\bullet
 in Olve

 a journal of mathematicsOn the ε-ascent chromatic index of complete graphs Jean A. Breytenbach and C. M. (Kieka) Mynhardt

On the ε-ascent chromatic index of complete graphs

Jean A. Breytenbach and C. M. (Kieka) Mynhardt
(Communicated by Jerrold Griggs)

An edge ordering of a graph $G=(V, E)$ is an injection $f: E \rightarrow \mathbb{Z}^{+}$, where \mathbb{Z}^{+}is the set of positive integers. A path in G for which the edge ordering f increases along its edge sequence is called an f-ascent; an f-ascent is maximal if it is not contained in a longer f-ascent. The depression $\varepsilon(G)$ of G is the smallest integer k such that any edge ordering f has a maximal f-ascent of length at most k. Applying the concept of ascents to edge colourings rather than edge orderings, we consider the problem of determining the minimum number $\chi_{\varepsilon}\left(K_{n}\right)$ of colours required to edge colour $K_{n}, n \geq 4$, such that the length of a shortest maximal ascent is equal to $\varepsilon\left(K_{n}\right)=3$. We obtain new upper and lower bounds for $\chi_{\varepsilon}\left(K_{n}\right)$, which enable us to determine $\chi_{\varepsilon}\left(K_{n}\right)$ exactly for $n=7$ and $n \equiv 2(\bmod 4)$ and to bound $\chi_{\varepsilon}\left(K_{4 m}\right)$ by $4 m \leq \chi_{\varepsilon}\left(K_{4 m}\right) \leq 4 m+1$.

1. Introduction

Following [Schurch 2013a; 2013b], we consider the following question:
Question 1. For $n \geq 4$, what is the smallest integer $r(n)$ for which there exists a proper edge colouring of K_{n} in colours $1, \ldots, r(n)$ such that a shortest maximal path of increasing edge labels has length three?

Schurch showed that $r(n) \leq 2 n-3$ for all $n \geq 4$. This bound enabled him to determine $r(n)$ for $n \in\{4,5\}$ and to show that $7 \leq r(6) \leq 8$. In Section 2 we give a lower bound for $r(n)$ and in Section 3 we improve the general upper bound to

$$
r(n) \leq\left\lfloor\frac{3 n-3}{2}\right\rfloor
$$

We then improve this bound for even values of n. Consequently, we obtain $r(7)=9$, $r(n)=n+1$ if $n \equiv 2(\bmod 4)$, and $n \leq r(n) \leq n+1$ if $n \equiv 0(\bmod 4)$ and $n \geq 8$.

[^0]Keywords: edge ordering of a graph, increasing path, depression, edge colouring.
Breytenbach was a second year undergraduate student, enrolled for the degree BSc in Mathematical Sciences (stream Computer Science) at Stellenbosch University, while this paper was being prepared. The paper earned him extra credit for the Foundations of Abstract Mathematics I course. Mynhardt was supported by an NSERC discovery grant.

We begin with a short historical account of the background to this problem. An edge ordering of a finite, simple graph G is an injection $f: E(G) \rightarrow \mathbb{Z}^{+}$, where \mathbb{Z}^{+} is the set of positive integers. Denote the set of all edge orderings of G by $\mathcal{F}(G)$. A path v_{1}, \ldots, v_{k} (where $v_{k} \neq v_{1}$) in G such that $f\left(v_{1}\right)<\cdots<f\left(v_{k}\right)$ is called an f-ascent; an f-ascent is maximal if it is not contained in a longer f-ascent. The height $H(f)$ of an edge ordering f is the length of a longest f-ascent, and the flatness of f, denoted by $h(f)$, is the length of a shortest maximal f-ascent of G.

Chvátal and Komlós [1971] posed the problem of determining

$$
\alpha\left(K_{n}\right)=\min _{f \in \mathcal{F}\left(K_{n}\right)}\{H(f)\}
$$

of the complete graph K_{n}. This is a difficult problem and $\alpha\left(K_{n}\right)$ is known only for $1 \leq n \leq 8$ (see [Burger et al. 2005; Chvátal and Komlós 1971]). The parameter $\alpha(G)$ for complete and other finite graphs was also investigated in [Bialostocki and Roditty 1987; Burger et al. 2005; Calderbank et al. 1984; Graham and Kleitman 1973; Mynhardt et al. 2005; Roditty et al. 2001; Yuster 2001].

For an arbitrary finite graph G, Cockayne et al. [2006] considered the problem of determining $\varepsilon(G)=\max _{f \in \mathcal{F}(G)}\{h(f)\}$, that is, the maximum length, taken over all edge orderings $f \in \mathcal{F}(G)$, of a shortest maximal f-ascent. The parameter $\varepsilon(G)$ is known as the depression of G and its computation is likewise a difficult problem. Another interpretation of the depression of G is that any edge ordering f of G has a maximal f-ascent of length at most $\varepsilon(G)$, and $\varepsilon(G)$ is the smallest integer for which this statement is true. Graphs with depression two were characterized in [Cockayne et al. 2006], while trees with depression three were characterized in [Mynhardt 2008]. Graphs with no adjacent vertices of degree three or higher that have depression three were characterized in [Mynhardt and Schurch 2013]. Further work on depression can be found in [Cockayne and Mynhardt 2006; Gaber-Rosenblum and Roditty 2009; Schurch and Mynhardt 2014; 2014; Schurch 2013a; 2013b].

An edge ordering of G is also a proper edge colouring - a labelling of the edges of G such that adjacent edges have different labels. The minimum number of labels, also called colours, is called the edge chromatic number or the chromatic index $\chi^{\prime}(G)$. It is well known (see [Chartrand et al. 2011, Section 10.2], for example) that $\chi^{\prime}\left(K_{n}\right)=n-1$ if n is even and $\chi^{\prime}\left(K_{n}\right)=n$ if n is odd. A 1-factor of G is a 1-regular spanning subgraph of G, and G is 1 -factorable if $E(G)$ can be partitioned into 1 -factors. If G is 1 -factorable, then G is r-regular for some r and $\chi^{\prime}(G)=r$. König's theorem (see [Chartrand et al. 2011, Theorem 10.15]) states that every r-regular bipartite graph is 1 -factorable. In particular, the chromatic index of the complete bipartite graph $K_{n, n}$ is given by $\chi^{\prime}\left(K_{n, n}\right)=n$.

Noticing that the labels of some edges in an edge ordering of G may be unimportant when determining $\varepsilon(G)$, Schurch applied the concept of ascents to edge
colourings and called the minimum number of colours in a proper edge colouring c of G such that $h(c)=\varepsilon(G)$ the ε-ascent chromatic index of G, denoted $\chi_{\varepsilon}(G)$. Unlike the case for general graphs, the depression of K_{n} is easy to determine: $\varepsilon\left(K_{1}\right)=0, \varepsilon\left(K_{2}\right)=1, \varepsilon\left(K_{3}\right)=2$ and $\varepsilon\left(K_{n}\right)=3$ for all $n \geq 4$ (see [Cockayne et al. 2006]); that is, there does not exist an edge ordering or an edge colouring of K_{n} such that a shortest maximal ascent has length four or more. Note that $\chi_{\varepsilon}\left(K_{1}\right)=0$, $\chi_{\varepsilon}\left(K_{2}\right)=1, \chi_{\varepsilon}\left(K_{3}\right)=3$, and determining $\chi_{\varepsilon}\left(K_{n}\right)$ for $n \geq 4$ is equivalent to finding the smallest integer $r(n)$ such that there exists a proper edge colouring c of K_{n} in colours $1, \ldots, r(n)$ with $h(c)=3$, as formulated in Question 1 .

2. Lower bound for the $\boldsymbol{\varepsilon}$-ascent chromatic index of $\boldsymbol{K}_{\boldsymbol{n}}$

We begin with a simple lower bound for $\chi_{\varepsilon}\left(K_{n}\right)$, which slightly improves the bound in [Schurch 2013b, Proposition 8] in the special case where $G=K_{n}$.
Theorem 1. If $n \geq 4$, then

$$
\chi_{\varepsilon}\left(K_{n}\right) \geq \begin{cases}n & \text { if } n \equiv 0(\bmod 4), \\ n+1 & \text { if } n \equiv 1,2(\bmod 4), \\ n+2 & \text { if } n \equiv 3(\bmod 4) .\end{cases}
$$

Proof. Let c be a proper edge colouring of K_{n} in colours $1, \ldots, r$ such that $h(c)=3$. Such a colouring exists because $\varepsilon\left(K_{n}\right)=3$ if $n \geq 4$. For $i=1, \ldots, r$, define

$$
E_{i}=\left\{e \in E\left(K_{n}\right): c(e)=i\right\} .
$$

Then $\left|E_{i}\right| \leq\lfloor n / 2\rfloor$ for each i. Also, no vertex v is incident with an edge $e \in E_{1}$ and an edge $e^{\prime} \in E_{r}$, otherwise e, e^{\prime} is a maximal c-ascent of length two, which contradicts $h(c)=3$. Thus $\left|E_{1} \cup E_{r}\right| \leq\lfloor n / 2\rfloor$ and $E_{1} \cup E_{r}$ is an independent set of edges, that is, $E_{1} \cup E_{r}, E_{2}, \ldots, E_{r-1}$ is also a proper edge colouring of K_{n}. Hence $r \geq \chi^{\prime}\left(K_{n}\right)+1$. In particular,

$$
\chi_{\varepsilon}\left(K_{n}\right) \geq \begin{cases}n & \text { if } n \equiv 0(\bmod 4), \\ n+1 & \text { if } n \equiv 1(\bmod 4) .\end{cases}
$$

Assume $n \equiv 2(\bmod 4)$; say $n=4 p+2$. Then K_{n} has $(2 p+1)(4 p+1)$ edges. Suppose $r=\chi^{\prime}\left(K_{n}\right)+1=n$. The upper bound

$$
\left|E_{1} \cup E_{r}\right|,\left|E_{2}\right|, \ldots,\left|E_{r-1}\right| \leq\left\lfloor\frac{n}{2}\right\rfloor
$$

implies that

$$
\left|E_{1} \cup E_{r}\right|=\left|E_{2}\right|=\cdots=\left|E_{r-1}\right|=\left\lfloor\frac{n}{2}\right\rfloor=2 p+1 .
$$

Since $\left|E_{1}\right|+\left|E_{r}\right|=2 p+1$, an odd number, $\left|E_{1}\right| \neq\left|E_{r}\right|$. Without loss of generality say $\left|E_{1}\right|=k$, where $k \leq p$, and $\left|E_{r}\right|=2 p+1-k$. Suppose $e \in E_{2}$ is not adjacent to
any edge in E_{1}. Since $\left|E_{1} \cup E_{r}\right|=2 p+1=\lfloor n / 2\rfloor, e$ is adjacent to an edge $e^{\prime} \in E_{r}$. But then e, e^{\prime} is a maximal c-ascent of length two, which contradicts $h(c)=3$. Therefore each edge in E_{2} is adjacent to an edge in E_{1}, and since c is a proper edge colouring, $\left|E_{2}\right| \leq 2\left|E_{1}\right|=2 k \leq 2 p<\lfloor n / 2\rfloor$, a contradiction. Thus $r \geq n+1$ as required.

Assume $n \equiv 3(\bmod 4)$; say $n=4 p+3$. Then $\left|E\left(K_{n}\right)\right|=(4 p+3)(2 p+1)$. Suppose $r=\chi^{\prime}\left(K_{n}\right)+1=n+1$. As in the case $n \equiv 2(\bmod 4)$, we obtain that $\left|E_{1} \cup E_{r}\right|=\left|E_{2}\right|=\cdots=\left|E_{r-1}\right|=\lfloor n / 2\rfloor=2 p+1$ and that each edge in E_{2} is adjacent to an edge in E_{1}. There is one vertex v that is not incident with any edge in $E_{1} \cup E_{r}$, but an edge in E_{2} incident with v also needs to be adjacent to an edge in E_{1}. We obtain a contradiction as above and the result follows.

3. Upper bounds for the $\boldsymbol{\varepsilon}$-ascent chromatic index of $\boldsymbol{K}_{\boldsymbol{n}}$

In Section 3.1 we provide a new general upper bound for $\chi_{\varepsilon}\left(K_{n}\right)$. We improve this bound for even values of n in Sections $3.2($ the case $n \equiv 0(\bmod 4)$) and 3.3 (the case $n \equiv 2(\bmod 4)$).
3.1. A general bound. For $n \geq 6$, we now describe an edge colouring c of K_{n} in $\lfloor(3 n-3) / 2\rfloor$ colours, as illustrated in Figure 1 for $n \in\{6,7\}$, and prove in Theorem 3 that $h(c)=3$. Let $V\left(K_{n}\right)=\left\{v_{0}, \ldots, v_{n-1}\right\}$ and $p=\lceil n / 2\rceil$.

- For $i \in\{0, \ldots, p-1\}$ and $j \in\{i+1, \ldots, n-1\}$, let $c\left(v_{i} v_{j}\right)=i+j$.
- For $i \in\{p, \ldots, n-2\}$ and $j \in\{i+1, \ldots, n-1\}$, let $c\left(v_{i} v_{j}\right)=i+j-2 p$.

Lemma 2. For all $n \geq 6$, the colouring c defines a proper edge colouring of K_{n} in $\lfloor(3 n-3) / 2\rfloor$ colours.

Figure 1. Edge colourings of K_{6} and K_{7} with flatness three.

Proof. Suppose that $c\left(v_{i} v_{j}\right)=c\left(v_{i} v_{j^{\prime}}\right)$ for some $j<j^{\prime}$. After a brief reflection, we deduce that $i+j=i+j^{\prime}-2 p$. But $i+j \geq i$ and

$$
i+j^{\prime}-2 p \leq i+n-1-2\lceil n / 2\rceil \leq i-1,
$$

hence $c\left(v_{i} v_{j}\right)>c\left(v_{i} v_{j^{\prime}}\right)$, contradicting our assumption.
Since the smallest colour is $0+1=1$ and the largest colour is

$$
p-1+n-1=\left\lceil\frac{n}{2}\right\rceil+n-2=\left\lfloor\frac{n-1}{2}\right\rfloor+n-1=\left\lfloor\frac{3 n-3}{2}\right\rfloor,
$$

the colouring c uses exactly $\lfloor(3 n-3) / 2\rfloor$ colours.
Theorem 3. For all $n \geq 6$, the colouring c of K_{n} has flatness equal to three.
Proof. To prove that $h(c)=3$, it is sufficient to prove this:
Statement. For any $v_{i} \in V\left(K_{n}\right)$ and edges $e=v_{j} v_{i}$ and $f=v_{i} v_{k}$ such that $c(e)<c(f)$, there exists
(Sa) an edge $g=v_{j^{\prime}} v_{j}, j^{\prime} \notin\{i, j, k\}$, such that $c(g)<c(e)$, or
(Sb) an edge $g=v_{k} v_{k^{\prime}}, k^{\prime} \notin\{i, j, k\}$, such that $c(f)<c(g)$.
Hence suppose there exist indices $i, j, k \in I=\{0, \ldots, n-1\}$ such that for edges $e=v_{j} v_{i}$ and $f=v_{i} v_{k}$, we have $c(e)<c(f)$, but neither (Sa) nor (Sb) holds. Then

$$
\begin{equation*}
c\left(v_{j^{\prime}} v_{j}\right)>c(e) \quad \text { for all } j^{\prime} \in I-\{i, j, k\}, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
c\left(v_{k} v_{k^{\prime}}\right)<c(f) \quad \text { for all } k^{\prime} \in I-\{i, j, k\} . \tag{2}
\end{equation*}
$$

We consider three cases, depending on the values of i and j.
Case 1: $j \leq p-1$. Then, regardless of the values of i and $j^{\prime}, c\left(v_{j^{\prime}} v_{j}\right)=j+j^{\prime}$ and $c(e)=i+j$. By (1), $j^{\prime}>i$ for all $j^{\prime} \in I-\{i, j, k\}$. Hence $i \leq 2$. But $p \geq 3$ since $n \geq 6$, and therefore $i \leq p-1$. Now $i+j=c(e)<c(f)=i+k$ implies that $j<k$. Therefore one of the following three subcases holds:
(i) $j=0, k=1$ and $i=2$,
(ii) $j=0$ and $k>i=1$,
(iii) $i=0$ and $k>j>0$.

If (i) holds, then $c\left(v_{j} v_{k}\right)=1$. Since $n \geq 6$, there exists $k^{\prime} \in I-\{0,1,2\}$ such that $c\left(v_{k} v_{k^{\prime}}\right)=k+k^{\prime} \geq k^{\prime}+1 \geq 4>c(f)=i+k=3$, contradicting (2). If (ii) holds, then $c(f)=1+k$. If $k \leq p-1$, then v_{k} is adjacent to v_{p}, where $p \notin\{0,1, k\}$, and $c\left(v_{k} v_{p}\right)=k+p>c(f)$, contradicting (2); while if $k \geq p$, then v_{k} is adjacent to v_{2} and $c\left(v_{2} v_{k}\right)=k+2>c(f)$, again a contradiction. If (iii) holds, then $c(e)=j<k=c(f)$. If $k \leq p-1$, then $j<p-1$ and v_{k} is adjacent to v_{p}, where $p \notin\{0, j, k\}$, giving a contradiction as in (ii). If $k \geq p$, then there exists $\ell \in\{1,2\}-\{j\}$ such that $c\left(v_{k} v_{\ell}\right)=k+\ell>k$, once again a contradiction.

Case 2: $j \geq p$ and $i \leq p-1$. Then $c(e)=i+j$. Since $i \leq p-1$ and $n \geq 6$, there exists $j^{\prime} \in I-\{i, j, k\}$ such that $j^{\prime} \geq p$. Then $c\left(v_{j^{\prime}} v_{j}\right)=j+j^{\prime}-2 p>i+j$ by (1); that is, $i<j^{\prime}-2 p \leq 0$, which is impossible.
Case 3: $\min \{i, j\} \geq p$. Then $c(e)=i+j-2 p$. Suppose there exists $j^{\prime} \in I-\{i, j, k\}$ such that $j^{\prime} \geq p$. Then $c\left(v_{j^{\prime}} v_{j}\right)=j+j^{\prime}-2 p$ and thus $j^{\prime}>i$ by (1). Since $i, j^{\prime} \geq p$,

$$
c(f)=c\left(v_{i} v_{k}\right)= \begin{cases}i+k & \text { if } k \leq p-1, \\ i+k-2 p & \text { if } k \geq p,\end{cases}
$$

and

$$
c\left(v_{k} v_{j^{\prime}}\right)= \begin{cases}j^{\prime}+k & \text { if } k \leq p-1, \\ j^{\prime}+k-2 p & \text { if } k \geq p .\end{cases}
$$

Thus, regardless of the value of $k, c\left(v_{k} v_{j^{\prime}}\right)>c(f)$. Since $j^{\prime} \in I-\{i, j, k\}$, this contradicts (2). Hence there does not exist $j^{\prime} \in I-\{i, j, k\}$ such that $j^{\prime} \geq p$. Since $n \geq 6$, we have $|\{p, \ldots, n-1\}| \geq 3$. We deduce that $n \in\{6,7\}$ and $\{p, \ldots, n-1\}=$ $\{i, j, k\}$ so that $c(e)=i+j-2 p$ and $c(f)=i+k-2 p$, where $j<k$ since $c(e)<c(f)$. For either value of $n, c(f) \leq 3$ and $k \geq 4$. Let $j^{\prime}=0<p$. Then $j^{\prime} \in I-\{i, j, k\}$ and $c\left(v_{j^{\prime}} v_{k}\right)=j^{\prime}+k=k \geq 4>3 \geq c(f)$, again contradicting (2).

The following corollary to Lemma 2 and Theorem 3 improves Theorem 17 of [Schurch 2013b].

Corollary 4. For $n \geq 6$, we have $\chi_{\varepsilon}\left(K_{n}\right) \leq\lfloor(3 n-3) / 2\rfloor$.
Combining Theorem 1 and Corollary 4 we improve Proposition 20 of [Schurch 2013b] and also obtain the new value $\chi_{\varepsilon}\left(K_{7}\right)$.

Corollary 5.

$$
\chi_{\varepsilon}\left(K_{6}\right)=7 \quad \text { and } \quad \chi_{\varepsilon}\left(K_{7}\right)=9 .
$$

3.2. The case $\boldsymbol{n} \equiv \mathbf{0}(\boldsymbol{\operatorname { m o d } 4)}$). Our next result is an improved upper bound for $\chi_{\varepsilon}\left(K_{n}\right)$ in the case where $n \equiv 0(\bmod 4)$ and $n \geq 8$. Say $n=4 m$ and $V\left(K_{n}\right)=$ $\left\{u_{0}, \ldots, u_{2 m-1}, v_{0}, \ldots, v_{2 m-1}\right\}$. Let G and H be the subgraphs of K_{n} induced by $\left\{u_{0}, \ldots, u_{2 m-1}\right\}$ and $\left\{v_{0}, \ldots, v_{2 m-1}\right\}$, respectively. Then $G \cong H \cong K_{2 m}$ and each of them is $(2 m-1)$-edge colourable. We describe a colouring c_{1} of K_{n} in the colours $1, \ldots, 4 m+1$ as follows.

- In G, let c_{1} be any proper edge colouring of $K_{2 m}$ in the $2 m-1$ colours $\{1,2\} \cup\{m+3, \ldots, 3 m-1\}$.
- In H, let c_{1} be any proper edge colouring of $K_{2 m}$ in the $2 m-1$ colours $\{4 m, 4 m+1\} \cup\{m+3, \ldots, 3 m-1\}$.
- We still need to colour the edges of the complete bipartite graph $F \cong K_{2 m, 2 m}$ induced by the edges $u_{i} v_{j}$, with $i, j \in\{0, \ldots, 2 m-1\}$. But $\chi^{\prime}\left(K_{2 m, 2 m}\right)=2 m$ and there are $2 m$ unused colours $3, \ldots, m+2$ and $3 m, \ldots, 4 m-1$. Colour the edges of F with these colours.

It is clear that c_{1} is a proper edge colouring of $K_{4 m}$ in $4 m+1$ colours.
Theorem 6. For all $m \geq 2$, the colouring c_{1} of $K_{4 m}$ has flatness equal to three.
Proof. Let F, G and H be the subgraphs of $K_{4 m}$ defined above and let $e, f \in E\left(K_{4 m}\right)$ be adjacent edges such that $c_{1}(e)<c_{1}(f)$. We show that (Sa) or (Sb) holds, as stated in the proof of Theorem 3. We consider three cases, depending on the choice of e and f.
Case 1: $\{e, f\} \cap E(F)=\varnothing$. Assume first $e, f \in E(G) ;$ say $e=u_{j} u_{i}$ and $f=u_{i} u_{k}$. Then $c_{1}(e)<c_{1}(f) \leq 3 m-1$, and u_{k} is adjacent to some vertex $v_{\ell} \in V(H)$ such that $c_{1}\left(u_{k} v_{\ell}\right)=4 m-1>c_{1}(f)$. Hence (Sb) holds. Similarly, if $e, f \in E(H)$, say $e=v_{j} v_{i}$ and $f=v_{i} v_{k}$, then $c_{1}(f)>c_{1}(e) \geq m+3$, and v_{j} is adjacent to some vertex $u_{\ell} \in V(G)$ such that $c_{1}\left(v_{j} u_{\ell}\right)=3<c_{1}(e)$. Hence (Sa) holds.
Case 2: $|\{e, f\} \cap E(F)|=1$. By symmetry we may assume that $e \in E(F)$; say $e=u_{i} v_{j}$. If $f \in E(G)$, say $f=u_{i} u_{k}$, then $c_{1}(e) \in\{3, \ldots, m+2\}$ and $c_{1}(f) \in$ $\{m+3, m+4, \ldots, 3 m-1\}$. Since $m \geq 2, u_{k}$ is adjacent to at least two vertices $v_{t_{1}}, v_{t_{2}}$ of H such that $c_{1}\left(u_{k} v_{t_{\ell}}\right) \in\{3 m, \ldots, 4 m-1\}$ for $\ell=1,2$, and we may choose a subscript t_{ℓ}, say t_{1}, such that $t_{1} \neq j$. Then $v_{j}, u_{i}, u_{k}, v_{t_{1}}$ is a c_{1}-ascent of length three and (Sb) holds. On the other hand, if $f \in E(H)$, say $f=v_{j} v_{k}$, then $c_{1}(e) \geq 3$. In this case u_{i} is adjacent to a vertex u_{ℓ} such that $c_{1}\left(u_{\ell} u_{i}\right) \in\{1,2\}$ and (Sa) holds. Case 3: $\{e, f\} \subseteq E(F)$. First, if $e=u_{i} v_{j}$ and $f=v_{j} u_{k}$, then there exists at least one index $\ell \in\{0, \ldots, 2 m-1\}-\{i, k\}$ such that $c_{1}\left(u_{\ell} u_{i}\right) \in\{1,2\}$. Then $u_{\ell}, u_{i}, v_{j}, u_{k}$ is a c_{1}-ascent of length three and (Sa) holds. Finally, if $e=v_{i} u_{j}$ and $f=u_{j} v_{k}$, then there exists at least one index $\ell \in\{0, \ldots, 2 m-1\}-\{i, k\}$ such that $c_{1}\left(v_{k} v_{\ell}\right) \in\{4 m, 4 m+1\}$. Then $v_{i}, u_{j}, v_{k}, v_{\ell}$ is a c_{1}-ascent of length three and (Sb) holds.

Combining Theorems 1 and 6 we narrow down $\chi_{\varepsilon}\left(K_{n}\right)$ to two possible values in infinitely many cases.
Corollary 7. For all $n \geq 8$ and $n \equiv 0(\bmod 4)$, we have $n \leq \chi_{\varepsilon}\left(K_{n}\right) \leq n+1$.
3.3. The case $\boldsymbol{n} \equiv \mathbf{2}(\bmod 4)$. We now assume that $n \equiv 2(\bmod 4)$ and $n \geq 10$. Say $n=4 m+2$ and $V\left(K_{n}\right)=\left\{u_{0}, \ldots, u_{2 m}, v_{0}, \ldots, v_{2 m}\right\}$. Let G and H be the subgraphs of K_{n} induced by $\left\{u_{0}, \ldots, u_{2 m}\right\}$ and $\left\{v_{0}, \ldots, v_{2 m}\right\}$, respectively. Then $G \cong H \cong K_{2 m+1}$ and each of them is ($2 m+1$)-edge colourable. We describe an edge colouring c_{2} of K_{n} in the colours $1, \ldots, 4 m+3$. This colouring is similar to the colouring c_{1} above, but not quite as straightforward. See Figure 2 for a partial colouring of K_{10}.

- In G, let c_{2} be any proper edge colouring of $K_{2 m+1}$ in the $2 m+1$ colours $\{1,2\} \cup\{m+3, \ldots, 3 m+1\}$.
- In H, let c_{2} be any proper edge colouring of $K_{2 m+1}$ in the $2 m+1$ colours $\{4 m+2,4 m+3\} \cup\{m+3, \ldots, 3 m+1\}$.

Figure 2. Part of the edge colouring c_{2} of K_{10}.

We still need to colour the edges of the complete bipartite graph $F \cong K_{2 m+1,2 m+1}$ induced by the edges $u_{i} v_{j}$, with $i, j \in\{0, \ldots, 2 m\}$. By König's theorem, F is 1 -factorable. Note that for each colour k in the edge colouring of G there is exactly one vertex that is not incident with an edge coloured k, and conversely, for each vertex u_{i} there is exactly one colour that does not occur as colour of an edge incident with u_{i}. A similar remark holds for H. Without loss of generality, say colour 2 does not occur at u_{0}, colour 1 does not appear at $u_{2 m}$, colour $4 m+3$ does not appear at v_{0} and colour $4 m+2$ does not appear at $v_{2 m}$. Since colour 2 does not occur at u_{0}, all other colours of the colouring do and thus there exists a vertex $u_{s} \in V(G)$ such that $c_{2}\left(u_{0} u_{s}\right)=1$. Since colour $4 m+2$ does not appear at $v_{2 m}$, there exists a vertex $v_{t} \in V(H)$ such that $c_{2}\left(v_{2 m} v_{t}\right)=4 m+3$.

- Colour the edges $u_{0} v_{0}$ and $u_{2 m} v_{2 m}$ of F with colours 2 and $4 m+2$, respectively. For $i, j \in\{1, \ldots, 2 m-1\}$ and $k \in\{m+3, \ldots, 3 m+1\}$, colour $u_{i} v_{j}$ with colour k if and only if no edge incident with u_{i} in G or with v_{j} in H is coloured k.

We have now coloured a 1 -factor F_{0} of F, and $F-F_{0}$ is a $2 m$-regular bipartite graph, which is 1-factorable by König's theorem. Let F_{1}^{\prime} be a 1-factor of $F-F_{0}$ that contains the edge $v_{0} u_{s}$. If $u_{2 m} v_{t} \notin F_{1}^{\prime}$, let $F_{1}=F_{1}^{\prime}$, and if $u_{2 m} v_{t} \in F_{1}^{\prime}$, let $u_{i} v_{j} \in F_{1}^{\prime}-\left\{v_{0} u_{s}, u_{2 m} v_{t}\right\}$ and define $F_{1}=\left(F_{1}^{\prime}-\left\{u_{i} v_{j}, u_{2 m} v_{t}\right\}\right) \cup\left\{u_{i} v_{t}, u_{2 m} v_{j}\right\}$. Now $F-F_{0}-F_{1}$ is 1-factorable. Let F_{2} be a 1-factor of $F-F_{0}-F_{1}$ that contains $u_{2 m} v_{t}$.

- Colour the edges in F_{1} with colour 3 and the edges in F_{2} with colour $4 m+1$. Colouring $F-F_{0}-F_{1}-F_{2}$ with the $2 m-2$ unused colours $4, \ldots, m+2$ and $3 m+2, \ldots, 4 m$ yields a proper edge colouring of $K_{4 m+2}$.

Theorem 8. For all $m \geq 2$, the colouring c_{2} of $K_{4 m+2}$ has flatness equal to three.
Proof. Let F, J, G and H be the subgraphs of $K_{4 m+2}$ defined above and let $e, f \in E\left(K_{4 m+2}\right)$ be adjacent edges such that $c_{2}(e)<c_{2}(f)$. We show that (Sa) or (Sb) holds, as stated in the proof of Theorem 3. If $\{e, f\} \cap E(F)=\varnothing$, the proof follows similar to Case 1 in the proof of Theorem 6. We consider two further cases.
Case $1:|\{e, f\} \cap E(F)|=1$. By symmetry we may assume that $e \in E(F)$; say $e=u_{i} v_{j}$. First suppose that $f \in E(G)$, say $f=u_{i} u_{k}$. Since $c_{2}(f)>c_{2}(e) \geq 2$, $c_{2}(f) \in\{m+3, \ldots, 3 m+1\}$. As in Case 2 of the proof of Theorem 3, (Sb) holds. Now suppose $f=v_{j} v_{k} \in E(H)$. If $c_{2}(e)=2$, then $i=j=0$ and $c_{2}\left(u_{0} u_{s}\right)=1$. If $c_{2}(e) \neq 2$ then $c_{2}(e)>2$ and there exists an index ℓ such that $c_{2}\left(u_{i} u_{\ell}\right) \in\{1,2\}$. Thus $u_{s}, u_{i}, v_{j}, v_{k}$ or $u_{\ell}, u_{i}, v_{j}, v_{k}$ is a c_{2}-ascent of length three and (Sa) holds.
Case 2: $\{e, f\} \subseteq E(F)$. Suppose $e=u_{i} v_{j}$ and $f=v_{j} u_{k}$. If $e=u_{0} v_{0}$ and $f=v_{0} u_{s}$, then $c_{2}(e)=2$ and $c_{2}(f)=3$. Therefore there exists a vertex u_{ℓ} such that $c_{2}\left(u_{s} u_{\ell}\right) \in\{m+3, \ldots, 3 m+1\}$ and (Sb) holds. If $e=u_{0} v_{0}$ and $k \neq s$, then $u_{s}, u_{0}, v_{0}, v_{k}$ is a c_{2}-ascent of length three and (Sa) holds. For all other choices of $e=u_{i} v_{j}$ and $f=v_{j} u_{k}$ it follows as in Case 3 of the proof of Theorem 3 that (Sa) or (Sb) holds. Suppose $e=v_{i} u_{j}$ and $f=u_{j} v_{k}$. If $e=v_{t} u_{2 m}$ and $f=u_{2 m} v_{2 m}$, then $c_{2}(e)=4 m+1$ and $c_{2}(f)=4 m+2$. There exists a vertex v_{ℓ} such that $c_{2}\left(v_{\ell} v_{t}\right) \in\{m+3, \ldots, 3 m+1\}$ and thus (Sa) holds. If $f=u_{2 m} v_{2 m}$ and $i \neq t$, then $v_{i}, v_{2 m}, u_{2 m}, v_{t}$ is a c_{2}-ascent of length three and (Sb) holds. All other cases are dealt with as in Case 3 of the proof of Theorem 3.

Combining Theorems 1 and 8 and Corollary 4 determines $\chi_{\varepsilon}\left(K_{n}\right)$ for all $n \equiv$ $2(\bmod 10), n \geq 6$.
Corollary 9. For all $n \geq 6$ and $n \equiv 2(\bmod 10)$, we have $\chi_{\varepsilon}\left(K_{n}\right)=n+1$.

4. Conclusion

In Theorem 1 we proved a lower bound for $\chi_{\varepsilon}\left(K_{n}\right)$, and in Corollary 4 we improved the previously known general upper bound for $\chi_{\varepsilon}\left(K_{n}\right)$ from $2 n-3$ to $\lfloor(3 n-3) / 2\rfloor$. Corollary 7 improves this bound for $n \equiv 0(\bmod 4)$ and allows us to bound $\chi_{\varepsilon}\left(K_{4 m}\right)$ by $4 m \leq \chi_{\varepsilon}\left(K_{n}\right) \leq 4 m+1$. Finally, Corollary 9 determines $\chi_{\varepsilon}\left(K_{n}\right)$ for all $n \equiv$ $2(\bmod 4), n \geq 6$. Based on the results for even n and the values $\chi_{\varepsilon}\left(K_{5}\right)=7$ and $\chi_{\varepsilon}\left(K_{7}\right)=9$, we formulate the following conjecture.
Conjecture 10. For all $n \geq 4$, we have $\chi_{\varepsilon}\left(K_{n}\right)=\chi^{\prime}\left(K_{n}\right)+2$.

Acknowledgements

Jean Breytenbach wishes to thank Professor Jan van Vuuren of the Department of Industrial Engineering, Stellenbosch University, for fuelling his interest in graph the-
ory. Both authors hereby also express their gratitude towards Professor van Vuuren for introducing them and providing a wonderful research environment to work in.

References

[Bialostocki and Roditty 1987] A. Bialostocki and Y. Roditty, "A monotone path in an edge-ordered graph", Internat. J. Math. Math. Sci. 10:2 (1987), 315-320. MR 88b:05087 Zbl 0633.05043
[Burger et al. 2005] A. P. Burger, E. J. Cockayne, and C. M. Mynhardt, "Altitude of small complete and complete bipartite graphs", Australas. J. Combin. 31 (2005), 167-177. MR 2005i:05160 Zbl 1080.05046
[Calderbank et al. 1984] A. R. Calderbank, F. R. K. Chung, and D. G. Sturtevant, "Increasing sequences with nonzero block sums and increasing paths in edge-ordered graphs", Discrete Math. 50:1 (1984), 15-28. MR 85k:05062 Zbl 0542.05058
[Chartrand et al. 2011] G. Chartrand, L. Lesniak, and P. Zhang, Graphs \& digraphs, 5th ed., CRC Press, Boca Raton, FL, 2011. MR 2012c:05001 Zbl 1211.05001
[Chvátal and Komlós 1971] V. Chvátal and J. Komlós, "Some combinatorial theorems on monotonicity", Canad. Math. Bull. 14 (1971), 151-157. MR 49 \#2445 Zbl 0214.23503
[Cockayne and Mynhardt 2006] E. J. Cockayne and C. M. Mynhardt, "A lower bound for the depression of trees", Australas. J. Combin. 35 (2006), 319-328. MR 2007j:05118 Zbl 1094.05018
[Cockayne et al. 2006] E. J. Cockayne, G. Geldenhuys, P. J. P. Grobler, C. M. Mynhardt, and J. H. van Vuuren, "The depression of a graph", Util. Math. 69 (2006), 143-160. Preprint (2004) available at http://tinyurl.com/GraphDepression2004.
[Gaber-Rosenblum and Roditty 2009] I. Gaber-Rosenblum and Y. Roditty, "The depression of a graph and the diameter of its line graph", Discrete Math. 309:6 (2009), 1774-1778. MR 2010d:05045 Zbl 1205.05066
[Graham and Kleitman 1973] R. L. Graham and D. J. Kleitman, "Increasing paths in edge ordered graphs", Period. Math. Hungar. 3 (1973), 141-148. MR 48 \#5910 Zbl 0243.05116
[Mynhardt 2008] C. M. Mynhardt, "Trees with depression three", Discrete Math. 308:5-6 (2008), 855-864. MR 2008j:05186 Zbl 1149.05042
[Mynhardt and Schurch 2013] C. M. Mynhardt and M. Schurch, "A class of graphs with depression three", Discrete Math. 313:11 (2013), 1224-1232. MR 3034754 Zbl 1277.05083
[Mynhardt and Schurch 2014] C. M. Mynhardt and M. Schurch, "A construction of a class of graphs with depression three", Australas. J. Combin. 58:2 (2014), 249-263. Zbl 1296.05087
[Mynhardt et al. 2005] C. M. Mynhardt, A. P. Burger, T. C. Clark, B. Falvai, and N. D. R. Henderson, "Altitude of regular graphs with girth at least five", Discrete Math. 294:3 (2005), 241-257. MR 2006a:05079 Zbl 1062.05131
[Roditty et al. 2001] Y. Roditty, B. Shoham, and R. Yuster, "Monotone paths in edge-ordered sparse graphs", Discrete Math. 226:1-3 (2001), 411-417. MR 2001i:05096 Zbl 0961.05040
[Schurch 2013a] M. Schurch, On the depression of graphs, Ph.D. thesis, University of Victoria, 2013, available at https://dspace.library.uvic.ca:8443/handle/1828/4527.
[Schurch 2013b] M. Schurch, "Edge colourings and the depression of a graph", J. Combin. Math. Combin. Comput. 85 (2013), 195-212. MR 3088160 Zbl 1274.05176
[Schurch and Mynhardt 2014] M. Schurch and C. Mynhardt, "The depression of a graph and k kernels", Discuss. Math. Graph Theory 34:2 (2014), 233-247. MR 3194034 Zbl 1290.05128
[Yuster 2001] R. Yuster, "Large monotone paths in graphs with bounded degree", Graphs Combin. 17:3 (2001), 579-587. MR 2002k:05135 Zbl 1010.05044

Received: 2013-07-22 Accepted: 2013-10-26
jabreytenbach@cs.sun.ac.za Computer Science, Department of Mathematical Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
kieka@uvic.ca
Department of Mathematics and Statistics, University of Victoria, P.O. Box 1700 STN CSC, Victoria, BC V8W2Y2, Canada

involve

 msp.org/involve

 msp.org/involve EDITORS

 EDITORS}

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone @latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@ math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US $\$ 140 /$ year for the electronic version, and $\$ 190 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

involve 2015 vol. 8 no. 2

Enhancing multiple testing: two applications of the probability of correct selection 181
statisticErin Irwin and Jason Wilson
On attractors and their basins 195
Alexander Arbieto and Davi Obata
Convergence of the maximum zeros of a class of Fibonacci-type polynomials 211Iteration digraphs of a linear function221
Hannah Roberts
Numerical integration of rational bubble functions with multiple singularities 233
MICHAEL SCHNEIER
Finite groups with some weakly s-permutably embedded and weakly 253
s-supplemented subgroupsGuo Zhong, XuanLong Ma, Shixun Lin, Jiayi Xia and JianxingJin
Ordering graphs in a normalized singular value measure 263
Charles R. Johnson, Brian Lins, Victor Luo and Sean MeehanMore explicit formulas for Bernoulli and Euler numbers275
FRANCESCA Romano
Crossings of complex line segments 285
SAMULI LEPPÄNEN
On the ε-ascent chromatic index of complete graphs 295Jean A. Breytenbach and C. M. (Kieka) Mynhardt
Bisection envelopes 307
Noah Fechtor-Pradines
Degree 14 2-adic fields 329
Chad Awtrey, Nicole Miles, Jonathan Milstead, Christopher Shill and Erin Strosnider
Counting set classes with Burnside's lemma 337
Joshua Case, Lori Koban and Jordan LeGrand
Border rank of ternary trilinear forms and the j-invariant 345
Derek Allums and Joseph M. Landsberg
On the least prime congruent to 1 modulo n 357

[^0]: MSC2010: 05C15, 05C78, 05C38.

