0

 involve

 involve} a journal of mathematics

Enhancing multiple testing: two applications of the probability of correct selection statistic

Erin Irwin and Jason Wilson

Enhancing multiple testing: two applications of the probability of correct selection statistic

Erin Irwin and Jason Wilson
(Communicated by Timothy O'Brien)

Abstract

The calculation of the probability of correct selection (PCS) shows how likely it is that the populations chosen as "best" truly are the top populations, according to a well-defined standard. PCS is useful for the researcher with limited resources or the statistician attempting to test the quality of two different statistics. This paper explores the theory behind two selection goals for PCS, G-best and d-best, and how they improve previous definitions of PCS for massive datasets. This paper also calculates PCS for two applications that have already been analyzed by multiple testing procedures in the literature. The two applications are in neuroimaging and econometrics. It is shown through these applications that PCS not only supports the multiple testing conclusions but also provides further information about the statistics used.

1. Introduction

Because of the advancements in technology and science, a new development in statistics must involve correctly and usefully analyzing massive datasets. With internet applications and financial data, there can be as many as ten million populations to analyze, and sometimes more. Statisticians have developed methods such as family-wide error control and the false discovery rate to deal with the multiple testing problem - the problem of finding too many false positives when testing k hypotheses simultaneously. This paper deals instead with ranking and selection methodology, which is a separate branch of statistics that has also been expanded to apply to massive datasets.

Ranking and selection methodology (RSM) is a well-defined system of ranking a set of populations based on sample data and selecting those that are "best". In laboratory research, resources are always limited. A scientist may want to know which of 10,000 genes available will provide the most information, to avoid studying

[^0]all of them. Similarly, no one can invest in every company on the stock market, and so an investor only wants to know which ones will make the most money. In these two cases, best can be defined as the highest expression levels or the highest average returns on investment, respectively. Traditional hypothesis tests are not meant for ranking and selection purposes. Instead, one can calculate the probability of correct selection (PCS) to evaluate a chosen set of populations and see if the best have actually been chosen.

As with multiple testing procedures, PCS has evolved in the last century from being accurate with large datasets (≈ 10 samples) to being accurate with massive datasets. The two previous methods of ranking and/or selecting the best populations are the indifference zone method (IZ), originated by Robert Bechhofer [1954], and the subset selection method (SS), originated by Shanti S. Gupta [1956]. More recently there have been improvements in PCS for massive datasets by Cui and Wilson [2008] in the form of G-best and d-best selection. In this paper, we explore both the theory and some applications of this improved method of calculating PCS.

Specifically, we look at the definitions of G-best and d-best selection, the use of index sets in those definitions, and the use of each selection goal. We also apply PCS to a neuroimaging dataset and an econometrics dataset. We find that PCS supports the results found using multiple testing procedures with the neuroimaging application. In addition, PCS provides us with a measure of how accurate our choice of the best populations was. We were able to find the probability that the populations we chose as best based on sample data actually were the best populations. The same information was found for the econometrics data, which is measured by two statistics. PCS was easily adapted for both statistics. These applications show the usefulness of PCS and how it can be applied generally.

The remainder of this paper is organized as follows. Section 2 gives account of the theory behind PCS and G-best and d-best selection. Two applications of PCS to datasets already analyzed by multiple testing procedures are given in Section 3. Finally, we draw conclusions in Section 4.

2. G-best and d-best selection

2.1. Introduction. This section describes the mathematical theory behind G-best and d-best selection. The purpose of ranking and selection methodology is ultimately to choose the top t populations for some specified t. To do this, we first look at how to denote the ranking of both population parameters and sample statistics. We also use sets of indices to make the definitions of G-best and d-best selection more compact. The notation is somewhat subtle, but necessary, and is covered in Section 2.2. Furthermore, in Section 2.3, we define both G-best and d-best selection in terms of index sets, and describe how they each meet different needs of

Population i	1	2	3	4	5
Sample mean Y_{i}	2.97	1.26	2.90	3.58	1.36
True mean θ_{i}	2.30	1.70	2.50	4.20	2.50

Table 1. Each column of this table of example statistics shows information about a hypothetical population. The populations are numbered $i=1, \ldots, 5$. All of this information will be used to illustrate the notation for PCS.
a researcher. We formally state how to calculate PCS in Section 2.4. Finally, we note the improvements these selection goals make for analyzing massive datasets in Section 2.6.
2.2. Notation. For clarification, we will use the following example throughout this section. Suppose we know the true means from five populations of interest. We also have taken samples from each population, and have calculated each sample mean. Our example data is given in Table 1.

With this in mind, consider k populations, each with the same cumulative distribution function (CDF), except with varying location parameter $\theta_{i}, i=1, \ldots, k$. In the example, we have $k=5$. Let $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{k}\right)$ be the vector of these parameters. In Table $1, \theta_{1}$ would then be equal to 2.30 . We are really interested in the order of the parameters, and so also have a numbering system for rank. Let $\theta_{(1)} \leq \cdots \leq \theta_{(k)}$ be the ordered parameters of $\boldsymbol{\theta}$. For example, in the table, $\theta_{(1)}=1.70$, while $\theta_{(5)}=4.20$.

Sometimes a researcher is interested in the largest statistics, and sometimes the smallest. The definition of the best populations must be defined explicitly for each application. Without loss of generality we assume in this paper that the best population has the largest statistic. What we are ultimately trying to find, then, is the population with the top t parameters, $\theta_{(k-t+1)}, \ldots, \theta_{(k)}$, or the top t parameters themselves. For example, if we want the top $t=3$ means from our example, we would want $\theta_{(5-3+1)}, \ldots, \theta_{(5)}$, or $\theta_{(3)}, \theta_{(4)}$, and $\theta_{(5)}$.

Because the top parameters are assumed to be unknown, we must pick a statistic Y to estimate the unknown population parameter. Each statistic will have a continuous CDF. Y_{i} denotes the particular statistic of the i-th population. If we are interested in the usual mean, for example, let the statistic Y denote the mean, so that

$$
\begin{aligned}
Y_{2} & =Y\left(X_{2,1}, X_{2,2}, X_{2,3}\right) \\
& =(.75+1.78+1.25) / 3=1.26
\end{aligned}
$$

where $X_{2,1}, X_{2,2}, \ldots$ denote particular observations from the second population.
To order the sample statistics, we use the notation $Y_{[i]}$ to indicate that $Y_{[1]} \leq$ $Y_{[2]} \leq \cdots \leq Y_{[k]}$. On the other hand, we denote by $Y_{(i)}$ the sample statistic that

Population i	2	5	3	1	4
Sample mean	$Y_{[1]}=1.26$	$Y_{[2]}=1.36$	$Y_{[3]}=2.90$	$Y_{[4]}=2.97$	$Y_{[5]}=3.58$
True mean	$\theta_{(1)}=1.70$	$\theta_{(3)}=2.50$	$\theta_{(3)}=2.50$	$\theta_{(2)}=2.30$	$\theta_{(4)}=4.20$

Table 2. This table contains the same information as Table 1, but with the technical notation for PCS added. It is also now sorted by sample mean from lowest to highest.
is drawn from the same population as the ordered parameter $\theta_{(i)}$. With Table 1, then, $Y_{[4]}=Y_{(2)}=2.97$, because 2.97 is the fourth largest statistic, but it was from the population with $\theta_{(2)}$. With this notation, we can label our data, illustrated in Table 2.

To choose which populations we should assert to be the top t, we use the top t statistics. The way we will notate correct selection is using index notation. Let s be the set of indices of the top t statistics. For example, if $t=1$, then $Y_{[5]}$ is the top statistic, but it comes from population $i=4$. So s in this case would be $s=\{4\}$. Then let A_{t} be the set of indices of the top t population parameters. In our case, $\theta_{(4)}$ is the highest, and also comes from population $i=4$. Therefore, $A_{t}=\{4\}$ in this case as well. Rule R resulting in a correct selection is denoted by

$$
\mathrm{CS}_{t}=\left\{s=A_{t}\right\} .
$$

Our example would yield a correct selection, then, since the sets s and A_{t} are equal.
It is important to note here that if two population parameters are equal $\left(\theta_{i}=\theta_{j}\right.$ for some $i \neq j$), both are ranked equally, as we have done in Table 2. In past selection methods, if more than one parameter was equal in value, only one would be randomly chosen and asserted as the correct selection. This may significantly reduce the value of PCS in an unnecessary manner. We will handle this situation in this paper similarly to Cui and Wilson [2008]. If population parameters θ_{i} and θ_{j} are equal, then $A_{t}=\{i\}$ or $\{j\}$. In other words, if $t=1$ and $\theta_{i}=\theta_{j}$ are the top ranked populations, then either $s=\{i\}$ or $s=\{j\}$ will result in a correct selection. In our example, if $t=2$, then $A_{t}=\{4,3\}$ or $A_{t}=\{4,5\}$ because 4.20 and 2.50 are the two largest values among the parameters. Therefore $s=\{4,3\}$ or $s=\{4,5\}$ would both result in a correct selection. This generalizes to handle more than two populations with the same values.
2.3. G-best and d-best selection. All of this notation is the set-up for the two selection goals we discuss in this paper: G-best and d-best selection, as defined by Cui and Wilson [2008]. These are two different ways to define whether the populations that we choose as best really are the best. One can use these methods before an experiment to determine how many subjects to study in order to ensure the
selection of the top populations. After an experiment, one can use these methods to calculate the probability that the researcher has found the actual top t populations.

If our previous toy example was an actual experiment, we might have a need to find the top, say, one statistic, but we have the resources to study two. We would then use G-best selection, where we choose a fixed amount of populations, $t+G$, that contains the top t statistics. On the other hand, if we simply needed the populations to be within a certain threshold of quality, we would use d-best selection. In d-best selection, we are finding a random number of populations, say r, which contains populations that are within a certain distance d from the top t populations. The number r is determined by an interval of prespecified length d.

Definition 2.1. Let s be the set of the indices corresponding to the top $t+G$ statistics for some prespecified G. Let A_{t} be a set of indices of the top t parameters. Then

$$
\mathrm{CS}_{G, t}=\left\{A_{t} \subseteq s\right\} .
$$

A set s that satisfies $\mathrm{CS}_{G, t}$ is called G-best, and the probability that we have chosen a G-best set is denoted by $P\left(\mathrm{CS}_{G, t}\right)$.

Note that in the case that every population parameter is unique, then A_{t} will also be unique. If two or more population parameters are equal, then A_{t} may not be unique. Thus, the definition only calls for a possible set of A_{t} to be a subset of s in order to satisfy $\mathrm{CS}_{G, t}$.

For example, let $t=2$ and let $G=1$. We will choose $t+G=3$ populations that we assert to contain the top two populations. We would then choose, from Table 2, $Y_{4}=Y_{[5]}=3.58, Y_{1}=Y_{[4]}=2.97$ and $Y_{3}=Y_{[3]}=2.90$ as our top three statistics, to make $s=\{1,3,4\}$. A_{t} would be $A_{t}=\{4,3\}$ or $\{4,5\}$. In this case, since one possible A_{t} is contained in s, we have chosen correctly.

With this definition, a set is not G-best unless we have actually chosen the top t statistics. On the other hand, instead of only choosing t statistics to work with, we are choosing $t+G$ for some prespecified G. Thus, the G parameter allows one to control the minimum proportion of best populations in the correct selection. For example, selecting the top 20 out of 20 voxel clusters in a neuroimaging scan might be highly unlikely. In this scenario we would have $t=20$ and $G=0$. This does not allow for any of the chosen populations to be wrong. However, suppose we can determine that having 90% of the populations actually being the best is allowable. In this case, $t=18$ and $G=2$, and the top 18 out of 20 might have a reasonable chance of actually being correct. It may be a low $P\left(\mathrm{CS}_{G, t}\right)$, but a reasonable chance is still an improvement. The point of ranking and selection procedures is to narrow down the populations to the best ones, and controlling the proportion of top populations among a group of populations does this.

Figure 1. The labels $t_{1}(d), t_{2}(d)$, and $t_{3}(d)$ denote the number of population parameters in their respective intervals. Note that $t_{1}(d)+t_{2}(d)=t . A_{t 1}$ and $A_{t 2}$ are the sets of indices of the populations with values in their respective intervals.

Definition 2.2. Let s be the set of the indices corresponding to the top t statistics. Let $A_{t 1}$ be the set of indices of the parameters in the interval $\left(\theta_{(k-t+1)}+d, \theta_{(k)}\right]$, and $A_{t 2}$ the set of indices of the parameters in the interval $\left[\theta_{(k-t+1)}-d, \theta_{(k-t+1)}+d\right]$. See Figure 1 for a graphical representation of these intervals. A correct selection occurs when

$$
{ }_{d} \mathrm{CS}_{t}=\left\{A_{t 1} \subseteq s \text { and } s \backslash A_{t 1} \subseteq A_{t 2}\right\},
$$

where \backslash denotes the set difference operator $B \backslash C=\{x: x \in B$ and $x \notin C\}$. If a set s satisfies ${ }_{d} \mathrm{CS}_{t}$, then it is said to be a d-best set. The probability of selecting a d-best set is $P\left(d \mathrm{CS}_{t}\right)$.

This selection goal is more complex. To illustrate, let $t=3$ and $d=0.5$. Our s remains the same, because our former top three statistics are still the top three. So $s=\{1,3,4\}$. Referring to Table 2, we see that $A_{t 1}$ would be the set of indices of the parameters in the interval $\left(\theta_{(3)}+0.5, \theta_{(5)}\right]=(3.00,4.20)$. So $A_{t 1}=\{4\}$. Then $A_{t 2}$ would be the set of indices of the parameters in the interval $\left[\theta_{(3)}-0.5, \theta_{(3)}+0.5\right]=[2.00,3.00]$. So $A_{t 2}=\{1,3,5\}$. Our result is that $A_{t 1}=$ $\{4\} \subseteq s$ and $s \backslash A_{t 1}=\{1,3\} \subseteq A_{t 2}=\{1,3,5\}$, resulting in a correct selection.

This selection goal has different advantages and disadvantages than G-best selection. Unlike a G-best set, a d-best set could contain indices of populations that are not actually in the top t, and exclude some that are in the top t. The population with the highest parameter must be chosen for the set to be considered a correct selection though. Furthermore, d-best selection ensures that the populations deemed a correct selection are within d of the best parameters. The situation for using d-best selection would be when a selection of t populations is desired, and the difference of d units between parameters is unimportant. For example, selecting the absolute top ten best performing stocks might be virtually impossible (low $P\left({ }_{d} \mathrm{CS}_{t}\right)$), but the ten best within $\$ 0.50$ might have a reasonable chance of success. Because fifty cents is negligible, the margin of error is acceptable.
2.4. Calculation of G-best and d-best selection. The formula for $P\left(\mathrm{CS}_{G, t}\right)$ and $P\left({ }_{d} \mathrm{CS}_{t}\right)$ is the same, but the calculations will differ based on the definitions of
G-best and d-best sets. The formula is

$$
\begin{equation*}
\sum_{g=1}^{|S|} \int_{-\infty}^{\infty} \prod_{j=k-t+1}^{k}\left[1-F\left(y-\theta_{s_{g, j}}\right)\right] d\left\{\prod_{j=1}^{k-t} F\left(y-\theta_{\bar{s}_{g, j}}\right)\right\} \tag{1}
\end{equation*}
$$

We use S to denote the set of all G-best or d-best sets, or all the sets s that will result in a correct selection. Furthermore, let $\boldsymbol{\theta}_{g}$ be the g-th combination of ordered parameters. This will be a set of sets, each of which will contain the highest parameter $\theta_{(k)}$ and be of size t. Then $\boldsymbol{\theta}_{g}=\left\{\boldsymbol{\theta}_{s_{g, j}}, \boldsymbol{\theta}_{\bar{s}_{g, j}}\right\}$, where $\boldsymbol{\theta}_{s_{g, j}}$ denotes the combinations of parameters that satisfy the specific sets $s_{g, j} \in S$ and $\boldsymbol{\theta}_{\bar{s}_{g, j}}$ contains the combinations of parameters that do not satisfy G-best or d-best sets. That is, $\bar{s}_{g, j} \in \bar{S}$. $F\left(y-\theta_{s_{g, j}}\right)$ is the continuous cumulative distribution function of the statistic y, adjusted to center around 0 . See [Cui and Wilson 2008] for the derivation of (1).

These are extremely difficult integrals to integrate, analytically and even numerically. There are expansions that simplify the expression in order to make a numerical solution possible (specifically, via Gauss-Hermite quadrature [Cui and Wilson 2008]). To calculate the PCS for our datasets we use an R package that uses a parametric bootstrapping method.
2.5. Performance of G-best and d-best selection. A simulation study has been performed in [Cui and Wilson 2009] to assess the performance of both G-best and d best selection. In this study, it was shown that for populations of a known parametric distribution the estimated PCS was accurate for both G-best and d-best selection when the distributional assumptions were met. Figure 2 shows one simulation of normal data with normal estimated PCS, done in [Cui and Wilson 2009]. Note that for this simulation $n=3$ and $\sigma^{2}=3$, which means the standard error is 1 . Thus, when $n>\sigma^{2}$, the error decreases, and this was something that could be controlled. Another aspect of PCS that was studied in [Cui and Wilson 2009] was the use of shrinkage estimators. Shrinkage estimators are functions of the statistics designed to decrease the bias in the estimated PCS. The second row of graphs in Figure 2 uses a Stein-type shrinkage estimator and shows an increase in error compared to the PCS calculated with no shrinkage estimator. Cui and Wilson [2009] showed that this increase in error was characteristic for four different shrinkage estimators, which did not in general improve the bias. Thus, these shrinkage estimators were not recommended, and are not used in this paper. It was also shown that the PCS for G-best selection was still accurate when the normality assumption was violated, but the PCS for d-best selection had high error for high values of d.

In the case that distributional assumptions are not satisfied, a nonparametric method may be used through bootstrapping if the sample size is large enough. In this case, a sufficiently narrow 95% confidence interval for the PCS could be found for large values of t. For example, one simulation consisted of two groups of 100 normal

d-best, with shrinkage estimator

G-best, without shrinkage estimator

G-best, with shrinkage estimator

Figure 2. Simulated normal data with normal estimated PCS, with t on the horizontal axes and PCS on the vertical. Note that $n=3$, $\sigma^{2}=3$, so $\mathrm{SDE}=1$. The black lines indicate the true PCS values and the gray lines indicate the estimated PCS in all graphs.
populations with variance 1 at a distance of three standard deviations away from one another. The 95% confidence interval for $P\left(d=1 \mathrm{CS}_{t=100}\right)$ was $0.69-1.00$. The 95% confidence interval for $P\left(\mathrm{CS}_{G=10, t=100}\right)$ was $0.74-1.00$ [Cui and Wilson 2009].
2.6. The improvements for massive datasets. The use of G-best and d-best selection is very practical with massive datasets. Ranking and selection methods to reduce the number of populations to study can be used along with multiple testing methods, but may even suit the needs of the researcher better than these methods. Furthermore, G-best and d-best selection are an improvement on previous definitions of PCS with respect to massive datasets. First of all, because G-best and d-best sets are defined in terms of index sets, they deal with the problem of having two equal parameters effectively. Also, d-best selection is especially useful for a dataset with high density, which is characteristic of massive datasets. The more the population parameters are approximately equal to other parameters, the more dense the data is. A researcher may not actually be interested in the absolute top t populations, but rather which populations will be most worthwhile to study. With d-best selection, the researcher can choose an interval around the true top

Figure 3. View of a brain 3D scan, showing the coordinate crosssections containing a certain voxel (marked with $<$) situated in the front left of the brain, a little less than halfway from the bottom.
parameters that is allowably close to find populations that may not be the best, but will be worth spending time on.

3. Application

3.1. Introduction. Although G-best and d-best selection are fully generalizable, in the literature to date they have only been applied to microarray data. To test and illustrate the applicability and usefulness of $P\left(\mathrm{CS}_{G, t}\right)$ and $P\left({ }_{d} \mathrm{CS}_{t}\right)$, we will calculate the probability of correct selection in neuroimaging [Nichols and Hayasaka 2003] and econometrics [Romano and Wolf 2005] data. To calculate the probability of correct selection for these applications, we use the R package PCS, which can be found at www.r-project.org.
3.2. Neuroimaging. First of all, we look at brain scans from a test on verbal fluency. Scientists conducted the study on five people, who both listened passively and said words aloud. They then studied whether areas of the brain were activated more in listening to or in generating words. To study the brain, they used 3D scans composed of voxels, which are three-dimensional pixels. Figure 3 shows the shaded voxels that represent activated areas of the brain common to all five subjects.

Nichols and Hayasaka [2003] took this study and measured each of the 55,027 voxels of the brain scans to see if any part of the brain was more active for word generation as opposed to passive listening. With this particular experiment, no voxels were found to be significant. To analyze these results with PCS, we used the program SPM8 [Friston et al. 2013] to find the possible clusters of voxels that might be significant in the conjunction of all five brains. We then calculated the probability that

t	1	2	3	4
$P\left(\mathrm{CS}_{0, t}\right)=P\left({ }_{0} \mathrm{CS}_{t}\right)$	0.11	0.02	0.00	0.00
$P\left(\mathrm{CS}_{2, t}\right)$	0.33	0.11	0.03	0.01
$P\left(\mathrm{CS}_{4, t}\right)$	0.49	0.22	0.08	0.03
$P\left(\mathrm{CS}_{6, t}\right)$	0.60	0.33	0.15	0.06
$P\left(0.5 \mathrm{CS}_{t}\right)$	0.19	0.04	0.05	0.03
$P\left({ }_{1} \mathrm{CS}_{t}\right)$	0.24	0.19	0.35	0.29

Table 3. These low probabilities support Nichols' and Hayasaka's findings. For example, when $t=3$ and $G=4$, the probability that the clusters selected actually are best is only .08 .
one, two, three or four of these clusters may actually be the best clusters of voxels, or show the most brain activity. The calculation of PCS for this data supports Nichols' and Hayasaka's conclusion that there were no significant voxels (see Table 3).

The very low probabilities in Table 3 show that if one were to choose even one cluster as significant, it would not likely be the best cluster of voxels. Consider the probability of correct selection of $t=1$ for both $G=2$ and $d=0.5$. To understand the meaning of the probability of a G-best selection, refer to Definition 2.1. For $t=1$ and $G=2$, the probability of correct selection is .33 . In the table, this is denoted by $P\left(\mathrm{CS}_{2,1}\right)=.33$. If one chooses the top three clusters of voxels, there is only a .33 probability that the best cluster is among them. For d-best selection, refer to Definition 2.2. With $t=1$ and $d=0.5$, the probability of correct selection is .19. That is, $P\left(0.5 \mathrm{CS}_{1}\right)=.19$. The probability that the top cluster of voxels is even within a margin of 0.5 of the top clusters is only .19 . This complements the multiple testing result that none of the voxels are significantly different from any of the others. The highest probability found was for $t=1$ and $G=6$. These parameters result in a probability of more than half. This supports Nichols' and Hayasaka's findings, but adds the information that we would have to choose seven clusters just to find one that stands out.
3.3. Econometrics. The economics data we chose comes from the Center for International Securities and Derivatives Market from January 1992 to March 2004. There are 105 hedge funds, and each fund has 147 recorded returns, one from each month in the time period. Instead of simply recording the return on investment for each month, the data records the amount the return is above or below a certain benchmark. In this case, the benchmark is the risk-free rate, i.e., the rate of return on an investment with zero risk. Romano and Wolf [2005] used stepwise multiple testing procedures to find the top ten absolute best performing funds. They defined best as the fund with the largest return in excess of the benchmark. We have calculated the probability that the ten funds that Romano and Wolf chose are

Excess	Fund
1.70	Libra Fund
1.41	Private Investment Fund
1.36	Aggressive Appreciation
1.27	Gamut Investments
1.26	Turnberry Capital
1.14	FBR Weston
1.11	Berkshire Partnership
1.09	Eagle Capital
1.07	York Capital
1.07	Cabelli International

Table 4. The ten highest-performing funds from January 1992 to
March 2004, ranked by average return in excess of the risk-free rate.
actually the top ten using different parameters of G-best and d-best selection, but always choosing ten funds. The index set of the ten chosen funds is

$$
s=\{31,105,16,8,25,101,38,4,82,57\}
$$

and the chosen funds according to [Romano and Wolf 2005] are shown in Table 4. Table 5 shows the probabilities of correct selection.

From these probabilities, one can see that it is not very certain that all ten funds chosen are truly the top ten funds. The probability $P\left(\mathrm{CS}_{0,10}\right)=P\left({ }_{0} \mathrm{CS}_{10}\right)=.13$ shows that these ten funds only have a 13% chance of being the top ten. Using G-best selection, we can be confident that these top ten statistics contain the top five funds, but that only accounts for half of the funds chosen. Furthermore, by looking at d-best selection, there is an .86 probability that the top ten funds found with the absolute statistic are within two ranks of the top ten funds. This is actually a very large margin. The reason the probabilities are not that certain is because there is a large amount of variability in this statistic. To address this issue, Romano and Wolf propose standardizing the statistic.

Romano and Wolf studentize the absolute statistic, that is, they used the usual t statistic, which is calculated by dividing the statistic used above by the standard error. Romano and Wolf estimate variance using a sophisticated method involving a timeseries bootstrap, whose code is unavailable. Thus, for this paper we simply divide the first statistic by the usual standard error (standard deviation divided by \sqrt{n}) of each fund. The top ten funds Romano and Wolf chose using the t-statistics were a completely disjoint set from the nonstudentized set of best funds. The index set of the top ten funds found using the usual standard error is

$$
s=\{61,60,102,100,23,30,18,22,63,46\}
$$

Absolute Statistic		Studentized Statistic	
$P\left(\mathrm{CS}_{G, t}\right)$	$P\left({ }_{d} \mathrm{CS}_{t}\right)$	$P\left(\mathrm{CS}_{G, t}\right)$	
$P\left(\mathrm{CS}_{0,10}\right)=0.13$	$P\left({ }_{0} \mathrm{CS}_{10}\right)=0.13$	$P\left(\mathrm{CS}_{0,10}\right)=0.71$	$P\left({ }_{d} \mathrm{CS}_{t}\right)$
$P\left(\mathrm{CS}_{1,9}\right)=0.29$	$P\left({ }_{0.5} \mathrm{CS}_{10}\right)=0.32$	$P\left(\mathrm{CS}_{10}\right)=0.71$	
$P\left(\mathrm{CS}_{2,8}\right)=0.53$	$P\left({ }_{1} \mathrm{CS}_{10}\right)=0.52$	$P\left(\mathrm{CS}_{2,8}\right)=1.00$	$P\left({ }_{0.5} \mathrm{CS}_{10}\right)=0.71$
$P\left(\mathrm{CS}_{3,7}\right)=0.74$	$P\left({ }_{1.5} \mathrm{CS}_{10}\right)=0.78$	$P\left(\mathrm{CS}_{3,7}\right)=1.00$	$P\left({ }_{1} \mathrm{CS}_{10}\right)=0.95$
$P\left(\mathrm{CS}_{4,6}\right)=0.92$	$P\left({ }_{2} \mathrm{CS}_{10}\right)=0.86$	$P\left(\mathrm{CS}_{4,6}\right)=1.00$	$P\left({ }_{2} \mathrm{CS}_{10}\right)=0.95$
$P\left(\mathrm{CS}_{5,5}\right)=1.00$	$P\left(2.5 \mathrm{CS}_{10}\right)=0.93$	$P\left(\mathrm{CS}_{5,5}\right)=1.00$	$P\left({ }_{2.5} \mathrm{CS}_{10}\right)=1.00$
$P\left(\mathrm{CS}_{6,4}\right)=1.00$	$P\left({ }_{3} \mathrm{CS}_{10}\right)=0.99$	$P\left(\mathrm{CS}_{6,4}\right)=1.00$	$P\left({ }_{3} \mathrm{CS}_{10}\right)=1.00$
$P\left(\mathrm{CS}_{7,3}\right)=1.00$	$P\left(3 \mathrm{CS}_{10}\right)=1.00$	$P\left(\mathrm{CS}_{7,3}\right)=1.00$	$P\left(3.5 \mathrm{CS}_{10}\right)=1.00$
$P\left(\mathrm{CS}_{8,2}\right)=1.00$	$P\left({ }_{4} \mathrm{CS}_{10}\right)=1.00$	$P\left(\mathrm{CS}_{8,2}\right)=1.00$	$P\left({ }_{4} \mathrm{CS}_{10}\right)=1.00$
$P\left(\mathrm{CS}_{9,1}\right)=1.00$	$P\left({ }_{4.5} \mathrm{CS}_{10}\right)=1.00$	$P\left(\mathrm{CS}_{9,1}\right)=1.00$	$P\left(4.5 \mathrm{CS}_{10}\right)=1.00$

Table 5. The first two columns show the PCS for the absolute statistic. These probabilities are significantly lower than those from the studentized statistic, shown in the third and fourth columns. The difference is due to the studentized statistic accounting for the variability in the data.

Just as in [Romano and Wolf 2005], this is a completely different set of ten funds chosen as best. Table 5 shows the probability that the studentized statistic shows the true top ten studentized funds.

As one can see, the probability that these ten chosen funds are in actuality the best funds is significantly more than with the nonstudentized statistic. From these results, we can see that the studentized statistic, even using the usual standard error for each fund, is much more likely to identify the true best hedge funds according to the t-statistic.

Romano and Wolf show that the studentized statistic is a better measure of the performance of a fund because it takes into account the amount of risk involved. As one can see in Figure 4, the magnitude of the return of the top fund chosen according to the absolute statistic is much larger than that of the top fund chosen according to the studentized statistic. However, the second graph in Figure 4 shows that the return of the top fund according to the studentized statistic is in positive excess of the risk-free rate for the vast majority of the months recorded. The high probabilities found with PCS further support that the standardized statistic is superior to the absolute statistic. It is also important to note that the PCS of the studentized statistics may change with the more sophisticated estimate of variance. Still, even in this application, PCS provides useful information on both the absolute and studentized statistics.
3.4. Results. Applying PCS to these areas shows how useful ranking and selection methodology can be. The probability of correct selection has thus far been consistent

Figure 4. The graph on the left shows the return of the fund chosen as best according to the absolute statistics (black) and of the fund chosen as best according to the studentized statistic (red). The graph on the right shows the return of the top fund chosen using the studentized statistic alone.
with the latest multiple testing procedures, as it is in the neuroimaging application. However, PCS provides different information than a multiple hypothesis test. In each application we found a measure of how accurate our chosen best populations actually are. Instead of simply choosing the best statistics, one can have a better idea of how close they are to actually being best. If a neuroimaging scientist actually found a significant cluster of voxels, he or she would know how unlikely it is for that cluster to be best. With the econometrics application, investors can see the probability that the ten funds chosen either contain the actual top t funds, or that they are within a certain margin of the actual top ten funds. This is valuable information that can help drive the development of a new hypothesis.

4. Conclusions

The probability of correct selection is a useful tool in statistics, and we have striven to illustrate this through both the theory behind G-best and d-best selection and its application to differing areas. The use of PCS deals with the problem of massive datasets by accommodating dense datasets that may have many parameters in common or close enough to study. Furthermore, G-best and d-best selection are useful tools for a researcher with limited resources. Instead of having a list of significant populations too large to adequately study, one can actually find the
populations that are most likely to be the best. Depending on the needs of the researcher, G-best or d-best selection may be more useful. Both selection goals were found to be consistent with previous claims of significance in the neuroimaging application, which supported their validity. In the econometrics application, PCS provided information on two separate statistics in the same study, which showed its adaptability. In both applications, PCS provided additional information that was not available through hypothesis testing. With PCS, we gain an insight into the quality of the populations chosen as best by seeing how likely it is that they truly are best. Clearly, PCS is a powerful tool.

For further research, we would like to find the variance estimator for a time-series regression bootstrap in order to find the PCS of the top ten funds actually chosen by Romano and Wolf. We would also like to apply PCS to mass spectrometry and other large k populations found in the literature.

References

[Bechhofer 1954] R. E. Bechhofer, "A single-sample multiple decision procedure for ranking means of normal populations with known variances", Ann. Math. Statistics 25 (1954), 16-39. MR 15,638b Zbl 0055.13003
[Cui and Wilson 2008] X. Cui and J. Wilson, "On the probability of correct selection for large k populations, with application to microarray data", Biom. J. 50:5 (2008), 870-883. MR 2542350
[Cui and Wilson 2009] X. Cui and J. Wilson, "A simulation study on the probability of correct selection for large k populations", Comm. Statist. Simulation Comput. 38:6-7 (2009), 1244-1255. MR 2749857 Zbl 1167.62020
[Friston et al. 2013] K. J. Friston, J. Ashburner, G. Flandin, J. Heather, A. Holmes, and J.-B. Poline, "Statistical parametric mapping", 2013, available at http://www.fil.ion.ucl.ac.uk/spm.
[Gupta 1956] S. S. Gupta, On a decision rule for a problem in ranking means, Ph.D. thesis, University of North Carolina, Chapel Hill, 1956. MR 2938890 Zbl 0073.35901
[Nichols and Hayasaka 2003] T. Nichols and S. Hayasaka, "Controlling the familywise error rate in functional neuroimaging: a comparative review", Stat. Methods Med. Res. 12:5 (2003), 419-446. MR 2005445 Zbl 1121.62645
[Romano and Wolf 2005] J. P. Romano and M. Wolf, "Stepwise multiple testing as formalized data snooping", Econometrica 73:4 (2005), 1237-1282. MR 2149247 Zbl 1153.62310

Received: 2011-08-29
erin.c.irwin@biola.edu
jason.wilson@biola.edu Mathematics and Computer Science Department, Biola University, 13800 Biola Avenue, La Mirada, CA 90639, United States

involve

msp.org/involve
EDITORS
MANAGING Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone@latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@ math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US $\$ 140 /$ year for the electronic version, and $\$ 190 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
. mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2015 Mathematical Sciences Publishers
Enhancing multiple testing: two applications of the probability of correct selection 181
statistic
Erin Irwin and Jason Wilson
On attractors and their basins 195
Alexander Arbieto and Davi Obata
Convergence of the maximum zeros of a class of Fibonacci-type polynomials 211
Rebecca Grider and Kristi Karber
Iteration digraphs of a linear function 221
Hannah Roberts
Numerical integration of rational bubble functions with multiple singularities 233
Michael Schneier
Finite groups with some weakly s-permutably embedded and weakly 253
s-supplemented subgroupsGuo Zhong, XuanLong Ma, Shixun Lin, Jiayi Xia and JianxingJin
Ordering graphs in a normalized singular value measure 263
Charles R. Johnson, Brian Lins, Victor Luo and Sean MeehanMore explicit formulas for Bernoulli and Euler numbers275
Francesca Romano
Crossings of complex line segments 285
Samuli Leppänen
On the ε-ascent chromatic index of complete graphs 295
Jean A. Breytenbach and C. M. (Kieka) Mynhardt
Bisection envelopes307
Noah Fechtor-Pradines
Degree 14 2-adic fields329
Chad Awtrey, Nicole Miles, Jonathan Milstead, Christopher Shill and Erin Strosnider
Counting set classes with Burnside's lemma 337
Joshua Case, Lori Koban and Jordan LeGrand
Border rank of ternary trilinear forms and the j-invariant 345
Derek Allums and Joseph M. Landsberg
On the least prime congruent to 1 modulo n 357Jackson S. Morrow

[^0]: MSC2010: 46N30, 47N30.
 Keywords: probability of correct selection (PCS), d-best, G-best, ranking and selection, neuroimaging, econometrics.

