combinatorics at the time, it wasn’t until 1961 that the paper was
published. Once the result did appear in the literature, it sparked a great deal of
interest in extremal set theory.

To start, we must consider some relevant notation and background information.
For any positive integer n, denote [n] := {1, . . . , n}. A k-set is a subset of size k
from [n]. Two k-sets A and B are said to intersect if |A∩ B| ≥ 1, and for 1≤ t ≤ k,
they are said to be t-intersecting if |A∩ B| ≥ t . A canonical t-intersecting family
of k-sets is one that contains all k-sets with t fixed elements.

EKR theorem. [Erdős et al. 1961] Let n ≥ k ≥ t ≥ 1, and let F be a t-intersecting
family of k-sets from [n]. If n is sufficiently large compared to k and t , then
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Keywords: Erdős–Ko–Rado theorem, set partitions.
Meagher is supported by NSERC.

119

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2015.8-1


120 ADAM DYCK AND KAREN MEAGHER

|F| ≤
(n−t

k−t

)
; further, equality holds if and only if F is a canonical t-intersecting

family of k-sets.

The exact bound on n is known to be n ≥ (t + 1)(k− t + 1) (an elegant proof of
this that uses algebraic graph theory is given by Wilson [1984]). If n is smaller than
this bound, then there are t-intersecting families that are larger than the canonical
t-intersecting family. A complete characterization of the families of maximum size
for all values of n is given by Ahlswede and Khachatrian [1997].

From here, many EKR-type theorems have been developed by incorporating other
combinatorial objects. Frankl and Wilson [1986] have considered this theorem for
vector spaces over a finite field, Rands [1982] for blocks in a design, Cameron and
Ku [2003] for permutations, Ku and Leader [2006] for partial permutations, Brunk
and Huczynska [2010] for injections, and Ku and Renshaw [2008] for set partitions
and cycle-intersecting permutations. All of these cases consider combinatorial
objects that are made up of what we shall call atoms, and two objects intersect if
they contain a common atom and t-intersect if they contain t common atoms. To
say that “an EKR-type theorem holds” means that the largest set of intersecting (or
t-intersecting) objects is the set of all objects that contain a common atom (or a
common t-set of atoms).

In this paper, we shall prove that an EKR-type theorem holds for an object which
we call a subset partition. We begin by outlining the appropriate notation.

A uniform l-partition of [n] is a division of [n] into l distinct, nonempty subsets,
known as blocks, where each block has the same size and the union of these blocks
is [n]. Further, a uniform kl-subset partition P is a uniform l-partition of a subset
of kl elements from [n]. We shall also call P a (k, l)-subpartition. If P is a (k, l)-
subpartition of [n], then P = {P1, . . . , Pl} and |Pi | = k for i ∈ {1, . . . , l}, with
|
⋃l

i=1 Pi | = kl. Let U n
l,k denote the set of all (k, l)-subpartitions from [n], and

define

U (n, l, k) := |U n
l,k | =

1
l!

(n
k

)(n−k
k

)
· · ·

(n−(l−1)k
k

)
=

1
l!

l−1∏
i=0

(n−ik
k

)
.

Two (k, l)-subpartitions P = {P1, . . . , Pl} and Q = {Q1, . . . , Ql} are said to be
intersecting if Pi = Q j for some i, j ∈ {1, . . . , l}. Further, for 1≤ t ≤ l, P and Q
are said to be t-intersecting if there is an ordering of the blocks such that Pi = Qi

for i = 1, . . . , t .
A canonical t-intersecting family of (k, l)-subpartitions is a family that contains

every (k, l)-subpartition with a fixed set of t blocks. Such a family has size

U (n− tk, l − t, k)= 1
(l−t)!

l−1∏
i=t

(n−ik
k

)
. (*)
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In particular, a canonical intersecting family of (k, l)-subpartitions has size

U (n− k, l − 1, k)= 1
(l−1)!

l−1∏
i=1

(n−ik
k

)
. (**)

Finally, note that

U (n, l, k)= 1
l

(n
k

)
U (n− k, l − 1, k), (†)

and U (n, 0, 0)= 1 for n ≥ 0.
We shall not consider the cases when k = 1, as this reduces to the original

EKR theorem when l = 1, where intersection is trivial, or when t = l, where
intersection is also trivial.

Theorem 1. Let n, k, l be positive integers with n ≥ kl, l ≥ 2, and k ≥ 3. If P is an
intersecting family of (k, l)-subpartitions, then

|P| ≤
1

(l−1)!

l−1∏
i=1

(n−ik
k

)
.

Moreover, this bound can only be attained by a canonical intersecting family of
(k, l)-subpartitions.

Theorem 2. Let n, k, l, t be positive integers with n ≥ n0(k, l, t) and 1≤ t ≤ l− 1.
If P is a t-intersecting family of (k, l)-subpartitions, then

|P| ≤
1

(l−t)!

l−1∏
i=t

(n−ik
k

)
.

Moreover, this bound can only be attained by a canonical t-intersecting family of
(k, l)-subpartitions.

Meagher and Moura [2005] introduced Erdős–Ko–Rado theorems for t-intersect-
ing partitions, which fall under the case n= kl. Additionally, for the case k= 2 with
n > kl, a (k, l)-subpartition is a partial matching; in their recent paper, Kamat and
Misra [2013] presented the corresponding EKR theorems for these objects. They
incorporate a very nice Katona-style proof, but interestingly, it does not appear that
the Katona method would work very well for (k, l)-subpartitions (it seems that this
proof would require an additional lower bound on n). The goal of this work is to
complete the work done in both [Meagher and Moura 2005] and [Kamat and Misra
2013] by showing that an EKR-type theorem holds for subpartitions. In this paper,
we specifically do not consider the case where k = 2 (as this is done in Kamat and
Misra’s work). In [Meagher and Moura 2005], the only difficult case is k = 2; it is
possible that our counting method will work for the partial matchings if some of
the tricks used in [loc. cit.] are applied.
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2. Three technical lemmas

We shall require results similar to Lemma 3 in [Meagher and Moura 2005] — the
proofs of which use similar counting arguments. The first of these, Lemma 3, is just
the t = 1 case of the third, Lemma 5. We present proofs for both of these lemmas
since the proof of Lemma 3 is straight-forward and presenting it first makes the
proof of Lemma 5 clearer.

As we shall see, it is worthwhile to consider the size of a canonical t-intersecting
family of (k, l)-subpartitions and find when this is an upper bound for the size of
any t-intersecting family of (k, l)-subpartitions.

Define a dominating set for a family of (k, l)-subpartitions to be a set of blocks,
each of size k, that intersects with every (k, l)-subpartition in the family. For the
intersecting families being investigated here, each (k, l)-subpartition in the family
is also a dominating set. In [Meagher and Moura 2005], dominating sets are called
blocking sets. We use the term dominating set here because if the blocks in the (k, l)-
subpartitions (the k-sets) are considered to be vertices, then each (k, l)-subpartition
can be thought of as an edge in an l-uniform hypergraph on these vertices. As
a result, a family of (k, l)-subpartitions is a hypergraph, and our definition of
a dominating set for a family of (k, l)-subpartitions matches the definition of a
dominating set for a hypergraph.

Lemma 3. Let n, k, l be positive integers with n ≥ kl, l ≥ 2 and let P⊆U n
l,k be an

intersecting family of (k, l)-subpartitions. Assume that there does not exist a k-set
that occurs as a block in every (k, l)-subpartition in P. Then

|P| ≤ l2U (n− 2k, l − 2, k). (1)

Proof. Let {P1, . . . , Pl} be a (k, l)-subpartition in P, and for i ∈ {1, . . . , l}, let Pi

be the set of all (k, l)-subpartitions in P that contain the block Pi but none of
P1, . . . , Pi−1. By assumption, Pi does not appear in every (k, l)-subpartition in P,
so there exists some (k, l)-subpartition Q that does not contain Pi . The subpartitions
in Pi and Q must be intersecting, so each member of Pi must contain Pi as well
as one of the l blocks from Q. Thus, we can bound the size of Pi by

|Pi | ≤ lU (n− 2k, l − 2, k).

Further, since {P1, . . . , Pl} is a dominating set for the family of (k, l)-subpartitions,
we have that ⋃

i∈{1,...,l}

Pi = P.

It follows that
|P| ≤ l|Pi | ≤ l2U (n− 2k, l − 2, k). �
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Note that Lemma 3 certainly applies for all n ≥ kl; however, if the size of n
is small enough relative to k and l, then we can improve our bound on such an
intersecting family P. Note that in the case of n = kl, we may use the lemma as
considered in [Meagher and Moura 2005].

Lemma 4. Let n, k, l be positive integers with kl + 1 ≤ n ≤ k(l + 1)− 1, l ≥ 2,
and let P⊆U n

l,k be an intersecting family of (k, l)-subpartitions. Assume that there
does not exist a k-set that occurs as a block in every (k, l)-subpartition in P. Then

|P| ≤ l(l − 1)U (n− 2k, l − 2, k). (2)

Proof. Under the restriction on the size of n, there are at most l−1 blocks in Q that
do not contain an element from Pi . The remainder of the proof follows similarly. �

We also adapt a similar lemma for the t-intersecting case.

Lemma 5. Let n, k, l, t be positive integers with 1≤ t ≤ l − 1, and let P⊆U n
l,k be

a t-intersecting family of (k, l)-subpartitions. Assume that there does not exist a
k-set that occurs as a block in every (k, l)-subpartition in P. Then

|P| ≤ (l − t + 1)
( l

t

)
U
(
n− (t + 1)k, l − (t + 1), k

)
. (3)

Proof. As in the proof of Lemma 3, let {P1, . . . , Pl} be a (k, l)-subpartition in P,
and for i ∈ {1, . . . , l}, define the set Pi similarly. Note that if we order the Pi sets,
then any (k, l)-subpartition in Pi where i > l− t+1 must contain at least one of the
blocks {P1, . . . , Pl−t+1} since the (k, l)-subpartitions here must be t-intersecting
with {P1, . . . , Pl}. The block Pi does not appear in every (k, l)-subpartition in
P, so there exists some (k, l)-subpartition Q that does not contain Pi . Any (k, l)-
subpartition P ∈Pi must be t-intersecting with Q, so there are

(l
t

)
ways to choose

the t blocks from Q that are also in P . Thus, we can bound the size of Pi by

|Pi | ≤

( l
t

)
U
(
n− (t + 1)k, l − (t + 1), k

)
.

Further, since ⋃
i∈{1,...,l−t+1}

Pi = P,

it follows that

|P| ≤ (l − t + 1)
( l

t

)
U
(
n− (t + 1)k, l − (t + 1), k

)
. �

3. Proof of Theorem 1

We can use (1) or (2), based on the size of n, and compare these bounds with that
of (**). Informally, we may think of these as bounds on the size of noncanonical
families of (k, l)-subpartitions. If the size of the canonical family is larger than
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these bounds, then we know that the canonical families are the largest and that
equality holds if and only if the intersecting family is canonical.

Proof of Theorem 1. Let P be a noncanonical family of intersecting (k, l)-subparti-
tions. We shall show that

|P|<
1

l−1

(n−k
k

)
U (n− 2k, l − 2, k). (4)

It can be verified from (**) and (†) that the right-hand side of this inequality is
the size of a canonical intersecting family of (k, l)-subpartitions; thus, proving this
inequality proves Theorem 1.

Case 1: kl + 1≤ n ≤ k(l + 1)− 1
If we bound n as such, then by (2),

|P| ≤ l(l − 1)U (n− 2k, l − 2, k),

and using (4), we only need to prove that

l(l − 1)2 <
(n−k

k

)
. (5)

Since n ≥ kl + 1, and using that k ≥ 3, by Pascal’s rule,(n−k
k

)
≥

(k(l−1)+1
k

)
≥

(3(l−1)+1
3

)
=
(3l − 2)(3l − 3)(3l − 4)

3!
.

Thus, (5) can be reduced to checking the inequality

l(l − 1)2 <
(3l − 2)(3l − 3)(3l − 4)

3!
.

It can be verified, using the increasing function test, that this holds for all l ≥ 2.

Case 2: n ≥ k(l + 1)
Similar to the previous case, using (1) and (4), we only need to show that

l2(l − 1) <
(n−k

k

)
. (6)

As before, taking n ≥ k(l + 1), k ≥ 3, and using Pascal’s rule, we find(n−k
k

)
≥

(kl
k

)
≥

(3l
3

)
=

3l(3l − 1)(3l − 2)
3!

.

So, (6) can be rewritten as

l2(l − 1) <
3l(3l − 1)(3l − 2)

3!
,

and we find that this also holds for all l ≥ 2.
Thus, (4) holds for all values of n, completing the proof of Theorem 1. �
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4. Proof of Theorem 2

Theorem 2 incorporates the t-intersection property, proving a more general EKR-
type theorem for (k, l)-subpartitions. Here, the precise lower bound on n for deter-
mining when only the canonical families are the largest is unknown — but we shall
see that if k ≥ t+2, it suffices to take n≥ k(l+ t) (though this bound is not optimal).

Proof of Theorem 2. From (*) and (†), the size of a canonical t-intersecting family
of (k, l)-subpartitions is

U (n− tk, l − t, k)= 1
l−t

(n−tk
k

)
U
(
n− (t + 1)k, l − (t + 1), k

)
. (7)

As before, let P be a noncanonical family of t-intersecting (k, l)-subpartitions.
If there is a block that is contained in every (k, l)-subpartition of P, then it can be
removed from every such subpartition in P. This does not change the size of the
family, but reduces n by k and each of l and t by 1. Now we only need to show that
this new family is smaller than the canonical (t−1)-intersecting family of (k, l−1)-
subpartitions from [n−k] (the size of which is equal to U

(
n−(t−1)k, l−(t−1), k

)
.

As such, we may assume that there are no blocks common to every (k, l)-subpartition
in P, and we can apply (3).

To prove this theorem, we need to prove that for n sufficiently large,

(l − t + 1)(l − t)
( l

t

)
<
(n−tk

k

)
. (8)

Clearly, this inequality is strict if n is sufficiently large relative to t , l and k. �

Consider the case where k ≥ t + 2. If n ≥ k(l + t), then (8) holds when

(l − t + 1)(l − t)
( l

t

)
≤

( lk
k

)
.

Since k ≥ t + 2, we have that( lk
k

)
=

(
lk
k

)(
lk− 1
k− 2

)( lk−2
k−2

)
> (l − t + 1)(l − t)

( l
t

)
,

so (8) holds indeed. We do not attempt to find the function n0(k, l, t) that produces
the exact lower bound on n, but such a lower bound is needed, as shown by the
example in [Meagher and Moura 2005, Section 5].

5. Extensions

There are versions of the EKR theorem for many different objects. In this final sec-
tion, we shall outline how this method can be generalized to these different objects.

In general, when considering an EKR-type theorem, there is a set of objects
with some notion of intersection. We shall consider the case when each object
is comprised of k atoms, and two objects are intersecting if they both contain a
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common atom. If the objects are k-sets, then the atoms are the elements from
{1, . . . , n}, and each k-set contains exactly k atoms. For matchings, the atoms are
edges from the complete graph on 2n vertices, and a k-matching has k atoms. In
this paradigm, if the largest set of intersecting objects is the set of all the objects
that contain a fixed atom, then an EKR-type theorem holds.

We can apply the method in this paper to this more general situation. Assume we
have a set of objects and that each object contains exactly k distinct atoms from a
set of n atoms (there may be many additional rules on which sets of atoms constitute
an object). Let P(n, k) be the total number of objects, P(n− 1, k− 1) the number
of objects that contain a fixed atom, and P(n− 2, k− 2) the number of objects that
contain two fixed atoms.

Using the same argument as in this paper, if for some type of object (as above)

k2 P(n− 2, k− 2) < P(n− 1, k− 1),

then an EKR-type theorem holds for these objects. It is very interesting to note that
if the ratio between P(n− 1, k− 1) and P(n− 2, k− 2) is sufficiently large, then
an EKR-type theorem holds.

For example, this can be applied to k-sets. In this case, the equation is

k2
(n−2

k−2

)
<
(n−1

k−1

)
,

which holds if and only if

k2(k− 1)+ 1< n.

This proves the standard EKR theorem, but with a very bad lower bound on n.
For a second example, consider length-n integer sequences with entries from
{0, 1, . . . , q − 1}. In this case the atoms are ordered pairs (i, a), where the entry
in position i of the sequence is a. Two sequences “intersect” if they have the
same entry in the same position. Each sequence contains exactly n atoms, so in
this case k = n. The values of P(n − 1, n − 1) and P(n − 2, n − 2) are qn−1

and qn−2, respectively. Thus an EKR-type theorem for integer sequences holds if
n2qn−2 < qn−1, or equivalently if n2 < q. Once again we have a simple proof of
an EKR-type theorem, but with an unnecessary bound on n.

Finally, consider the blocks in a t-(n,m, λ) design. The blocks are m-sets, so they
are t-intersecting if they contain a common set of t-elements. It is straight-forward
to calculate the number of blocks that contain any s-set where s ≤ t is

λ

(n−s
t−s

)(m−s
t−s

) .
Thus we have that the EKR theorem holds for intersecting blocks in a t-(n,m, λ)
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design if

m2 λ
(n

t

)(m
2

)(m
t

)(n
2

) ≤ λ(n
t

)(m
1

)(m
t

)(n
1

) ,
which reduces to

m3
−m2

+ 1< n.

This is the same bound found by Rands [1982]. Moreover, this method can be applied
to s-intersecting blocks in a design; again we get the same bound as in [Rands 1982].
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