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Mathematical tools from combinatorics and abstract algebra have been used to
study a variety of musical structures. One question asked by mathematicians and
musicians is: how many d-note set classes exist in a c-note chromatic universe? In
the music theory literature, this question is answered with the use of Pólya’s enu-
meration theorem. We solve the problem using simpler techniques, including only
Burnside’s lemma and basic results from combinatorics and abstract algebra. We
use interval arrays that are associated with pitch class sets as a tool for counting.

1. Introduction

For the past three decades, mathematical tools from combinatorics and abstract
algebra have been used to study a variety of musical structures. The elements of a
c-note chromatic universe are typically labeled 0, 1, 2, . . . , c−1 and are considered
elements of Zc, the group of integers modulo c. In the traditional 12-note chromatic
universe, C is labeled 0. Following the language of [Clough and Myerson 1985], a
d-note pitch class set in a c-note chromatic universe is a subset of {0, 1, . . . , c−1} of
size d . As explained in [Reiner 1985; Hook 2007], two pitch class sets are considered
equivalent if one can be obtained from the other either by rotation or reflection. A d-
note set class contains all equivalent d-note pitch class sets. One question asked by
musicians and music theorists is: how many d-note set classes exist in a c-note chro-
matic universe? Figure 1 shows a way to visualize the case where c= 12 and d = 7.

Let n be a positive integer. The Euler ϕ-function, ϕ(n), is the number of positive
integers that are less than or equal to n that are also relatively prime to n.

Theorem 1.1 [Reiner 1985; Hook 2007]. The number of d-note set classes in a
c-note chromatic universe is

1
2c

T (c, d)+
1
2

I (c, d), (1-1)
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where

T (c, d)=
∑

j |gcd(c,d)

ϕ( j)
( c/j

d/j

)
and

I (c, d)=


(c/2−1
bd/2c

)
if c is even and d is odd,(

bc/2c
bd/2c

)
otherwise.
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Figure 1. Visualizing a 7-note pitch class set in a 12-note chro-
matic universe. The three pitch class sets {C, C], E, F, G, A, B},
{C], D, D], F], G, A, B}, and {C, C], D], F, G, G], B} are equiva-
lent and are therefore all part of the same set class.
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In the music theory literature, Theorem 1.1 is proved using an advanced com-
binatorial theorem, namely Pólya’s enumeration theorem (the final theorem stated
in [Brualdi 2010]). Our contribution is that we make Theorem 1.1 more accessible
by using only tools that would be seen in introductory classes in combinatorics and
abstract algebra. The most advanced concept is Burnside’s lemma, which appears in
[Reiner 1985; Hook 2007] as a general tool for counting the number of equivalence
classes generated by a group action, but is abandoned in the proof of Theorem 1.1 in
favor of Pólya’s result. In [Graham et al. 2008], the application of Burnside’s lemma
to our problem is discussed, but only specific examples, and not a general result,
are reported. An additional contribution is that we use the structure of interval
arrays (see Section 2), which were introduced in [Clough and Myerson 1985] and
developed in [Fripertinger 1992], but have not been connected to this theorem.

2. Equivalent pitch class sets

The dihedral group of order 2n, D2n , is the set of symmetries of a regular n-gon.
There are n rotations and n reflections. Musically, rotations are known as transposi-
tions and reflections are known as inversions.

Mathematically speaking, the number of d-note set classes in a c-note chromatic
universe is the number of equivalence classes when D2c acts on the set of d-
note pitch class sets. In Figure 1, all 7-note pitch class sets that are equivalent
to {C, C], E, F, G, A, B} can be found by inverting and transposing the left-most
figure in all 24 possible ways. Consult [Hook 2007] for more details about group
actions in this context.

Let {i1, i2, . . . , id} be a d-note pitch class set. Without loss of generality, let
i1 < i2 < · · ·< id . The interval array associated with this d-note pitch class set is

〈i2− i1, i3− i2, . . . , id − id−1, i1− id〉,

where all subtraction is done modulo d [Fripertinger 1992, Definition 2.5]. Note that
〈 j1, j2, . . . , jd〉 is the interval array of a d-note pitch class set in a c-note chromatic
universe if and only if j1+ j2+ · · ·+ jd = c [Fripertinger 1992, Remark 2.4]. See
Table 1.

Instead of counting the number of equivalence classes when D2c acts on the set
of d-note pitch class sets, we will count the number of equivalence classes when

7-note pitch class set pitch class set in Zc interval array

{C, C], E, F, G, A, B} {0, 1, 4, 5, 7, 9, 11} 〈1, 3, 1, 2, 2, 2, 1〉
{C], D, D], F], G, A, B} {1, 2, 3, 6, 7, 9, 11} 〈1, 1, 3, 1, 2, 2, 2〉
{C, C], D], F, G, G], B} {0, 1, 3, 5, 7, 8, 11} 〈1, 2, 2, 2, 1, 3, 1〉

Table 1. The interval arrays for the pitch class sets in Figure 1.
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D2d acts on {〈 j1, j2, . . . , jd〉 | j1+ j2+ · · ·+ jd = c}, the set of interval arrays. In
Theorem 2.3 of the same work, Fripertinger proves that the number of equivalence
classes is the same in both situations.

3. Algebraic and combinatorial tools

Below are the theorems from introductory combinatorics [Brualdi 2010] and abstract
algebra [Dummit and Foote 2004] that we will apply.

Theorem 3.1. Let n and k be positive integers. Then

k
(n

k

)
= n

(n−1
k−1

)
.

Theorem 3.2. The equation x1 + x2 + · · · + xk = n has
(n−1

k−1

)
positive-integral

solutions.

Theorem 3.3 (hockey stick theorem). If m and n are nonnegative integers, then
n∑

k=0

( k
m

)
=

( n+1
m+1

)
.

Theorem 3.4. Let j , k, and n be integers such that 0≤ j ≤ k ≤ n. Then

n−k+ j∑
m= j

(m
j

)(n−m
k− j

)
=

(n+1
k+1

)
.

Theorem 3.5. In a group, assume that element a has order d. Then

〈a j
〉 = 〈agcd(d, j)

〉 and |〈a j
〉| =

d
gcd(d, j)

.

Theorem 3.6. If m is a positive divisor of d , then the number of elements of order m
in a cyclic group of order d is ϕ(m).

Theorem 3.7 (Burnside’s lemma). Let G be a group acting on a set S. The number
of equivalence classes is

1
|G|

∑
g∈G

Fix(g),

where Fix(g) is the number of elements of S that are fixed by g.

4. The main theorem proved with Burnside’s lemma

Theorem 4.1. The number of d-note set classes in a c-note chromatic universe is

1
2d

TB(c, d)+
1
2

I (c, d), (4-1)
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where

TB(c, d)=
∑

m|d and d|cm

ϕ(d/m)
(cm/d−1

m−1

)
,

and I (c, d) is defined as in Theorem 1.1.

Proof. Instead of visualizing a regular c-gon and counting the number of equivalence
classes when D2c acts on the set of d-note pitch class sets, as is typically done,
we visualize a regular d-gon and count the number of equivalence classes when
D2d acts on the set of interval arrays {〈 j1, j2, . . . , jd〉 | j1 + j2 + · · · + jd = c}.
According to Burnside’s lemma, we must count the number of interval arrays that
are fixed by elements of D2d .

First, we consider the d inversions. Assume that c and d are both odd. We have
a regular d-gon whose vertices are labeled j1, j2, . . . , jd . Every possible axis of
inversion passes through a single vertex. Let A be the value of that vertex, and let
B = (c− A)/2. See Figure 2. Once the value of A is chosen, Theorem 3.2 says
there are ( c−A

2 − 1
d−1

2 − 1

)
ways to assign values to the vertices that add up to B. Also note that A must be
odd, and it ranges from 1 to c− (d − 1). Thus the number of interval arrays fixed
by this inversion is

c−(d−1)∑
A=1
A odd

( c−A
2 − 1

d−1
2 − 1

)
,

which equals
(
(c−1)/2
(d−1)/2

)
by the hockey stick theorem. Since there are d inversions,

the sum of the number of interval arrays fixed by an inversion is d
(
bc/2c
bd/2c

)
.

A

B B

Figure 2. The inversion when d is odd.
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B
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B B

Figure 3. Two inversions when d is even.

When c is even and d is odd, repeat the previous argument, except that A must
be even and it ranges from 2 to c− (d − 1). The hockey stick theorem yields( c−2

2
d−1

2

)
,

and the sum of the number of interval arrays fixed by an inversion is d
(c/2−1
bd/2c

)
.

Now assume that c and d are both even. When d is even, there are two types of
inversions: d/2 of each type in Figure 3. For an inversion through opposite edges,
Theorem 3.2 says there are

(c/2−1
d/2−1

)
ways to assign values to the d/2 vertices that

add up to B = c/2. For an inversion through a pair of vertices, A is chosen and
then B = (c− A)/2. Note that A must be even and ranges from 2 to c− (d − 2).
The number of interval arrays fixed by this inversion is

c−(d−2)∑
A=2

A even

(
A− 1

1

)( c−A
2 − 1

d−2
2 − 1

)
=

c−(d−2)∑
A=2

A even

(
A
1

)( c−A
2 − 1

d−2
2 − 1

)
−

c−(d−2)∑
A=2

A even

( c−A
2 − 1

d−2
2 − 1

)

= 2
( c

2
d
2

)
−

( c
2 − 1
d
2 − 1

)
,

where the first term simplifies by Theorem 3.4 and the second term simplifies by
Theorem 3.3. The sum of the number of interval arrays fixed by the d inversions is

d
2

( c
2 − 1
d
2 − 1

)
+

d
2

(
2
( c

2
d
2

)
−

( c
2 − 1
d
2 − 1

))
= d

( c
2
d
2

)
.

The argument when c is odd and d is even is identical.
Second, we consider the d transpositions R1, R2, . . . , Rd , where R1 is a single

transposition clockwise which generates the cyclic group of order d. Let m be a
divisor of d . According to Theorem 3.5, each R j with gcd(d, j)=m generates the
same subgroup, and this subgroup has order d/m. If an interval array can be fixed
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A

AA

B B

B

Figure 4. If d = 6, rotating the hexagon 120◦ is acting on the
interval arrays with R2, an element of order 3. If an interval array
is fixed, then the values A and B must each be repeated twice.

by a transposition of order d/m, it is necessary that (d/m) | c or, equivalently, that
d | cm. Thus, if m | d and d | cm, the number of interval arrays fixed by an element
of order d/m is the number of ordered partitions of

c
d/m

=
cm
d

into m parts. According to Theorem 3.2, this can be done
(cm/d−1

m−1

)
ways. Moreover,

Theorem 3.6 says that ϕ(d/m) transpositions have order d/m. Thus the sum of all
Fix(R j ) is ∑

m|d and d|cm

ϕ(d/m)
(cm/d−1

m−1

)
.

See Figure 4 for an example. Applying Burnside’s lemma completes the proof. �

Theorem 4.2. Expressions (1-1) and (4-1) are equal.

Proof. Since these expressions both count the number of d-note set classes in a
c-note chromatic universe, they are equal. However, we provide a different proof,
outside the context of music theory.

We must show that

1
c

∑
j |gcd(c,d)

ϕ( j)
(

c/j
d/j

)
=

1
d

∑
m|d and d|cm

ϕ(d/m)

(
cm/d − 1

m− 1

)
. (4-2)

We start with the right-hand side and reindex, letting j = d/m. Then

1
d

∑
m|d and d|cm

ϕ(d/m)

(
cm/d − 1

m− 1

)
=

1
d

∑
d/j |d and d| cd

j

ϕ( j)
(

c/j − 1
d/j − 1

)

=
1
d

∑
j |gcd(c,d)

ϕ( j)
(

c/j − 1
d/j − 1

)
.
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The last equality is valid because{
j : j |gcd(c, d)

}
=
{

j : (d/j)|d and d |(cd/j)
}
.

The equality of (4-2) follows from termwise equality, as a result of Theorem 3.1. �
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