\bullet
 involve

 a journal of mathematicsBorder rank of ternary trilinear forms and the j-invariant

Derek Allums and Joseph M. Landsberg

Border rank of ternary trilinear forms and the j-invariant

Derek Allums and Joseph M. Landsberg

(Communicated by David Royal Larson)

Abstract

We first describe how one associates a cubic curve to a given ternary trilinear form $\phi \in \mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$. We explore relations between the rank and border rank of the tensor ϕ and the geometry of the corresponding cubic curve. When the curve is smooth, we show there is no relation. When the curve is singular, normal forms are available, and we review the explicit correspondence between the normal forms, rank and border rank.

1. Introduction

Given a multilinear map, i.e., a tensor ${ }^{1}$, how hard is it to evaluate? Two ways mathematicians have chosen to quantify "hard" are the notions of rank and border rank. We say a tensor $\phi \in V_{1} \otimes \cdots \otimes V_{n}$ is of rank 1 if it is of the form $v_{1} \otimes \cdots \otimes v_{n}$, where each $v_{i} \in V_{i}$.

Definition 1.1. Let $\phi \in V_{1} \otimes \cdots \otimes V_{n}$. The rank of ϕ, denoted $\mathbf{R}(\phi)$ is the smallest natural number r such that $\phi=\sum_{j=1}^{r} \phi_{j}$, where each $\phi_{j} \in V_{1} \otimes \cdots \otimes V_{n}$ is of rank 1 .

To better understand this concept, consider the reduction to linear algebra, in which $\phi \in V_{1} \otimes V_{2}$ may be considered as a linear map $V_{1}^{*} \rightarrow V_{2}$. Recall that every linear map on finite dimensional vector spaces can be written as a matrix, after choosing bases, and that the rank of a matrix M is the number of rank 1 matrices M_{i} needed to write $M=\sum_{i} M_{i}$. In this special case, the above definition is natural. ${ }^{2}$

But rank doesn't give us the whole picture when $n>2$. To illustrate this, consider the following classical example.

[^0]The tensor

$$
\phi=a_{1} \otimes b_{1} \otimes c_{1}+a_{1} \otimes b_{1} \otimes c_{2}+a_{1} \otimes b_{2} \otimes c_{1}+a_{2} \otimes b_{1} \otimes c_{1}
$$

is of rank at most 3 since

$$
\phi=a_{1} \otimes b_{1} \otimes\left(c_{1}+c_{2}\right)+a_{1} \otimes b_{2} \otimes c_{1}+a_{2} \otimes b_{1} \otimes c_{1}
$$

and it is not of rank 2 by explicit computation. However, notice that ϕ is the limit as $\epsilon \rightarrow 0$ of the following sequence of rank 2 tensors:

$$
\phi(\epsilon)=\frac{1}{\epsilon}\left((\epsilon-1) a_{1} \otimes b_{1} \otimes c_{1}+\left(a_{1}+\epsilon a_{2}\right) \otimes\left(b_{1}+\epsilon b_{2}\right) \otimes\left(c_{1}+\epsilon c_{2}\right)\right) .
$$

So the rank of the tensor is 3 , but we can approximate it as closely as we like with rank 2 tensors. We say ϕ has border rank 2, and we have the following definition.

Definition 1.2. A tensor $\phi \in V_{1} \otimes \cdots \otimes V_{n}$ is said to be of border rank r, denoted $\underline{\mathbf{R}}(\phi)=r$, if it is the limit of tensors of rank r but not of tensors of rank s for any $s<r$.

One way to approach the difficult general problem of understanding the border rank of tensors is to reduce multilinear algebra to linear algebra. Below is one such reduction, in which we consider $\phi \in A \otimes B \otimes C=\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$ as a linear map $A^{*} \rightarrow B \otimes C$ and then represent the image in $B \otimes C$ as a matrix. We then take the determinant of this representation to find an associated cubic curve to ϕ.

Choose bases $\left\{a_{i}\right\},\left\{b_{i}\right\},\left\{c_{i}\right\}$ for A, B, C, respectively, with $\left\{a_{i}^{*}\right\},\left\{b_{i}^{*}\right\},\left\{c_{i}^{*}\right\}$ the dual bases. Now let

$$
\phi=\sum_{i, j, k} \phi_{i j k} a_{i} \otimes b_{j} \otimes c_{k} \in A \otimes B \otimes C,
$$

where $\phi_{i j k} \in \mathbb{C}$ are constants and let

$$
a^{*}=x a_{i}^{*}+y a_{2}^{*}+z a_{3}^{*}, \quad x, y, z \in \mathbb{C},
$$

be an arbitrary element of $A^{*}=\left(\mathbb{C}^{3}\right)^{*}$. Then, the matrix representation of ϕ parametrized by a^{*}, denoted $\left.[\phi\lrcorner a^{*}\right]$, has (j, k)-th entry

$$
\left.[\phi\lrcorner a^{*}\right]_{j, k}=\phi_{1 j k} x+\phi_{2 j k} y+\phi_{3 j k} z .
$$

In the same way, we can find matrix representations $\left.[\phi\lrcorner b^{*}\right]$ and $\left.[\phi\lrcorner c^{*}\right]$ parametrized by $b^{*} \in B^{*}$ and $c^{*} \in C^{*}$. For the tensors we study in this paper, all of these representations turn out to be equal, so we work with $\left.[\phi\lrcorner a^{*}\right]$ without loss of generality.

Let's look at an example. If

$$
\phi=a_{1} \otimes b_{1} \otimes c_{1}+a_{2} \otimes b_{2} \otimes c_{2}+a_{3} \otimes b_{1} \otimes c_{2}+a_{3} \otimes b_{3} \otimes c_{3}
$$

then,

$$
\phi_{111}=\phi_{222}=\phi_{312}=\phi_{333}=1,
$$

and $\phi_{i j k}=0$ otherwise. Thus,

$$
\left.[\phi\lrcorner a^{*}\right]=\left(\begin{array}{ccc}
x & z & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right)
$$

Now take the determinant to find the determinantal cubic associated to ϕ,

$$
x y z=0 .
$$

It has been known since as early as 1938 (see e.g., [Thrall and Chanler 1938]) that any cubic curve in three variables is projectively equivalent to one of the following:
(1) triple line

$$
\begin{array}{r}
x^{3}=0 \\
x^{2} y=0 \\
x y(x-y)=0 \\
x y z=0 \\
z\left(x^{2}+y z\right)=0 \\
x\left(x^{2}+y z\right)=0 \\
x^{3}-y^{2} z=0 \\
x^{3}+y^{3}-x y z=0
\end{array}
$$

(2) double line and a line
(3) 3 lines intersecting at a point
(4) 3 lines in general position
(5) a conic and a tangent line
(6) a conic and a transverse line
(7) cuspidal cubic
(8) node
(9) a smooth cubic: the general case
(10) a cubic identically zero

The tensors to which these other singular cases correspond are dealt with in [Thrall and Chanler 1938] and later in more modern language in [Ng 1995]. In particular, normal forms are given, and in [Allums 2011], the border rank of each of these singular tensors is calculated.

Since the singular cases have been dealt with, the next question is: how is border rank related to the intrinsic geometry of the determinantal cubic in the general case? That is, how does the border rank vary in the open set of smooth cubics? To answer this, we need to introduce the classical invariants S, T and J, which are rational functions in the coefficients of a cubic.

Under the action of $\operatorname{SL}(\mathbb{C}, 3)$ on the cubic, there is a unique (up to scale) degree 4 invariant S and a unique (up to scale) degree 6 invariant T [Sturmfels 1993]. These generate the ring of invariants of a cubic of which

$$
J:=\frac{S^{3}}{T^{2}-64 S^{3}},
$$

the j-invariant, is a member. The invariants S and T are extrinsic invariants of the curve, while J is an intrinsic invariant ${ }^{3}$. Here this means S and T classify the curve up to change of coordinates while J classifies smooth cubics up to isomorphism as abelian varieties, i.e., as groups and as algebraic varieties. One goal of this paper is to find out what relationship, if any, exists between the border rank of $\phi \in \mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$ and the geometry of its determinantal cubic curve. Equivalently, we want to describe the relationship between border rank and S, T and thus J.

The maximum possible border rank of $\phi \in \mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$ is 5 [Landsberg 2012], and since a tensor of border rank 5 depends on twelve parameters, we start with a smaller case and consider tensors of border rank 4 , which we show depend on only three parameters in Proposition 3.1. We take such a tensor and calculate the invariants S and T of its determinantal cubic, summarizing our analysis in Proposition 3.2. In particular, we conclude that there is no meaningful relationship between the border rank of ϕ and S or T, and thus no meaningful relationship between border rank and J, if the cubic is smooth.

2. Background

Some background material is given in the appendix. We present the rest here, with most of it coming from [Landsberg 2012].

There exists a geometric interpretation of border rank as follows. Let V be a finite dimensional complex vector space and let $X \subset \mathbb{P} V$ be a variety. For any point q not on X, we define the join of q and X to be the set of all secant lines containing q and some point of X, denoted $J(q, X)$. If $q=x \in X$, we do the same thing, but we also allow tangent lines at x since a tangent line is a limit of secant lines. The secant variety of X is

$$
\sigma(X):=\overline{\bigcup_{x \in X} J(x, X)},
$$

where the bar denotes Zariski closure. The notation $J(X, X)=\sigma(X)$ is also used. We can also define the join of two distinct varieties $Y, Z \subset \mathbb{P} V$ by

$$
J(Y, Z)=\overline{\bigcup_{q \in Y} J(q, Z)},
$$

where $J(q, Z)$ is the set of all secant lines containing $q \in Y$ and some point of Z. Definition 2.1 [Landsberg 2012]. The join of k varieties $X_{1}, \ldots, X_{k} \subset \mathbb{P} V$ is the closure of the union of the corresponding secant $(k-1)$-planes, or by induction,

[^1]$J\left(X_{1}, \ldots, X_{k}\right)=J\left(X_{1}, J\left(X_{2}, \ldots, X_{k}\right)\right)$. Define the k-th secant variety of X to be $\sigma_{k}(X)=J(X, \ldots, X)$, the join of k copies of X.

We move on to another crucial concept: the Segre variety.
Definition 2.2. The n-factor Segre variety is the image of the map

$$
\begin{aligned}
\text { Seg }: \mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n} & \rightarrow \mathbb{P}\left(V_{1} \otimes \cdots \otimes V_{n}\right), \\
\left(\left[v_{1}\right], \ldots,\left[v_{n}\right]\right) & \mapsto\left[v_{1} \otimes \cdots \otimes v_{n}\right] .
\end{aligned}
$$

Note that for fixed $n \in \mathbb{N}$, the image of the Segre map is the projectivization of the rank $1 n$-tensors.

A tensor $\phi \in V_{1} \otimes \cdots \otimes V_{n}$ may be interpreted as a linear map

$$
V_{1}^{*} \rightarrow V_{2} \otimes \cdots \otimes V_{n}, \ldots, V_{n}^{*} \rightarrow V_{1} \otimes \cdots \otimes V_{n-1} .
$$

Recall a matrix is rank 1 if and only if all its 2×2 minors are 0 . The set of rank 1 tensors in $V_{1} \otimes \cdots \otimes V_{n}$ is exactly the set of tensors such that each of the previous linear maps has rank 1 [Landsberg 2012]. The collection of these 2×2 minors are homogeneous polynomials called flattenings. Thus, using Definition 5.3, the set of tensors of rank 1 is an algebraic variety.

Tensors of border rank r are described as limits of tensors of rank r, so the set of tensors of border rank at most r is the closure of the set of tensors of rank r, where a tensor of rank r is contained in the linear span of r points of the set of tensors of rank 1. Since in this case the Zariski and Euclidean closures coincide (see [Mumford 1976, Theorem 2.33]), the (projectivization of the) set of tensors of border rank at most r is thus exactly $\sigma_{r}\left(\operatorname{Seg}\left(\mathbb{P} V_{1} \times \cdots \times \mathbb{P} V_{n}\right)\right)$, and so we now have an entirely geometric interpretation of border rank with which to work. In particular, we can now restate some of the introduction in more modern language.

For $A \otimes B \otimes C=\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$, the representation of ϕ as a matrix defines a vector space of matrices in $\phi\left(A^{*}\right) \subset B \otimes C$ of dimension 3 parametrized by $a^{*} \in A^{*}$. When we move into projective space, it becomes a copy of $\mathbb{P}^{2} \subset \mathbb{P}(B \otimes C)$. By requiring that its determinant vanish, we are demanding that the matrix be of rank at most 2 . That is, we want the matrix to be contained in $\sigma_{2}(\operatorname{Seg}(\mathbb{P} B \times \mathbb{P} C))$. Our goal is then to see how border rank varies in the intersection

$$
\left\{\mathbb{P}\left(\phi\left(A^{*}\right)\right) \mid \phi \in A \otimes B \otimes C\right\} \cap \sigma_{2}(\operatorname{Seg}(\mathbb{P} B \times \mathbb{P} C)) .
$$

3. Primary results

First, we show that a general point in $\sigma_{4}:=\sigma_{4}(\operatorname{Seg}(\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C))$, i.e., a tensor of border rank 4 , depends on only three parameters.

Proposition 3.1. A general point in σ_{4}, up to the action of $\mathrm{GL}(\mathbb{C}, 3)$, depends on exactly three parameters.

Proof. Let $\zeta_{i}, \alpha_{i}, \beta_{i}, \gamma_{i} \in \mathbb{C}$ be constants and choose bases $\left\{a_{i}\right\},\left\{b_{i}\right\},\left\{c_{i}\right\}$ for A, B, C. We first show that $a_{1} \otimes b_{1} \otimes c_{1}+a_{2} \otimes b_{2} \otimes c_{2}+a_{3} \otimes b_{3} \otimes c_{3}$ is a general point in σ_{3} by beginning with an arbitrary general point in σ_{3}. To do this, define

$$
\begin{aligned}
u_{i} & =\alpha_{i 1} a_{1}+\alpha_{i 2} a_{2}+\alpha_{i 3} a_{3}, \\
v_{j} & =\beta_{j 1} b_{1}+\beta_{j 2} b_{2}+\beta_{j 3} b_{3}, \\
w_{k} & =\gamma_{k 1} c_{1}+\gamma_{k 2} c_{2}+\gamma_{k 3} c_{3},
\end{aligned}
$$

where $\alpha_{i p}, \beta_{j p}, \gamma_{k p}$ are constants such that each set $\left\{u_{i}\right\},\left\{v_{j}\right\},\left\{w_{k}\right\}$ is linearly independent, which can be done in any open set; so this is a sufficiently arbitrary choice of elements. Let

$$
u_{1} \otimes v_{1} \otimes w_{1}+u_{2} \otimes v_{2} \otimes w_{2}+u_{3} \otimes v_{3} \otimes w_{3}
$$

be a general point in σ_{3}. Since our group of normalizations, $\operatorname{GL}(\mathbb{C}, 3)$, is 9 dimensional, we can send each $u_{i} \mapsto a_{1}, v_{j} \mapsto b_{j}$ and $w_{k} \mapsto c_{k}$, totaling nine transformations. We then have

$$
\begin{equation*}
a_{1} \otimes b_{1} \otimes c_{1}+a_{2} \otimes b_{2} \otimes c_{2}+a_{3} \otimes b_{3} \otimes c_{3} \tag{11}
\end{equation*}
$$

as desired. A general point in σ_{4} is obtained by taking an arbitrary point in $\operatorname{Seg}(\mathbb{P} A \times \mathbb{P} B \times \mathbb{P} C)$ and adding it to (11) to obtain a point on an honest secant line:
$a_{1} \otimes b_{1} \otimes c_{1}+a_{2} \otimes b_{2} \otimes c_{2}+a_{3} \otimes b_{3} \otimes c_{3}$

$$
+\left(\alpha_{1} a_{1}+\alpha_{2} a_{2}+\alpha_{3} a_{3}\right) \otimes\left(\beta_{1} b_{1}+\beta_{2} b_{2}+\beta_{3} b_{3}\right) \otimes\left(\gamma_{1} c_{1}+\gamma_{2} c_{2}+\gamma_{3} c_{3}\right) .
$$

Since $\operatorname{GL}(\mathbb{C}, 3)$ is 9 -dimensional, we may make six dimensions worth of changes by sending $\alpha_{i} a_{i} \mapsto a_{i}$ and $\beta_{j} b_{j} \mapsto b_{j}$, with three dimensions worth of changes left over. However, these transformations add additional constants to the first three summands; we end up with

$$
\sum_{i=1}^{3} \frac{1}{\alpha_{i} \beta_{i}} a_{i} \otimes b_{i} \otimes c_{i}+\left(a_{1}+a_{2}+a_{3}\right) \otimes\left(b_{1}+b_{2}+b_{3}\right) \otimes\left(\gamma_{1} c_{1}+\gamma_{2} c_{2}+\gamma_{3} c_{3}\right) .
$$

Using our last three dimensions to send

$$
\frac{1}{\alpha_{i} \beta_{i}} c_{i} \mapsto c_{i}
$$

gives

$$
\sum_{i=1}^{3} a_{i} \otimes b_{i} \otimes c_{i}+\left(a_{1}+a_{2}+a_{3}\right) \otimes\left(b_{1}+b_{2}+b_{3}\right) \otimes\left(\alpha_{1} \beta_{1} \gamma_{1} c_{1}+\alpha_{2} \beta_{2} \gamma_{2} c_{2}+\alpha_{3} \beta_{3} \gamma_{3} c_{3}\right)
$$

Finally, for the sake of notation, relabel

$$
\lambda_{i}=\alpha_{i} \beta_{i} \gamma_{i} .
$$

Thus, a general point in σ_{4},
$a_{1} \otimes b_{1} \otimes c_{1}+a_{2} \otimes b_{2} \otimes c_{2}+a_{3} \otimes b_{3} \otimes c_{3}$

$$
+\left(a_{1}+a_{2}+a_{3}\right) \otimes\left(b_{1}+b_{2}+b_{3}\right) \otimes\left(\lambda_{1} c_{1}+\lambda_{2} c_{2}+\lambda_{3} c_{3}\right),
$$

depends on only the three parameters $\lambda_{1}, \lambda_{2}, \lambda_{3}$.
Note that the action of $\operatorname{GL}(\mathbb{C}, 3)$ on σ_{4} does not change S or T as these are invariant under changes of coordinates. Now represent this tensor as a matrix, as described in the introduction:

$$
\left(\begin{array}{ccc}
x+\lambda_{1}(x+y+z) & \lambda_{2}(x+y+z) & \lambda_{3}(x+y+z) \\
\lambda_{1}(x+y+z) & y+\lambda_{2}(x+y+z) & \lambda_{3}(x+y+z) \\
\lambda_{1}(x+y+z) & \lambda_{2}(x+y+z) & z+\lambda_{3}(x+y+z)
\end{array}\right) .
$$

Take the determinant to find the determinantal cubic curve, which is

$$
\begin{equation*}
\left(1+\gamma_{1}+\gamma_{2}+\gamma_{3}\right) x y z+\gamma_{1} y^{2} z+\gamma_{1} y z^{2}+\gamma_{2} x^{2} z+\gamma_{2} x z^{2}+\gamma_{3} x^{2} y+\gamma_{3} x y^{2} . \tag{12}
\end{equation*}
$$

From here, one uses the formulae for S and T found in [Sturmfels 1993].
Proposition 3.2. The border rank of $\phi \in \mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$ is not related to the projective geometry of its determinantal cubic curve, if it is smooth.

Proof. The polynomials S and T are in the ten coefficients of a cubic in general, but as shown in Proposition 3.1, the coefficients of our curve depends only on three parameters $\gamma_{1}, \gamma_{2}, \gamma_{3}$, so here S and T are in three variables. Now fix $\gamma_{1}=\gamma_{2}=1$. Then S and T become nonconstant polynomials in the single complex variable γ_{3} :

$$
\begin{aligned}
& S=\frac{1}{16} \gamma_{3}^{4}-\frac{5}{12} \gamma_{3}^{3}+\frac{7}{8} \gamma_{3}^{2}+\frac{43}{108} \gamma_{3}+\frac{169}{1296}, \\
& T=-\frac{1}{8} \gamma_{3}^{6}+\frac{5}{4} \gamma_{3}^{5}-\frac{113}{24} \gamma_{3}^{4}+\frac{283}{54} \gamma_{3}^{3}+\frac{611}{216} \gamma_{3}^{2}-\frac{559}{324} \gamma_{3}-\frac{2197}{5832} .
\end{aligned}
$$

By Picard's theorem, S and T each either attain every value in \mathbb{C} or attain all but one value in \mathbb{C}. However, if there was some $w \in \mathbb{C}$ not hit by S or T, then $S=w$ would have no solution. But since \mathbb{C} is algebraically closed, $S-w=0$ does have a root. Thus, S and T are onto, so we may obtain any value for them by suitable choices of $\gamma_{1}, \gamma_{2}, \gamma_{3}$.

4. On the $\mathbf{2 4}$ singular cases

Define

$$
\Delta:=T^{2}-64 S^{3}
$$

to be the discriminant of a cubic curve. Since a cubic is singular if and only if $\Delta=0$, one expects each of the determinantal cubics associated to the normal forms in [Ng 1995] to have $\Delta=0$. The determinantal cubics are:

$$
\begin{array}{rlr}
x y z=0 & \{1,2,3,5,6,8\} \\
x y z-x^{3}=0 & \{4,9,10\} \\
(\lambda-1) x y z=0 & \{7\} \\
y^{2} z+y z^{2}=0 & \{11\} \\
x^{2} y+x y^{2}=0 & \{12\} \\
x^{2} y-x z^{2}=0 & \{13,14\} \\
(\lambda-1)\left(\lambda z^{3}+x y z\right)=0 & \{15\} \\
x y z-\lambda z^{3}+y^{3} & =0 & \{16\} \\
x y z+\lambda x^{3} & =0 & \{17,18\} \\
z^{2} y-z y^{2}-x y^{2} & =0 & \{19\} \\
x z^{2}+y^{3}+\mu z y^{2} & =0 & \{20\} \\
-\mu x^{2} y-x y^{2}+x^{2} z & =0 & \{21,22\} \\
\left(\lambda_{3} \lambda_{5}\right) z^{3}+\left(\lambda_{1} \lambda_{5}+\lambda_{4} \lambda_{6}\right) x z^{2} & \\
+\left(\lambda_{2} \lambda_{6}\right) y^{2} z+\left(\lambda_{2} \lambda_{5}+\lambda_{3} \lambda_{6}\right) y z^{2} & \\
-\left(\lambda_{4} \lambda_{6}+\lambda_{1} \lambda_{5}\right) x y^{2}+\left(\lambda_{1} \lambda_{6}\right) x y z=0 & \\
-\mu z^{3}-2 \mu^{3} y^{2} z+3 \mu^{2} y z^{2}+3 \mu x y^{2} & =0 & \{23\} \\
\hline
\end{array}
$$

The set of numbers to the right are the normal forms to which the curve corresponds and

$$
\begin{array}{lll}
\lambda_{1}=(\lambda-1), & \lambda_{2}=(\lambda-1)^{2}\left(\lambda^{2}+\lambda+1\right), & \lambda_{3}=\left(\lambda^{2}-1\right)\left(\lambda^{2}+\lambda+1\right), \\
\lambda_{4}=(\lambda+1), & \lambda_{5}=\left(\lambda^{2}+1\right), & \lambda_{6}=\left(\lambda^{2}-1\right)
\end{array}
$$

where $\lambda \neq 0,1$ for $\{7,15\} ; \lambda \neq 0$ for $\{16,17,18\} ; \lambda \neq 0, \omega$ for $\{23\}$ (where $\omega^{3}=1$); $\mu=0,1$ for $\{20,21,22\}$; and $\mu \neq 0$ for $\{24\}$. Using the formulae in [Sturmfels 1993], we find $\Delta=0$ for each of these cubics.

Notice that some of these cubics are projectively equivalent. Some of these equivalences are immediate ${ }^{4}$, such as

$$
\begin{aligned}
\{1,2,3,5,6,8\},\{7\} & \sim(4), \\
\{4,9,10\},\{15\},\{17,18\} & \sim(6), \\
\{11\},\{12\} & \sim(3), \\
\{16\} & \sim(8),
\end{aligned}
$$

[^2]where the numbers to the right come from the classification in the introduction. To find the others, we find the singular points and expand in a Taylor series about that point. We then look at the second order term: if it is of rank 1 , then the singularity is a cusp, and if it is of rank 2 , the singularity is a node. As an example, let's examine $f(x, y, z)=x^{2} y-x z^{2}$, which is the cubic corresponding to $\{13,14\}$. The curve is singular at a point p if and only if the differential, D, vanishes at p. In this case,
$$
D=\left(2 x y-z^{2}, x^{2},-2 x z\right) .
$$

Since $D(p)=0$ if and only if $p=[x: y: z]=[0: 1: 0]$, this is our singular point. Expand in a Taylor series about this point:

$$
f(x, y, z)=f(p)+x f_{x}(p)+y f_{y}(p)+z f_{z}(p)+\frac{1}{2} x^{2} f_{x x}(p)+\cdots .
$$

The only nonzero term of second order is $\frac{1}{2} x^{2} f_{x x}(p)=x^{2}$, which is of rank 1 . Thus, our curve has a cusp and corresponds to case (7).

The classification of the remaining cases is a simple exercise in calculus, and we end up with

$$
\left.\begin{array}{rl}
\{13,14\},\{19\},\{20\},\{21,22\}, & \{24\}
\end{array}\right)(7),
$$

5. Appendix

We begin with the definition of the tensor product of vector spaces. Although the tensor product is typically defined by its universal property, those familiar with it will have no trouble relating the following definition, which is sufficient for our purposes, to the standard one. In all cases, $\otimes=\otimes_{\mathbb{C}}$ and recall that for a vector space V, we denote by V^{*} the dual space to V, which is the space of all linear maps $V \rightarrow \mathbb{C}$.
Definition 5.1. Let V_{1}, \ldots, V_{n}, W be finite-dimensional vector spaces. A map $f: V_{1} \times \cdots \times V_{n} \rightarrow W$ is said to be n-linear if it is linear in each factor. The tensor product of these spaces is

$$
V_{1} \otimes \cdots \otimes V_{n} \otimes W=\left\{f: V_{1}^{*} \times \cdots \times V_{n}^{*} \rightarrow W \mid f \text { is } n \text {-linear }\right\}
$$

Note that when $W=\mathbb{C}$, we have that

$$
V_{1} \otimes \cdots \otimes V_{n} \otimes W=V_{1} \otimes \cdots \otimes V_{n} \otimes \mathbb{C} \simeq V_{1} \otimes \cdots \otimes V_{n} .
$$

This is a standard result, whose statement in full generality can be seen in, e.g., Theorem 5.7 in [Hungerford 1980]. It is a straightforward exercise to show that $V \otimes W$ is the space of linear maps $V^{*} \rightarrow W$, the space of linear maps $W^{*} \rightarrow V$, the space of bilinear maps $V^{*} \times W^{*} \rightarrow \mathbb{C}$, etc. Inductively, we have many different equivalent ways to realize $V_{1} \otimes \cdots \otimes V_{n} \otimes W$. The tensor product of vector spaces is again a vector space, whose elements are called tensors.

Next, since our work is done in complex projective space, we need a definition; n-dimensional complex projective space is the space of all one-dimensional subspaces (lines) in \mathbb{C}^{n+1} [Harris 1995]:

Definition 5.2. Define n-dimensional complex projective space to be

$$
\mathbb{P}^{n}=\mathbb{P} \mathbb{C}^{n}:=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \sim,
$$

where \sim is the equivalence relation given by $\mathbb{C}^{n} \ni\left(v_{1}, \ldots, v_{n}\right) \sim\left(\lambda v_{1}, \ldots, \lambda v_{n}\right)$ for some nonzero scalar λ.

For a complex vector space V of finite dimension, denote the set of equivalence classes of some $v \in V$ by $[v] \in \mathbb{P} V$. Let

$$
\begin{aligned}
\pi: V \backslash\{0\} & \rightarrow \mathbb{P} V, \\
v & \mapsto[v]
\end{aligned}
$$

denote the projection. For a subset $Z \subset \mathbb{P} V$, let $\hat{Z}:=\pi^{-1}(Z)$ denote the cone over Z. Call the image of such a cone in projective space its projectivization. We need a final crucial definition from [Harris 1995]:

Definition 5.3. A projective variety is the projectivization of the set of common zeros of some collection of homogeneous polynomials on V.

Should the reader want to read more relevant background material, see the sections on the tensor product in [Landsberg 2012; Hungerford 1980; Dummit and Foote 2004] and the sections on basic algebraic geometry in [Landsberg 2012; Harris 1995].

References

[Allums 2011] D. J. Allums, Toward a classification of the ranks and border ranks of all (3,3,3) trilinear forms, junior thesis, Texas A\&M University, 2011, available at http://repository.tamu.edu/ bitstream/handle/1969.1/ETD-TAMU-2011-05-9621/ALLUMS-THESIS.pdf?sequence=2.
[Dummit and Foote 2004] D. S. Dummit and R. M. Foote, Abstract algebra, 3rd ed., John Wiley \& Sons, Hoboken, NJ, 2004. MR 2007h:00003 Zbl 1037.00003
[Harris 1995] J. Harris, Algebraic geometry: a first course, Graduate Texts in Mathematics 133, Springer, New York, 1995. MR 97e:14001
[Hungerford 1980] T. W. Hungerford, Algebra, Graduate Texts in Mathematics 73, Springer, New York, 1980. MR 82a:00006 Zbl 0442.00002
[Landsberg 2012] J. M. Landsberg, Tensors: geometry and applications, Graduate Studies in Mathematics 128, American Mathematical Society, Providence, RI, 2012. MR 2865915 Zbl 1238.15013
[Mumford 1976] D. Mumford, Algebraic geometry, I: Complex projective varieties, Grundlehren der Math. Wissenschaften 221, Springer, Berlin, 1976. MR 56 \#11992 Zbl 0356.14002
[Ng 1995] K. O. Ng, "The classification of (3, 3, 3) trilinear forms", J. Reine Angew. Math. 468 (1995), 49-75. MR 97a:14051 Zbl 0858.11023
[Sturmfels 1993] B. Sturmfels, Algorithms in invariant theory, Springer, Vienna, 1993 MR 94m:13004 Zbl 0802.13002
[Thrall and Chanler 1938] R. M. Thrall and J. H. Chanler, "Ternary trilinear forms in the field of complex numbers", Duke Math. J. 4:4 (1938), 678-690. MR 1546088 Zbl 0020.06105

Received: 2013-09-18 Accepted: 2014-01-24
derek.allums@rice.edu
jml@math.tamu.edu
Department of Mathematics, Rice University, Houston, TX 77005, United States

Texas A\&M University, College Station, TX 77843, United States

involve

 msp.org/involve

 msp.org/involve EDITORS

 EDITORS}

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone @latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@ math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US $\$ 140 /$ year for the electronic version, and $\$ 190 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

involve 2015 vol. 8 no. 2

Enhancing multiple testing: two applications of the probability of correct selection 181
statisticErin Irwin and Jason Wilson
On attractors and their basins 195
Alexander Arbieto and Davi Obata
Convergence of the maximum zeros of a class of Fibonacci-type polynomials 211Iteration digraphs of a linear function221
Hannah Roberts
Numerical integration of rational bubble functions with multiple singularities 233
MICHAEL SCHNEIER
Finite groups with some weakly s-permutably embedded and weakly 253
s-supplemented subgroupsGuo Zhong, XuanLong Ma, Shixun Lin, Jiayi Xia and JianxingJin
Ordering graphs in a normalized singular value measure 263
Charles R. Johnson, Brian Lins, Victor Luo and Sean MeehanMore explicit formulas for Bernoulli and Euler numbers275
FRANCESCA Romano
Crossings of complex line segments 285
SAMULI LEPPÄNEN
On the ε-ascent chromatic index of complete graphs 295Jean A. Breytenbach and C. M. (Kieka) Mynhardt
Bisection envelopes 307
Noah Fechtor-Pradines
Degree 14 2-adic fields 329
Chad Awtrey, Nicole Miles, Jonathan Milstead, Christopher Shill and Erin Strosnider
Counting set classes with Burnside's lemma 337
Joshua Case, Lori Koban and Jordan LeGrand
Border rank of ternary trilinear forms and the j-invariant 345
Derek Allums and Joseph M. Landsberg
On the least prime congruent to 1 modulo n 357

[^0]: MSC2010: 15A72, 68Q17.
 Keywords: algebraic geometry, border rank of tensors, j-invariant of cubic, ternary trilinear forms.
 ${ }^{1}$ Throughout the paper, we will assume the reader is familiar with the tensor product of vector spaces. For a quick review, see the Appendix.
 ${ }^{2}$ However, it is worth mentioning that rank as it is defined here is one of several generalizations of the rank of a linear map (e.g., multilinear rank).

[^1]: ${ }^{3}$ Consider the difference between "extrinsic" and "intrinsic" in surface theory: mean curvature is extrinsic (invariant under Euclidean motion) but Gauss curvature is intrinsic (invariant under isometry).

[^2]: ${ }^{4}$ Explanation of notation by example: The cubics $\{1,2,3,5,6,8\}$ in [Ng 1995] correspond to $x y z=0$ above, and this corresponds to three lines in general position, which is case (4) in [Thrall and Chanler 1938]. Additionally, $\{7\}$ corresponds to $(\lambda-1) x y z=0$, which is projectively equivalent to $x y z=0$ and so (4) as well. Thus we write $\{1,2,3,5,6,8\},\{7\} \sim(4)$.

