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A proposed measure of network cohesion for graphs arising from interrelated
economic activity is studied. The measure is the largest singular value of a row-
stochastic matrix derived from the adjacency matrix. It is shown here that among
graphs on n vertices, the star universally gives the (strictly) largest measure. Other
universal comparisons among graphs with larger measures are difficult to make,
but one is conjectured, and a selection of empirical evidence is given.

1. Introduction

In [Cavalcanti et al. 2012; 2013] the authors studied the role of network “cohesion”
in the equilibration of economic or other activity among agents whose interaction
is governed by a particular graph. An example is the one in which adjacency is
the bordering relationship among countries. Giannitsarou and Johnson (personal
communication, 2011) proposed a particular numerical measure of network cohesion
and raised the question of which graph on n vertices resulted in the highest measure.
That measure may be described as follows. Let A be the adjacency matrix of a
graph G, define B D AC I , and let D be the positive diagonal matrix whose
diagonal entries are the row sums of B. If RDD�1B, then R is row-stochastic,
and �.G/, the measure of cohesion, is the largest singular value of R. Recall that
the singular values of R are the square roots of the eigenvalues of RRT . Another
application where the matrix R has appeared is in [Echenique and Fryer 2007],
where it is referred to as the matrix of social interactions.

Here, we show that, for any n, �.G/ is maximized by the star Sn. The measure
�.G/ is 1 if and only if G is regular, and 1 is the smallest possible value (Section 2,
Proposition 1). Using our methods, it is difficult to determine, in advance, the
relative position in this order of other graphs. Indeed, for graphs naturally defined
on any number of vertices, the position often changes with n. However, we do
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conjecture that the star plus an edge that connects two of the pendant vertices is
next after the star, based, in part, on empirical evidence. After that, however, there
may be no universal third place independent of n.

In the next section we mention known results that we use, and develop some
new ideas that are important for our observations. In particular, the entries of
RRT have a nice and useful interpretation. Then, we show the star yields the
highest measure by showing that a lower bound for the square of its largest
singular value beats an upper bound for that of any other graph. Finally, in an
Appendix, we give a selection of empirical information of interest (Table 1 and
Figures 2, 3, 4, 5).

2. Background and tools

Given a graph G on n vertices, let A be the adjacency matrix of G. Unless otherwise
noted, our notation follows [West 1996]. Let RD D�1.AC I/, where D is the
unique positive diagonal matrix such that R is row-stochastic. Let �.G/ denote the
maximum eigenvalue of RRT , and note that �.G/D

p
�.G/.

Proposition 1. For any connected graph G on n vertices, �.G/� 1, and �.G/D 1

if and only if G is regular.

Proof. Note that G is regular if and only if R is doubly stochastic. If R is doubly
stochastic, then it is a convex combination of permutation matrices by Birkhoff’s
theorem [Horn and Johnson 1990, Theorem 8.1.7], and therefore the operator
norm of R, which equals the maximum singular value, is 1. Let e 2 Rn denote
the vector with 1 in every entry. By the Cauchy–Schwarz inequality, keT Rk2 �

heT R; e=
p

ni D
p

nDkeTk2, with equality if and only if eT R is a multiple of eT .
Therefore, when R is row-stochastic but not doubly stochastic, the operator norm
of R is strictly greater than one. It follows that �.G/ > 1 when G is not regular. �

Note that D = diag.fdi C 1gi21;:::;n/, where di is the degree of vertex i in G.
Let C D .AC I/.AC I/T . The .i; j / entry of C , which we denote by cij , is
the number of vertices that are adjacent to both vertex i and vertex j , with the
convention that two adjacent vertices are common neighbors of each other, that is,
cij D jN Œi �\N Œj �j. In particular cii D di C 1. Thus the entries of RRT are

rij D
cij

.di C 1/.dj C 1/
: (1)

Lemma 1. Let RRT be defined as above and assume that n > 2. When i ¤ j ,
the largest possible values of rij are 1

3
and 1

4
. If rij D

1
3

for some i ¤ j , then
di D dj D 2 with cij D 3 or fdi ; dj g D f1; 2g with cij D 2 (see Figure 1).
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i j

i j

Figure 1. Possible adjacency graphs when rij D
1
3

.

Proof. We may assume that dj � di . Note that cij � di C 1; thus rij � 1=.dj C 1/.
If rij >

1
4

, then dj D 1 or dj D 2. In the former case, di D dj D 1, which can only
happen if nD 2, since G is assumed to be connected. In the latter case, di D 1 or
di D 2 while dj D 2. If di D 1 and dj D 2, then rij D cij=6 2

˚
0; 1

6
; 1

3

	
; depending

on the value of cij . If di D dj D 2, then rij D cij=9 2
˚
0; 1

9
; 2

9
; 1

3

	
: �

Suppose that G is a connected graph with n vertices such that every vertex has
degree 1 (is pendant) except for a single central vertex with degree n� 1. We refer
to any such graph as a star on n vertices, denoted by Sn. We may assume without
loss of generality that vertex 1 is the central vertex of the star. Using (1), we see
that, for the star,

RRT
D

2666666664

g
n

1
n
� � � � � �

1
n

g
n

1
2

1
4
� � �

1
4

::: 1
4

1
2

: : :
:::

:::
:::
: : :

: : : 1
4

g
n

1
4
� � �

1
4

1
2

3777777775
:

Note that RRT �
1
4
I is of rank 2, and therefore it is possible to explicitly calculate

the characteristic polynomial of this matrix. Recall [Horn and Johnson 1990,
Theorem 1.2.12] that the characteristic polynomial of a matrix is given by

p.t/D tn
�E1tn�1

CE2tn�2
C � � �C .�1/nEn;

where each Ek is the sum of the k-by-k principal minors of the matrix. For
RRT �

1
4
I , only the 1-by-1 and 2-by-2 principal minors can be nonzero. Thus the

characteristic equation for RRT �
1
4
I is

p.t/D tn
�

�
1

n
C

1

4
.n� 1/

�
tn�1
C

�
n� 4

4n2

�
.n� 1/tn�2:
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The nonzero roots of this polynomial are

1
4
.n� 1/C 1

n
˙

q�
1
4
.n� 1/C 1

n

�2
�

n�4
n2

2
;

and therefore the maximum eigenvalue of RRT for the star on n vertices is

�.Sn/D
1

4
C

1
4
.n� 1/C 1

n
C

q�
1
4
.n� 1/C 1

n

�2
�

n�4
n2

2
:

3. The star is a maximum

We seek to estimate the maximum eigenvalue �.G/ of RRT . The row sums of
RRT place constraints on �.G/. By [Horn and Johnson 1990, Theorem 8.1.22],

min
i

�X
j

rij

�
� �.G/�max

i

�X
j

rij

�
: (2)

For the star on n vertices, RRT �
1
4
I contains an .n�1/-by-.n�1/ submatrix with

all entries equal to 1
4

. It follows from the inclusion principle [Horn and Johnson
1990, Theorem 4.3.15] that �.Sn/�

1
4
n. Combining this with the maximum row

sum, we see that 1
4
n� �.Sn/�

1
4
nC 1

n
.

The following observation is an immediate consequence of Lemma 1:

Lemma 2. Suppose that n > 2, and consider the rows of RRT . If row i has
diagonal entry rii D

1
k

with k � 4 and no off-diagonal entry equals 1
3

, then the sum
of the entries in row i is at most 1

k
C

1
4
.n� 1/.

Let us make a basic observation which we will use in the proofs of several
subsequent propositions.

Lemma 3. Let c > 0. The function x 7! 1=.xC1/Ccx is concave up for all x > 0,
and therefore its maximum on any interval Œa; b� � .0;1/ is attained at one of
the endpoints.

The following observations about the row sums of RRT cover the cases when
Lemma 2 does not apply:

Lemma 4. Suppose that n > 3. If row i has diagonal entry rii D
1
2

and G is not
the star, then the sum of the entries in row i is at most �1

6
C

1
n
C

1
4
n.

Proof. Since rii D
1
2

, di D 1. Let j denote the vertex adjacent to i . The sum of the
entries in row i is then

rii C rij C

X
m¤i;j

rim D
1

2
C

1

dj C 1
C

X
m¤i;j

cim

dmC 1
:
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Note that cimD1 if there is an edge connecting vertexj to vertex m and cimD0 other-
wise. Therefore we have the following upper bound for the sum of entries in row i :

rii C rij C

X
m¤i;j

rim �
1

2
C

1

djC1
C

X
m2N.j/

1

2.dmC1/
:

If dj D n� 1, and the graph is not the star, then there must be at least two vertices
m1 and m2 such that dm1

> 1 and dm2
> 1. In this case an upper bound for the

sum of the entries in row i is

1

2
C

1

n
C

1

4
.dj � 3/C 2

1

6
D�

1

6
C

1

n
C

1

4
n:

If dj < n� 1, then

rii C rij C

X
m¤i;j

rim �
1

2
C

1

dj C 1
C

X
m2N.j/

1

2.dmC 1/

�
1

2
C

1

dj C 1
C

1

4
.dj � 1/:

Since 2�dj <n�1, we use Lemma 3 to see that an upper bound for this expression is

max
n

13

12
;�

1

4
C

1

n�1
C

1

4
n
o
:

For n> 3,

max
n

13

12
;�

1

4
C

1

n�1
C

1

4
n
o
� �

1

6
C

1

n
C

1

4
n: �

Lemma 5. Suppose n> 3. If row i has diagonal entry rii D
1
3

, then the sum of the
entries in row i is less than �1

6
C

1
n
C

1
4
n.

Proof. Since rii D
1
3

, di D 2. Let j and k denote the two vertices adjacent to i .

Case I. If there is an edge connecting j and k, then cij D cik D 3. If m¤ i is a
vertex adjacent to both j and k, then

rim D
2

3.dmC 1/
�

2

9
:

If m is only adjacent to one of j or k, then

rim D
1

3.dmC 1/
�

1

6
:



268 CHARLES R. JOHNSON, BRIAN LINS, VICTOR LUO AND SEAN MEEHAN

Let d Dmaxfdj ; dkg and DDmaxfdj ; dkg. There are at most d �2 vertices other
than i that are common neighbors of both j and k, and there are at most D � d

remaining vertices other than i that could be adjacent to exactly one of j or k.
Therefore the sum of the entries in row i is at most

riiC rij C rikC
2

9
.d �2/C

1

6
.D�d/��

1

9
C

1

.d C 1/
C

1

.DC 1/
C

1

18
dC

1

6
D:

In this case, 2� d �D� n�1. By Lemma 3, it follows that the possible maximum
values in the expression above occur when either d DD D 2, or d D 2, D D n�1,
or d DD D n� 1. The corresponding upper bounds on the row sum are

1;
1

6
C

1

n
C

1

6
n; �

1

3
C

2

n
C

2

9
n:

Each of these bounds is less than �1
6
C

1
n
C

1
4
n for all n> 3.

Case II. If there is no edge connecting j with k, then cij D cik D 2. If m¤ i is a
vertex adjacent to both j and k, then

rim D
2

3.dmC 1/
�

2

9
:

If m is only adjacent to one of j or k, then

rim D
1

3.dmC 1/
�

1

6
:

Let d Dmaxfdj ; dkg and DDmaxfdj ; dkg. There are at most d �1 vertices other
than i that are common neighbors of both j and k, and there are at most D � d

remaining vertices other than i that could be adjacent to exactly one of j or k.
Therefore the sum of the entries in row i is at most

riiC rijC rikC
2

9
.d �1/C

1

6
.D�d/�

1

9
C

2

3.d C 1/
C

2

3.DC 1/
C

1

18
dC

1

6
D:

We know that 1 � d � D � n � 2. By Lemma 3, it follows that the possible
maximum values in the expression above occur when either d D D D 1, or
d D 1, D D n � 2, or d D D D n � 2. The corresponding upper bounds on
the row sum are

1;
1

6
C

2

3.n� 1/
C

1

6
n;

�1

3
C

4

3.n� 1/
C

2

9
n:

Once again, each of these bounds is less than �1
6
C

1
n
C

1
4
n for all n> 3. �
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Lemma 6. Suppose n> 3. If row i contains an off-diagonal entry rij D
1
3

, then the
sum of the entries in row i is at most �1

6
C

1
n
C

1
4
n.

Proof. There are three possible cases, depending on the possible degrees of i and j

given by Lemma 1.

Case I. If di D 1 and dj D 2, then there is only one other vertex, aside from i and j ,
that can share a common neighbor with i . Call that vertex k. The sum of entries in
row i is

rii C rij C rik D
1

2
C

1

3
C

1

2.dk C 1/
�

1

2
C

1

3
C

1

4
D

13

12
;

which is less than or equal to �1
6
C

1
n
C

1
4
n for all n> 3 (equality occurs only when

nD 4).

Case II. If di D 2 and dj D 1, then Lemma 5 implies that the sum of the entries in
row i is less than �1

6
C

1
n
C

1
4
n.

Case III. If di D dj D 2, then by Lemma 1, cij D 3. Let k denote the third common
neighbor of i and j . The sum of the entries in row i is then

rii C rij C rik C

X
m¤i;j;k

rim D
1

3
C

1

3
C

1

dk C 1
C

X
m¤i;j;k

1

3.dmC 1/

�
2

3
C

1

dk C 1
C

1

6
.dk � 2/

�
2

3
C

1

n� 1
C

1

6
.n� 4/

D
1

6
nC

1

n� 1
:

This upper bound is less than �1
6
C

1
n
C

1
4
n for all n> 3. �

Theorem 1. Of all connected graphs on n vertices, the star attains the maximum
value of � .

Proof. Suppose that G is not Sn. The contents of Lemmas 2, 4, 5, and 6 show that
the maximum row sum of RRT is less than or equal to �1

6
C

1
n
C

1
4
n. If n > 6,

then this upper bound is less than 1
4
n, and, by the comment after (2), we conclude

that �.G/ < �.Sn/ and therefore �.G/ < �.Sn/. When 3 < n � 6, we can verify
by explicit computation that �1

6
C

1
n
C

1
4
n< �.Sn/. When nD 3, the theorem can

be verified directly since there are only two connected graphs on 3 vertices. �
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Appendix

Here we present the values of �.G/ for every connected graph up to 6 vertices. The
graphs are given in graph6 string format [McKay 1981; 2005], and the values of
�.G/ are given to 8 decimal places. The values for the stars are given in boldface.

Esa? 1.26376262
Eta? 1.17779971
Ds_ 1.17686828
Epa? 1.12724256
Exg_ 1.12719000
E|i_ 1.11535507
E|g_ 1.10702341
ExGg 1.10124485
Dt_ 1.09692536
Cs 1.09445053
Exw_ 1.09118881
Ehg_ 1.08965849
Ex__ 1.08492159
Eli_ 1.08378641
E|__ 1.08125829
Ep{G 1.07743057
Elg_ 1.07386856
Et}G 1.06680419
E|w_ 1.06420788
Etq_ 1.06264937
Exo_ 1.06170523
Ep__ 1.06066017
EtuG 1.05968917
ExGG 1.05861770
D|_ 1.05825411
D|g 1.05543372
Dp_ 1.05417745
Eh__ 1.05150374
El__ 1.04879365
Er{G 1.04866795
EpsG 1.04851433
E|o_ 1.04562708
ExWG 1.04512215
ExwG 1.04350178
EpuG 1.04308838
Ez{G 1.04248210

EvsW 1.04127270
Et]G 1.04082858
Ev{W 1.04057352
EzPW 1.03944703
Elw_ 1.03869527
EvcG 1.03802560
Dx_ 1.03794998
Epo_ 1.03760887
Eto_ 1.03627677
Dto 1.03552399
ExPw 1.03508808
Exwo 1.03458078
EtUG 1.03375811
Edq_ 1.03272839
EzZw 1.03266215
EpgG 1.03266215
Er{W 1.03197929
EzwG 1.03138546
Cx 1.03138184
Ev_G 1.03126091
Dxw 1.02998084
EpWG 1.02979441
E~TW 1.02813174
Bo 1.02813174
Ep_G 1.02808843
ErwG 1.02792587
E~{G 1.02768976
Dl_ 1.02717603
E~SW 1.02636956
EzsG 1.02530775
Dlg 1.02465677
EvoW 1.02459474
ExOG 1.02421645
ExPW 1.02380968
D|c 1.02305146
EpSG 1.02303779

Elo_ 1.02301009
ExoG 1.02253862
E~{W 1.02245280
EvwW 1.02150256
E~sW 1.02136937
EzZW 1.02039571
EzoG 1.02034616
D~c 1.02031933
ErcG 1.01998619
EzWW 1.01866302
EzOW 1.01862583
EpUG 1.01823188
Ez[W 1.01792742
E~sG 1.01775521
E|qW 1.01732826
Exoo 1.01710090
Ez{w 1.01709947
EzSW 1.01709947
Dxo 1.01695288
Ezww 1.01494232
E~OW 1.01436311
Cz 1.01417394
Cp 1.01417394
E|sW 1.01400371
EroG 1.01390539
E~cG 1.01337635
ErwW 1.01293228
E~}W 1.01273126
Edo_ 1.01267470
Dh_ 1.01213081
Dpo 1.01188403
E|SW 1.01133377
E~_G 1.01111110
E|TW 1.01090626
EzcG 1.01084213
E~oW 1.01073140

Er_G 1.01059866
Dxc 1.00995156
EpOG 1.00969514
E~wW 1.00956370
ExOW 1.00891795
EroW 1.00885018
Ez_G 1.00805939
D~s 1.00764077
EzYW 1.00741994
ErOW 1.00711468
Epoo 1.00711468
E~yW 1.00707898
ExSW 1.00696806
ErWW 1.00696806
E|oW 1.00662172
Ezsw 1.00608114
Ezow 1.00603467
Dzs 1.00499991
Dzc 1.00459536
E~}w 1.00451397
E~uw 1.00445419
E|OW 1.00293400
E~YW 1.00274201
E~~w 1.00000000
Ezuw 1.00000000
Erow 1.00000000
ErYW 1.00000000
EpOW 1.00000000
D~{ 1.00000000
Dhc 1.00000000
C~ 1.00000000
Cr 1.00000000
Bw 1.00000000
A_ 1.00000000

Table 1. The value of �.G/ (to 8 decimal places) for every con-
nected graph with at most 6 vertices, with the values of stars given
in boldface.
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Figure 2. The graphs with the four highest singular values for
nD 5.
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Figure 3. The graphs with the four highest singular values for
nD 6.
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Figure 4. The graphs with the four highest singular values for
nD 7.
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Figure 5. The graphs with the four highest singular values for
nD 8.
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