\bullet
 involve

a journal of mathematics

Braid computations

for the crossing number of Klein links
Michael Bush, Danielle Shepherd, Joseph Smith, Sarah Smith-Polderman, Jennifer Bowen and John Ramsay

Braid computations for the crossing number of Klein links

Michael Bush, Danielle Shepherd, Joseph Smith, Sarah Smith-Polderman, Jennifer Bowen and John Ramsay
(Communicated by Colin Adams)

Abstract

Klein links are a nonorientable counterpart to torus knots and links. It is shown that braids representing a subset of Klein links take on the form of a very positive braid after manipulation. Once the braid has reached this form, its number of crossings is the crossing number of the link it represents. Two formulas are proven to calculate the crossing number of $K(m, n)$ Klein links, where $m \geq n \geq 1$. In combination with previous results, these formulas can be used to calculate the crossing number for any Klein link with given values of m and n.

1. Introduction

A key aspect in the classification of distinct knots and links is the crossing number, a link invariant. The crossing number of a link A, denoted $c(A)$, is the minimum number of crossings that can occur in any projection of the link [Adams 2004]. Through the use of Alexander-Briggs notation, prime links are placed into finite sets based on both their crossing number and number of components [Adams 2004; Rolfsen 1976]. This paper will use Alexander-Briggs notation, specifically corresponding to the labels given by Rolfsen [1976], where the 4_{1}^{2} link has four crossings, two components, and is the first link listed with these invariant values. Braid relations are used to simplify the general braid word for Klein links, which allows us to find their minimal number of crossings.

2. Torus links and Klein links

A torus link is a link that can be placed on the surface of a torus such that it does not cross over itself [Adams 2004]. Torus links are denoted $T(m, n)$, where m is the number of times the link wraps around the longitude of the torus, and n is the number of times it wraps around the meridian. Torus links are a commonly studied

[^0]

Figure 1. $K(5,3)$ on the identified rectangular representation of a Klein bottle and on the equivalent once punctured Klein bottle. Dashed lines represent portions of the link that lie on hidden surfaces of the Klein bottle.
class of links and formulas that can be used to determine many of their invariants are known. Given the values of m and n, the crossing number can be computed with the formula $c(T(m, n))=m(n-1)$, where $m \geq n$ [Murasugi 1991; Williams 1988].

Similarly, Klein links are links that can be placed on the surface of a once punctured Klein bottle so that they do not intersect themselves. One method used to form this set of Klein links begins with the identified rectangular representation of the Klein bottle seen in Figure 1. For these Klein links, $K(m, n)$, the m strands originating on the left side of the rectangular diagram are placed to remain entirely below the "hole" representing the self-intersection of the once punctured Klein bottle, and the n strands originating from the top remain entirely above the hole [Bowen et al. 2014; Catalano et al. 2010; Shepherd et al. 2012; Freund and SmithPolderman 2013]. After a link is formed, the Klein bottle is removed and the link is classified based on its invariants.

3. Braids

Braids are a useful technique for representing and classifying links since all links can be represented by braids [Adams 2004]. A braid is a set of strings connected between a top and bottom bar such that each string always progresses downwards as it crosses above or below the other strings [Adams 2004; Shepherd et al. 2012]. The strings of an n-braid are numbered from 1 to n, going from the leftmost to the rightmost string. A closed braid representation of a link is formed when these top and bottom bars are connected and the corresponding strings are attached. When describing braids, braid words are commonly used due to their simplicity and

Figure 2. Braid generators [Freund and Smith-Polderman 2013].
usefulness. Each crossing is labeled using σ_{i}^{ϵ}, where i represents the i-th strand of the braid crossing over or under the $(i+1)$-st strand, as illustrated in Figure 2. When the i-th strand crosses over the $(i+1)$-st strand, $\epsilon=1$ and when it crosses under, $\epsilon=-1$.

Braids are commonly used to study Klein links and torus links since the corresponding braids are known for given values of m and n. The properties of these braids are exploited to find new properties of the links.

Proposition 1 [Adams 2004]. A general braid word for a torus link is given by $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{m}$ when $m \geq 1$ and $n \geq 2$.

Proposition 2 [Shepherd et al. 2012; Freund and Smith-Polderman 2013]. A general braid word for a $K(m, n)$ Klein link composes the general braid word of a torus link with the half twist $\prod_{i=1}^{n-1}\left(\sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \cdots \sigma_{i}^{-1}\right)$, shown in Figure 3, which gives

$$
K(m, n)=\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{m} \prod_{i=1}^{n-1}\left(\sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \cdots \sigma_{i}^{-1}\right)
$$

Unlike the general braid word for torus links, the general braid word for Klein links can be manipulated with braid relations to reduce the number of crossings in the braid [Murasugi 1991; Williams 1988].

Figure 3. A half twist on an n-strand braid [Shepherd et al. 2012].

Figure 4. Braid moves 1, 2, and 3 [Freund and Smith-Polderman 2013].

Definition 3 [Adams 2004; Freund and Smith-Polderman 2013]. Braid relations, corresponding to the Reidemeister moves for links, allow a braid to be transformed between equivalent forms without altering the link that the closed braid represents. The first three braid moves are shown in Figure 4, and conjugation and stabilization are shown in Figure 5.

Move 1: $\sigma_{i} \sigma_{i}^{-1}=1=\sigma_{i}^{-1} \sigma_{i}$
Move 2: $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$
Move 3: For $|i-j|>1, \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$
Conjugation: For an n-string braid word z, we have $z=\sigma_{i} z \sigma_{i}^{-1}=\sigma_{i}^{-1} z \sigma_{i}$ for i from 1 to $n-1$.

Stabilization: For an n-string braid word z, we have $z=z \sigma_{n}$ or $z=z \sigma_{n}^{-1}$, resulting in an $(n+1)$-string braid word. Also for an $(n+1)$-string braid word z, assuming z does not contain σ_{n} or σ_{n}^{-1}, stabilization allows $z \sigma_{n}=z$ or $z=z \sigma_{n}^{-1}$, resulting in an n-string braid word.

Figure 5. Left: conjugation. Right: stabilization. See [Freund and Smith-Polderman 2013].

When $m \geq n$, a generalized sequence of the first and third braid moves is used to manipulate the general braid word of a Klein link into a form w that untangles the negative half-twist in Lemma 4 below.
Lemma 4. For $K(m, n)$ where $m \geq n$, a simplified version of the braid word, w, is

$$
w=\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{m-n+1}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-2}\right)\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-3}\right) \cdots \sigma_{1}
$$

Proof. For $m \geq n$, a standard $K(m, n)$ braid can be simplified using the following sequence of braid moves 1 and 3 :

$$
\begin{aligned}
K(m, n) & =\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{m}\left(\sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \cdots \sigma_{1}^{-1}\right)\left(\sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \cdots \sigma_{2}^{-1}\right) \cdots \sigma_{n-1}^{-1} \\
& =\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{m-1}\left(\sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \cdots \sigma_{2}^{-1}\right)\left(\sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \cdots \sigma_{3}^{-1}\right) \cdots \sigma_{n-1}^{-1} \\
& =\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{m-2}\left(\sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \cdots \sigma_{3}^{-1}\right)\left(\sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \cdots \sigma_{4}^{-1}\right) \cdots \sigma_{n-1}^{-1} \sigma_{1} \\
& =\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{m-3}\left(\sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \cdots \sigma_{4}^{-1}\right) \cdots \sigma_{n-1}^{-1} \sigma_{1} \sigma_{2} \sigma_{1}=\cdots \cdots \\
& =\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{m-n+2} \sigma_{n-1}^{-1}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-3}\right)\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-4}\right) \cdots \sigma_{1} \\
& =\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{m-n+1}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-2}\right)\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-3}\right) \cdots \sigma_{1}
\end{aligned}
$$

In this braid word w, all crossings are positive ($\epsilon=1$ for all σ_{i}^{ϵ}), which means it is classified as a homogeneous braid and a positive braid, as defined below.
Definition 5 [Murasugi 1991]. A braid $\gamma=\sigma_{i_{1}}^{\epsilon_{1}} \cdots \sigma_{i_{k}}^{\epsilon_{k}}$ is a homogeneous braid if $\epsilon_{j}=\epsilon_{l}\left(\epsilon_{i}= \pm 1\right)$ whenever $i_{j}=i_{l}$.

Definition 6. A homogeneous braid a, is a positive braid if $\epsilon_{j}=\epsilon_{l}$ for all σ_{i}.
The following definitions and properties provide important information about another class of braids, very positive braids.
Definition 7 [Franks and Williams 1987]. A braid with r strands has a full twist $\left(\Delta^{2}\right)$ if the braid word contains $\left(\sigma_{1} \sigma_{2} \sigma_{3} \cdots \sigma_{r-1}\right)^{r}$.

Note that a full twist can occur at any point within a braid as shown in Figure 6. Definition 8 [Franks and Williams 1987]. A positive braid with a full twist is a very positive braid.
Definition 9. The link invariant braid index, denoted $b(L)$, is the minimum number of strands needed to represent a link L as a braid.

Proposition 10 [Franks and Williams 1987; Williams 1988]. When a braid p is a very positive braid, $b(p)=s$, where s is the number of strands in the very positive braid representation of p.
Theorem 11 [Murasugi 1991]. A homogeneous n-braid h, where $b(h)=n$, has the minimal number of crossings for the link it represents.

These properties are combined to form an important crossing number result for very positive braids.

Figure 6. A full twist on an r-strand braid.
Lemma 12. A very positive braid representation of a link has minimal crossings for that link.
Proof. Let p be a very positive braid. By Proposition 10 , we know $b(p)$ is equal to the number of strands in p and p is a homogeneous braid by Definition 5. Thus, by Theorem 11, a very positive braid contains exactly the number of crossings as the crossing number of the link it represents.

Very positive braids are useful for determining properties of links since invariants including the crossing number and braid index can be found from braids in this form. For certain values of m and n, w is already in this form and in other cases, the braid word can be simplified into this form. In determining the crossing number for these links, it is useful to know the number of crossings contained within the half-twist of the Klein link braid word.

Lemma 13. The number of crossings in a half-twist of an n-braid is

$$
\sum_{i=1}^{n-1} i=\frac{n^{2}-n}{2}
$$

Proof. The half-twist $\prod_{i=1}^{n-1}\left(\sigma_{n-1}^{-1} \sigma_{n-2}^{-1} \cdots \sigma_{i}^{-1}\right)$, illustrated in Figure 3, has a crossing for each σ term in the product, or $(n-1)+(n-2)+\cdots+2+1$.

4. Crossing number theorem

For certain values of m and n, w is a very positive braid, which means that the crossing number for the corresponding Klein link can be easily determined.

Theorem 14. For $m \geq n \geq 1$ and $m \geq 2 n-1$,

$$
c(K(m, n))=m(n-1)-\frac{n^{2}-n}{2}
$$

Proof. Consider the simplified version of the braid word of $K(m, n)$ from Lemma 4,

$$
w=\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{m-n+1}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-2}\right)\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-3}\right) \cdots \sigma_{1}
$$

This braid word contains the same number of crossings as $c(T(m, n))-\left(n^{2}-n\right) / 2$ due to the reduction process in Lemma 4, which removed one crossing from the torus braid for each crossing in the Klein link half-twist corresponding to the use of braid move 1. Referring to Definition 7, this braid word contains a full twist when $m-n+1 \geq n$ since $\sigma_{1} \sigma_{2} \sigma_{3} \cdots \sigma_{r-1}$ must occur at least r times and $r=n$. Thus, when $m \geq 2 n-1$, the simplified braid word will be very positive, and by Section 3 , will have the minimal number of crossings.

5. Finding very positive braid representations

For other values of m and n, a full twist is not contained within w, so only an upper bound on the crossing number is initially known. Since w is a positive braid, stabilization is the only braid relation that can remove crossings. The following example illustrates how braid relations reduce the $K(6,5)$ to a very positive braid. For simplicity, subwords will be specific patterns of consecutive σ_{i} terms within a braid word.

Example. Let us demonstrate the stabilization process to obtain a full twist on a $K(6,5)$. First we will consider the reduced braid word w of the $K(6,5)$,

$$
\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1}
$$

One can see that there are two subwords of $\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4}$ and three subwords of $\sigma_{1} \sigma_{2} \sigma_{3}$, but these do not satisfy the requirements of a full twist. Thus, when reexamining the braid word, one can see that there are at least three subwords of $\sigma_{1} \sigma_{2}$, satisfying the requirements of a full twist if put in order (on a three strand braid):

$$
\underline{\sigma_{1} \sigma_{2}} \sigma_{3} \sigma_{4} \underline{\sigma_{1} \sigma_{2}} \sigma_{3} \sigma_{4} \underline{\sigma_{1} \sigma_{2}} \sigma_{3} \underline{\sigma_{1} \sigma_{2}} \sigma_{1}
$$

Using braid moves (noted before they are applied) with two stabilizations, we will manipulate the braid word to obtain a full twist, where we use $\bar{\sigma}_{i}$ to indicate σ_{i}^{-1} :
$K(6,5)$

$$
\begin{array}{lr}
=\sigma_{1} \sigma_{2} \sigma_{3} \underline{\sigma_{4} \sigma_{1} \sigma_{2}} \sigma_{3} \sigma_{4} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1} & \text { (braid move 3) } \\
=\left[\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \underline{\sigma_{4} \sigma_{3} \sigma_{4}} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1}\right] & \text { (braid move 2, conjugation) } \\
=\sigma_{3} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1}\left[\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{4} \underline{\left.\sigma_{3} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1}\right] \bar{\sigma}_{1} \bar{\sigma}_{2} \bar{\sigma}_{1} \bar{\sigma}_{3} \bar{\sigma}_{2} \bar{\sigma}_{1} \bar{\sigma}_{3}}\right.
\end{array}
$$

(braid move 1)

$$
\begin{array}{lr}
=\underline{\sigma_{3} \sigma_{1}} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{3} \underline{\sigma_{4}} & \text { (braid move } 3, \text { first stabilization) } \\
=\sigma_{1} \sigma_{3} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{3} & \text { (braid move } 2, \text { braid move } 1 \text {) }
\end{array}
$$

$$
=\left[\sigma_{1} \sigma_{2} \sigma_{3} \underline{\sigma_{2} \sigma_{1} \sigma_{2}} \sigma_{1} \sigma_{1} \sigma_{2} \sigma_{1} \underline{\sigma_{3} \sigma_{2} \sigma_{3}}\right] \quad \text { (braid move 2, braid move 2, conjugation) }
$$

$$
=\sigma_{3} \sigma_{2}\left[\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{1} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2} \underline{\left.\sigma_{3} \sigma_{2}\right] \bar{\sigma}_{2} \bar{\sigma}_{3}} \quad\right. \text { (braid move 1) }
$$

$$
=\sigma_{3} \underline{\sigma_{2} \sigma_{1} \sigma_{2}} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{1} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2}
$$

$$
=\underline{\sigma_{3} \sigma_{1}} \sigma_{2} \underline{\sigma_{1} \sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{1} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2}}
$$

$$
=\left[\sigma_{1} \underline{\sigma_{3} \sigma_{2} \sigma_{3}} \sigma_{1} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{1} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2}\right]
$$

$$
=\underline{\bar{\sigma}_{2} \bar{\sigma}_{1}\left[\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{1} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{1} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2}\right]}
$$

$$
=\underline{\sigma_{3}} \sigma_{2} \sigma_{1} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{1} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2}
$$

$$
=\sigma_{2} \sigma_{1} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{1} \underline{\sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2} \sigma_{1} \sigma_{2}}
$$

This positive braid contains a full twist after two stabilization moves. Note that this is one way to obtain a full twist, and the full twist may not always appear at the beginning or end of the braid word.

This process of finding the number of stabilization moves needed to find a very positive form of the Klein link is generalized in Theorem 16 below. The set S in Lemma 15 is used to help determine the number of stabilization moves needed to manipulate the braid into a very positive form.

Lemma 15. The set S, defined as

$$
S=\left\{k \in \mathbb{Z}^{+} \mid \sigma_{1} \sigma_{2} \cdots \sigma_{k-1} \text { occurs at least } k \text { times in } w\right\},
$$

is nonempty and finite for $K(m, n)$ when $1 \leq n \leq m<2 n-1$.
Proof. There will always be at least two σ_{1} terms in w from Lemma 4, since $m \geq n$ and $m-n+1 \geq 1$. Thus, because at least the first term and the last term of the braid word must each be σ_{1}, we have $2 \in S$ and S is nonempty. The set S is finite because there are exactly n strands in w; thus if $j>n$, then $j \notin S$.

Theorem 16. For $1 \leq n \leq m<2 n-1$,

$$
c(K(m, n))=m(n-1)-\frac{n^{2}-n}{2}-\left\lfloor\frac{2 n-m}{2}\right\rfloor .
$$

Proof. Consider the simplified version of the braid word of $K(m, n)$ from Lemma 4,

$$
w=\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\right)^{m-n+1}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-2}\right)\left(\sigma_{1} \sigma_{2} \cdots \sigma_{n-3}\right) \cdots \sigma_{1} .
$$

Referring to the definition of a full twist, one can see that this braid word (before manipulation using braid moves) will never contain a full twist because $m-n+1<n$. Since there is not a full twist, the braid is positive, but not very positive and the braid index and crossing number remain unknown.

In order to become a very positive braid, a braid representing a Klein link must be transformed so that it is a positive braid with a full twist. Referring to Lemma 15 with $m<2 n-1$, one can identify the presence of at least k subwords of the form $\sigma_{1} \sigma_{2} \cdots \sigma_{k-1}$, where k is a positive integer. Lemma 15 shows S to be nonempty and finite; let $r=\max (S)$. Therefore, the subword $\sigma_{1} \sigma_{2} \cdots \sigma_{r-1}$ occurs at least r times in w.

If a subword $\sigma_{1} \sigma_{2} \cdots \sigma_{k-1}$ occurs exactly $k+1$ times in a braid word w, then r must equal k. This means the subword $\sigma_{1} \sigma_{2} \cdots \sigma_{k}$ must occur k times due to the form of w. Assume $k \neq r$, then $k+1 \in S$, since $k \neq \max (S)$. Since the subword $\sigma_{1} \sigma_{2} \cdots \sigma_{k}$ does not occur $k+1$ times, $k+1 \notin S$; this is a contradiction, and therefore $k=r=\max (S)$.

Assume there are $r+2$ subwords of the form $\sigma_{1} \sigma_{2} \cdots \sigma_{r-1}$. This implies that there exist $r+1$ subwords of the form $\sigma_{1} \sigma_{2} \cdots \sigma_{r}$ as seen from the simplified braid word w. This implies that $r+1 \in S$ and therefore $r \neq \max (S)$, which is a contradiction. This means there will not be $r+2$ subwords of the form $\sigma_{1} \sigma_{2} \cdots \sigma_{r-1}$ when $r=\max (S)$. Similarly, when there exist more than $r+2$ subwords of the form $\sigma_{1} \sigma_{2} \cdots \sigma_{r-1}$, there is a value $k \in S$ such that $k>r$; so $r \neq \max (S)$, which is a contradiction. Therefore, only r or $r+1$ subwords of the form $\sigma_{1} \sigma_{2} \cdots \sigma_{r-1}$ can exist in the simplified braid word of a Klein link where $m<2 n-1$. We consider these two cases separately.
Case 1. This case examines these simplified braids with r subwords of the form $\sigma_{1} \sigma_{2} \cdots \sigma_{r-1}$. From the simplified braid word form w, it is known that there are $m-n+1$ subwords of the form $\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}$, where n represents the initial number of strands in the braid. For each stabilization, the number of strands in the braid is decreased by one, and the number of subwords of $\sigma_{1} \sigma_{2} \cdots \sigma_{n^{\prime}-1}$, where n^{\prime} is the number of strands in the braid, is increased by one since the maximum index $n^{\prime}-1$ is decreased with each stabilization. If x is equal to the number of stabilizations that must be used to obtain a full twist, then this relationship gives

$$
(m-n+1)+x=n-x .
$$

Solving this equation for x yields

$$
x=\frac{2 n-m-1}{2} .
$$

Case 2. Now this case will examine when $r+1$ subwords of the form $\sigma_{1} \sigma_{2} \cdots \sigma_{r-1}$ are present in the simplified braid word of a Klein link. Similar to Case 1 , it is known that there are $m-n+1$ subwords of $\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}$, and each stabilization decreases the number of strands in the braid by one. However, specific to this case, it is known that there is one additional $\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}$ subword that is unnecessary in the formation of the full twist. Thus, where x is still the number of stabilizations needed,

$$
(m-n+1)-1+x=n-x .
$$

Solving this equation for x yields

$$
x=\frac{2 n-m}{2} .
$$

If the two cases are compared, it can be seen that the values for x only differ by $\frac{1}{2}$. Thus, they can be combined with the relationship

$$
x=\left\lfloor\frac{2 n-m}{2}\right\rfloor .
$$

These stabilizations, which reduce the number of strands in the braid, each correspond to the elimination of one crossing from the reduced braid word. Since the resulting braid word contains a full twist and is positive, the braid is very positive, and by Section 3, has a minimum number of crossings. Thus,

$$
c(K(m, n))=m(n-1)-\frac{n^{2}-n}{2}-\left\lfloor\frac{2 n-m}{2}\right\rfloor .
$$

6. Conclusion

These theorems increase our knowledge of Klein links [Bowen et al. 2014; Catalano et al. 2010; Shepherd et al. 2012; Freund and Smith-Polderman 2013], while providing new properties that can be used to find additional connections between torus links and Klein links. With previous results regarding the crossing number for $K(m, n)$ with $m \leq n$ and for $m=0$ or $n=0$, the crossing number for any Klein link in this set can be calculated [Catalano et al. 2010; Shepherd et al. 2012]. Through the use of these theorems, we have completed a catalog of Klein links that lists the crossing number, number of components, and complete Alexander-Briggs notation (if available) for all Klein links between $K(1,0)$ and $K(8,8)$ [Bowen et al. 2014].

References

[Adams 2004] C. C. Adams, The knot book: An elementary introduction to the mathematical theory of knots, Amer. Math. Soc., Providence, RI, 2004. MR 2005b:57009 Zbl 1065.57003
[Bowen et al. 2014] J. Bowen, M. Bush, and J. Smith, "Klein link research", 2014, Available at http://discover.wooster.edu/jbowen/research/klein-links/.
[Catalano et al. 2010] L. Catalano, D. Freund, R. Ruzvidzo, J. Bowen, and J. Ramsay, "A preliminary study of Klein knots", pp. 10-17 in Proceedings of the Midstates Conference for Undergraduate Research in Computer Science and Mathematics (Wittenberg University, OH, 2010), 2010.
[Franks and Williams 1987] J. Franks and R. F. Williams, "Braids and the Jones polynomial", Trans. Amer. Math. Soc. 303:1 (1987), 97-108. MR 88k:57006 Zbl 0647.57002
[Freund and Smith-Polderman 2013] D. Freund and S. Smith-Polderman, "Klein links and braids", Rose-Hulman Undergrad. Math J. 14:1 (2013), 71-84. MR 3071244
[Murasugi 1991] K. Murasugi, "On the braid index of alternating links", Trans. Amer. Math. Soc. 326:1 (1991), 237-260. MR 91j:57009 Zbl 0751.57008
[Rolfsen 1976] D. Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish, Berkeley, CA, 1976. MR 58 \#24236 Zbl 0339.55004
[Shepherd et al. 2012] D. Shepherd, J. Smith, S. Smith-Polderman, J. Bowen, and J. Ramsay, "The classification of a subset of Klein links", pp. 38-47 in Proceedings of the Midstates Conference for Undergraduate Research in Computer Science and Mathematics (Ohio Wesleyan University, OH, 2012), 2012.
[Williams 1988] R. F. Williams, "The braid index of an algebraic link", pp. 697-703 in Braids (Santa Cruz, CA, 1986), edited by J. S. Birman and A. Libgober, Contemp. Math. 78, Amer. Math. Soc., Providence, RI, 1988. MR 90c:57006 Zbl 0673.57003

Received: 2014-01-29 Revised: 2014-05-29 Accepted: 2014-05-31
mbush16@wooster.edu The College of Wooster, Wooster, OH 44691, United States
dshepherd14@wooster.edu
jsmith15@wooster.edu
litlbup19@aol.com
jbowen@wooster.edu
jramsay@wooster.edu

The College of Wooster, Wooster, OH 44691, United States
The College of Wooster, Wooster, OH 44691, United States
The College of Wooster, Wooster, OH 44691, United States
The College of Wooster, Wooster, OH 44691, United States
The College of Wooster, Wooster, OH 44691, United States

involve

 msp.org/involve

 msp.org/involve EDITORS

 EDITORS}

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone @latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@ math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US $\$ 140 /$ year for the electronic version, and $\$ 190 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

involve 2015 vol. 8 no. 1

Efficient realization of nonzero spectra by polynomial matrices 1Nathan McNew and Nicholas Ormes
The number of convex topologies on a finite totally ordered set 25
Tyler Clark and Tom Richmond
Nonultrametric triangles in diametral additive metric spaces 33
Timothy Faver, Katelynn Kochalski, Mathav Kishore Murugan, Heidi Verheggen, Elizabeth Wesson and Anthony Weston
An elementary approach to characterizing Sheffer A-type 0 orthogonal polynomial 39
sequencesDaniel J. Galiffa and Tanya N. Riston
Average reductions between random tree pairs 63
Sean Cleary, John Passaro and Yasser Toruno
Growth functions of finitely generated algebras 71
Eric Fredette, Dan Kubala, Eric Nelson, Kelsey Wells andHarold W. Ellingsen, Jr.
A note on triangulations of sumsets 75
Károly J. Böröczky and Benjamin Hoffman
An exploration of ideal-divisor graphs 87
Michael Axtell, Joe Stickles, Lane Bloome, Rob Donovan, Paul Milner, Hailee Peck, Abigail Richard and Tristan Williams
The failed zero forcing number of a graph99
Katherine Fetcie, Bonnie Jacob and Daniel Saavedra
An Erdős-Ko-Rado theorem for subset partitions119
Adam Dyck and Karen Meagher
Nonreal zero decreasing operators related to orthogonal polynomials129
Andre Bunton, Nicole Jacobs, Samantha Jenkins, CharlesMcKenry Jr., Andrzej Piotrowski and Louis Scott
Path cover number, maximum nullity, and zero forcing number of oriented graphs147and other simple digraphsAdam Berliner, Cora Brown, Joshua Carlson, Nathanael Cox,Leslie Hogben, Jason Hu, Katrina Jacobs, Kathryn Manternach,Travis Peters, Nathan Warnberg and Michael Young
Braid computations for the crossing number of Klein links169
Michael Bush, Danielle Shepherd, Joseph Smith, Sarah
Smith-Polderman, Jennifer Bowen and John Ramsay

[^0]: MSC2010: 57M25, 57M27.
 Keywords: knots and links in S3, invariants of knots and 3-manifolds.

