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(Communicated by Colin Adams)

Klein links are a nonorientable counterpart to torus knots and links. It is shown
that braids representing a subset of Klein links take on the form of a very positive
braid after manipulation. Once the braid has reached this form, its number of
crossings is the crossing number of the link it represents. Two formulas are
proven to calculate the crossing number of K (m, n) Klein links, where m ≥ n≥ 1.
In combination with previous results, these formulas can be used to calculate the
crossing number for any Klein link with given values of m and n.

1. Introduction

A key aspect in the classification of distinct knots and links is the crossing number,
a link invariant. The crossing number of a link A, denoted c(A), is the minimum
number of crossings that can occur in any projection of the link [Adams 2004].
Through the use of Alexander–Briggs notation, prime links are placed into finite
sets based on both their crossing number and number of components [Adams
2004; Rolfsen 1976]. This paper will use Alexander–Briggs notation, specifically
corresponding to the labels given by Rolfsen [1976], where the 42

1 link has four
crossings, two components, and is the first link listed with these invariant values.
Braid relations are used to simplify the general braid word for Klein links, which
allows us to find their minimal number of crossings.

2. Torus links and Klein links

A torus link is a link that can be placed on the surface of a torus such that it does
not cross over itself [Adams 2004]. Torus links are denoted T (m, n), where m is
the number of times the link wraps around the longitude of the torus, and n is the
number of times it wraps around the meridian. Torus links are a commonly studied
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Figure 1. K (5, 3) on the identified rectangular representation of
a Klein bottle and on the equivalent once punctured Klein bot-
tle. Dashed lines represent portions of the link that lie on hidden
surfaces of the Klein bottle.

class of links and formulas that can be used to determine many of their invariants
are known. Given the values of m and n, the crossing number can be computed
with the formula c(T (m, n))= m(n− 1), where m ≥ n [Murasugi 1991; Williams
1988].

Similarly, Klein links are links that can be placed on the surface of a once
punctured Klein bottle so that they do not intersect themselves. One method used
to form this set of Klein links begins with the identified rectangular representation
of the Klein bottle seen in Figure 1. For these Klein links, K (m, n), the m strands
originating on the left side of the rectangular diagram are placed to remain entirely
below the “hole” representing the self-intersection of the once punctured Klein
bottle, and the n strands originating from the top remain entirely above the hole
[Bowen et al. 2014; Catalano et al. 2010; Shepherd et al. 2012; Freund and Smith-
Polderman 2013]. After a link is formed, the Klein bottle is removed and the link
is classified based on its invariants.

3. Braids

Braids are a useful technique for representing and classifying links since all links
can be represented by braids [Adams 2004]. A braid is a set of strings connected
between a top and bottom bar such that each string always progresses downwards
as it crosses above or below the other strings [Adams 2004; Shepherd et al. 2012].
The strings of an n-braid are numbered from 1 to n, going from the leftmost to the
rightmost string. A closed braid representation of a link is formed when these top
and bottom bars are connected and the corresponding strings are attached. When
describing braids, braid words are commonly used due to their simplicity and
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i i+1 i i+1

σi σ−1
i

Figure 2. Braid generators [Freund and Smith-Polderman 2013].

usefulness. Each crossing is labeled using σ εi , where i represents the i-th strand
of the braid crossing over or under the (i+1)-st strand, as illustrated in Figure 2.
When the i-th strand crosses over the (i+1)-st strand, ε = 1 and when it crosses
under, ε =−1.

Braids are commonly used to study Klein links and torus links since the corre-
sponding braids are known for given values of m and n. The properties of these
braids are exploited to find new properties of the links.

Proposition 1 [Adams 2004]. A general braid word for a torus link is given by
(σ1σ2 · · · σn−1)

m when m ≥ 1 and n ≥ 2.

Proposition 2 [Shepherd et al. 2012; Freund and Smith-Polderman 2013]. A gen-
eral braid word for a K (m, n) Klein link composes the general braid word of a torus
link with the half twist

∏n−1
i=1 (σ

−1
n−1σ

−1
n−2 · · · σ

−1
i ), shown in Figure 3, which gives

K (m, n)= (σ1σ2 · · · σn−1)
m

n−1∏
i=1

(σ−1
n−1σ

−1
n−2 · · · σ

−1
i ).

Unlike the general braid word for torus links, the general braid word for Klein
links can be manipulated with braid relations to reduce the number of crossings in
the braid [Murasugi 1991; Williams 1988].

Figure 3. A half twist on an n-strand braid [Shepherd et al. 2012].
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= =

=

Figure 4. Braid moves 1, 2, and 3 [Freund and Smith-Polderman 2013].

Definition 3 [Adams 2004; Freund and Smith-Polderman 2013]. Braid relations,
corresponding to the Reidemeister moves for links, allow a braid to be transformed
between equivalent forms without altering the link that the closed braid represents.
The first three braid moves are shown in Figure 4, and conjugation and stabilization
are shown in Figure 5.

Move 1: σiσ
−1
i = 1= σ−1

i σi

Move 2: σiσi+1σi = σi+1σiσi+1

Move 3: For |i − j |> 1, σiσ j = σ jσi

Conjugation: For an n-string braid word z, we have z = σi zσ−1
i = σ

−1
i zσi for i

from 1 to n− 1.

Stabilization: For an n-string braid word z, we have z = zσn or z = zσ−1
n ,

resulting in an (n + 1)-string braid word. Also for an (n + 1)-string braid
word z, assuming z does not contain σn or σ−1

n , stabilization allows zσn = z
or z = zσ−1

n , resulting in an n-string braid word.

i i+1

B

i i+1

B

1 n

B

1 n n+1

B

Figure 5. Left: conjugation. Right: stabilization. See [Freund and
Smith-Polderman 2013].
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When m ≥ n, a generalized sequence of the first and third braid moves is used
to manipulate the general braid word of a Klein link into a form w that untangles
the negative half-twist in Lemma 4 below.

Lemma 4. For K (m, n) where m ≥ n, a simplified version of the braid word, w, is

w = (σ1σ2 · · · σn−1)
m−n+1(σ1σ2 · · · σn−2)(σ1σ2 · · · σn−3) · · · σ1.

Proof. For m ≥ n, a standard K (m, n) braid can be simplified using the following
sequence of braid moves 1 and 3:

K (m, n)= (σ1σ2 · · · σn−1)
m(σ−1

n−1σ
−1
n−2 · · · σ

−1
1 )(σ−1

n−1σ
−1
n−2 · · · σ

−1
2 ) · · · σ−1

n−1

= (σ1σ2 · · · σn−1)
m−1(σ−1

n−1σ
−1
n−2 · · · σ

−1
2 )(σ−1

n−1σ
−1
n−2 · · · σ

−1
3 ) · · · σ−1

n−1

= (σ1σ2 · · · σn−1)
m−2(σ−1

n−1σ
−1
n−2 · · · σ

−1
3 )(σ−1

n−1σ
−1
n−2 · · · σ

−1
4 ) · · · σ−1

n−1σ1

= (σ1σ2 · · · σn−1)
m−3(σ−1

n−1σ
−1
n−2 · · · σ

−1
4 ) · · · σ−1

n−1σ1σ2σ1 = · · · · · ·

= (σ1σ2 · · · σn−1)
m−n+2σ−1

n−1(σ1σ2 · · · σn−3)(σ1σ2 · · · σn−4) · · · σ1

= (σ1σ2 · · · σn−1)
m−n+1(σ1σ2 · · · σn−2)(σ1σ2 · · · σn−3) · · · σ1 �

In this braid word w, all crossings are positive (ε = 1 for all σ εi ), which means it
is classified as a homogeneous braid and a positive braid, as defined below.

Definition 5 [Murasugi 1991]. A braid γ = σ ε1
i1
· · · σ

εk
ik

is a homogeneous braid if
ε j = εl (εi =±1) whenever i j = il .

Definition 6. A homogeneous braid a, is a positive braid if ε j = εl for all σi .

The following definitions and properties provide important information about
another class of braids, very positive braids.

Definition 7 [Franks and Williams 1987]. A braid with r strands has a full twist (12)
if the braid word contains (σ1σ2σ3 · · · σr−1)

r .

Note that a full twist can occur at any point within a braid as shown in Figure 6.

Definition 8 [Franks and Williams 1987]. A positive braid with a full twist is a
very positive braid.

Definition 9. The link invariant braid index, denoted b(L), is the minimum number
of strands needed to represent a link L as a braid.

Proposition 10 [Franks and Williams 1987; Williams 1988]. When a braid p is a
very positive braid, b(p)= s, where s is the number of strands in the very positive
braid representation of p.

Theorem 11 [Murasugi 1991]. A homogeneous n-braid h, where b(h)= n, has the
minimal number of crossings for the link it represents.

These properties are combined to form an important crossing number result for
very positive braids.
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Braid
1 2 r−1 r

1

2

r−1

r

1 2 r−1 r
Braid

Figure 6. A full twist on an r -strand braid.

Lemma 12. A very positive braid representation of a link has minimal crossings
for that link.

Proof. Let p be a very positive braid. By Proposition 10, we know b(p) is equal to
the number of strands in p and p is a homogeneous braid by Definition 5. Thus, by
Theorem 11, a very positive braid contains exactly the number of crossings as the
crossing number of the link it represents. �

Very positive braids are useful for determining properties of links since invariants
including the crossing number and braid index can be found from braids in this
form. For certain values of m and n, w is already in this form and in other cases,
the braid word can be simplified into this form. In determining the crossing number
for these links, it is useful to know the number of crossings contained within the
half-twist of the Klein link braid word.

Lemma 13. The number of crossings in a half-twist of an n-braid is

n−1∑
i=1

i =
n2
− n
2

.
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Proof. The half-twist
∏n−1

i=1 (σ
−1
n−1σ

−1
n−2 · · · σ

−1
i ), illustrated in Figure 3, has a cross-

ing for each σ term in the product, or (n− 1)+ (n− 2)+ · · ·+ 2+ 1. �

4. Crossing number theorem

For certain values of m and n, w is a very positive braid, which means that the
crossing number for the corresponding Klein link can be easily determined.

Theorem 14. For m ≥ n ≥ 1 and m ≥ 2n− 1,

c(K (m, n))= m(n− 1)−
n2
− n
2

.

Proof. Consider the simplified version of the braid word of K (m, n) from Lemma 4,

w = (σ1σ2 · · · σn−1)
m−n+1(σ1σ2 · · · σn−2)(σ1σ2 · · · σn−3) · · · σ1.

This braid word contains the same number of crossings as c(T (m, n))− (n2
−n)/2

due to the reduction process in Lemma 4, which removed one crossing from the
torus braid for each crossing in the Klein link half-twist corresponding to the use of
braid move 1. Referring to Definition 7, this braid word contains a full twist when
m− n+ 1≥ n since σ1σ2σ3 · · · σr−1 must occur at least r times and r = n. Thus,
when m ≥ 2n− 1, the simplified braid word will be very positive, and by Section 3,
will have the minimal number of crossings. �

5. Finding very positive braid representations

For other values of m and n, a full twist is not contained within w, so only an
upper bound on the crossing number is initially known. Since w is a positive braid,
stabilization is the only braid relation that can remove crossings. The following
example illustrates how braid relations reduce the K (6, 5) to a very positive braid.
For simplicity, subwords will be specific patterns of consecutive σi terms within a
braid word.

Example. Let us demonstrate the stabilization process to obtain a full twist on
a K (6, 5). First we will consider the reduced braid word w of the K (6, 5),

σ1σ2σ3σ4σ1σ2σ3σ4σ1σ2σ3σ1σ2σ1.

One can see that there are two subwords of σ1σ2σ3σ4 and three subwords of
σ1σ2σ3, but these do not satisfy the requirements of a full twist. Thus, when
reexamining the braid word, one can see that there are at least three subwords of
σ1σ2, satisfying the requirements of a full twist if put in order (on a three strand
braid):

σ1σ2σ3σ4σ1σ2σ3σ4σ1σ2σ3σ1σ2σ1.
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Using braid moves (noted before they are applied) with two stabilizations, we will
manipulate the braid word to obtain a full twist, where we use σ̄i to indicate σ−1

i :

K (6, 5)

= σ1σ2σ3σ4σ1σ2σ3σ4σ1σ2σ3σ1σ2σ1 (braid move 3)

= [σ1σ2σ3σ1σ2σ4σ3σ4σ1σ2σ3σ1σ2σ1] (braid move 2, conjugation)

= σ3σ1σ2σ3σ1σ2σ1[σ1σ2σ3σ1σ2σ3σ4σ3σ1σ2σ3σ1σ2σ1]σ̄1σ̄2σ̄1σ̄3σ̄2σ̄1σ̄3

(braid move 1)

= σ3σ1σ2σ3σ1σ2σ1σ1σ2σ3σ1σ2σ3σ4 (braid move 3, first stabilization)

= σ1σ3σ2σ3σ1σ2σ1σ1σ2σ3σ1σ2σ3 (braid move 2, braid move 1)

= [σ1σ2σ3σ2σ1σ2σ1σ1σ2σ1σ3σ2σ3] (braid move 2, braid move 2, conjugation)

= σ3σ2[σ1σ2σ3σ1σ2σ1σ1σ1σ2σ1σ2σ3σ2]σ̄2σ̄3 (braid move 1)

= σ3σ2σ1σ2σ3σ1σ2σ1σ1σ1σ2σ1σ2 (braid move 2)

= σ3σ1σ2σ1σ3σ1σ2σ1σ1σ1σ2σ1σ2 (braid move 3, braid move 3)

= [σ1σ3σ2σ3σ1σ1σ2σ1σ1σ1σ2σ1σ2] (braid move 2, conjugation)

= σ̄2σ̄1[σ1σ2σ3σ2σ1σ1σ2σ1σ1σ1σ2σ1σ2σ1σ2] (braid move 1)

= σ3σ2σ1σ1σ2σ1σ1σ1σ2σ1σ2σ1σ2 (second stabilization)

= σ2σ1σ1σ2σ1σ1σ1σ2σ1σ2σ1σ2.

This positive braid contains a full twist after two stabilization moves. Note that
this is one way to obtain a full twist, and the full twist may not always appear at
the beginning or end of the braid word.

This process of finding the number of stabilization moves needed to find a very
positive form of the Klein link is generalized in Theorem 16 below. The set S in
Lemma 15 is used to help determine the number of stabilization moves needed to
manipulate the braid into a very positive form.

Lemma 15. The set S, defined as

S = {k ∈ Z+ | σ1σ2 · · · σk−1 occurs at least k times in w},

is nonempty and finite for K (m, n) when 1≤ n ≤ m < 2n− 1.

Proof. There will always be at least two σ1 terms in w from Lemma 4, since m ≥ n
and m − n+ 1 ≥ 1. Thus, because at least the first term and the last term of the
braid word must each be σ1, we have 2 ∈ S and S is nonempty. The set S is finite
because there are exactly n strands in w; thus if j > n, then j /∈ S. �
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Theorem 16. For 1≤ n ≤ m < 2n− 1,

c(K (m, n))= m(n− 1)− n2
−n
2
−

⌊2n−m
2

⌋
.

Proof. Consider the simplified version of the braid word of K (m, n) from Lemma 4,

w = (σ1σ2 · · · σn−1)
m−n+1(σ1σ2 · · · σn−2)(σ1σ2 · · · σn−3) · · · σ1.

Referring to the definition of a full twist, one can see that this braid word (before
manipulation using braid moves) will never contain a full twist because m−n+1<n.
Since there is not a full twist, the braid is positive, but not very positive and the
braid index and crossing number remain unknown.

In order to become a very positive braid, a braid representing a Klein link must
be transformed so that it is a positive braid with a full twist. Referring to Lemma 15
with m < 2n− 1, one can identify the presence of at least k subwords of the form
σ1σ2 · · · σk−1, where k is a positive integer. Lemma 15 shows S to be nonempty
and finite; let r =max(S). Therefore, the subword σ1σ2 · · · σr−1 occurs at least r
times in w.

If a subword σ1σ2 · · · σk−1 occurs exactly k+ 1 times in a braid word w, then r
must equal k. This means the subword σ1σ2 · · · σk must occur k times due to the
form of w. Assume k 6= r , then k+ 1 ∈ S, since k 6=max(S). Since the subword
σ1σ2 · · · σk does not occur k + 1 times, k + 1 6∈ S; this is a contradiction, and
therefore k = r =max(S).

Assume there are r + 2 subwords of the form σ1σ2 · · · σr−1. This implies that
there exist r + 1 subwords of the form σ1σ2 · · · σr as seen from the simplified
braid word w. This implies that r + 1 ∈ S and therefore r 6= max(S), which is a
contradiction. This means there will not be r+2 subwords of the form σ1σ2 · · · σr−1

when r = max(S). Similarly, when there exist more than r + 2 subwords of the
form σ1σ2 · · · σr−1, there is a value k ∈ S such that k > r ; so r 6=max(S), which is
a contradiction. Therefore, only r or r + 1 subwords of the form σ1σ2 · · · σr−1 can
exist in the simplified braid word of a Klein link where m < 2n− 1. We consider
these two cases separately.

Case 1. This case examines these simplified braids with r subwords of the form
σ1σ2 · · · σr−1. From the simplified braid word form w, it is known that there are
m−n+1 subwords of the form σ1σ2 · · · σn−1, where n represents the initial number
of strands in the braid. For each stabilization, the number of strands in the braid is
decreased by one, and the number of subwords of σ1σ2 · · · σn′−1, where n′ is the
number of strands in the braid, is increased by one since the maximum index n′− 1
is decreased with each stabilization. If x is equal to the number of stabilizations
that must be used to obtain a full twist, then this relationship gives

(m− n+ 1)+ x = n− x .
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Solving this equation for x yields

x =
2n−m− 1

2
.

Case 2. Now this case will examine when r+1 subwords of the form σ1σ2 · · · σr−1

are present in the simplified braid word of a Klein link. Similar to Case 1, it is
known that there are m− n+ 1 subwords of σ1σ2 · · · σn−1, and each stabilization
decreases the number of strands in the braid by one. However, specific to this case,
it is known that there is one additional σ1σ2 · · · σn−1 subword that is unnecessary
in the formation of the full twist. Thus, where x is still the number of stabilizations
needed,

(m− n+ 1)− 1+ x = n− x .

Solving this equation for x yields

x =
2n−m

2
.

If the two cases are compared, it can be seen that the values for x only differ
by 1

2 . Thus, they can be combined with the relationship

x =
⌊2n−m

2

⌋
.

These stabilizations, which reduce the number of strands in the braid, each
correspond to the elimination of one crossing from the reduced braid word. Since
the resulting braid word contains a full twist and is positive, the braid is very
positive, and by Section 3, has a minimum number of crossings. Thus,

c(K (m, n))= m(n− 1)− n2
−n
2
−

⌊2n−m
2

⌋
. �

6. Conclusion

These theorems increase our knowledge of Klein links [Bowen et al. 2014; Catalano
et al. 2010; Shepherd et al. 2012; Freund and Smith-Polderman 2013], while
providing new properties that can be used to find additional connections between
torus links and Klein links. With previous results regarding the crossing number for
K (m, n) with m ≤ n and for m = 0 or n= 0, the crossing number for any Klein link
in this set can be calculated [Catalano et al. 2010; Shepherd et al. 2012]. Through
the use of these theorems, we have completed a catalog of Klein links that lists the
crossing number, number of components, and complete Alexander–Briggs notation
(if available) for all Klein links between K (1, 0) and K (8, 8) [Bowen et al. 2014].
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