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Enhancing multiple testing: two applications of the
probability of correct selection statistic

Erin Irwin and Jason Wilson

(Communicated by Timothy O’Brien)

The calculation of the probability of correct selection (PCS) shows how likely it
is that the populations chosen as “best” truly are the top populations, according to
a well-defined standard. PCS is useful for the researcher with limited resources
or the statistician attempting to test the quality of two different statistics. This
paper explores the theory behind two selection goals for PCS, G-best and d-best,
and how they improve previous definitions of PCS for massive datasets. This
paper also calculates PCS for two applications that have already been analyzed
by multiple testing procedures in the literature. The two applications are in
neuroimaging and econometrics. It is shown through these applications that
PCS not only supports the multiple testing conclusions but also provides further
information about the statistics used.

1. Introduction

Because of the advancements in technology and science, a new development in sta-
tistics must involve correctly and usefully analyzing massive datasets. With internet
applications and financial data, there can be as many as ten million populations
to analyze, and sometimes more. Statisticians have developed methods such as
family-wide error control and the false discovery rate to deal with the multiple
testing problem — the problem of finding too many false positives when testing k
hypotheses simultaneously. This paper deals instead with ranking and selection
methodology, which is a separate branch of statistics that has also been expanded
to apply to massive datasets.

Ranking and selection methodology (RSM) is a well-defined system of ranking
a set of populations based on sample data and selecting those that are “best”. In
laboratory research, resources are always limited. A scientist may want to know
which of 10,000 genes available will provide the most information, to avoid studying

MSC2010: 46N30, 47N30.
Keywords: probability of correct selection (PCS), d-best, G-best, ranking and selection,

neuroimaging, econometrics.
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all of them. Similarly, no one can invest in every company on the stock market,
and so an investor only wants to know which ones will make the most money. In
these two cases, best can be defined as the highest expression levels or the highest
average returns on investment, respectively. Traditional hypothesis tests are not
meant for ranking and selection purposes. Instead, one can calculate the probability
of correct selection (PCS) to evaluate a chosen set of populations and see if the
best have actually been chosen.

As with multiple testing procedures, PCS has evolved in the last century from
being accurate with large datasets (≈10 samples) to being accurate with massive
datasets. The two previous methods of ranking and/or selecting the best populations
are the indifference zone method (IZ), originated by Robert Bechhofer [1954], and
the subset selection method (SS), originated by Shanti S. Gupta [1956]. More
recently there have been improvements in PCS for massive datasets by Cui and
Wilson [2008] in the form of G-best and d-best selection. In this paper, we explore
both the theory and some applications of this improved method of calculating PCS.

Specifically, we look at the definitions of G-best and d-best selection, the use of
index sets in those definitions, and the use of each selection goal. We also apply
PCS to a neuroimaging dataset and an econometrics dataset. We find that PCS
supports the results found using multiple testing procedures with the neuroimaging
application. In addition, PCS provides us with a measure of how accurate our choice
of the best populations was. We were able to find the probability that the populations
we chose as best based on sample data actually were the best populations. The
same information was found for the econometrics data, which is measured by two
statistics. PCS was easily adapted for both statistics. These applications show the
usefulness of PCS and how it can be applied generally.

The remainder of this paper is organized as follows. Section 2 gives account of
the theory behind PCS and G-best and d-best selection. Two applications of PCS
to datasets already analyzed by multiple testing procedures are given in Section 3.
Finally, we draw conclusions in Section 4.

2. G-best and d-best selection

2.1. Introduction. This section describes the mathematical theory behind G-best
and d-best selection. The purpose of ranking and selection methodology is ultimately
to choose the top t populations for some specified t . To do this, we first look at
how to denote the ranking of both population parameters and sample statistics.
We also use sets of indices to make the definitions of G-best and d-best selection
more compact. The notation is somewhat subtle, but necessary, and is covered
in Section 2.2. Furthermore, in Section 2.3, we define both G-best and d-best
selection in terms of index sets, and describe how they each meet different needs of
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Population i 1 2 3 4 5

Sample mean Yi 2.97 1.26 2.90 3.58 1.36
True mean θi 2.30 1.70 2.50 4.20 2.50

Table 1. Each column of this table of example statistics shows
information about a hypothetical population. The populations are
numbered i = 1, . . . , 5. All of this information will be used to
illustrate the notation for PCS.

a researcher. We formally state how to calculate PCS in Section 2.4. Finally, we
note the improvements these selection goals make for analyzing massive datasets
in Section 2.6.

2.2. Notation. For clarification, we will use the following example throughout this
section. Suppose we know the true means from five populations of interest. We
also have taken samples from each population, and have calculated each sample
mean. Our example data is given in Table 1.

With this in mind, consider k populations, each with the same cumulative distribu-
tion function (CDF), except with varying location parameter θi , i = 1, . . . , k. In the
example, we have k = 5. Let θ = (θ1, . . . , θk) be the vector of these parameters. In
Table 1, θ1 would then be equal to 2.30. We are really interested in the order of the
parameters, and so also have a numbering system for rank. Let θ(1) ≤ · · · ≤ θ(k) be
the ordered parameters of θ . For example, in the table, θ(1)= 1.70, while θ(5)= 4.20.

Sometimes a researcher is interested in the largest statistics, and sometimes
the smallest. The definition of the best populations must be defined explicitly for
each application. Without loss of generality we assume in this paper that the best
population has the largest statistic. What we are ultimately trying to find, then, is
the population with the top t parameters, θ(k−t+1), . . . , θ(k), or the top t parameters
themselves. For example, if we want the top t = 3 means from our example, we
would want θ(5−3+1), . . . , θ(5), or θ(3), θ(4), and θ(5).

Because the top parameters are assumed to be unknown, we must pick a statistic Y
to estimate the unknown population parameter. Each statistic will have a continuous
CDF. Yi denotes the particular statistic of the i-th population. If we are interested
in the usual mean, for example, let the statistic Y denote the mean, so that

Y2 = Y (X2,1, X2,2, X2,3)

= (.75+ 1.78+ 1.25)/3= 1.26,

where X2,1, X2,2, . . . denote particular observations from the second population.
To order the sample statistics, we use the notation Y[i] to indicate that Y[1] ≤

Y[2] ≤ · · · ≤ Y[k]. On the other hand, we denote by Y(i) the sample statistic that
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Population i 2 5 3 1 4

Sample mean Y[1] = 1.26 Y[2] = 1.36 Y[3] = 2.90 Y[4] = 2.97 Y[5] = 3.58
True mean θ(1) = 1.70 θ(3) = 2.50 θ(3) = 2.50 θ(2) = 2.30 θ(4) = 4.20

Table 2. This table contains the same information as Table 1, but
with the technical notation for PCS added. It is also now sorted by
sample mean from lowest to highest.

is drawn from the same population as the ordered parameter θ(i). With Table 1,
then, Y[4] = Y(2) = 2.97, because 2.97 is the fourth largest statistic, but it was from
the population with θ(2). With this notation, we can label our data, illustrated in
Table 2.

To choose which populations we should assert to be the top t , we use the top t
statistics. The way we will notate correct selection is using index notation. Let s be
the set of indices of the top t statistics. For example, if t = 1, then Y[5] is the top
statistic, but it comes from population i = 4. So s in this case would be s = {4}.
Then let At be the set of indices of the top t population parameters. In our case,
θ(4) is the highest, and also comes from population i = 4. Therefore, At = {4} in
this case as well. Rule R resulting in a correct selection is denoted by

CSt = {s = At }.

Our example would yield a correct selection, then, since the sets s and At are equal.
It is important to note here that if two population parameters are equal (θi = θ j

for some i 6= j), both are ranked equally, as we have done in Table 2. In past
selection methods, if more than one parameter was equal in value, only one would
be randomly chosen and asserted as the correct selection. This may significantly
reduce the value of PCS in an unnecessary manner. We will handle this situation
in this paper similarly to Cui and Wilson [2008]. If population parameters θi and
θ j are equal, then At = {i} or { j}. In other words, if t = 1 and θi = θ j are the top
ranked populations, then either s = {i} or s = { j} will result in a correct selection.
In our example, if t = 2, then At = {4, 3} or At = {4, 5} because 4.20 and 2.50 are
the two largest values among the parameters. Therefore s = {4, 3} or s = {4, 5}
would both result in a correct selection. This generalizes to handle more than two
populations with the same values.

2.3. G-best and d-best selection. All of this notation is the set-up for the two
selection goals we discuss in this paper: G-best and d-best selection, as defined
by Cui and Wilson [2008]. These are two different ways to define whether the
populations that we choose as best really are the best. One can use these methods
before an experiment to determine how many subjects to study in order to ensure the
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selection of the top populations. After an experiment, one can use these methods to
calculate the probability that the researcher has found the actual top t populations.

If our previous toy example was an actual experiment, we might have a need
to find the top, say, one statistic, but we have the resources to study two. We
would then use G-best selection, where we choose a fixed amount of populations,
t +G, that contains the top t statistics. On the other hand, if we simply needed
the populations to be within a certain threshold of quality, we would use d-best
selection. In d-best selection, we are finding a random number of populations,
say r , which contains populations that are within a certain distance d from the top
t populations. The number r is determined by an interval of prespecified length d .

Definition 2.1. Let s be the set of the indices corresponding to the top t+G statistics
for some prespecified G. Let At be a set of indices of the top t parameters. Then

CSG,t = {At ⊆ s}.

A set s that satisfies CSG,t is called G-best, and the probability that we have chosen
a G-best set is denoted by P(CSG,t).

Note that in the case that every population parameter is unique, then At will also
be unique. If two or more population parameters are equal, then At may not be
unique. Thus, the definition only calls for a possible set of At to be a subset of s in
order to satisfy CSG,t .

For example, let t = 2 and let G = 1. We will choose t +G = 3 populations that
we assert to contain the top two populations. We would then choose, from Table 2,
Y4 = Y[5] = 3.58, Y1 = Y[4] = 2.97 and Y3 = Y[3] = 2.90 as our top three statistics,
to make s = {1, 3, 4}. At would be At = {4, 3} or {4, 5}. In this case, since one
possible At is contained in s, we have chosen correctly.

With this definition, a set is not G-best unless we have actually chosen the top t
statistics. On the other hand, instead of only choosing t statistics to work with,
we are choosing t + G for some prespecified G. Thus, the G parameter allows
one to control the minimum proportion of best populations in the correct selection.
For example, selecting the top 20 out of 20 voxel clusters in a neuroimaging scan
might be highly unlikely. In this scenario we would have t = 20 and G = 0. This
does not allow for any of the chosen populations to be wrong. However, suppose
we can determine that having 90% of the populations actually being the best is
allowable. In this case, t = 18 and G = 2, and the top 18 out of 20 might have
a reasonable chance of actually being correct. It may be a low P(CSG,t), but a
reasonable chance is still an improvement. The point of ranking and selection
procedures is to narrow down the populations to the best ones, and controlling the
proportion of top populations among a group of populations does this.
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θ θ θ1 k − t +1 − d θk − t +1 + d θkk − t +1

t (d )3

At 2 At 1

t (d )2 t (d )1

Figure 1. The labels t1(d), t2(d), and t3(d) denote the number
of population parameters in their respective intervals. Note that
t1(d)+ t2(d)= t . At1 and At2 are the sets of indices of the popu-
lations with values in their respective intervals.

Definition 2.2. Let s be the set of the indices corresponding to the top t statistics.
Let At1 be the set of indices of the parameters in the interval (θ(k−t+1)+d, θ(k)], and
At2 the set of indices of the parameters in the interval [θ(k−t+1)− d, θ(k−t+1)+ d].
See Figure 1 for a graphical representation of these intervals. A correct selection
occurs when

dCSt = {At1 ⊆ s and s\At1 ⊆ At2},

where \ denotes the set difference operator B\C = {x : x ∈ B and x 6∈ C}. If a set
s satisfies dCSt , then it is said to be a d-best set. The probability of selecting a
d-best set is P(dCSt).

This selection goal is more complex. To illustrate, let t = 3 and d = 0.5.
Our s remains the same, because our former top three statistics are still the top
three. So s = {1, 3, 4}. Referring to Table 2, we see that At1 would be the set
of indices of the parameters in the interval (θ(3) + 0.5, θ(5)] = (3.00, 4.20). So
At1 = {4}. Then At2 would be the set of indices of the parameters in the interval
[θ(3)− 0.5, θ(3)+ 0.5] = [2.00, 3.00]. So At2 = {1, 3, 5}. Our result is that At1 =

{4} ⊆ s and s\At1 = {1, 3} ⊆ At2 = {1, 3, 5}, resulting in a correct selection.
This selection goal has different advantages and disadvantages than G-best

selection. Unlike a G-best set, a d-best set could contain indices of populations that
are not actually in the top t , and exclude some that are in the top t . The population
with the highest parameter must be chosen for the set to be considered a correct
selection though. Furthermore, d-best selection ensures that the populations deemed
a correct selection are within d of the best parameters. The situation for using d-best
selection would be when a selection of t populations is desired, and the difference
of d units between parameters is unimportant. For example, selecting the absolute
top ten best performing stocks might be virtually impossible (low P(dCSt)), but
the ten best within $0.50 might have a reasonable chance of success. Because fifty
cents is negligible, the margin of error is acceptable.

2.4. Calculation of G-best and d-best selection. The formula for P(CSG,t) and
P(dCSt) is the same, but the calculations will differ based on the definitions of
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G-best and d-best sets. The formula is
|S|∑

g=1

∫
∞

−∞

k∏
j=k−t+1

[
1− F(y− θsg, j )

]
d
{k−t∏

j=1

F(y− θs̄g, j )

}
. (1)

We use S to denote the set of all G-best or d-best sets, or all the sets s that will
result in a correct selection. Furthermore, let θg be the g-th combination of ordered
parameters. This will be a set of sets, each of which will contain the highest
parameter θ(k) and be of size t . Then θg = {θsg, j , θs̄g, j }, where θsg, j denotes the
combinations of parameters that satisfy the specific sets sg, j ∈ S and θs̄g, j contains the
combinations of parameters that do not satisfy G-best or d-best sets. That is, s̄g, j ∈ S̄.
F(y − θsg, j ) is the continuous cumulative distribution function of the statistic y,
adjusted to center around 0. See [Cui and Wilson 2008] for the derivation of (1).

These are extremely difficult integrals to integrate, analytically and even nu-
merically. There are expansions that simplify the expression in order to make a
numerical solution possible (specifically, via Gauss–Hermite quadrature [Cui and
Wilson 2008]). To calculate the PCS for our datasets we use an R package that uses
a parametric bootstrapping method.

2.5. Performance of G-best and d-best selection. A simulation study has been
performed in [Cui and Wilson 2009] to assess the performance of both G-best and d-
best selection. In this study, it was shown that for populations of a known parametric
distribution the estimated PCS was accurate for both G-best and d-best selection
when the distributional assumptions were met. Figure 2 shows one simulation of
normal data with normal estimated PCS, done in [Cui and Wilson 2009]. Note that
for this simulation n = 3 and σ 2

= 3, which means the standard error is 1. Thus,
when n > σ 2, the error decreases, and this was something that could be controlled.
Another aspect of PCS that was studied in [Cui and Wilson 2009] was the use of
shrinkage estimators. Shrinkage estimators are functions of the statistics designed
to decrease the bias in the estimated PCS. The second row of graphs in Figure 2
uses a Stein-type shrinkage estimator and shows an increase in error compared to
the PCS calculated with no shrinkage estimator. Cui and Wilson [2009] showed
that this increase in error was characteristic for four different shrinkage estimators,
which did not in general improve the bias. Thus, these shrinkage estimators were
not recommended, and are not used in this paper. It was also shown that the PCS
for G-best selection was still accurate when the normality assumption was violated,
but the PCS for d-best selection had high error for high values of d.

In the case that distributional assumptions are not satisfied, a nonparametric
method may be used through bootstrapping if the sample size is large enough. In this
case, a sufficiently narrow 95% confidence interval for the PCS could be found for
large values of t . For example, one simulation consisted of two groups of 100 normal



188 ERIN IRWIN AND JASON WILSON

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

0

1

2

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

 

1

2

5

d G

d-best, without shrinkage estimator G-best, without shrinkage estimator

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

0

1

2

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

 

1

2

5

Gd

G-best, with shrinkage estimatord-best, with shrinkage estimator

Figure 2. Simulated normal data with normal estimated PCS, with
t on the horizontal axes and PCS on the vertical. Note that n = 3,
σ 2
= 3, so SDE= 1. The black lines indicate the true PCS values

and the gray lines indicate the estimated PCS in all graphs.

populations with variance 1 at a distance of three standard deviations away from one
another. The 95% confidence interval for P(d=1CSt=100) was 0.69–1.00. The 95%
confidence interval for P(CSG=10,t=100) was 0.74–1.00 [Cui and Wilson 2009].

2.6. The improvements for massive datasets. The use of G-best and d-best se-
lection is very practical with massive datasets. Ranking and selection methods
to reduce the number of populations to study can be used along with multiple
testing methods, but may even suit the needs of the researcher better than these
methods. Furthermore, G-best and d-best selection are an improvement on previous
definitions of PCS with respect to massive datasets. First of all, because G-best
and d-best sets are defined in terms of index sets, they deal with the problem of
having two equal parameters effectively. Also, d-best selection is especially useful
for a dataset with high density, which is characteristic of massive datasets. The
more the population parameters are approximately equal to other parameters, the
more dense the data is. A researcher may not actually be interested in the absolute
top t populations, but rather which populations will be most worthwhile to study.
With d-best selection, the researcher can choose an interval around the true top
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Figure 3. View of a brain 3D scan, showing the coordinate cross-
sections containing a certain voxel (marked with <) situated in the
front left of the brain, a little less than halfway from the bottom.

parameters that is allowably close to find populations that may not be the best, but
will be worth spending time on.

3. Application

3.1. Introduction. Although G-best and d-best selection are fully generalizable,
in the literature to date they have only been applied to microarray data. To test
and illustrate the applicability and usefulness of P(CSG,t) and P(dCSt), we will
calculate the probability of correct selection in neuroimaging [Nichols and Hayasaka
2003] and econometrics [Romano and Wolf 2005] data. To calculate the probability
of correct selection for these applications, we use the R package PCS, which can
be found at www.r-project.org.

3.2. Neuroimaging. First of all, we look at brain scans from a test on verbal
fluency. Scientists conducted the study on five people, who both listened passively
and said words aloud. They then studied whether areas of the brain were activated
more in listening to or in generating words. To study the brain, they used 3D scans
composed of voxels, which are three-dimensional pixels. Figure 3 shows the shaded
voxels that represent activated areas of the brain common to all five subjects.

Nichols and Hayasaka [2003] took this study and measured each of the 55,027
voxels of the brain scans to see if any part of the brain was more active for word
generation as opposed to passive listening. With this particular experiment, no voxels
were found to be significant. To analyze these results with PCS, we used the program
SPM8 [Friston et al. 2013] to find the possible clusters of voxels that might be sig-
nificant in the conjunction of all five brains. We then calculated the probability that

http://www.r-project.org
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t 1 2 3 4

P(CS0,t)= P(0CSt) 0.11 0.02 0.00 0.00
P(CS2,t) 0.33 0.11 0.03 0.01
P(CS4,t) 0.49 0.22 0.08 0.03
P(CS6,t) 0.60 0.33 0.15 0.06

P(0.5CSt) 0.19 0.04 0.05 0.03
P(1CSt) 0.24 0.19 0.35 0.29

Table 3. These low probabilities support Nichols’ and Hayasaka’s
findings. For example, when t = 3 and G = 4, the probability that
the clusters selected actually are best is only .08.

one, two, three or four of these clusters may actually be the best clusters of voxels, or
show the most brain activity. The calculation of PCS for this data supports Nichols’
and Hayasaka’s conclusion that there were no significant voxels (see Table 3).

The very low probabilities in Table 3 show that if one were to choose even one
cluster as significant, it would not likely be the best cluster of voxels. Consider the
probability of correct selection of t = 1 for both G = 2 and d = 0.5. To understand
the meaning of the probability of a G-best selection, refer to Definition 2.1. For
t = 1 and G = 2, the probability of correct selection is .33. In the table, this is
denoted by P(CS2,1)= .33. If one chooses the top three clusters of voxels, there
is only a .33 probability that the best cluster is among them. For d-best selection,
refer to Definition 2.2. With t = 1 and d = 0.5, the probability of correct selection
is .19. That is, P(0.5CS1) = .19. The probability that the top cluster of voxels
is even within a margin of 0.5 of the top clusters is only .19. This complements
the multiple testing result that none of the voxels are significantly different from
any of the others. The highest probability found was for t = 1 and G = 6. These
parameters result in a probability of more than half. This supports Nichols’ and
Hayasaka’s findings, but adds the information that we would have to choose seven
clusters just to find one that stands out.

3.3. Econometrics. The economics data we chose comes from the Center for In-
ternational Securities and Derivatives Market from January 1992 to March 2004.
There are 105 hedge funds, and each fund has 147 recorded returns, one from each
month in the time period. Instead of simply recording the return on investment
for each month, the data records the amount the return is above or below a certain
benchmark. In this case, the benchmark is the risk-free rate, i.e., the rate of return
on an investment with zero risk. Romano and Wolf [2005] used stepwise multiple
testing procedures to find the top ten absolute best performing funds. They defined
best as the fund with the largest return in excess of the benchmark. We have
calculated the probability that the ten funds that Romano and Wolf chose are
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Excess Fund

1.70 Libra Fund
1.41 Private Investment Fund
1.36 Aggressive Appreciation
1.27 Gamut Investments
1.26 Turnberry Capital
1.14 FBR Weston
1.11 Berkshire Partnership
1.09 Eagle Capital
1.07 York Capital
1.07 Cabelli International

Table 4. The ten highest-performing funds from January 1992 to
March 2004, ranked by average return in excess of the risk-free rate.

actually the top ten using different parameters of G-best and d-best selection, but
always choosing ten funds. The index set of the ten chosen funds is

s = {31, 105, 16, 8, 25, 101, 38, 4, 82, 57},

and the chosen funds according to [Romano and Wolf 2005] are shown in Table 4.
Table 5 shows the probabilities of correct selection.

From these probabilities, one can see that it is not very certain that all ten funds
chosen are truly the top ten funds. The probability P(CS0,10)= P(0CS10)= .13
shows that these ten funds only have a 13% chance of being the top ten. Using
G-best selection, we can be confident that these top ten statistics contain the top
five funds, but that only accounts for half of the funds chosen. Furthermore, by
looking at d-best selection, there is an .86 probability that the top ten funds found
with the absolute statistic are within two ranks of the top ten funds. This is actually
a very large margin. The reason the probabilities are not that certain is because
there is a large amount of variability in this statistic. To address this issue, Romano
and Wolf propose standardizing the statistic.

Romano and Wolf studentize the absolute statistic, that is, they used the usual t-
statistic, which is calculated by dividing the statistic used above by the standard error.
Romano and Wolf estimate variance using a sophisticated method involving a time-
series bootstrap, whose code is unavailable. Thus, for this paper we simply divide
the first statistic by the usual standard error (standard deviation divided by

√
n) of

each fund. The top ten funds Romano and Wolf chose using the t-statistics were a
completely disjoint set from the nonstudentized set of best funds. The index set of
the top ten funds found using the usual standard error is

s = {61, 60, 102, 100, 23, 30, 18, 22, 63, 46}.
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Absolute Statistic Studentized Statistic

P(CSG,t ) P(dCSt ) P(CSG,t ) P(dCSt )

P(CS0,10)= 0.13 P(0CS10)= 0.13 P(CS0,10)= 0.71 P(0CS10)= 0.71
P(CS1,9)= 0.29 P(0.5CS10)= 0.32 P(CS1,9)= 0.98 P(0.5CS10)= 0.71
P(CS2,8)= 0.53 P(1CS10)= 0.52 P(CS2,8)= 1.00 P(1CS10)= 0.95
P(CS3,7)= 0.74 P(1.5CS10)= 0.78 P(CS3,7)= 1.00 P(1.5CS10)= 0.95
P(CS4,6)= 0.92 P(2CS10)= 0.86 P(CS4,6)= 1.00 P(2CS10)= 0.97
P(CS5,5)= 1.00 P(2.5CS10)= 0.93 P(CS5,5)= 1.00 P(2.5CS10)= 1.00
P(CS6,4)= 1.00 P(3CS10)= 0.99 P(CS6,4)= 1.00 P(3CS10)= 1.00
P(CS7,3)= 1.00 P(3.5CS10)= 1.00 P(CS7,3)= 1.00 P(3.5CS10)= 1.00
P(CS8,2)= 1.00 P(4CS10)= 1.00 P(CS8,2)= 1.00 P(4CS10)= 1.00
P(CS9,1)= 1.00 P(4.5CS10)= 1.00 P(CS9,1)= 1.00 P(4.5CS10)= 1.00

Table 5. The first two columns show the PCS for the absolute
statistic. These probabilities are significantly lower than those from
the studentized statistic, shown in the third and fourth columns.
The difference is due to the studentized statistic accounting for the
variability in the data.

Just as in [Romano and Wolf 2005], this is a completely different set of ten funds
chosen as best. Table 5 shows the probability that the studentized statistic shows
the true top ten studentized funds.

As one can see, the probability that these ten chosen funds are in actuality the
best funds is significantly more than with the nonstudentized statistic. From these
results, we can see that the studentized statistic, even using the usual standard error
for each fund, is much more likely to identify the true best hedge funds according
to the t-statistic.

Romano and Wolf show that the studentized statistic is a better measure of the per-
formance of a fund because it takes into account the amount of risk involved. As one
can see in Figure 4, the magnitude of the return of the top fund chosen according to
the absolute statistic is much larger than that of the top fund chosen according to the
studentized statistic. However, the second graph in Figure 4 shows that the return of
the top fund according to the studentized statistic is in positive excess of the risk-free
rate for the vast majority of the months recorded. The high probabilities found with
PCS further support that the standardized statistic is superior to the absolute statistic.
It is also important to note that the PCS of the studentized statistics may change
with the more sophisticated estimate of variance. Still, even in this application, PCS
provides useful information on both the absolute and studentized statistics.

3.4. Results. Applying PCS to these areas shows how useful ranking and selection
methodology can be. The probability of correct selection has thus far been consistent
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Figure 4. The graph on the left shows the return of the fund chosen
as best according to the absolute statistics (black) and of the fund
chosen as best according to the studentized statistic (red). The
graph on the right shows the return of the top fund chosen using
the studentized statistic alone.

with the latest multiple testing procedures, as it is in the neuroimaging application.
However, PCS provides different information than a multiple hypothesis test. In
each application we found a measure of how accurate our chosen best populations
actually are. Instead of simply choosing the best statistics, one can have a better idea
of how close they are to actually being best. If a neuroimaging scientist actually
found a significant cluster of voxels, he or she would know how unlikely it is
for that cluster to be best. With the econometrics application, investors can see
the probability that the ten funds chosen either contain the actual top t funds, or
that they are within a certain margin of the actual top ten funds. This is valuable
information that can help drive the development of a new hypothesis.

4. Conclusions

The probability of correct selection is a useful tool in statistics, and we have striven
to illustrate this through both the theory behind G-best and d-best selection and its
application to differing areas. The use of PCS deals with the problem of massive
datasets by accommodating dense datasets that may have many parameters in
common or close enough to study. Furthermore, G-best and d-best selection are
useful tools for a researcher with limited resources. Instead of having a list of
significant populations too large to adequately study, one can actually find the
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populations that are most likely to be the best. Depending on the needs of the
researcher, G-best or d-best selection may be more useful. Both selection goals
were found to be consistent with previous claims of significance in the neuroimaging
application, which supported their validity. In the econometrics application, PCS
provided information on two separate statistics in the same study, which showed its
adaptability. In both applications, PCS provided additional information that was
not available through hypothesis testing. With PCS, we gain an insight into the
quality of the populations chosen as best by seeing how likely it is that they truly
are best. Clearly, PCS is a powerful tool.

For further research, we would like to find the variance estimator for a time-series
regression bootstrap in order to find the PCS of the top ten funds actually chosen
by Romano and Wolf. We would also like to apply PCS to mass spectrometry and
other large k populations found in the literature.
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On attractors and their basins
Alexander Arbieto and Davi Obata

(Communicated by Kenneth S. Berenhaut)

We prove that the map assigning to a given vector field the Lebesgue measure
of the union of the basins of its attractors is lower semicontinuous in a residual
subset of vector fields. Moreover, we prove that the Lebesgue measure of the
union of the basins of attractors of a generic sectional axiom A vector field is total.
For this, we also improve a result of Morales about sectional-hyperbolic sets.
We also remark that homoclinic classes are topologically ergodic and that for a
generic tame diffeomorphism, the union of the stable manifolds of the hyperbolic
periodic orbits is dense in the manifold.

1. Introduction

One of the key notions in the theory of dynamical systems is that of attractors. By
definition, an attractor captures the asymptotic information of a large set of orbits,
called its basin, which always contains an open set. As an example, if an attractor
is hyperbolic, then the asymptotic behavior of an orbit in its basin is governed by
the dynamics of one orbit inside it (a shadowing property).

Moreover, that essentially every orbit is attracted by one attractor and that the
set of attractors is finite (and possibly hyperbolic) implies that the dynamics of the
system are nicely described by the attractors. For instance, this led Palis [2005] to
conjecture that “there is a dense set D of dynamical systems such that any element
of D has finitely many attractors whose union of basins of attraction has total
probability”.

Mathematicians have made many efforts to understand attractors and their basins,
not only for finite-dimensional dynamics, but also for PDEs (infinite-dimensional
dynamical systems). See, for instance, [Constantin et al. 1985] or [Hale 2000].

On the other hand, to understand properties of the entire set of dynamical systems
is a difficult task, and it is more reasonable to try to understand a large part of the set
of dynamical systems. This reasoning leads to the theory of generic dynamics. Since
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the Cr -topology turns the space of diffeomorphisms (or vector fields) into a Baire
space, it is natural to show that some properties holds for a residual subset of the
space of dynamical systems, i.e., a countable intersection of open and dense subsets,
since this will show the presence of this property for a dense subset and this property
could be used to show another property in another residual subset. Indeed, the inter-
section of two residual subsets is also a residual subset. Usually, we say that a prop-
erty holds for a generic system if it holds in a residual subset of dynamical systems.

The purpose of this article is to give some remarks about attractors, and their
basins, of certain classes of dynamical systems, both diffeomorphisms and vector
fields. These remarks are the results obtained by Obata [2010], guided by Arbieto,
in his undergraduate monograph. We will state the results and refer the reader to
the next section for the precise definitions of the more technical objects used in
the statements.

Let M be a Riemannian closed manifold. We denote by Diff1(M) the space
of diffeomorphisms and by X1(M) the space of vector fields, both endowed with
the C1-topology. We denote by m the Lebesgue measure and by d the geodesic
distance, both induced by the Riemannian metric. If X ∈ X1(M), we denote by X t

the flow generated by X .

Results for flows. An attractor is an invariant compact subset 3 of M such that
there exists a neighborhood U of 3 with

X t(U )⊂U for t > 0 and
⋂
t≥0

X t(U )=3.

The set U is called the local basin of 3 and B(3) :=
⋃

t≤0 X t(U ) is the basin of 3.
We also define a set R to be a repeller if R is an attractor for −X .

Let X be a vector field, and denote by m(B(X)) the Lebesgue measure of the
union of the basins of the attractors of X . This generates a map 8 : X1(M)→
[0,+∞], defined as 8(X) := m(B(X)) if there exists an attractor and 8(X) := 0
if not.

Theorem 1. There exists a residual subset R such that8|R is lower semicontinuous.

The analogous statement holds for diffeomorphisms using the same proof.
Metzger and Morales [2008] extended the notion of axiom A vector fields for

flows with singularities, called sectional axiom A vector fields. As an intermediate
step to studying sectional axiom A vector fields, we have the following result:

Theorem 2. There exists a residual subset R such that if X is in R and 0 =
31 ∪ · · · ∪ 3k , with 0 ⊂ �(X), is a disjoint union of homogeneous sectional-
hyperbolic sets for X or −X , and 0 is a proper subset of M , then m(0)= 0.
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We remark that it is well known that if M is a closed manifold which is a sectional-
hyperbolic set for X , then X has no singularities and X is Anosov [Bautista and
Morales 2011].

To prove this theorem, we extend a result of [Morales 2007]; see Theorem 13.
As a corollary, we obtain the following result, which improves Corollary D of

[Alves et al. 2007] in two ways. We do not require that the vector field be C1+ε or
that the dimension of the manifold be 3. Indeed, in [Alves et al. 2007] it is proved
that if a sectional axiom A vector field X over M3 is C1+ε, then the Lebesgue
measure of the union of the basins of its hyperbolic or sectional-hyperbolic attractors
is total. We remark also that the union of the sets of C1+ε vector fields, over any
ε > 0, is a meager subset of vector fields.

Theorem 3. Let X be a generic sectional axiom A vector field. Then either X is
Anosov, or the Lebesgue measure of the nonwandering set of X is zero and the
Lebesgue measure of the union of the basins of its attractors is total.

A difficulty in proving this theorem is that it is not known whether the set of
sectional axiom A vector fields (without cycles) is open. This is an interesting
question. Even so, there are open sets of vector fields formed by sectional axiom A
sets [Bautista and Morales 2011]. Moreover, [Morales and Pacifico 2003] shows
that in dimension 3, generically, either a vector field has infinitely many sinks or
sources or it is sectional axiom A. So, we obtain the following corollary:

Corollary 4. If dim(M)=3, a generic vector field either has infinitely many sinks or
sources, or the Lebesgue measure of the union of the basins of its attractors is total.

Results for diffeomorphisms. Abdenur [2003] proved that attractors for generic dif-
feomorphisms are homoclinic classes. These classes are always transitive. However
it can be proved that they have another property called topological ergodicity.1

Proposition 5. Any homoclinic class of a periodic point p, with period k, of a
diffeomorphism f is topologically ergodic. Moreover, for any two open sets U
and V , the density of N (U, V )= {i ≥ 1 : f i (U )∩V 6=∅} is bounded by below 1/k.

Finally, the techniques used in the proof of the results above can be used to prove
a folklore result. Since, as far as the authors know, it was never written, we include
here a proof of this result:

Proposition 6. If f is a C1-generic tame diffeomorphism, then the union of the
stable manifolds of the hyperbolic periodic orbits is dense in M.

We observe that this result was proved in a more general setting (partially
hyperbolic diffeomorphisms with one-dimensional central bundle) by Bonatti, Gan
and Wen [Bonatti et al. 2007]. In particular, they obtain this corollary using stronger

1Recently Abdenur and Crovisier [2012] investigated the mixing property for isolated sets.
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methods. However, the short proof given here only uses the connecting lemma.
This is a particular case of Bonatti’s conjecture; see [Bonatti et al. 2007].

Conjecture 7. There exists a residual subset R⊂Diff1(M) such that for any f ∈R,
the union of the stable manifolds of the hyperbolic periodic orbits is dense in M.

This paper is organized as follows. In Section 2, we give precise definitions of
terms used in the introduction. In Section 3, we prove Theorem 1. In Section 4, we
prove Theorems 2 and 3 and also prove an extension of a theorem by Morales. In
Section 5, we give a proof of Proposition 5. Finally, in Section 6, we give a proof
of Proposition 6.

2. Preliminaries

In this section, we give precise definitions of terms used in the introduction and
collect some useful results.

2.1. Topology. As remarked before, both Diff1(M) and X1(M) are Baire spaces.
We will say that a property P is generic if it holds for a residual subset of these
spaces. If the residual subset is fixed, we also say that an element of it is generic.

Let F(M) denote the space of compact subsets of M ; it is a metric space under
the Hausdorff metric, given by

dH (A, B)=max{dA(B), dB(A)} for all A, B ∈ F(M),

where dA(B)=maxb∈B{mina∈A(d(a, b))}.
Let (N , d) be a metric space. A map ϕ : N → F(M) is lower semicontinuous at

y ∈ N if yn→ y implies dH (ϕ(yn), ϕ(y))→ 0. Analogously, a map ϕ : N → R is
lower semicontinuous at x0 ∈ X if

lim inf
x→x0

f (x)≥ f (x0).

It is well known that if (N , d) is a Baire space, then the set of continuity points of
a lower semicontinuous map, in either definition above, is a residual subset of its
domain; see [Kelley 1955].

2.2. Flows. Let X ∈X1(M). The orbit of a point p is the set {X t(p)}t∈R. A periodic
orbit of X is an orbit {X t(p) : t ∈ R} of a point p ∈ M satisfying XT (p) = p for
some minimal T > 0. A singularity σ is a zero of X . By a closed orbit we mean
a periodic orbit or a singularity. The nonwandering set of X is the set �(X) of
points x such that for every neighborhood U of x and N > 0, there exists some
T > N such that XT (U )∩U 6=∅.

A subset 3⊂ M is invariant if X t(3)=3 for all t ∈R; transitive if there exists
p ∈3 such that its orbit is dense in 3; isolated if there exists a neighborhood U
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of 3 such that
⋂

t∈R X t(U )=3; and �-isolated if there exists a neighborhood V
of 3 such that �(X)∩ V =3. We remark that any attractor is �-isolated.

We say that a subset 3⊂ M is sectional-hyperbolic if every singularity in 3 is
hyperbolic and it has a nontrivial partially hyperbolic splitting T3M = E ⊕ F such
that E is uniformly contracting and F is sectionally expanding; i.e.,

dim(Ec
x)≥ 2 and | det(DX t(x)/L x)| ≥ K−1eλt

for all x ∈3, t ≥ 0, and L x a two-dimensional subspace of Ec
x .

We say that 3 is hyperbolic if there is a continuous invariant tangent bundle
decomposition

T3M = Ê s
3⊕ Ê X

3 ⊕ Êu
3,

and positive constants K , λ, where Ê X
3 is the subbundle generated by X and

‖DX t(x)/Ê s
x‖ ≤ K e−λt and ‖DX−t(x)/Êu

X t (x)‖ ≤ K e−λt

for all x ∈3 and t ≥ 0.
A closed orbit is hyperbolic if it is a hyperbolic compact invariant set. A hy-

perbolic set is a basic set if it is isolated and transitive. Similar notions hold for
diffeomorphisms.

Given an invariant splitting T3M = E3 ⊕ F3 over an invariant set 3 of a
vector field X , we say that the subbundle E3 dominates F3 if there are positive
constants K , λ such that

‖DX t(x)/Ex‖‖DX−t(x)/FX t (x)‖ ≤ K e−λt for all x ∈3 and t ≥ 0.

In such a case we say that T3M = E3⊕ F3 is a dominated splitting.
We say that 3 is partially hyperbolic if it has a dominated splitting T3M =

E s
3⊕ Ec

3 whose dominating subbundle E s
3 is contracting, that is,

‖DX t(x)/E s
x‖ ≤ K e−λt for all x ∈3 and t ≥ 0.

Moreover, we call the central subbundle Ec
3 sectionally expanding if

dim(Ec
x)≥ 2 and | det(DX t(x)/L x)| ≥ K−1eλt

for all x ∈3, t ≥ 0, and L x a two-dimensional subspace of Ec
x .

Definition 8. We say that a compact and invariant set3 of X is sectional-hyperbolic
if every singularity contained in 3 is hyperbolic and it has a nontrivial partially
hyperbolic set with a sectionally expanding central subbundle.

Now, we recall the notion of sectional axiom A vector field, given in [Metzger
and Morales 2008]; see also [Morales et al. 1999].
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Definition 9. A vector field X is sectional axiom A if there is a finite disjoint
decomposition

�(X)=31 ∪ · · · ∪3k,

where each 3i is a hyperbolic basic set or a sectional-hyperbolic attractor up to
time reversion.

2.3. Diffeomorphisms. If p is a hyperbolic periodic point, of period k, of a diffeo-
morphism f , then its stable manifold is the set

W s(p)= {y ∈ M : d( f kn(y), p)→ 0 as n→∞}.

This set is in fact an immersed manifold. The stable manifold of the orbit of p is
the union of the stable manifolds of f i (p) for i = 0, . . . , k−1, and it is denoted by
W s(O(p)). Analogously, we define the unstable manifold of p and the orbit of p.

Definition 10. The homoclinic class of p is the set

H(p, f )=W s(O(p)) tW u(O(p).

A diffeomorphism is tame if its nonwandering set decomposes as a finite number
of homoclinic classes and finitely many sinks or sources. Analogous definitions
hold for vector fields.

Given two nonempty open sets U and V , we define the set of times that the orbit
of U visits V as

N (U, V )= {i ≥ 1 : f i (U )∩ V 6=∅}.

The following definition can be found in [Abdenur and Crovisier 2012]:

Definition 11. An invariant and compact subset 3 of f is topologically ergodic if
for every two nonempty open sets U, V ⊂3, we have

lim sup
n→∞

#N (U, V )∩ {1, . . . , n}
n

> 0.

3. Proof of Theorem 1

First we observe that since attractors are isolated, there are at most countably many
of them. Let 31,32, . . . be the attractors of a generic vector field X . Denote by
B(31), B(32), . . . its basins.

We select 31, . . . , 3r such that

r∑
i=1

m(B(3i ))≥ m(B(X))− ε.
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There exist compact sets K1, . . . , Kr such that3i ⊂ Ki ⊂ B(3i ) for i = 1, . . . , r
and such that

m(B(3i )− Ki ) <
ε

r
.

Now, we recall a result of Abdenur. Actually, he works with diffeomorphisms,
but his proof holds for vector fields with the necessary adaptations. Also, he states
his theorem for �-isolated transitive sets, but we will only state it in the case of
attractors, which is the context here.

Theorem 12 [Abdenur 2003]. There exists a residual subset R⊂ X1(M) such that
if X ∈R and 3 is an attractor of X with local basin U which does not reduce to a
singularity, then there exists a neighborhood U of X such that for any Y ∈U∩R,
3(Y )=

⋂
t≥0 Yt(U ) is an attractor. Moreover, there exists a periodic orbit O(p)

such that 3(Y )= H(O(p), Y ).

Thus, there are local basins Ui of 3i such that these local basins persist in a
C1-generic neighborhood of X . Since B(3i )=

⋃
t≥0 X−t(Ui ) and Ki ⊂ B(3i ) is

a compact set, there is T > 0 such that

Ki ⊂
⋃

t∈[0,T ]

X−t(Ui ).

The set on the right is open. So, if Y is C1-close to X , we obtain that

Ki ⊂
⋃

t∈[0,T ]

Y−t(Ui ).

Thus, if Y is generic and C1-close to X , we have m(B(3i (Y )))≥ m(Ki ).
Hence,

m(B(Y ))≥
r∑

i=1

m(Ki )≥ m(B(X))− ε.

This proves lower semicontinuity.

4. Proof of Theorems 2 and 3

Let 3 be a sectional-hyperbolic set for X . We recall that its strong stable manifold
is the set

W ss(x)=
{

y ∈ M : lim
t→∞

d(X t(x), X t(y))= 0
}
.

Its local strong stable manifold is an ε-ball W ss
ε (x) in W ss(x) centered at x for some

ε > 0.
Given A⊂ M , we define α(A) as the set of points y = limn→∞ X tn (zn) for some

sequences tn→−∞ and zn ∈ A. We say that a sectional-hyperbolic set is homoge-
neous if the splitting E s

⊕Ec given by the definition is such that dim E s is constant.
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The following result improves the main theorem in [Morales 2007] since we do
not require transitivity.

Theorem 13. Let 3 ⊂ �(X) be a homogeneous sectional-hyperbolic set for X.
Denote by R the union of the hyperbolic repellers contained in 3. Then 3− R does
not contain any local strong stable manifold.

Proof. By hypothesis, the map x ∈ 3 7→ W ss
ε (x) is continuous if ε > 0 is small,

but fixed. Assume that 3− R contains some W ss
ε (x). Let δ < ε and take H =

α(W ss
δ (x)) ⊂ 3− R, which is compact and invariant. Observe also that the set

3− R is compact and invariant, since 3⊂�(X).
If H has a singularity σ then, by definition, σ = lim X tn (zn) for some sequences

tn→−∞ and zn ∈W ss
δ (x). Moreover, W ss

δ (X tn (zn))⊂3 for any natural number n.
Taking the limit as n→∞, we obtain that W ss

δ (σ )⊂3.
However, by [Bautista and Morales 2011], since 3 is sectional-hyperbolic, we

have that 3∩W ss(σ )= {σ }, and this is a contradiction.
If H does not have a singularity, then by the hyperbolic lemma [Bautista and

Morales 2011], H is a hyperbolic set. Now, let y be a cluster point of X tn (x), with
tn→−∞. We will show that W ss(y)⊂ H . Indeed, let z ∈W ss(y) and let ε > 0 be
small enough. There exists T > 0 such that

d(XT (z), XT (y)) < ε.

Also, there exists n0 such that for any n ≥ n0, we have

d(X t(y), X tn+T (x)) < ε.

Finally, for any n large, there exists zn ∈W ss
δ (x) such that

d(X tn+T (x), X tn+T (zn)) < ε.

This implies that if n is large enough then

d(XT (z), X tn+T (zn)) < ε.

In particular, we can assume that tn + T → −∞. Thus, XT (z) ∈ H , and by
invariance, z ∈ H . Thus H is a repeller inside 3− R, a contradiction. �

Remark 14. We could remove the homogeneity assumption. Indeed, the sets
{x ∈3 : dim(E s(x))= i} for 1≤ i ≤ d − 1 are compact. Hence, we could use the
argument restricting ourselves to each of these sets.

Now, we observe that X1 is a partially hyperbolic diffeomorphism over 3 since
the dominated splitting T3M = E s

⊕ Ec has a contracting subbundle E s . A strong
stable disk of X1 is a disk which is tangent to the subbundle E s over 3. Obviously,
a strong stable disk of X1 is a local strong stable manifold for some point x ∈3.
However, the following result was proved in [Alves et al. 2007, Theorem 2.2]:
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Theorem 15. Let f : M → M be a C2 diffeomorphism and 3 ⊂ M a partially
hyperbolic set with positive volume. Then 3 contains a strong stable disk.

Together with Theorem 13, we obtain the following:

Corollary 16. Let 3 be a proper subset of M. If 3 is a homogeneous sectional-
hyperbolic set of a C2 vector field X and 3⊂�(X), then m(3)= 0.

Proof. First we remark that there are only countably many repellers in 3, since they
are isolated. Moreover, by [Bowen 1975], the measure of any hyperbolic repeller
(or attractor) is zero if X is C2.

On the other hand, if R denotes the union of the hyperbolic repellers of 3 and
m(3− R) > 0, then by Theorem 15, there exists a strong stable disk on 3− R,
and this contradicts Theorem 13. �

For any open set U , let 3Y (U )=
⋂

t∈R Yt(U ). These sets have an upper semi-
continuity property: lim sup3Xn (U ) ⊂ 3X (U ). Indeed, let x ∈ lim sup3Xn (U ).
So, there exists xn ∈3Xn (U ) such that xn→ x . Fix t ∈R. We have (Xn)t(xn) ∈U .
Thus, X t(x) ∈U . Since this holds for every t ∈ R, this implies that x ∈3X (U ).

Now, let {Uk} be a countable basis of the topology and {Ok} the set of finite
unions of the Uk . For every n, k ∈N, we define Un,k as the set of vector fields Y
such that m(3Y (Ok)) < 1/n.

Lemma 17. Un,k is an open set.

Proof. Let Y ∈Un,k , and suppose that m(3Y (Ok))= 1/n− ε. There exists T large
enough that

m
( T⋂

t=−T

Yt(Ok)

)
< m(3Y (Ok))+

ε

2
.

Let W be a neighborhood of
⋂T

t=−T Yt(Ok) such that

m(W ) < m
( T⋂

t=−T

Yt(Ok)

)
+
ε

2
.

If Z is close enough to Y , we have that
⋂T

t=−T Z t(Ok)⊂W . Thus

m(3Z (Ok))≤ m
( T⋂

t=−T

Z t(Ok)

)
< m

( T⋂
t=−T

Yt(Ok)

)
+
ε

2

≤ m(3Y (Ok))+ ε =
1
n
. �

Now, we prove Theorem 2.
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Proof of Theorem 2. By the previous lemma, Un,k is an open set. Now, we define
Nn,k = X1(M)−Un,k . Consider the residual subset

R=
⋂

n

⋂
k

(Un,k ∪Nn,k).

Let X ∈R and let 0=31∪· · ·∪3k , as in the statement of Theorem 2. Suppose
that3i is a homogeneous sectional-hyperbolic set for X . Since3i is invariant, there
exists k(i) such that 3i ⊂3X (Ok(i)) and 3X (Ok(i)) is a homogeneous sectional-
hyperbolic set. A similar argument holds when 3i is a homogeneous sectional-
hyperbolic set for −X .

Now, suppose that m(3X (Ok(i))) > 0 for some i . Thus, there exists n such that
m(3X (Ok(i))) ≥ 1/n. So, X ∈ Nn,k(i). Since Nn,k(i) is an open set, there exists a
neighborhood V of X such that m(3Y (Ok(i)))≥ 1/n for every Y ∈ V.

Using the semicontinuity property, mentioned above, and the sectional hyperbol-
icity of 3X (Ok(i)), we can assume, shrinking V if necessary, that 3Y (Ok(i)) is a
homogeneous sectional-hyperbolic set for every Y ∈ V.

Now, we can choose a C2 vector field Y ∈ V and by Corollary 16, we have that
m(3Y (Ok))= 0, a contradiction. �

Proof of Theorem 3. The arguments given above show that there exists a residual
subset S such that if X ∈ S and 3 is a proper saddle-type isolated transitive
sectional-hyperbolic set, then m(3)= 0.

Indeed, let U be an open set, and define U(U ) as the (open) set formed by
vector fields Y such that 3Y (U ) is hyperbolic of saddle type. Let Un(U ) =
{Y ∈ U(U ) : m(B(3Y (U ))) < 1/n}. Using the same argument as in the proof
of Lemma 17, we obtain that Un(U ) is an open set.

Moreover, if Y ∈ U(U ) is C2, we have that m(B(3Y (U ))) = 0 [Bowen 1975,
p. 68]. So, Un(U ) is dense in U(U ).

Defining Ok as above, we set S =
⋂

k,n Un(Ok).
Let X ∈ R∩S be a sectional axiom A vector field. By definition, we have a

spectral decomposition �(X) = 31 ∪ · · · ∪3k , formed by sectional-hyperbolic
attractors, repellers and basic saddle-type hyperbolic sets. Moreover, since these
sets have a dense orbit, they are homogeneous.

If m(�(X))> 0, then there exists 1≤ i ≤ k such that m(3i )> 0. By the previous
argument and Theorem 2, we have that 3i = M . If 3i is a saddle-type hyperbolic
set, then X is Anosov. If 3i is a sectional-hyperbolic attractor then it cannot have
any singularity. Indeed, if σ is a singularity, we must have W ss(σ ) ∩3i = {σ },
but if 3i = M this cannot be true. Hence, by the hyperbolic lemma, M would be
hyperbolic again and X would be Anosov. If 3i is a sectional-hyperbolic attractor
for −X , the same holds.
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So, assuming that X is not Anosov, m(�(X))= 0. Using Lemma 2.2 of [Shub
1978], we have that

M =W s(31)∪ · · · ∪W s(3k).

Since X ∈R, if 3i is a repeller then W s(3i )=3i and m(3i )= 0. Since X ∈ S,
if 3i is a hyperbolic basic set then m(W s(3i ))= 0. Thus, the measure of the union
of the basins of the attractors is total. �

5. Proof of Proposition 5

In the following, we will work with the topology relative to the homoclinic class.
First, we will show that any homoclinic class is topologically ergodic.2

Let H(p, f ) be a homoclinic class. Denote by k the period of p. We recall that
the local stable manifold of p is the set W s

ε (p)= {y ∈ M : d( f n(y), f n(p))≤ ε}.
Fix two nonempty open subsets U and V of H(p, f ). Since the stable manifold

of its orbit is dense, there exist ε > 0 and N > 0 such that

f −N (W s
ε (p))∩U 6=∅.

In particular, there exists a disk D ⊂ f N (U ) transversal to W s
ε (p). Moreover,

since W u(O(p)) is dense, there exists K > 0 such that f K (W u
ε (p)) ∩ V 6= ∅.

Using the λ-lemma [Palis and de Melo 1982], there exist m0 and 0 ≤ i < k such
that for every m ≥ m0, we have that f km+i (D) ∩ V 6= ∅. Let l ∈ N such that
A = lk + (N + i) is the largest integer less than or equal to n; in particular,
n < A+ k. By the previous remark, #N (U, V )∩ {1, . . . , n} ≥ l −m0. So,

lim sup
n→∞

#N (U, V )∩ {1, . . . , n}
n

≥ lim sup
l→∞

l −m0

(l + 1)k+ N + i
=

1
k
.

This shows that the homoclinic class is topologically ergodic.

6. Proof of Proposition 6

We recall that an invariant and compact subset A ⊂ M is called Lyapunov stable if
given U , an open neighborhood of A, there exists another neighborhood V of A
such that f n(V )⊂U for every n ∈ N.

Lemma 18 [Carballo et al. 2003, Lemma 3.4]. If f is a C1-generic diffeomorphism,
then W u(O(p)) is Lyapunov stable for f .

Another source of Lyapunov stable sets is the following, which is [Morales and
Pacifico 2002, Theorem A]:

Theorem 19. There exists a residual subset R∗ ⊂ Diff1(M) such that if g ∈ R∗,
then the set S = {x ∈ M : ω(x) is Lyapunov stable} is a residual subset of M.

2We want to thank Professor Abdenur for pointing out this short argument to us.
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We also recall Hayashi’s connecting lemma [1997], one of the most useful
techniques in the C1-generic theory of dynamical systems. The formulation that
we give here is taken from [Wen and Xia 2000].

Theorem 20 (connecting lemma). Let f ∈ Diff1(M), and let z be a nonperiodic
point of f . Given a neighborhood U of f , there exist ρ > 1, L ∈ N and δ0 > 0 with
the following property. Let 0< δ < δ0 and

p, q /∈1(δ) :=
L⋃

n=1

(
f −n(B(z, δ))

)
.

If there exist a > L such that f a(p) ∈ B(z, δ/ρ) and b ≥ 0 such that f −b(q) ∈
B(z, δ/ρ), then there exists g ∈U such that q is a future g-iterate of p and g ≡ f
outside 1(δ).

We remark that the method used in the proof of Theorem 1 could be used to
prove the topological semicontinuity of the basins of generic attractors. However,
in the C1-topology a stronger property can be obtained, which, together with the
continuity given by the stable manifold theorem, quickly implies this semicontinuity
in this topology.

Proposition 21. C1-generically, if a diffeomorphism has an attractor, then there
exists a periodic point inside the attractor such that its stable manifold is dense in
the basin of the attractor.

Proof. Let U be an open set. We define the set

U(U,m)={
f ∈ Diff1(M) : ∃p ∈

⋂
n≥0

f n(U )∩Perh( f ) with W s(p, f ) 1/m-dense in U
}
.

If f ∈ U(U,m), then it has a hyperbolic periodic point in U such that its stable
manifold is 1/m-dense in U . Since this point is hyperbolic, there exists V , a C1-
neighborhood of f such that if g∈V then p(g)∈U . Take y∈U and B= B(y, 1/m),
so for f , we have that W s(p, f )∩ B 6= ∅. By the stable manifold theorem, we
have that W s(p(g))∩ B 6=∅, so W s(p(g)) is 1/m-dense in U and g ∈U(U,m).
This proves that the set U(U,m) is open.

Let {Uk} be a countable basis of open sets of M , and let {On} be the set of all
possible unions of the elements Uk . Define

A(On,m)=U(On,m)∪U(On,m)c.

Now, by the previous remark, and by construction, this set is open and dense in
Diff1(M). So R1 =

⋂
n,m A(On,m) is a residual subset. Let R2 be the residual

subset given in [Abdenur 2003].
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Let R= R1∩R2. If f ∈ R and3 is an attractor of f , then there exists p∈Perh( f )
such that 3= H(p, f ). Fix n,m such that On is a local basin of 3. Now, we must
prove that f ∈ U(On,m). Suppose that f ∈ U(On,m)c. Since this set is open,
there is W ⊂U(On,m)c, a small open C1-neighborhood of f . The next step is to
prove that we can find g ∈W such that g ∈U(On,m), which will be a contradiction.
To prove this we will use the C1-connecting lemma, and we will also need the
following lemmas. From now on we will fix f and W as above.

Lemma 22. The function8(g)=W s(p(g), g) for g∈W is continuous in a residual
subset of W .

Proof. The map 8 is lower semicontinuous in W by the stable manifold theorem.
Then, it is continuous in a residual subset W ∗ ⊂W . �

Thus we have that the map8 is continuous in W ∗∩R. Now, since f ∈U(On,m)c,
there exists an x ∈ On such that B(x, 1/m)∩8( f )=∅.

This, together with Theorem 19, implies the following corollary:

Corollary 23. There exists a residual subset RW ⊂ W such that if g ∈ RW , then
there exists a residual subset P ⊂ Om such that if x ∈ P then ω(x)=3(g).

Proof. Let R∗ and S be given by Theorem 19. Define RW := R ∩ R∗ ∩W and
P = On ∩ S. Hence, if x ∈ P , then x ∈ On and ω(x)⊂3. However, since x ∈ S
as well, we know that ω(x) is Lyapunov stable. By the previous remark, since 3 is
transitive, we have that 3⊂ ω(x). Thus ω(x)=3. �

Now, we study the consequences of the continuity of 8.

Lemma 24. If 8 is continuous in g ∈ RW and S is the set given by Theorem 19,
then On ∩ S ⊂8(g).

Proof. If the lemma does not hold, then there exists x ∈ (On∩S)−8(g). Let U be a
neighborhood of8(g) such that x /∈U . By continuity there exists a neighborhood V

of g such that if h ∈ V then 8(h)⊂U .
Since x ∈ On ∩ S, we have ω(x)=3(g). Thus, there exists a sequence (ln)⊂N

such that gln (x)→ p(g). By the Hartman–Grobman theorem [Palis and de Melo
1982], there exists another sequence (tn)⊂ N such that

gtn (x)→ q ∈W s
ε (p(g), g)−{p(g)}.

Let ρ > 1, L ∈N and δ0 > 0, as given by the C1-connecting lemma applied to q
and U. Choose δ with 0< δ < δ0, and let V be a neighborhood of the orbit of p(g)
such that

p(g), x /∈1(δ)=
L⋃

n=1

(
g−n(B(q, δ))

)
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and
L⋃

n=1

(
g−n(B(q, δ))

)
∩ V =∅.

Pick y ∈ B(q, δ/ρ)∩W s(p(g), g) such that, defining z = gk(y), we have z ∈(
W s(p(g), g)−{p(g)}

)
∩ V . By definition, we have that g−k(z)= y ∈ B(q, δ/ρ).

Using that gtn (x)→ q , we obtain some n0 > L such that

gtn0 (x) ∈ B(q, δ/ρ).

Applying the C1-connecting lemma, we obtain h ∈ V such that h = g out-
side of 1(δ) and x belongs to the h-negative orbit of z. However, since z ∈(
W s

g (p(g))−{p(g)}
)
∩ V , we obtain that the h-positive orbit of z belongs to V .

Thus
z ∈W s

h (p(h)) and thus x ∈W s
h (p(h)).

This leads to a contradiction, since h ∈ V and x /∈U . �

By the previous lemma, since f ∈W , there is g ∈ RW such that 8 is continuous
in g. So On∩ S⊂8(g), and there exists y ∈ B(x, 1/m)∩ S. Then y ∈8(g), which
is a contradiction since f ∈W ⊂U(On,m)c. Then f ∈U(On,m), which proves
the proposition. �

Now, to prove Proposition 6, it is enough to combine Proposition 21 with:

Theorem 25 [Carballo and Morales 2003]. If f is a C1-generic tame diffeomor-
phism then the union of the basins of its attractors is an open and dense subset of M.
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Convergence of the maximum zeros of a class of
Fibonacci-type polynomials

Rebecca Grider and Kristi Karber
(Communicated by Kenneth S. Berenhaut)

Let a be a positive integer and let k be an arbitrary, fixed positive integer. We
define a generalized Fibonacci-type polynomial sequence by Gk,0(x) = −a,
Gk,1(x) = x − a, and Gk,n(x) = xk Gk,n−1(x)+ Gk,n−2(x) for n ≥ 2. Let gk,n

represent the maximum real zero of Gk,n . We prove that the sequence {gk,2n}

is decreasing and converges to a real number βk . Moreover, we prove that the
sequence {gk,2n+1} is increasing and converges to βk as well. We conclude by
proving that {βk} is decreasing and converges to a.

1. Introduction

Let α, β, and k be integers, with α 6= 0. Consider a Fibonacci-type polynomial
sequence given by the recurrence relation Gk,0 =−α, Gk,1 = x−β, and for n ≥ 2,

Gk,n(x)= xk Gk,n−1(x)+Gk,n−2(x). (1)

We should point out that the classical Fibonacci polynomial sequence Fn is obtained
when α =−1, β = 0, and k = 1. Moreover, the Lucas polynomial sequence Ln is
obtained when α=−2, β = 0, and k = 1. Hoggatt and Bicknell [1973] give explicit
forms for the zeros of Fn and Ln . Even though finding explicit formulas for other
Fibonacci-type polynomial sequences has been a challenge, several results about the
properties of the zeros of some specific cases are known. For example, G. Moore
[1994] and H. Prodinger [1996] studied the asymptotic behavior of the maximal
zeros of G1,n when α=β= k=1, and Yu, Wang and He [Yu et al. 1996] generalized
Moore’s result for α = β = a, where a is any positive integer. F. Mátyás [1998]
studied the same problem for α = a, a 6= 0 and β =±a. More recently, Wang and
He [2004] generalized their previous result for any two integers α and β with α 6= 0.
We also mention the works of P. E. Ricci [1995] and Mátyás [1998] for boundedness
results of the zeros of G1,n . In addition, Molina and Zeleke [2007; 2009] studied the
asymptotic behavior of the zeros of Gk,n when α=β=1 and k is an arbitrary integer.

MSC2010: primary 11B39; secondary 11B37, 30C15.
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Moore [1994] proved that when α = β = k = 1, the maximum zeros of the odd-
indexed polynomials converge to 3

2 from below and the maximum roots of the even-
indexed polynomials converge to 3

2 from above. In that article, a remark was made
about the possibilities of investigating asymptotic behaviors of maximum zeros of
other Fibonacci-type polynomial sequences. In [Miller and Zeleke 2013], the first au-
thor and Zeleke studied the maximum real zeros of the Fibonacci-type polynomial se-
quence where α=β=a, a is a positive integer, and k=2. They provided asymptotic
results for the maximum real zeros numerically as well as analytically. We extend
those results by allowing k to be an arbitrary, fixed positive integer. The proof tech-
niques expand those used in [Miller and Zeleke 2013] and [Molina and Zeleke 2009].

Before delving into the technical results, we provide a numerical example to
motivate our work.

Example. Consider the Fibonacci-type polynomial sequence given by the recur-
rence relation Gk,0 =−2, Gk,1 = x − 2, and for n ≥ 2,

Gk,n(x)= xk Gk,n−1(x)+Gk,n−2(x).

In the context of the generalized Fibonacci-type polynomial sequences we study
in this paper, this example corresponds to the case when a = 2. For a fixed positive
integer k and a natural number n, let gk,n represent the maximum real root of the
polynomial Gk,n . The first six terms in the sequences of the maximum real roots
for k = 2, k = 3, and k = 4 are shown in the following three columns, respectively.

g2,1 = 2 g3,1 = 2 g4,1 = 2
g2,2

.
= 2.359304086 g3,2

.
= 2.190327947 g4,2

.
= 2.102374082

g2,3
.
= 2.350513611 g3,3

.
= 2.188965777 g4,3

.
= 2.102149889

g2,4
.
= 2.350789278 g3,4

.
= 2.188978002 g4,4

.
= 2.102150474

g2,5
.
= 2.350780807 g3,5

.
= 2.188977893 g4,5

.
= 2.102150473

g2,6
.
= 2.350781067 g3,6

.
= 2.188977894 g4,6

.
= 2.102150473

For each sequence, the subsequence created by the odd-indexed (i.e., n is odd)
maximum real roots is increasing. And, the subsequence created by the even-
indexed (i.e., n is even) maximum real roots is decreasing. In fact, each of the
sequences converge to a real number which is dependent on k. We call this real
number βk . We should mention βk is also dependent on our choice of a and for
this example, a = 2. For the sequences above, we have

β2
.
= 2.350781059, β3

.
= 2.188977894, β4

.
= 2.102150473.

It is also the case that {βk} converges to 2 and it is not a coincidence that this is the
value of a.
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2. Formulas

At this time, we introduce a few handy formulas that were established in [Molina
and Zeleke 2009]. The formulas in the following lemma allow us to write Gk,n(x)
in terms of smaller indexed functions.

Lemma 2.1. For n ≥ 1, the following recursive formulas are true:

Gk,2n+2(x)= (x2k
+1)Gk,2n(x)+x2k Gk,2n−2(x)+· · ·+x2k Gk,2(x)+xk Gk,1(x),

Gk,2n+1(x)= (x2k
+1)Gk,2n−1(x)+x2k Gk,2n−3(x)+· · ·+x2k Gk,1(x)+xk Gk,0(x).

The formula that we present in the next lemma provides a type of shift from
one indexed polynomial evaluated at gk,n to another indexed polynomial evaluated
at gk,n . The proof can be found in [Molina and Zeleke 2009, Lemma 4].

Lemma 2.2. For n ≥ m, Gk,n+m(gk,n)= (−1)m+1Gk,n−m(gk,n).

3. Preliminary results

We’re now ready to study the maximum real roots, gk,n , for the generalized
Fibonacci-type polynomial sequence defined by Gk,0(x)=−a, Gk,1(x)= x − a,
and Gk,n(x) = xk Gk,n−1(x)+Gk,n−2(x) for n ≥ 2, where a is a positive integer
and k is an arbitrary, fixed positive integer.

Proposition 3.1. If n ≥ 2, then gk,n ∈ (a, a+ 1).

Proof. For n≥2, we will show Gk,n(a)<0 and Gk,n(x)>0 for x ∈ [a+1,∞); thus,
our conclusion will follow. We’ll begin by showing Gk,n(a)< 0 by induction. Since
Gk,0(a)=−a and Gk,1(a)= a− a = 0, we have Gk,2(a)= ak(0)− a =−a < 0.
Now suppose Gk,m(a) < 0 for all m such that 2≤ m ≤ n. By (1) and the inductive
hypothesis, Gk,n+1(a)= ak Gk,n(a)+Gk,n−1(a) < 0. Hence, Gk,n(a) < 0 for n≥ 2.

For the remainder of the proof, let x ∈ [a+1,∞). We again use induction. Notice

Gk,1(x)= x − a ≥ a+ 1− a > 0, and

Gk,2(x)= xk(x − a)− a ≥ (a+ 1)k(a+ 1− a)− a = (a+ 1)k − a > 0.

Now suppose Gk,m(x) > 0 for all m such that 2 ≤ m ≤ n. By (1) and the induc-
tive hypothesis, it follows that Gk,n+1(x) = xk Gk,n(x)+Gk,n−1(x) > 0. Hence,
Gk,n(x) > 0 for x ∈ [a+ 1,∞) and n ≥ 2.

Therefore, gk,n ∈ (a, a+ 1) for n ≥ 2. �

Proposition 3.2. Let a be a positive integer and let βk be a positive real num-
ber that satisfies the equation Gk,2(x) = −(a − x)2/a; that is, βk is a zero of
Tk(x)= axk

− a2xk−1
+ x − 2a. Then

Gk,n(βk)=
−(a−βk)

n

an−1 for all n ≥ 0.
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Proof. We prove this proposition by induction. The result is true for n = 0 and
n = 1 by simple computation. It is true for n = 2 by construction. Now assume
Gk,n(βk)=−(a−βk)

n/an−1 for all positive integers less than or equal to n. Then

Gk,n+1(βk)= β
k
k Gk,n(βk)+Gk,n−1(βk)

= βk
k

(
−(a−βk)

n

an−1

)
+
−(a−βk)

n−1

an−2

=
−(a−βk)

n−1

an−2

(
βk

k (a−βk)

a
+ 1

)
=
−(a−βk)

n−1

an−2

(
aβk

k (a−βk)+ a2

a2

)
=
−(a−βk)

n−1

an

(
aβk

k (a−βk)+ a2)
=
−(a−βk)

n−1

an

(
−a(βk

k (βk − a)− a)
)

=
−(a−βk)

n−1

an

(
−a

(
−(a−βk)

2

a

))
=
−(a−βk)

n−1

an (a−βk)
2

=
−(a−βk)

n+1

an .

Therefore, our result is true for all nonnegative integers. �

We remind the reader that whenever βk is used in this article, it will be dependent
on the choice of a.

Corollary 3.3. lim
n→∞

Gk,n(βk)= 0.

Proof. Before we begin, we kindly remind the reader that k ≥ 1 and this assumption
is continued throughout our work unless stated otherwise. Now the first fact we
establish for this proof is that βk ∈ (a, a+ 1). To show this, we will again consider
Tk(x) = axk

− a2xk−1
+ x − 2a. It is easily verified that Tk(a) < 0 < Tk(a + 1).

Moreover, Tk is strictly increasing on the interval [a,∞), which will be shown by
examining the first derivative of Tk . Notice

T ′k(x)= kaxk−1
− (k− 1)a2xk−2

+ 1

= axk−2(kx − ka+ a)+ 1

= axk−2(k(x − a)+ a)+ 1

> 0
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for all x ∈ [a,∞). Thus, βk ∈ (a, a+ 1). Therefore,

lim
n→∞

Gk,n(βk)= lim
n→∞

−(a−βk)
n

an−1 = 0. �

4. Analysis of G′

k,3(x)

In order to prove our main result on the convergence of the maximum zeros, we
will need a lower bound on the values G ′k,n(gk,n). This section will provide a lower
bound of G ′k,3(x) on the interval [gk,3,∞). We begin with a couple of lemmas to
help us achieve this lower bound.

Lemma 4.1. For k ≥ 3, G ′′k,3(x) has exactly one zero in the interval (0,∞).

Proof. Let k ≥ 3 and recall Gk,3(x)= x2k+1
− ax2k

− axk
+ x − a. Thus,

G ′′k,3(x)= (2k+ 1)(2k)x2k−1
− 2ka(2k− 1)x2k−2

− k(k− 1)axk−2

= kxk−2(2(2k+ 1)xk+1
− 2a(2k− 1)xk

− a(k− 1)
)

= kxk−2 f (x),

where f (x) = 2(2k + 1)xk+1
− 2a(2k − 1)xk

− a(k − 1). We can see that 0 is a
zero of G ′′k,3. In order to show G ′′k,3 has only one zero in (0,∞), we will show that
f (x) has exactly one zero in (0,∞). To do so, consider

f ′(x)= 2(2k+ 1)(k+ 1)xk
− 2a(2k− 1)kxk−1

= 2xk−1((2k+ 1)(k+ 1)x − a(2k− 1)k
)
.

The critical numbers of f are

c1 = 0 and c2 =
a(2k− 1)k

(2k+ 1)(k+ 1)
.

Using this information, it can be verified that f is decreasing on (0, c2) and increas-
ing on (c2,∞). Pairing this with f (0) = −a(k − 1) < 0 and limx→∞ f (x) =∞,
we conclude f , and hence G ′′k,3, has exactly one zero in (0,∞). Therefore, our
conclusion holds. �

Lemma 4.2. For k ≥ 3, G ′k,3(x) has exactly two zeros in the interval (0,∞).

Proof. Let k ≥ 3 and recall Gk,3(x)= x2k+1
− ax2k

− axk
+ x − a. Thus,

G ′k,3(x)= (2k+ 1)x2k
− 2kax2k−1

− kaxk−1
+ 1.

Using the intermediate value theorem and the inequalities G ′k,3(0)=1>0, G ′k,3(1)=
k(2−3a)+2≤−1< 0, and limx→∞ G ′k,3(x)=∞, we can conclude G ′k,3(x) has at
least two zeros in (0,∞). To show there can be no more than two zeros in (0,∞),
we will explore the possibility of G ′k,3(x) having at least three zeros in (0,∞). If
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G ′k,3(x) has at least three zeros in (0,∞), then G ′′k,3 would have at least two zeros
in (0,∞) by Rolle’s theorem, but, by Lemma 4.1, we know this cannot be the case.
Thus, G ′k,3(x) has exactly two zeros in (0,∞) and since G ′k,3(0) 6= 0, those two
zeros are indeed in (0,∞). �

We are now ready to obtain a lower bound on G ′k,3(x) for x ∈ [gk,3,∞).

Proposition 4.3. If k ≥ 1 and x ∈ [gk,3,∞), then G ′k,3(x) > 1.

Proof. Let x ∈ [gk,3,∞). We break our proof into cases.

Case 1: Consider k = 1. We then have

• G1,3(x)= x3
− ax2

− ax + x − a,

• G ′1,3(x)= 3x2
− 2ax − a+ 1, and

• G ′′1,3(x)= 6x − 2a.

Since G ′′1,3(x) > 0 for x ∈ (a/3,∞), we know G ′1,3 is increasing on (a/3,∞).
Thus, 1≤ G ′1,3(a) < G ′1,3(x) when x ∈ [g1,3,∞) as g1,3 > a by Proposition 3.1.

Case 2: Consider k = 2. We then have

• G2,3(x)= x5
− ax4

− ax2
+ x − a,

• G ′2,3(x)= 5x4
− 4ax3

− 2ax + 1, and

• G ′′2,3(x)= 2(10x3
− 6ax2

− a).

Since G ′′2,3(x) > 0 for x ∈ (a,∞), we know G ′2,3 is increasing on (a,∞). Again
notice g2,3 > a by Proposition 3.1. Applying the mean value theorem, we know
there exists c ∈ (a, g2,3) such that

G ′2,3(c)=
G2,3(g2,3)−G2,3(a)

g2,3− a
.

It follows that when x ∈ [g2,3,∞),

G ′2,3(x) > G ′2,3(c)=
G2,3(g2,3)−G2,3(a)

g2,3− a
=

0−G2,3(a)
g2,3− a

=
a3

g2,3− a
> 1.

Case 3: Consider k ≥ 3. By Lemma 4.1, we know G ′′k,3(x) has one positive root,
call it r , and, by Lemma 4.2, we know G ′k,3(x) has two positive roots, call them s
and t , where s < t . Moreover, by Rolle’s theorem, s < r < t . Notice that

• G ′k,3(0)= 1> 0,

• G ′k,3(1)= k(2− 3a)+ 2≤−1< 0,

• limx→∞ G ′k,3(x)=∞, and

• G ′′k,3 is positive on (r,∞).
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Thus, s < 1 < t . Moreover, G ′k,3 is negative on (s, t) and G ′k,3 is positive and
increasing on (t,∞), and, by the mean value theorem, there exists c ∈ [1, gk,3]

such that

G ′k,3(c)=
Gk,3(gk,3)−Gk,3(1)

gk,3− 1
=

0− (2− 3a)
gk,3− 1

=
3a− 2
gk,3− 1

≥ 1.

Hence, c > t , and thus gk,3 > t . Therefore, if x ∈ [gk,3,∞), then

G ′k,3(x) > G ′k,3(c)≥ 1.

Therefore, our conclusion holds for all cases. �

We’re now ready to prove that all of the first derivatives of the polynomials are
bounded below by 1 as well as explore the characteristics of the maximum zeros.
We break this up into two sections, one with the odd-indexed polynomials and the
other with the even-indexed polynomials.

5. Odd-indexed polynomials

We will use the following two propositions to help establish our results. The proofs
are left to the reader as they are similar to those found in [Molina and Zeleke 2009,
Lemmas 6 and 7].

Proposition 5.1. The maximum zeros of the odd-indexed polynomials Gk,2n+1 form
a strictly increasing sequence.

Proposition 5.2. If n ≥ 0, then the derivative of Gk,2n+1(x) is bounded below by 1
for x ∈ [gk,2n+1,∞).

Proposition 5.3. If n ≥ 0, then gk,2n+1 < βk for each k ≥ 1.

Proof. By Proposition 3.2 and for n ≥ 1,

Gk,2n+1(βk)=
−(a−βk)

2n+1

a2n > 0

as βk ∈ (a, a+ 1). Our goal is to show that

G ′k,2n+1(x) > G ′k,2n−1(x) > · · ·> G ′k,3(x) > G ′k,1(x)= 1

for x ∈ [βk,∞) as it will then follow that gk,2n+1 < βk . Now, since Gk,3(x)≤ 0 on
[a, gk,3], it must be the case that βk > gk,3. Proposition 5.2 gives

G ′k,3(x) > G ′k,1(x)= 1

on [gk,3,∞). Thus,
G ′k,3(x) > G ′k,1(x)= 1
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on [βk,∞) as [βk,∞) ⊆ [gk,3,∞). We note that the rest of the proof follows
a similar format to the induction argument used in Proposition 5.2 with [βk,∞)

replacing [gk,2n+1,∞). �

6. Even-indexed polynomials

Proposition 6.1. If n ≥ 1, then the derivative of Gk,2n(x) is bounded below by 1
for x ∈ [gk,2n−1,∞).

Proof. We will make use of induction to obtain our result. Let x ∈ [gk,2n−1,∞).
For n = 1, we have

G ′k,2(x)= (k+ 1)xk
− akxk−1

= xk−1((k+ 1)x − ak) > 1.

By (1), we have

Gk,2n(x)= xk Gk,2n−1(x)+Gk,2n−2(x), and

G ′k,2n(x)= xk G ′k,2n−1(x)+ kxk−1Gk,2n−1(x)+G ′k,2n−2(x).

From Proposition 5.1, we know kxk−1Gk,2n−1(x)≥ 0 as x ∈ [gk,2n−1,∞). So,

G ′k,2n(x)≥ xk G ′k,2n−1(x)+G ′k,2n−2(x).

Now suppose G ′k,2n−2(x)≥ 1. Then

G ′k,2n(x)≥ xk G ′k,2n−1(x)+G ′k,2n−2(x)

> G ′k,2n−2(x) (as xk G ′k,2n−1(x) > 1 by Proposition 5.2)

≥ 1 (by the induction hypothesis).

Therefore, the derivative of the even-indexed polynomials are bounded below
by 1 for x ∈ [gk,2n−1,∞). �

Referring back to Proposition 5.3, we should note that the result in Proposition 6.1
also holds for x ∈ [βk,∞) as [βk,∞)⊆ [gk,2n−1,∞).

Proposition 6.2. The maximum zeros of the even-indexed polynomials form a
decreasing sequence that is bounded below by βk .

Proof. Let n ≥ 1. By Proposition 3.2,

Gk,2n(βk)=
−(a−βk)

2n

a2n−1 < 0.

Thus, βk < gk,2n . We proceed by induction to show the maximum zeros of the
even-indexed polynomials form a decreasing sequence. Notice that

Gk,4(x)= xk Gk,3(x)+Gk,2(x)
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implies

Gk,4(gk,2)= gk
k,2Gk,3(gk,2)+Gk,2(gk,2)= gk

k,2Gk,3(gk,2) > 0

by utilizing Proposition 5.3. Since Gk,4 is increasing on [βk,∞) as well, we
conclude that gk,2 > gk,4. Now assume gk,2 > gk,4 > · · ·> gk,2n . By Lemma 2.2,
Gk,2n−2(gk,2n) = −Gk,2n+2(gk,2n). Since gk,2n−2 > gk,2n (induction hypothesis),
Gk,2n−2 is increasing on [βk,∞), and Gk,2n−2(gk,2n−2)= 0, it follows that

Gk,2n−2(gk,2n) < 0 and Gk,2n+2(gk,2n) > 0,

and, since Gk,2n+2(x) is increasing on [βk,∞), we have gk,2n > gk,2n+2. Therefore,
gk,2 > gk,4 > · · ·> βk . �

7. Main results

Theorem 7.1. The sequence of odd-indexed zeros is increasing and converges to βk ,
and the sequence of even-indexed zeros is decreasing and converges to βk as well.

Proof. By Proposition 5.1 and Proposition 5.3, we have shown the maximum
zeros of the odd-indexed polynomials form an increasing sequence bounded above
by βk , and, by Proposition 6.2, we know the maximum zeros of the even-indexed
polynomials form a decreasing sequence bounded below by βk . In order to show
both of the sequences converge to βk , we will show that limn→∞ gk,n = βk . The
mean value theorem tells us there exists a real number c between gk,n and βk such
that

|G ′k,n(c)| =
∣∣∣∣Gk,n(βk)−Gk,n(gk,n)

βk − gk,n

∣∣∣∣= ∣∣∣∣ Gk,n(βk)

βk − gk,n

∣∣∣∣.
Since G ′k,n(c)≥ 1, |βk−gk,n| ≤ |Gk,n(βk)|. By utilizing Corollary 3.3, which states
limn→∞ Gk,n(βk)= 0, we can say limn→∞ gk,n = βk . Therefore, the sequence of
odd-indexed zeros and the sequence of even-indexed zeros converge to βk . �

Theorem 7.2. The sequence {βk} is decreasing and converges to a.

Proof. We begin by referring the reader back to Tk(x) as defined in Proposition 3.2.
Recall that Tk is increasing on [a,∞) and βk ∈ (a, a+ 1) is a zero of Tk . Using
the fact that βk is a zero of Tk , we have aβk

k − a2βk−1
k = 2a−βk . Then

Tk+1(βk)= aβk+1
k − a2βk

k +βk − 2a = βk(aβk
k − a2βk−1

k )+βk − 2a

= βk(2a−βk)+βk − 2a = (βk − 1)(2a−βk)

> 0.

Thus, βk+1 < βk , which verifies that {βk} is decreasing. Now let ε > 0. Then
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lim
k→∞

Tk(a+ ε)= lim
k→∞
[a(a+ ε)k − a2(a+ ε)k−1

+ (a+ ε)− 2a]

= lim
k→∞
[a(a+ ε)k−1(a+ ε− a)+ a+ ε− 2a]

= lim
k→∞
[εa(a+ ε)k−1

+ ε− a]

=∞.

We then know that there exists j ∈ Z such that T j (a+ε) > 0 and so β j ∈ (a, a+ε).
Therefore, limk→∞ βk = a. �
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Iteration digraphs of a linear function
Hannah Roberts

(Communicated by Robert W. Robinson)

An iteration digraph G(n) generated by the function f (x) mod n is a digraph
on the set of vertices V = {0, 1, . . . , n − 1} with the directed edge set E =
{(v, f (v)) | v ∈ V }. Focusing specifically on the function f (x)= 10x mod n, we
consider the structure of these graphs as it relates to the factors of n. The cycle
lengths and number of cycles are determined for various sets of integers including
powers of 2 and multiples of 3.

1. Introduction

Using the graph D7, shown in Figure 1, the remainder modulo 7 of any integer N
can be determined based solely on the digits of the N [Wilson 2009]. For example,
consider N = 375. Begin at the vertex labeled 0. First, follow three black edges.
Then follow one red edge and seven black edges, ending on 2. Finally, follow one
red edge and five black edges to end on 4. This indicates that 375≡ 4 mod 7.

Generalizing this algorithm to any N where di is the i-th digit, we start at 0 and
follow d1 black edges. We then continue to follow di black edges for i = 2, 3, . . . , r .
Between each digit, we follow one red edge. The vertex where we end after the
final dr black edges is the remainder when N is divided by 7.

The graph D7 is formed by two specific iteration digraphs, directed graphs each
generated by a function f : Zn → Zn . The graph Gn is formed on the vertex set
V = Zn = {0, 1, 2, . . . , n− 1} with exactly one edge from v to f (v) for all v ∈ V .
Thus, the edge set is E = {(v, f (v)) | v ∈ V }, where (v, f (v)) indicates the edge
directed from vertex v to f (v). The red edges in D7 form the iteration digraph
produced by the function f (x)≡ 10x mod 7. Thus, V (D7)= {0, 1, 2, . . . , 6}, and
E(D7) includes (1, 3), (3, 2), and so on, because 10≡ 3 mod 7 and 30≡ 2 mod 7.
The black edges are generated by the function g(x)≡ x + 1 mod 7.

Using these two functions, divisibility graphs can easily be drawn for any in-
teger n, and the same algorithm will produce remainders modulo n. Given this,
one may naturally question how the graph produced by f (x) mod n changes for

MSC2010: 05C20, 11A07.
Keywords: digraph, cycle, congruence.
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Figure 1. The graph D7, used to determine divisibility by 7.

different integers n. This work considers the number and length of the cycles in the
graph G(n) generated by the function f (x)= 10x mod n.

2. Relatively prime integers

To begin, we look at the common structures found in a broad subset, the set of all
integers relatively prime to 10. The most basic feature of these graphs is given in
Theorem 1 below.

A vertex v in G(n) is said to be in level i if the longest path ending at v which
does not contain any part of a cycle has length i [Somer and Křížek 2004]. If the
highest level vertex in G(n) is at level i , then G(n) has i + 1 levels. Thus, G(28)
(Figure 7) has 3 levels. Level 0 contains 7 and 9, level 1 contains 6, and level 2
contains 0. Also, the indegree of a vertex v, written indeg(v), is the number of
edges directed towards v. In G(28), indeg(7)= 0 while indeg(6)= 2.

Theorem 1. G(n) has 1 level for all n with gcd(10, n)= 1.

Proof. Because V (G(n)) is the complete reduced residue set of n and gcd(10, n)=1,
the set S = {10v | v ∈ V (G(n))} is also a complete residue set [Rosen 2000]. Thus,
f : V (G(n))→ V (G(n)) is one-to-one and onto, so every vertex has indegree
exactly 1.

Now assume v ∈ V (G(n)) is at level i > 0. Then there must be a path of i edges
leading to v which is not part of a cycle. The first vertex in this noncyclic path must
have an indegree of 0. This is a contradiction, so v must be at level 0 and G(n) has
1 level. �

The above theorem could be restated to say every vertex in G(n) is at level 0.
From this fact, it is clear that every graph G(n) with gcd(10, n)= 1 is simply a set
of isolated cycles. That is, G(n) is a set of cycles without any adjacent noncyclic
vertices. We next consider the lengths of these cycles.
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The length of the cycles in G(n) is dependent on the prime factors of n, but before
considering the total number of cycles, we first look at a subset of the vertices.

A graph H is called a subgraph of G if V (H) ⊂ V (G) and E(H) ⊂ E(G),
where the edges in E(H) must connect vertices in V (H). We say H is generated
by V (H) if E(H) contains every edge in G that connects vertices in V (H).

Theorem 2. In G(n), if V1 is the subset of vertices relatively prime to n, then there
are φ(n)/ordn(10) cycles, each of length ordn(10), in the subgraph generated by V1.

Proof. First, let (a, b) be an edge in G(n). Since gcd(10, n)= 1, if gcd(a, n)= 1,
then 10a ≡ b is also relatively prime to n. Thus, if a cycle contains one vertex
that is relatively prime to n, then all vertices in the cycle must also be relatively
prime to n.

Now, let r = ordn(10), so r is the least integer for which 10r
≡ 1 mod n, or

equivalently 10rv ≡ v mod n for every v ∈ V (G(n)). In the sequence of vertices
{v0, v1, v2, . . . , vr } from G(n), vt ≡ 10tv0. Thus, vr ≡ 10rv0≡ v0 and the sequence
is an r -cycle.

Consider s > r . We can write s = mr + t , where m, t , and s are integers such
that 0≤ t < r . Since 10sv0 ≡ 10tv0 ≡ vt , a path longer than r will repeat through
the cycle. Thus, the longest possible cycle in G(n) has length r .

Now, let v ∈ G(n) such that gcd(v, n) = 1, and assume v is part of an s-cycle
where s < r = ordn(10). Then 10sv ≡ v mod n, but 10s

6≡ 1 mod n, because by
definition r is the smallest positive integer for which 10r

≡ 1 mod n. This means
10s
−1= np+ t for some integers p and 0< t < n. Also, 10sv−v = nm for some

integer m, so

v(10s
− 1)= nm

v(np+ t)= nm

vt = n(m− vp).

Now we have n | (vt), but n - t because 0< t < n. Hence, gcd(n, v) > 1, which is
a contradiction since we assumed gcd(n, v)= 1. Therefore, all cycles on vertices
relatively prime to n have length r = ordn(10). Also, there are φ(n) vertices
relatively prime to n, so there are φ(n)/ordn(10) such cycles. �

As an example of Theorem 2, consider G(11) (Figure 2). There are 10 vertices
relatively prime to 11, V1 = {1, 2, 3 . . . , 10}, and ord11(10) = 2. Thus, G(11)
contains 10/2= 5 cycles all of length 2.

Define Cn to be the number of cycles and Ln to be the set of all cycle lengths
in G(n). Now the above theorem is used to help determine Cn and Ln for any n
relatively prime to 10.
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Figure 2. G11 contains five 2-cycles.

Theorem 3. Let gcd(10, n)= 1. Then

Cn =
∑
d|n

φ(d)
ordd(10)

,

and the set of cycle lengths is Ln = {ordd(10) | d | n}.

Proof. First, define the set Vd = {v ∈ V (G(n)) | gcd(v, n)= d} for all d | n. Every
v in G(n) will be in exactly one set Vd , so these sets form a partition of V (G(n)).
Also, define Gd(n) to be the subgraph of G(n) generated by the vertex set Vd .

Let a ∈ Vd and (a, b) ∈ E(G(n)). Then by reasoning similar to that used in the
previous theorem, b ∈ Vd .

Thus, every cycle in G(n) contains vertices from exactly one set Vd , and we can
determine Cn by adding the number of cycles in Gd(n) for every d | n, or

Cn =
∑
d|n

(number of cycles in Gd(n)). (1)

We now need to find the number of cycles in each subgraph Gd(n). Let (a, b) be
an edge in Gd(n). We already have a = dt , where gcd(n/d, t)= 1, and similarly,
b = ds, where gcd(n/d, s)= 1. Thus, (a, b)= (dt, ds). Now,

10a− b = n(p)

10(dt)− ds = n(p)

10t − s =
n
d
(p),

so (t, s) is an edge in G(n/d). Since t and s are relatively prime to n/d , our problem
is now equivalent to finding the number of cycles on the vertices of G(n/d) relatively
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(a) G1(77) (b) G7 (c) G11 (d) G77

Figure 3. The subgraphs of G(77) generated by V1, V7, V11, and V77.

prime to n/d. In other words, the number of cycles in Gd(n) is the same as the
number of cycles in G1(n/d). From Theorem 2, we know that G1(n/d) contains
φ(n/d)/ordn/d(10) cycles with length ordn/d(10).

Thus, there are also φ(n/d)/ordn/d(10) cycles in Gd(n) with length ordn/d(10).
Therefore,

Cn =
∑
d|n

φ(n/d)
ordn/d(10)

.

Every divisor d1 can be written as d1 = n/d2 for some other divisor d2. Hence, as
we sum over every divisor d , we are also summing over n/d for every d , so we can
rewrite Cn as

Cn =
∑
d|n

φ(d)
ordd(10)

. (2)

This concludes the proof. �

One example of the previous theorem is G(77) (Figure 3). To make it easier to
see the various cycles of G(77), Figure 3 shows the subgraphs of G(77) generated
by Vd for d = 1, 7, 11, 77. Looking at G11(77) in Figure 3(c), the vertices all
have gcd(v, 77) = 11. If we compare this subgraph to G(7) in Figure 1, we
see that G11(77) is isomorphic to G1(7) by the isomorphism h(v) = 11v. This
isomorphism illustrates the relation of edges in G(n) and in G(mn). Similarly,
G7(77) is isomorphic to G1(11). Finally, G77(77) in Figure 3(d) is simply the
isolated fixed point isomorphic to G(1) that appears in every G(n)where (10, n)=1.

The isomorphisms seen in G(77) can be generalized to other G(n). For d | n,
the subgraph Gd(n) is isomorphic to the subgraph G1(n/d). Thus, much of G(n)
is built from the graphs of G(d). The subgraph G1(n) on the vertices that are
relatively prime to n is the only portion of the total graph G(n) that can not be built
directly from a graph G(d) for some d | n.
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Figure 4. Every vertex in G(3) is an isolated fixed point.

We now have the basic structure of the graph for any n relatively prime to 10,
and can consider which integers produce a more specific structure. The next section
explores how multiples of 3 affect the structure of a graph to produce a set of
isomorphic subgraphs.

3. Multiples of 3

Because 10 ≡ 1 mod 3, for every vertex v in G(3), (v, v) is an edge for all v ∈
{0, 1, 2} (Figure 4). This property of G(3) leads to a highly predictable structure
for G(3n) when gcd(3, n)= 1.

We first need to establish some notation for the vertices of G(n) and G(3n).
Define V to be the vertex set of G(n), so V = V (G(n))={0, 1, 2, . . . , n−1}. Also,
define

Vt = {3v+ tn mod 3n | v ∈ V } for t = 0, 1, 2.

If v ∈ V , then vt = 3v+ tn mod 3n ∈ Vt . For n = 2, we have G(2) with V = {0, 1}
and G(3n)= G(6) with V0 = {0, 3}, V1 = {2, 5}, and V2 = {1, 4}, as in Figure 5.

The following theorem uses these vertex sets to relate the edge sets of G(n) and
G(3n) for gcd(3, n)= 1.

Theorem 4. If 3 - n and E(G(n))= {(a, b) | b = f (a), a ∈ V }, then E(G(3n))=
{(at , bt) | (a, b) ∈ E(G(n)), t = 0, 1, 2}.

Proof. Let (a, b) be an edge in G(n). Thus 10a ≡ b mod n and 3a ≡ 3b mod 3n.
Considering at ,

10(3a+ tn)≡ 30a+ 10tn mod 3n

≡ 3b+ tn+ 3n(3t) mod 3n

≡ 3b+ tn mod 3n.

Therefore, (at , bt) is also an edge in G(3n). We now have that

S = {(at , bt) | (a, b) ∈ E(G(n)), t = 0, 1, 2}

is a subset of E(G(3n)). By definition of an iteration digraph, we know that G(3n)
has 3n distinct edges. The set S has 3n edges, which we now need to show are
distinct.
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(a) G(2) (b) G(6)

Figure 5. The components of G(6) are all isomorphic to G(2).

For any v,w ∈ V , if v 6≡ w mod n, then vt 6≡ wt mod 3n. Hence, V0, V1, and
V2 each contain n incongruent integers.

Next, if a ∈ V , we have a0 ≡ 0 mod 3, a1 ≡ n mod 3, and a2 ≡ 2n mod 3.
Hence, for any b, c, d ∈ V , not necessarily distinct, b0, c1, and d2 are incon-
gruent modulo 3. Now, assume br ≡ ct mod 3n, so br − ct = 3n(p) for some
integer p. Then br − ct = 3(np) and br ≡ ct mod 3. This is a contradiction
since br and ct are incongruent mod 3. Hence, br 6≡ ct mod 3n. Thus, b0, c1,
and d2 are all incongruent modulo 3n. Furthermore, at 6≡ br mod 3n whenever
either a 6≡ b mod n or r 6= t . Therefore, the 3n edges in S are distinct, so
E(G(3n))= S = {(at , bt) | (a, b) ∈ E(G(n)), t = 0, 1, 2}. �

An example of Theorem 4 is the graphs for n = 6 shown in Figure 5(b). The
graph G(6) has three components on the sets of vertices {0, 3}, {1, 4}, and {2, 5}.
Comparing these to G(2), each component is isomorphic to G(2). Thus, the relation
from Theorem 4 between any G(n) and G(3n) can also be expressed in terms of
isomorphisms between the graphs.

Corollary 1. G(3n) is the union of three subgraphs, each of which is isomorphic
to G(n).

A theorem similar to Theorem 4 can be proved for G(9n) when gcd(3, n)= 1.
This indicates that perhaps this type of edge relation will exist for higher powers of
3 as well. However, for 3 and 9, the proofs are contingent on the fact that 10≡ 1
modulo both 3 and 9. Theorem 4 cannot be generalized for G(3kn) where k ≥ 3.

Based on Theorem 4, it is also clear that G(3n) contains exactly 3 times as many
cycles as G(n) with all the same cycle lengths. Thus, while Theorem 3 holds for
multiples of 3, we can now say C3n = 3Cn and L3n = Ln when gcd(3, n) = 1.
Similarly, C9n = 9Cn and L9n = Ln .
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Figure 6. G(8).

4. Powers of 2

Another class of integers for which G(n) has a distinctive and predictable digraph
is the powers of 2. When n = 2k for some integer k > 0, G(2k) takes the form of
a binary tree with all edges heading towards the root. This unique form follows
from the fact that 2 is a factor of 10. In this section, congruences should all be
considered modulo 2k unless otherwise specified.

Given this tree structure, which will be proved in Theorem 5, each vertex will
be referenced by its level and its position within that level. Number the vertices in
level i < k left to right from 0 to 2s

−1, where s = k− i −1. Then vi,t is the vertex
in level 0 ≤ i ≤ k at position 0 ≤ t ≤ 2s

− 1. In Figure 6, for example, v0,0 = 1,
v0,1 = 5, and v1,0 = 2. Additionally, for each pair of vertices vi,t and vi,t+1 where
both are adjacent to the same vertex at level i + 1, we will draw the graph such that
vi,t < vi,t+1.

We can now develop the basic structure of the 2k iteration digraph.

Theorem 5. If G(n) is the iteration digraph of f (x)≡ 10x mod 2k , where n = 2k

for k = 1, 2, 3, . . . , then:

(i) G(n) has k+ 1 levels.

(ii) The nonzero vertices form a complete binary tree with height k.

(iii) Exactly 2 vertices at level i < k− 1 are adjacent to each vertex at level i + 1.

(iv) For each vertex vi,t at level i < k, 2i
‖ vi,t .

Proof. For part (i), we know for any vertex v that 10kv = 2k(5kv) ≡ 0 mod 2k .
Thus, the longest possible path from v to 0 has length k. Now suppose the longest
path that exists is only k− 1 edges long. Then 10k−1v = 2k−1(5k−1v)≡ 0 for all v.
This means that

2k−1(5k−1v)= 2k p

5k−1v = 2p,
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and v must be divisible by 2. This is a contradiction for all odd vertices, so there
must exist a path from v to 0 with length k. Thus, G(2k) has k+ 1 levels.

Considering part (iv), at level k − 1, we have 2k−1
‖ 2k−1. Now, for induction

down the levels, assume that 2i
‖ vi,t for all vertices at some level i ≤ k− 1 and let

vi−1,r be adjacent to vi,t = 2i c, where c is an odd integer. Hence, vi−1,r is at level
i − 1 and

10vi−1,r − vi,t = 2kb

10vi−1,r = 2i (2k−i b+ c).

Thus, 2i divides 10vi−1,r , so 2i−1 divides vi−1,r .
We now need to show that 2i−1

‖ vi−1,r . Assume that 2i
| vi−1,r . Then 10vi−1,r ≡

vi,t is divisible by 2i+1. This is a contradiction to the initial assumption that 2i
‖ vi,t .

Therefore, 2i does not divide vi−1,r , so 2i−1
‖ vi−1,r , and for every vertex vi,t at a

level i < k, 2i
‖ vi,t

For part (iii), let a and b be vertices such that f (a)= b and b is at level i , where
0< i ≤ k− 1. Then consider a+ 2k−1.

10(a+ 2k−1)≡ b+ 5 · 2k
≡ b+ 0 mod 2k . (3)

Since 2k−1 < 2k , a 6≡ a + 2k−1 mod 2k . Thus, at least two distinct vertices are
adjacent to b. From part (iv), there are 2k−i−1 vertices at level i and 2k−i at level
i + 1, so there are exactly twice as many vertices at level i as at level i + 1. Thus,
exactly two vertices are adjacent to each vertex at level 0< i < k.

Part (ii) also follows directly from parts (iii) and (i) and the definition of a tree,
so the nonzero vertices form a complete binary tree with height k and with 2k−1 as
the root. �

From the above theorem, G(2k) can be drawn for any k ≥ 1 and we have some
idea of the label placement within that graph. It is also clear that G(2k) always
contains exactly one 1-cycle.

Since G(2k) is really just G(2kn) with n = 1, we now consider the more general
G(2kn) with gcd(10, n)= 1. First, we find that G(2kn) is semiregular; that is, each
vertex in G(2kn) has an indegree of either 0 or d , for some positive integer d .

Theorem 6. If n is not divisible by 2 or 5, then G(2kn) is semiregular with d = 2
and indeg(v)= 2 if and only if 2 | v.

Proof. Let (a, b) be an edge in G(2kn). Then 10a ≡ b mod 2kn, and also

10(a+ 2k−1n)≡ 10a+ 5 · 2kn mod 2kn

10(a+ 2k−1n)≡ b+ 0 mod 2kn. (4)

Since 2k−1n < 2kn, a 6≡ a+ 2k−1n and (a+ 2k−1n, b) is also an edge in G(2kn).
Thus, if indeg(v)≥ 1 for any v ∈ V (G(2kn)), then indeg(v)≥ 2.
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Now, assume there exists a third vertex c which is also adjacent to b and is
incongruent to both a and a+ 2k−1n. Then

10c− b = 2kns and 10a− b = 2knp, (5)

where s and p are integers such that s 6= p.
From (5) we get

10(c− a)= 2kn(s− p)

5(c− a)= 2k−1n(s− p).

Then 5 divides (s− p), so (s− p)= 5t for some nonzero integer t and

5(c− a)= 2k−1n(5t)

c = a+ 2k−1nt. (6)

If t is even, then t=2r and c≡a+2knr ≡a mod 2kn. If t is odd, then t=2r+1 and

c ≡ a+ 2k−1n(2r + 1)≡ a+ 2k−1n mod 2k .

Thus, c is congruent to either a or a + 2k−1n, so the indegree of b is exactly 2
and the indegree of any vertex of G(2kn) is either 0 or 2. Therefore, G(2kn) is
semiregular with d = 2.

Now, assume (a, b) is an edge where 2 - b. Then 10a ≡ b mod 2kn, so

10a− b = 2knp

10a− 2knp = b

2(5a− 2k−1np)= b.

Thus, 2 | b, which is a contradiction, so when 2 - v, indeg(v)= 0. There are 2k−1n
vertices that are divisible by 2 and, hence, can have an indegree of 2. Since there
are exactly twice as many edges as there are vertices divisible by 2, indeg(v)= 2
whenever 2 | v. Therefore, indeg(v)= 2 if and only if 2 | v. �

The graph G(28) is seen to be semiregular with d= 2 in Figure 7. It also includes
several subgraphs with a binary tree structure. These subgraphs are isomorphic to
G(22). In the following theorem, these subgraphs isomorphic to G(2k) are shown
to be present in G(2kn) for any k ≥ 1 and n relatively prime to 10.

Theorem 7. If n is not divisible by 2 or 5 and k > 0, then G(2kn) contains n gen-
erated subgraphs that are isomorphic to the subgraph of G(2k) excluding the loop
(0, 0). The root of each isomorphic subgraph is a vertex v∈V (G(2kn)), where 2k

|v.

Proof. If (a, b) ∈ E(G(n)) then (2ka, 2kb) is an edge in G(2kn), so we know that
S = {(2ka, 2kb) | (a, b) ∈ E(G(n))} is a subset of E(G(2kn)). The edges in S form
a set of cycles which are isomorphic to G(n). Hence, for all 2kv ∈ V (G(2kn)), 2kv
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Figure 7. G(28).

is part of a cycle, so indeg(2kv) ≥ 1. Then by Theorem 6, indeg(2kv)= 2. Thus,
G(2kn) contains a tree whose root vertex is 2kv for every v ∈ V (G(n)).

We now need to show that each of these trees is isomorphic to G(2k) without
the loop (0, 0). Define Tv(2kn) to be the tree whose root is r = 2kv. Adapted from
Theorem 5, each tree needs to satisfy the following three properties:

(i) Tv(2kn) has k+ 1 levels.

(ii) Tv(2kn) is a binary tree with exactly one vertex adjacent to r and indeg(v)=
0 or 2 for all v 6= r .

(iii) For any vertex v at level 0, the shortest path from v to r has length k.

First, Equation (4), we know that if a is the cyclical vertex adjacent to the root
r = 2km, then s = a + 2k−1n is also adjacent to r and 2k−1

‖ s. Thus, we have
two vertices adjacent to r , and by Theorem 6, s is the only vertex in Tm(2kn) that
is adjacent to r . Thus, exactly one vertex in the tree is adjacent to r . The rest of
part (ii) follows by definition from Theorem 6, so Tm(2kn) is a binary tree and
indeg(v)= 0 or 2 for all v 6= r .

Now, for part (i), for any v ∈ V (Tm(2kn)) such that v 6= r , there exists an integer
j ≥ 0 such that 10 jv ≡ s = 2k−1q mod 2kn for some integer q such that 2 - q.
Suppose j > k− 1, so:

10 jv− 2k−1q = 2knp

2 j−k+15 jv− q = 2np.

This says that 2 divides 2 j−k+15 jv − q. However, q is odd, so 2 j−k+15 jv − q
cannot be divisible by 2. Thus, j ≤ k− 1.
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Now assume j < k− 1 for all v ∈ V (Tm(2kn)). Then,

10 jv− 2k−1q = 2knp
2 j 5 jv = 2knp+ 2k−1q

5 jv = 2k−1− j (2np+ q). (7)

This means that 2 | v for all v ∈ V (Tm(2kn)). From Theorem 6, all vertices in the
tree now have an indegree of 2, which cannot be true as this would mean there are
no vertex with an indegree of 0 and would make the graph an infinite tree. Thus,
there exist vertices in Tm(2kn) such that 10k−1v ≡ s, or such that the path from
v to s is k − 1 edges long, and hence the path from v to r is k edges long. Thus,
Tm(2kn) has k+ 1 levels.

Finally, from (7), we know that if the shortest path from v to s has length less
than k−1, then v must be even. Since all vertices at level 0 are odd, the shortest path
from v at level 0 to s is k− 1, and the shortest path from level 0 to r has length k.

Therefore, Tv(2kn) is isomorphic to the subgraph of G(2k)without the loop (0, 0).
The root of each tree is 2kv, where v ∈ V (G(n)), so there are n of these trees. �

Theorem 7 is illustrated in G(28) (Figure 7) which contains 7 subgraphs isomor-
phic to G(4). From this theorem, we also know that C2kn = Cn and L2kn = Ln .

Theorems 5 and 7 depended on the fact that 2 is a factor of 10. Thus, we can
prove similar theorems for G(5k) and G(5kn) as well. From these, we can likewise
determine that C5kn = Cn and L5kn = Ln .

5. Conclusion

The function f (x) = 10x mod n generates iteration digraphs whose cycles are
greatly determined by the divisibility properties of n. With isomorphisms between
G(n) and G(d), Cn is determined for any n relatively prime to 10. Then, 2 and 3 have
specific relations to 10 which allow for simpler calculations for C2kn and C3n . Thus,
we can now calculate the number and lengths of cycles in G(n) for most integers n.
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Numerical integration of rational bubble functions
with multiple singularities

Michael Schneier

(Communicated by Kenneth S. Berenhaut)

We derive an effective quadrature scheme via a partitioned Duffy transformation
for a class of Zienkiewicz-like rational bubble functions proposed by J. Guzmán
and M. Neilan. This includes a detailed construction of the new quadrature
scheme, followed by a proof of exponential error convergence. Briefly discussed
is the functions application to the finite element method when used to solve
Stokes flow and elasticity problems. Numerical experiments which support the
theoretical results are also provided.

1. Introduction

The finite element method is one of the most popular and well studied numerical
methods used to approximate solutions of partial different equations (PDEs). Its
formulation is built upon the variational formulation of the PDE, where the infinite-
dimensional problem is restricted to a finite-dimensional setting. What distinguishes
the finite element method from other Galerkin methods is that the finite-dimensional
space contains piecewise polynomials with respect to a partition (usually rectangles
or triangles in two dimensions) of the domain. When performing the finite element
method the need to integrate these piecewise polynomials over the partition arises.
Solving these integrals directly would prove computationally costly and sometimes
extremely difficult. We instead use a variety of numerical integration techniques.
One of the most popular of these techniques is Gaussian quadrature. The method
approximates the value of the integral via a weighted sum of function values at points
within the domain of integration. This is already a mature theory for polynomial
basis functions with highly developed implementation techniques and error analysis
[Brezzi and Fortin 1991].

J. Guzmán and M. Neilan [2014a; 2014b] proposed a new family of finite methods
to approximate two-dimensional Stokes flow and planar elasticity. Varying from
the traditional finite element framework, the authors supplemented the usual finite

MSC2010: 65B99.
Keywords: Gaussian quadrature, multiple singularities, modified Duffy transformation.
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element spaces (i.e., piecewise polynomials) with a class of divergence-free rational
bubble functions. With the inclusion of these rational functions, Guzmán and
Neilan were able to derive finite element methods with several desirable properties
(e.g., exactly divergence-free velocity approximations for Stokes and symmetric and
conforming stresses for elasticity). Assuming that the integrals are computed exactly,
the authors derived several results including stability estimates of the numerical
methods and optimal order error estimates. However in practice, these integrals are
not computed exactly, and it is not clear how numerical integration will effect these
theoretical results. The issue arises from the fact that traditional quadrature rules
utilize interpolating polynomials to approximate the function and Taylor’s formula
to estimate the error [Burden and Faries 2011]. Thus in order to obtain accurate error
estimates, our function must be sufficiently smooth. However, the rational functions
in [Guzmán and Neilan 2014a; 2014b] are singular. Therefore the behavior of the
error is unpredictable. We numerically verify this assertion in Section 5.

One of the traditional methods for computing the integrals of singular functions
is the Duffy transformation [1982]. As described in [Lyness and Cools 1994],
a mapping from the original triangular domain to the unit square is constructed.
The singularity is effectively “stretched” out via its mapping to one of the edges
of the square. Since the singularity is no longer present, the square can then be
numerically integrated via a standard quadrature rule. This method will not work
though for the divergence-free rational bubble functions described in this paper due
to the presence of two singularities. While it would effectively eliminate one of
the singularities, the remaining singularity would still render standard quadrature
methods ineffective.

In the paper, we tackle this issue with a modified application of the Duffy
transformation. We subdivide the triangle into four subtriangles and then perform a
Duffy transformation on each of these subtriangles, which can essentially remove
all the problematic singularities. We can then construct a quadrature rule on the
unit square, which can then be mapped back to and used on our original domain.
We do not address the effect of the error estimates obtained from this new scheme
on the finite element methods in [Guzmán and Neilan 2014a; 2014b] as it is beyond
the scope of this paper.

The remainder of this paper is organized as follows. Section 2 contains some
preliminaries and the function spaces in which the analysis will be performed. Well
known results from vector calculus which are used extensively in the analysis are
also provided. In Section 3, the procedure for the partitioned Duffy transformation
is established. In Section 4, a quadrature scheme derived from the partitioned
Duffy transformation is given. A proof of exponential error convergence for this
quadrature scheme is also provided. In Section 5, we present numerical experiments
on the unit triangle which support our findings.
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2. Preliminaries

In this paper, standard space and norm notations are adopted. If G W Rn! Rm is a
mapping with argument x 2 Rn, we denote by DG.x/ the Jacobian, that is,

DGij .x/D
@Gi

@xj
.x/ .i D 1; 2; : : :m; j D 1; 2; : : : n/:

For a differentiable function g W Rn! R, we denote by rg W Rn! Rn the gradient
of g which is given by

rg.x/D
@g

@x1

.x/e1C � � �C
@g

@xn
.x/en;

where ei is the orthogonal unit column vector pointing in the coordinates direction xi .
We note that rg D .Dg/t is the transpose of Dg. The Hessian matrix of a twice
differentiable function g is denoted by D2g W Rn! Rn�n and is defined as

D2g.x/DDrg.x/; (2-1)

where the operator D in (2-1) is applied row-wise. Namely, the Hessian matrix is
given by

.D2g/ij .x/D
@2g

@xi@xj
.x/ .i; j D 1; 2; : : : ; n/:

For an open and bounded set D with Lipschitz continuous boundary @D, we
denote by Lp.D/ .1� p �1/ the complete normed linear space

Lp.D/ WD
˚
measurable functions v W

R
D jvj

p dx <1
	

.1� p <1/;

L1.D/ WD
˚
measurable functions v W ess supD jvj<1

	
:

The corresponding norms are then given by

kvkLp.D/ WD

�Z
D

jvjp dx

�1=p

; kvkL1.D/ WD ess sup
D

jvj:

The Sobolev spaces W k;p.D/ are defined as

W k;p.D/D
˚
u 2Lp.D/ WD˛u 2Lp.D/ for all j˛j � k

	
;

with norms

kukW k;p.D/ D

� X
j˛j�k

Z
D

jD˛ujp dx

�1=p

.1� p <1/

and



236 MICHAEL SCHNEIER

kukW k;1.D/ D

X
j˛j�k

ess sup
D

jD˛uj:

In the case pD2 and k�1, we set H k.D/DW k;2.D/ and k�kH k.D/Dk�kW k;2.D/.
We note that H k.D/ is a Hilbert space.

We denote the dual space of W k;p.D/ by W �k;p0.D/, where p0 satisfies

1

p
C

1

p0
D 1:

The associated norm is defined by

k'kW �k;p0 .D/ D sup
v2W k;p.D/nf0g

'.v/=kvkW k;p.D/: (2-2)

We denote by Th a shape-regular triangulation of the domain � with hT D

diam.T / for all T 2 Th and h WD maxT2Th
hT . Given T 2 Th, we denote by

fe.i/g3
iD1

the three edges of T and by f�.i/g3
iD1

the three barycentric coordinates
labeled such that �.i/je.i/ D 0. The vertices of T are denoted by fa.i/g3

iD1
labeled

such that �.i/.a.i// D ıi;j . We set bT WD �
.1/�.2/�.3/ 2 P3.T / to be the cubic

bubble and b.i/ D �.iC1/�.iC2/ 2 P2.T / .mod 3/ to be the quadratic edge bubble
associated with edge e.i/. For each triangle T 2Th, the three rational edge bubbles
fB.i/g3

iD1
associated with T are then given by

B.i/ WD
bT b.i/

.�.i/C�.iC1//.�.i/C�.iC2//
if 0� �.i/ � 1; 0� �.iC1/; �.iC2/ < 1;

B.i/.a.iC1//D B.i/.a.iC2//D 0 otherwise: (2-3)

The graphs of the three rational bubble functions are depicted in Figure 1 on the
reference triangle with vertices .0; 0/, .0; 1/ and .1; 0/. In this case, the barycentric
coordinates reduce to O�.1/ D x1, O�.2/ D x2 and O�.3/ D 1�x1�x2. Therefore, the
three rational bubble functions on the reference triangle are given by

B.1/ D
x1x2

2
.1�x1�x2/

2

.x1Cx2/.1�x2/
; B.2/ D

x2x2
1
.1�x1�x2/

2

.x1Cx2/.1�x1/
;

B.3/ D
x2

1
x2

2
.1�x1�x2/

.1�x1/.1�x2/
: (2-4)

In [Guzmán and Neilan 2014a] (see also [Ciarlet 1978, pp. 347–348]), the
following lemma pertaining to the rational bubble functions was established.

Lemma 2.1. For each T 2 Th, the following hold ( i D 1; 2; 3):

B.i/2C 1.T /\W 2;1.T /; B.i/j@T D0; rB.i/.a.j//D0 .j D1; 2; 3/: (2-5)
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Figure 1. The graphs of the three bubble functions on the reference
triangle with vertices .0; 0/ (left), .0; 1/ (middle) and .1; 0/ (right).

We end this section by stating some well known vector calculus results, which
will be used extensively in the analysis below.

Theorem 2.2 (inverse function theorem [Spivak 1998]). Suppose that G WRn!Rn is
continuously differentiable in an open set containing a point a with det.DG.a//¤ 0.
Then there is an open set V containing a and an open set W containing G.a/ such
that G W V !W has a continuous inverse G�1 WW ! V which is differentiable
for all y 2W . Moreover, there holds

D.G�1/.y/D ŒDG.G�1.y//��1: (2-6)

Lemma 2.3 (Bramble–Hilbert lemma [Ciarlet 1978]). Let D be an open subset
of Rn .n � 1/ with a Lipschitz-continuous boundary. For some k � 0 and some
number p 2 Œ0;1�, let ' be a continuous linear form on the space W kC1;p.D/

with the property that

'.p/D 0 for all p 2 Pk.D/;

where Pk.D/ is the set of all polynomials up to order k on D. Then there exists a
positive constant C > 0 depending on D such that for all v 2W kC1;p.D/,

j'.v/j � Ck'kW �k�1;p0 .D/jvjW kC1;p.D/;

where k � kW �k�1;p0 .D/ is defined by (2-2).

Theorem 2.4 (Sard’s theorem [Spivak 1998]). Let G W R2! R2 be a continuously
differentiable mapping. Let X be the set of points x in R2 at which the Jacobian
matrix DG.x/ has rank less than 2. Then G.X / has Lebesgue measure 0 in R2.

Corollary 2.5. Let V;U �R2 be two open and bounded sets, and let G W V ! U be
a continuously differentiable mapping that is surjective onto U ; that is, G.V /D U .
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Define the set X D fx 2 V WDG.x/ does not have full rankg. Then for any contin-
uous function f 2 C 0.U /,Z

U

f .y/ dy D

Z
G.V /nG.X /

f .y/ dy:

Proof. Since U DG.V /, we haveZ
U

f .y/ dy D

Z
G.V /

f .y/ dy D

Z
G.V /nG.X /

f .y/ dyC

Z
G.X /

f .y/ dy:

From Sard’s lemma, G.x/ has Lebesgue measure 0. Therefore
R

G.X / f .y/ dy D 0,
and so Z

U

f .y/ dy D

Z
G.V /

f .y/ dy D

Z
G.V /nG.X /

f .y/ dy: �

3. A partitioned Duffy transform

In this section, we describe a partitioned Duffy transform which essentially removes
the singularities of the rational bubble functions defined by (2-3). Basically the
strategy is to subdivide each triangle into four subtriangles by a red refinement
and then apply the Duffy transform to each subtriangle that shares a vertex with
the parent triangle. To describe this procedure in further detail, we require some
notation.

Denote by yT the unit triangle with vertices Oa.1/ WD .1; 0/, Oa.2/ WD .0; 1/ and
Oa.3/ WD .0; 0/, and let f yK.i/g4

iD1
be the four subtriangles of yT obtained by connecting

the three midpoints of each edge of yT (see Figure 2), where Oa.i/ is a vertex of
yK.i/.i D 1; 2; 3/. We denote the three vertices of yK.i/ by f Ob.i/j g

3
jD1

oriented in a
counterclockwise fashion and labeled such that

Oa.i/ D Ob
.i/
i .i D 1; 2; 3/:

The vertices f Ob.4/j g
3
jD1

can be labeled arbitrarily. Define yFi W
yT ! yK.i/ to be the

affine mapping such that yFi. Oa
.i//D Ob.i/ .i D 1; 2; 3/; that is,

yF1.y/D
�

1
2
.y1C 1/; 1

2
y2

�
; (3-1)

yF2.y/D
�

1
2
.1�y1�y2/;

1
2
.y1C 1/

�
; (3-2)

yF3.y/D
�

1
2
y2;�

1
2
.y1Cy2� 1/

�
: (3-3)

In the case i D 4, yFi can be any one of the possible affine mappings that takes yT
onto yK.4/. Denote by yQ WD .0; 1/2 the unit square and define the Duffy transform
yS W yQ! yT as

yS.Os/ WD .Os1; Os2.1� Os1//
t : (3-4)
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yK.1/

yK.4/

yK.3/

yK.2/

yQ

yF .1/ ı yS

Figure 2. A pictorial description of the notation used.

Finally for a function f W yT ! R, we set

Ofi.Os/ WD f . yFi. yS.Os/// .i D 1; 2; 3/ and Of4. Oy/D f .F4. Oy//: (3-5)

We note that Ofi W
yQ! R .i D 1; 2; 3/, whereas Of4 W

yT ! R.

Lemma 3.1. For i D 1; 2; 3, define yGi D Fi ı
yS W yQ! yK.i/. Then there holds

.br Oxf /i.Os/D .DOsGi.Os//
�t
rOs
Ofi.Os/;

for any function f satisfying Ofi 2 C 1. yQ/. Here, r Ox and rOs denotes the gradient
with respect to Ox and Os, respectively DOs D .rOs/

t , and .DOsGi.Os//
�t denote the

inverse matrix of the transpose of DOsGi.Os/.

Proof. For ease of notation, we omit the subscript i in the arguments below.
By (3-5) and the definition of yG, we have Of .Os/D f . yG.Os//. Now let Ox DG.Os/

so that Of .Os/D f . Ox/ and Os DG�1. Ox/. We then have

Osk D .G
�1/k. Ox/ and

@Osk

@ Oxj
D

@

@ Oxj
.G�1/k. Ox/:

Letting D OxG�1. Ox/ be the Jacobian of G�1, we have

@Osk

@ Oxj
D .DG�1/kj . Ox/: (3-6)

Therefore by the chain rule and (3-6), we have�
@f

@ Oxj
ıG

�
.Os/D

2X
kD1

@ Of

@Osk

.Os/
@Osk

@ Oxj
D

2X
kD1

@ Of

@Osk

.Os/.D OxG�1. Ox//kj

D

2X
kD1

�
.D OxG�1. Ox//jk

�t @ Of
@Osk

.Os/D
�
.D OxG�1/t . Ox/rOs

Of .Os/
�
j
:
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It then follows that

.rxf ıG/.Os/D .D OxG�1. Ox//trOs
Of .Os/: (3-7)

Now by the implicit function theorem (see Theorem 2.2), we have

D OxG�1. Ox/D ŒDG.G�1. Ox//��1
D ŒDG.Os/��1:

Therefore by (3-7) and (3-5), we have

br Oxf .Os/D .r Oxf ıG/.Os/D .DOsG.Os//�t
rOs
Of .Os/: �

Lemma 3.2. Let yGi D
yFi ı
yS W yQ! yK.i/. Then,

.1D2
Ox
f /i.Os/DDOs

�
.DOsGi.Os//

�t
rOs
Ofi.Os/

�
DOsGi.Os/

�1:

Proof. Again, we omit the subscript i in the proof for ease of notation.
From Lemma 3.1 we have

�
@f

@ Oxj
ıG

�
.Os/D

2X
kD1

�
DOsG.Os/

��t

jk

@ Of

@Osk

.Os/:

Set

rjk.Os/ WD .DOsG.Os//�t
jk

@ Of

@Osk

.Os/ so that
@f

@ Oxj
. Ox/D

2X
kD1

rjk.Os/:

Then by the chain rule, (3-6), and the inverse function theorem, we have

� @2f

@ Oxj@ Oxl

ıG
�
.Os/D

2X
kD1

2X
mD1

@rjk

@Osm
.Os/
@Osm

@ Oxl

D

2X
kD1

2X
mD1

@rjk

@Osm
.Os/.D OxG�1/ml. Ox/

D

2X
kD1

2X
mD1

@rjk

@Osm
.Os/.D OxG/�1

ml.Os/:

Now since

rjk.Os/D .DOsG.Os//�t
jk

@ Of

@Osk

.Os/;
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we have� @2f

@ Oxj@ Oxl

ıG
�
.Os/D

2X
kD1

2X
mD1

@

@Osm

�
.DOsG/�t

jk .Os/
@ Of

@Osk

.Os/

�
..DOsG/�1

ml.Os//

D

2X
mD1

@

@Osm
..DOsG/�t .Os/rOs

Of .Os//j ..DOsG/�1
ml.Os//

D

2X
mD1

�
DOs..DOsG/�t .Os/rOs

Of .Os//
�
jm
..DOsG/�1

ml.Os//

D

��
DOs..DOsG/�t .Os/rOs

Of .Os//
�
..DOsG/�1.Os//

�
jl
:

It then follows that

.1D2
Ox
f /i.Os/D .D

2
Ox
f ı yGi/.Os/DDOs..DOsGi.Os//

�t
rOs
Ofi.Os//DOsGi.Os/

�1: �

We are now ready to state the main result of this section.

Lemma 3.3. Let B.j/ be the rational edge bubble (2-3) defined on the reference
triangle yT with vertices .1; 0/, .0; 1/, and .0; 0/. Then (i D 1; 2; 3),

bB.j/i 2 C1. yQ/; .2r OxB.j//i 2 ŒC
1. yQ/�2; .2D2

Ox
B.j//i 2 ŒC

1. yQ/�2�2;

and

bB.j/4 2 C1. yT /; .2r OxB.j//4 2 ŒC
1. yT /�2; .2D2

Ox
B.j//4 2 ŒC

1. yT /�2�2:

Here, r Ox denotes the gradient with respect to Ox and D2
Ox

denotes the Hessian with
respect to Ox.

Remark 3.4. Essentially, Lemma 3.3 states that if we map the rational bubble
functions’ derivatives to the unit square via the partitioned Duffy transform, then
the resulting function is C1.

Proof. Due to the symmetry of the rational edge bubbles, it suffices to prove the
result for the function

B. Ox/ WD
Ox2
1
Ox2
2
.1� Ox1� Ox2/

.1� Ox1/.1� Ox2/
2 C 1. yT /\W 2;1. yT / (3-8)

(see (2-4)). Since B. Ox/ has singularities only at the vertices .1; 0/ and .0; 1/, we
have BjK4

2 C1. yK4/. It is then trivial to see that

yB4 2 C1. yT /; . br NxB/4 2 ŒC
1. yT /�2; .1D2

NxB/4 2 ŒC
1. yT /�2�2:
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Next, a direct calculation shows that

yB1.Os/D B.F1.S.Os///D B
�

1
2
.Os1C 1/; 1

2
.Os2.1� Os1//

�
(3-9a)

D
Os2
2
.Os2� 1/.Os1� 1/2.Os1C 1/2

8.2� Os2C Os2 Os1/
2 C1. yQ/;

yB2.Os/D B.F2.S.Os///D B
�

1
2
.1� Os1� Os2.1� Os1//;

1
2
.Os1C 1/

�
(3-9b)

D
1

8

.s1� 1/s2.s1C 1/2.s2� 1/.1� s1� s2C s2s1/

8.1C s1C s2� s2s1/
2 C1. yQ/;

yB3.Os/D B.F3.S.Os///D B
�

1
2
Os2.1� Os1/;�

1
2
.Os1C Os2.1� Os1//C

1
2

�
(3-9c)

D
Os2
2
.Os1� 1/2.1� Os1� Os2C Os2 Os1/

2.1C Os1/

8.2� Os2C Os2 Os1/.1C Os1C Os2� Os2 Os1/
2 C1. yQ/:

Then from Lemma 3.1, we have

. br OxB/i.Os/D .DOsGi.Os//
�t
rOs
yB.Os/; (3-10)

where rOs denotes the gradient with respect to Os, DOs D .rOs/
t , and .DOsGi.Os//

�t

denotes the inverse matrix of the transpose of DOsGi.Os/. Using the identity DFi D

2jKi j D 1=2 and the chain rule, we have

DGi.Os/DD.Fi.S.Os///DDFi.S.Os//DS.Os/D 1
2
DS.Os/:

It then follows that .DGi.Os//
�t D 2.DS.Os//�t ; that is,

.DGi.Os//
�t
D

 
2 2Os2=.1� Os1/

0 2=.1� Os1/

!
: (3-11)

By (3-9), we see that the derivatives @ yBi=@Os2 .i D 1; 2; 3/ all have a factor .1� Os1/
2.

In particular, we may write

rOs
yBi D

 
g
.1/
i .Os/.1� Os1/

g
.2/
i .Os/.1� Os1/

2

!
(3-12)

for some g
.1/
i ;g

.2/
i 2 C1. yQ/. Combining (3-12) with (3-10) and (3-11) we see

that . br OxB/i 2 ŒC
1. yQ/�2.

Continuing, we use Lemma 3.2 and the inverse function theorem to obtain

.1D2
Ox
B/i.Os/DDOs

�
.DOsGi.Os//

�t
rOs
yB.Os/

�
DOsGi.Os/

�1: (3-13)
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0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 3. The location of the nodes Ox.j/ with LD 16 and M D 6.

By (3-12) and (3-11), we have

DOs
�
.DOsGi.Os//

�t
rOs
yB.Os/

�
D

 
g
.1;1/
i .Os/ g

.1;2/
i .Os/.1� Os1/

g
.2;1/
i .Os/ g

.2;2/
i .Os/.1� Os1/

!
;

for some g.i;j/.Os/ 2 C1. yQ/. It then follows from the definition of DOsGi.Os/
�1

(see (3-11)) and (3-13) that

.1D2
Ox
B/i.Os/ 2 ŒC

1. yQ/�2�2: �

4. A quadrature rule based upon the partitioned Duffy transform

We now build quadrature schemes for the integral
R
yT
f . Ox/ d Ox based upon the

partitioned Duffy transform described above. To this end, we let fOs.j/; O� .j/gL
jD1

be a tensor product Gaussian quadrature rule on the unit square yQ, and we let
f Oy.j/; O%.j/gM

jD1
be a quadrature rule on the unit triangle yT . We then map the

quadrature points and weights on yQ to the subtriangles yK.i/ (i D 1; 2; 3/ by the
formulas Ox..i�1/LCj/ D yFi. yS.Os

.j/// and

O!..i�1/LCj/
D

1
2
.1� Os

.j/
1
/ O� .j/ .j D 1; 2; : : : ;L/:

We map the quadrature points and weights f Oy.j/; O%.j/gM
jD1

to yK.4/ by

Ox3LCj
D yF4. Oy

.j// and O!.3LCj/
D

1

2
O%.j/ .j D 1; 2; : : : ;M /:

The new quadrature scheme on yT is then given by f Ox.j/; O!.j/g3LCM
jD1

(see Figure 3).

Remark 4.1. By Figure 3, we see that the quadrature points are clustered near
the vertices of the (macro) triangle yT . On the other hand, the weights defined by
O!..i�1/LCj/ D

1
2
.1� Os

.j/
1
/ O� .j/ are small near the vertices since the line Os1 D 1 on

yQ is mapped to each of the vertices of yT .
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Note by a change of variables and Sard’s theorem, we haveZ
yT

f . Ox/ d Ox D

4X
iD1

Z
yK .i/

f . Ox/ d Ox D

4X
iD1

Z
yT

f . OF .i/. Oy//jD yF .i/. Oy/j d Oy

D

4X
iD1

2j yK.i/
j

Z
yT

f . yFi. Oy// d Oy

D
1

2

3X
iD1

Z
yT

f . yFi. Oy// d OyC
1

2

Z
yT

Of4. Oy/ d Oy

D
1

2

3X
iD1

Z
yQ

f
�
yFi. yS.Os//

�
jDOs yS.Os/j d OsC

1

2

Z
yT

Of4. Oy/ d Oy

D
1

2

3X
iD1

Z
yQ

Ofi.Os/.1� Os1/ d OsC
1

2

Z
yT

Of4. Oy/ d Oy:

We also have

3LCMX
jD1

O!.j/f . Ox.j//

D

3X
iD1

LX
jD1

O!.i�1/LCjf . Ox..i�1/LCj//C

MX
jD1

O!.3LCj/f . Ox.3LCj//

D
1

2

3X
iD1

LX
jD1

.1� Os.j//� .j/f . yFi. yS.Os
.j////C

1

2

MX
jD1

O%.j/f . yF4. Oy
.j///

D
1

2

3X
iD1

LX
jD1

� .j/ Ofi.Os
.j//.1� Os

.j/
1
/C

1

2

MX
jD1

O%.j/ Of4. Oy
.j//:

It then follows from these two identities that the error can be written as

E yT .f / WD

Z
yT

f . Ox/ d Ox�

3LCMX
jD1

O!.j/f . Ox.j// (4-1)

D
1

2

3X
iD1

�Z
yQ

Ofi.Os/.1� Os1/ d Os�

LX
jD1

� .j/ Ofi.Os
.j//.1� Os

.j/
1
/

�

C
1

2

�Z
yT

Of4. Oy/ d Oy �

MX
jD1

O%.j/ Of4. Oy
.j//

�
:
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Theorem 4.2. Let B.j/ be any of the three rational edge bubbles defined on the
reference triangle. Then for any multi-index ˛ D .˛1; ˛2/ with 0 � j˛j � 2, there
exists C˛ > 0 and ı˛ > 0 such thatˇ̌̌̌

E yT

�
@j˛jB.j/

@ Ox˛

�ˇ̌̌̌
� C˛.exp.�ı˛M /C exp.�ı˛L//:

Proof. This result follows from (4-1), Lemma 3.3, and standard estimates of
Gaussian quadrature [Sauter and Schwab 2011, pp. 324–325]. �

We now discuss the quadrature rule on an arbitrary triangle T 2Th. This is done
in a natural way. Namely, letting FT W

yT ! T denote the affine transformation, we
define the quadrature scheme fx.j/

T
; !
.j/
T
g
3LCM
jD1

by x
.j/
T
D FT . Ox

.j// and !.j/
T
D

2jT j O!.j/. The error of the scheme is then given by

ET .f / WD

Z
T

f .x/ dx�

3LCMX
jD1

!
.j/
T
f .x

.j/
T
/:

Using the Bramble–Hilbert lemma, we can obtain the following result.

Theorem 4.3. Suppose that the quadrature schemes

fOs.j/; O� .j/gLjD1 and f Oy.j/; O%.j/gMjD1

are exact for polynomials of degree at most m on yQ and yT , respectively. For a
given triangle T 2 Th, let f be a continuous function on T and Ofi 2H mC1. yQ/

and Of4 2H mC1. yT /, where

Ofi.Os/D f
�
FT . yFi. yS.Os///

�
and Of4. Oy/D f .FT . yF4. Oy///:

Then,

ET .f /� C h2
T

� 3X
iD1

j Ofi jH mC1. yQ/
Cj Of4jH mC1. yT /

�
:

Proof. Let Of 2C 0. yT / be defined as Of . Ox/Df .FT . Ox// so that Ofi.Os/D Of . yFi. yS.Os//

and Of4. Oy/D Of . yF4. Oy//. Then by a change of variables and (4-1), we have

ET .f /D 2jT jE yT .
Of /

D jT j

� 3X
iD1

�Z
yQ

Ofi.Os/.1� Os1/ d Os�

LX
jD1

O� .j/ Ofi.Os
.j//.1� Os

.j/
1
/

�
C

Z
yT

Of4. Oy/d Oy �

MX
jD1

O%.j/ Of4. Oy
.j//

�
:
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It then follows from the Bramble–Hilbert lemma that

ET .f /� C jT j

� 3X
iD1

j.1� Os1/ Ofi jH mC1. yQ/
Cj Of4jH mC1. yT /

�

� C h2
T

� 3X
iD1

j Ofi jH mC1. yQ/
Cj Of4jH mC1. yT /

�
: �

Corollary 4.4. Let B.j/ be any of the three rational edge bubbles defined on an
arbitrary triangle T 2 Th. Then for any multi-index ˛ D .˛1; ˛2/ with 0� j˛j � 2,
there exists C˛ > 0 and ı˛ > 0 such thatˇ̌̌̌

ET

�
@j˛jB.j/

@ Ox˛

�ˇ̌̌̌
� h2

T C˛.exp.�ı˛M /C exp.�ı˛L//:

Proof. This follows directly from Theorem 4.2 and Theorem 4.3. �

5. Numerical experiments on a single triangle

In this section, we implement the quadrature scheme discussed in the previous
section on the reference triangle yT and validate the results of Theorem 4.2. In all
of the numerical experiments, we approximate the integral of the third function in
(2-4), that is,

B.x/ WD B.3/.x/D
x2

1
x2

2
.1�x1�x2/

.1�x1/.1�x2/
:

For comparison, we first implement some standard Gauss–Legendre quadrature
schemes for the rational function and its first and second derivatives. Using the
mathematical software package Maple, we find the exact value of the integrals to beZ

yT

B. Ox/ d Ox D�1
6
�2
C

593
360
� 0:0022881548227867501;Z

yT

@B

@ Ox1

d Ox D 0;

Z
yT

@2B

@ Ox2
1

d Ox D�1
6
:

The numerical results are depicted in Table 1. As can be seen from the tables, the
errors behave sporadically. At best, the errors converge algebraically, but certainly
not exponentially. Moreover, even for high order quadrature rules, we are only able
to recover four digits of accuracy. This also proves true for Gaussian quadrature
applied to the function’s first and second derivatives (see Table 1). We can attribute
these poor results to the two singularities at the vertices .1; 0/ and .0; 1/.

Next, we implement the quadrature scheme using the Duffy transform described
in Section 4. Of particular interest are the integrals on the subtriangles containing
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L degree approx. integral absolute error relative error rate

1 1 4.62 �10�3 2.34 �10�3 1.023
3 2 �9.74 �10�2 9.96 �10�2 4.35 3.41
6 4 2.36 �10�3 7.83 �10�5 3.42 �10�2 10.31

y B 7 5 2.29 �10�3 3.51 �10�6 1.53 �10�3 20.15
16 8 2.28 �10�3 1.71 �10�6 7.51 �10�4 0.86
19 9 2.28 �10�3 2.81 �10�7 1.22 �10�4 10.54
28 11 2.28 �10�3 1.21 �10�7 5.29 �10�5 2.17
37 13 2.30 �10�3 2.08 �10�5 9.11 �10�3 18.48

1 1 �2.08 �10�2 2.08 �10�2

3 2 8.78 �10�1 8.78 �10�1 5.39
6 4 �2.02 �10�3 2.02 �10�3 8.76

1s
td

er
iv

at
iv

e
of
y B

7 5 �1.27 �10�3 1.27 �10�3 2.08
16 8 1.05 �10�4 1.05 �10�4 5.29
19 9 1.02 �10�4 1.02 �10�4 0.24
28 11 8.88 �10�6 8.88 �10�6 12.18
37 13 4.12 �10�4 4.12 �10�4 22.97

1 1 5.80 �10�2 2.18 �10�1 �1.31
3 2 �7.13 6.97 �41.83 4.99
6 4 �1.39 �10�1 2.69 �10�2 �1.61 �10�1 8.01

2n
d

de
riv

at
iv

e
of
y B

7 5 �1.45 �10�1 2.09 �10�2 �1.25 1.12
16 8 �1.62 �10�1 4.06 �10�3 �2.43 �10�2 3.49
19 9 �1.62 �10�1 3.70 �10�3 �2.22 �10�2 0.78
28 11 �1.65 �10�1 8.41 �10�4 �5.05 �10�3 7.37
37 13 �1.75 �10�1 8.60 �10�3 �5.16 �10�2 13.91

Table 1. Gaussian quadrature results for the function yB of (3-8)
and its first two derivatives. Rates of convergence are with respect
to the relative error and the number of points L.

the singularities. For the sake of brevity we omit yB and its derivatives over the
subtriangle yK4Df.0; 5; 0/; .0:5; 0:5/; .0:5; 0/g; that is, we approximate the integralsZ

yK1

B. Ox/ dx D�2
3

ln 2C 6019
5760
�

1
12
�2
C

1
2

ln2 2� 6:266309395� 10�4;Z
yK1

@B

@ Ox1

dx D�17
96
C

1
4

ln 2��3:7955381933� 10�3;Z
yK1

@2B

@ Ox2
1

dx D�35
24
C ln 4��7:20389722� 10�2;
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L degree approx. integral absolute error relative error rate

4 2 6.66 �10�4 3.90 �10�5 6.22 �10�2

9 3 6.27 �10�4 4.00 �10�7 6.38 �10�4 5.65
16 4 6.27 �10�4 9.40 �10�9 1.50 �10�5 6.52

y B 25 5 6.27 �10�4 2.23 �10�10 3.57 �10�7 8.38
36 6 6.27 �10�4 5.48 �10�12 8.74 �10�9 10.17
49 7 6.27 �10�4 1.38 �10�13 2.20 �10�10 11.95
64 8 6.27 �10�4 9.10 �10�17 1.45 �10�13 27.42

4 2 �3.58 �10�3 2.12 �10�4 �5.60 �10�2

9 3 �3.79 �10�3 3.76 �10�6 �9.92 �10�4 4.97
16 4 �3.79 �10�3 7.95 �10�8 �2.09 �10�5 6.70

1s
td

er
iv

at
iv

e
of
y B

25 5 �3.79 �10�3 1.82 �10�9 �4.81 �10�7 8.45
36 6 �3.79 �10�3 4.41 �10�11 �1.16 �10�8 10.21
49 7 �3.79 �10�3 1.10 �10�12 �2.90 �10�10 11.97
64 8 �3.79 �10�3 2.81 �10�14 �7.40 �10�12 13.73

4 2 �7.07 �10�2 1.24 �10�3 �1.72 �10�2

9 3 �7.20 �10�2 2.34 �10�5 �3.24 �10�4 4.89
16 4 �7.20 �10�2 5.10 �10�7 �7.08 �10�6 6.64

2n
d

de
riv

at
iv

e
of
y B

25 5 �7.20 �10�2 2.91 �10�10 �1.65 �10�7 8.41
36 6 �7.20 �10�2 7.34 �10�12 �4.04 �10�9 10.18
49 7 �7.20 �10�2 1.88 �10�13 �1.01 �10�10 11.94
64 8 �7.20 �10�2 4.99 �10�15 �2.62 �10�12 13.70

Table 2. Quadrature results using the Duffy transform for the
function yB of (3-8) and its first two derivatives. The domain of
integration is the triangle yK1 (the next two tables deal with yK2 and
yK3). Rates of convergence are with respect to the relative error

and the number of points L.

Z
yK2

B. Ox/ dx D�2
3

ln 2C 6019
5760
�

1
12
�2
C

1
2

ln2 2� 6:266309395� 10�4;Z
yK2

@2B

@ Ox1

dx D 0;Z
yK2

@2B

@ Ox2
1

dx D� 1
12
��0:0833333333;Z

yK3

B. Ox/ dx � 8:096731144� 10�5;Z
yK3

@B

@ Ox1

dx D 1
6

ln 2� 11
96
� 9:411967600� 10�4;
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L degree approx. integral absolute error relative error rate

4 2 6.66 �10�4 3.89 �10�5 6.22 �10�2

9 3 6.27 �10�4 3.99 �10�7 6.38 �10�4 5.64
16 4 6.26 �10�4 9.40 �10�9 1.50 �10�5 6.51

y B 25 5 6.26 �10�4 2.23 �10�11 3.57 �10�7 8.36
36 6 6.26 �10�4 5.47 �10�12 8.74 �10�9 10.17
49 7 6.26 �10�4 1.37 �10�13 2.20 �10�10 11.94
64 8 6.26 �10�4 3.52 �10�15 1.45 �10�13 13.71

4 2 8.61 �10�4 8.61 �10�4

9 3 4.25 �10�6 4.25 �10�6 6.54
16 4 1.19 �10�7 1.19 �10�7 6.20

1s
td

er
iv

at
iv

e
of
y B

25 5 3.43 �10�9 3.43 �10�9 7.96
36 6 9.89 �10�11 9.89 �10�11 9.72
49 7 2.86 �10�13 2.86 �10�3 11.48
64 8 8.33 �10�15 8.33 �10�15 13.24

4 2 �8.21 �10�2 1.00 �10�3 �1.44 �10�2

9 3 �8.32 �10�2 4.55 �10�5 �5.46 �10�4 4.03
16 4 �8.33 �10�2 1.63 �10�6 �1.95 �10�5 5.78

2n
d

de
riv

at
iv

e
of
y B

25 5 �8.33 �10�2 5.64 �10�8 �6.77 �10�7 7.53
36 6 �8.33 �10�2 1.90 �10�9 �2.29 �10�8 9.28
49 7 �8.33 �10�2 6.34 �10�11 �7.61 �10�10 11.04
64 8 �8.33 �10�2 2.08 �10�13 �2.49 �10�11 12.79

Table 3. Quadrature results over the domain of integration yK2.
See caption of Table 2 for details.

Z
yK3

@2B

@ Ox2
1

dx D 5
8
�

8
9

ln 2� 8:869172836� 10�3

by the quadrature scheme
PL

jD1 O!
.j/B. Ox.j//. The numerical results and the errors

are listed in the tables below. Our error now converges in an exponential manner
for our initial function as well as its first and second derivative. These results are in
agreement with Theorem 4.2.

6. Conclusion

In this paper, we have created an effective Gaussian quadrature scheme for a
specific class of divergence free rational functions. We also managed to derive
error estimates as well as show exponential error convergence, with numerical
experiments confirming our results. While the findings of this paper appear to
support the finite element method proposed in [Guzmán and Neilan 2014a], there
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L degree approx. integral absolute error relative error rate

4 2 6.35 �10�5 1.73 �10�5 2.14 �10�1

9 3 8.08 �10�5 1.35 �10�7 1.67 �10�3 5.98
16 4 8.09 �10�5 3.60 �10�9 4.45 �10�5 6.30

y B 25 5 8.09 �10�5 1.12 �10�10 1.38 �10�6 7.77
36 6 8.09 �10�5 3.06 �10�12 3.78 �10�8 9.88
49 7 8.09 �10�5 4.43 �10�13 5.47 �10�10 13.73
64 8 8.09 �10�5 3.56 �10�13 4.39 �10�10 .82

4 2 9.47 �10�4 6.04 �10�6 6.42 �10�3

9 3 9.42 �10�4 1.04 �10�6 1.10 �10�3 4.16
16 4 9.41 �10�4 1.00 �10�8 1.07 �10�5 8.06

1s
td

er
iv

at
iv

e
of
y B

25 5 9.41 �10�4 1.09 �10�10 1.16 �10�7 10.12
36 6 9.41 �10�4 9.74 �10�12 1.03 �10�8 6.64
49 7 9.41 �10�4 3.97 �10�13 4.22 �10�10 10.37
64 8 9.41 �10�4 1.38 �10�14 1.46 �10�11 12.58

4 2 9.00 �10�3 1.34 �10�4 1.51 �10�2

9 3 8.87 �10�3 2.95 �10�6 3.33 �10�4 4.70
16 4 8.86 �10�3 6.96 �10�8 7.85 �10�6 6.51

2n
d

de
riv

at
iv

e
of
y B

25 5 8.86 �10�3 6.21 �10�9 7.00 �10�7 5.41
36 6 8.86 �10�3 2.85 �10�11 3.22 �10�8 8.44
49 7 8.86 �10�3 1.11 �10�12 1.25 �10�9 10.53
64 8 8.86 �10�3 4.01 �10�14 4.53 �10�11 12.42

Table 4. Quadrature results over the domain of integration OK2.
See caption of Table 2 for details.

are still a number of conditions such as Vh [Ciarlet 1978, p. 174], ellipticity and
determining global error estimates which must be worked out. This will be the
subject of ongoing research.
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Finite groups with some
weakly s-permutably embedded

and weakly s-supplemented subgroups
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Let G be a finite group. A subgroup H of G is called weakly s-permutably
embedded in G if there is a subnormal subgroup T of G and an s-permutably
embedded subgroup Hse of G contained in H such that G= HT and H∩T ≤ Hse.
The subgroup H is called weakly s-supplemented in G if G has a subgroup K
such that HK = G and H ∩ K ≤ HsG , where HsG is the largest s-permutable
subgroup of G contained in H . In this paper, we investigate the influence of
weakly s-permutably embedded and weakly s-supplemented subgroups on the
structure of finite groups. Some recent results are generalized.

1. Introduction

Throughout only finite groups are considered. We use conventional terminology
and notation, as in [Robinson 1982]. Let G denote a group and |G| denote the order
of G. Let BE A ≤ G. Then A/B is a section of G. In the theory of groups, G is
said to be A4-free if G does not posses a section isomorphic to A4.

Let F be a class of groups. Then F is called a formation provided that (1) if G ∈F
and H CG, then G/H ∈ F , and (2) if G/M and G/N are in F , then G/M ∩ N is
in F for all normal subgroups M, N of G. A formation F is said to be saturated if
G/8(G) ∈ F implies that G ∈ F , where 8(G) denotes the Frattini subgroup of G.

Two subgroups H and K of G are said to be permutable if HK = KH . Following
[Kegel 1962], the subgroup H of G is said to be s-permutable in G if H permutes
with every Sylow subgroup of G, that is, HP = PH for any Sylow subgroup P of G.
Schmid [1998] showed that if both H and K are s-permutable subgroups of G,
then both H ∩ K and 〈H, K 〉 are s-permutable in G. Recently, Ballester-Bolinches
and Pedraza-Aguilera [1998] generalized s-permutable subgroups to s-permutably

MSC2010: primary 20D10; secondary 20D20.
Keywords: weakly s-permutably embedded subgroups, weakly s-supplemented subgroups,

p-nilpotent groups.
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embedded subgroups. A subgroup H is said to be s-permutably embedded in G
provided every Sylow subgroup of H is a Sylow subgroup of some s-permutable
subgroup of G. By applying this concept, Ballester-Bolinches and Pedraza-Aguilera
got new criteria for the supersolvability of groups. Moreover, a nice result in [Li
et al. 2005] on the p-nilpotency of a group could be stated as follows: Let G be a
group and P a Sylow p-subgroup of G, where p is the smallest prime dividing |G|.
If G is A4-free and all 2-maximal subgroups of P are s-permutably embedded in G,
then G is p-nilpotent.

In recent years, it has been of interest to use supplementation properties of
subgroups to characterize properties of a group. Wang [1996] first introduced
the concept of c-normal subgroups. Furthermore, Li, Qiao, and Wang [Li et al.
2009] continued to promote this concept and introduced weakly s-permutably
embedded subgroups, which are a generalization of both c-normality [Wang 1996]
and s-permutably embedding. A subgroup H of G is called weakly s-permutably
embedded in G if there is a subnormal subgroup T of G and an s-permutably
embedded subgroup Hse of G contained in H such that G = HT and H ∩T ≤ Hse.
In the meantime, Skiba [2007] introduced the definition of a weakly s-supplemented
subgroup. A subgroup H is said to be weakly s-supplemented in G if G has a
subgroup T such that HT = G and H ∩ T ≤ HsG , where HsG is the largest
s-permutable subgroup of G contained in H .

We note that weakly s-permutably embedded subgroups and weakly s-supple-
mented subgroups are two distinct concepts. There are examples that show that
weakly s-permutably embedded subgroups are not weakly s-supplemented sub-
groups, and, in general, the converse is also false.

Example 1.1. Let G = A5 be the alternating group of degree 5. Then the Sylow
2-subgroups of G are weakly s-permutably embedded in G, but not weakly s-
supplemented in G.

Example 1.2. Let H = S4 be the symmetric group of degree 4, let V be an irre-
ducible and faithful module for H over F3, the finite field of 3 elements, and consider
G = [V ]H , the corresponding semidirect product. If X is a Sylow 3-subgroup of H ,
then X is weakly s-supplemented in G but not weakly s-permutably embedded in G.

Hence it is natural to ask the following question: can these two concepts and the
related results be unified and generalized? The purpose of this article is to present an
answer to the above question. By using these subgroup properties, we determine the
structure of G based on the assumption that all 2-maximal subgroups of a Sylow sub-
group of G are either weakly s-permutably embedded or weakly s-supplemented sub-
groups in G. Our results unify and generalize the above mentioned result and some
other results in the literature on p-nilpotency and formation theory of finite groups.
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2. Preliminaries

For the sake of convenience, we include the following results.

Lemma 2.1 [Ballester-Bolinches and Pedraza-Aguilera 1998, Lemma 1]. Let H
be a subgroup of G.

(1) If H is s-permutably embedded in G and H ≤ M ≤G, then H is s-permutably
embedded in M.

(2) Let N CG and assume that H is s-permutably embedded in G. Then HN is
s-permutably embedded in G and HN/N is s-permutably embedded in G/N.

Lemma 2.2 [Li et al. 2009, Lemma 2.5]. Let U be a weakly s-permutably embedded
subgroup of G and N a normal subgroup of G. Then:

(1) If U ≤ H ≤ G, then U is weakly s-permutably embedded in H.

(2) If N ≤U , then U/N is weakly s-permutably embedded in G/N.

(3) Let π be a set of primes, U a π -subgroup and N a π ′-subgroup. Then UN/N
is weakly s-permutably embedded in G/N.

Lemma 2.3 [Skiba 2007, Lemma 2.10]. Let H be a subgroup of a group G.

(1) If H is weakly s-supplemented in G and H ≤ M ≤ G, then H is weakly
s-supplemented in M.

(2) Let N C G and N ≤ H. If H is weakly s-supplemented in G, then H/N is
weakly s-supplemented in G/N.

(3) Let π be a set of primes, H a π-subgroup of G and N a normal π ′-subgroup
of G. If H is weakly s-supplemented in G, then HN/N is weakly s-supple-
mented in G/N.

Lemma 2.4 [Guo and Shum 2003, Lemma 3.12]. Let P be a Sylow p-subgroup of
a group G, where p is the smallest prime dividing |G|. If G is A4-free and |P| ≤ p2,
then G is p-nilpotent.

Lemma 2.5 [Guo et al. 2009, Lemma 2.12]. Let p be a prime, and let G be a group
with (|G|, p− 1)= 1. Suppose that P is a Sylow p-subgroup of G such that each
maximal subgroup of P has a p-nilpotent supplement in G. Then G is p-nilpotent.

Lemma 2.6 [Li et al. 2005]. (1) If P is an s-permutable p-subgroup of G for
some prime p, then O p(G)≤ NG(P).

(2) Suppose that H is s-permutable in G and P is a Sylow p-subgroup of H ,
where p is a prime. If HG = 1, then P is s-permutable in G.

(3) Suppose that P is a p-subgroup of G contained in Op(G). If P is s-permutably
embedded in G, then P is s-permutable in G.
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Lemma 2.7 [Li and Guo 2000, Lemma 2.6]. Let H be a nontrivial solvable normal
subgroup of G. If every minimal normal subgroup of G which is contained in H is
not contained in 8(G), then the Fitting subgroup F(H) of H is the direct product
of minimal normal subgroups of G which are contained in H.

Lemma 2.8 [Doerk and Hawkes 1992, A, Lemma 1.2]. Let U, V and W be sub-
groups of G. The following statements are equivalent:

(1) U ∩ V W = (U ∩ V )(U ∩W ).

(2) U V ∩U W =U (V ∩W ).

Lemma 2.9 [Guo and Shum 2003, Lemma 3.16]. Let F be the class of groups with
Sylow tower of supersolvable type. Also let P be a normal p-subgroup of G such
that G/P ∈ F . If G is A4-free and |P| ≤ p2, then G ∈ F .

Lemma 2.10 [Zhang and Li 2012, Lemma 2.11]. Let p be the smallest prime
dividing |G| and P a Sylow p-subgroup of G. If G is A4-free and every 2-maximal
subgroup of P is weakly s-permutably embedded in G, then G is p-nilpotent.

Lemma 2.11 [Yang et al. 2012, Lemma 2.12]. If a p-subgroup H is s-permutable
in G, then H ≤ Op(G).

3. Main results

Our first result unifies and improves the results [Ballester-Bolinches and Guo 1999,
Theorem 3; Guo and Shum 2001, Theorem 3.2; Wang 2000, Theorem 4.2] on the
p-nilpotency of a group.

Theorem 3.1. Let p be the smallest prime dividing |G| and P a Sylow p-subgroup
of G. If G is A4-free and every 2-maximal subgroup of P is either weakly s-permut-
ably embedded or weakly s-supplemented in G, then G is p-nilpotent.

Proof. Suppose that the statement is false and let G be a counterexample of minimal
order. We proceed with the following steps.

Step 1: By Lemma 2.4, |P| ≥ p3 and thus every 2-maximal subgroup of P is
nontrivial.

Step 2: G is not a nonabelian simple group.
Assume that G is nonabelian simple. By Lemma 2.5, P has a maximal subgroup

P1 which has no p-nilpotent supplement in G. It follows that any 2-maximal
subgroup P2 of P contained in P1 has no p-nilpotent supplement in G. From the
hypothesis, P2 is either weakly s-permutably embedded or weakly s-supplemented
in G. If P2 is weakly s-permutably embedded in G, then there is a subnormal
subgroup T of G and an s-permutably embedded subgroup (P2)se of G contained
in P2 such that G = P2T and P2∩T ≤ (P2)se. Clearly, T =G and thus P2= (P2)se
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is s-permutably embedded in G. Thus there is an s-permutable subgroup K of G
such that P2 is a Sylow p-subgroup of K . Since G is simple, we get KG = 1.
By Lemma 2.6, P2 is s-permutable in G. Consequently, 1 6= P2 ≤ Op(G) by
Lemma 2.11, which is a contradiction. If P2 is weakly s-supplemented in G, then
there is a non-p-nilpotent subgroup T of G such that

G = P2T and P2 ∩ T ≤ (P2)sG ≤ Op(G)= 1

by Lemma 2.11. By Lemma 2.4, T is p-nilpotent, a contradiction.

Step 3: G has a unique minimal normal subgroup N , and G/N is p-nilpotent.
Furthermore, 8(G)= 1.

Let N be a minimal normal subgroup of G. Consider the factor group G/N ;
we will prove that G/N meets the hypotheses of the theorem. Since P is a Sylow
p-subgroup of G, PN/N is a Sylow p-subgroup of G/N . If |PN/N | ≤ p2, then
G/N is p-nilpotent by Lemma 2.4. Hence we assume |PN/N | ≥ p3. Let M2/N
be a 2-maximal subgroup of PN/N . Then M2 = N (M2∩ P). Let P2 = M2∩ P . It
follows that P2 ∩ N = M2 ∩ P ∩ N = P ∩ N is a Sylow p-subgroup of N . Since

p2
= |PN/N : M2/N | = |PN : (M2 ∩ P)N | = |P : M2 ∩ P| = |P : P2|,

P2 is a 2-maximal subgroup of P . If P2 is weakly s-supplemented in G, then there
is a subgroup T of G such that G = P2T and P2 ∩ T ≤ (P2)sG . So

G/N = M2/N · TN/N = P2 N/N · TN/N .

Since (|N : P2 ∩ N |, |N : T ∩ N |)= 1,

(P2 ∩ N )(T ∩ N )= N = N ∩G = N ∩ P2T .

By Lemma 2.8, (P2 N )∩ (TN )= (P2 ∩ T )N . It follows that

(P2 N/N )∩ (TN/N )= (P2 N ∩ TN )/N = (P2 ∩ T )N/N ≤ (P2)sG N/N .

By Lemma 2.6(2) of [Skiba 2007], we know that (P2)sG N/N is s-permutable
in G and thus (P2)sG N/N ≤ (P2 N/N )sG . Hence M2/N is weakly s-supplemented
in G/N . If P2 is weakly s-permutably embedded in G, by Lemma 2.1, it follows
analogously that M2/N is weakly s-permutably embedded in G/N , too. Conse-
quently, G/N meets the hypotheses of the theorem. The minimal choice of G
implies that G/N is p-nilpotent. The uniqueness of N and 8(G)= 1 are clear.

Step 4: Op′(G)= 1.
If Op′(G) 6= 1, then N ≤ Op′(G) by Step 3. Since

G/Op′(G)∼= (G/N )/(Op′(G)/N )

is p-nilpotent, we get that G is p-nilpotent, a contradiction.
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Step 5: Op(G)= 1.
If Op(G) 6= 1, Step 3 yields N ≤ Op(G) and 8(Op(G))≤8(G)= 1. Hence, G

has a maximal subgroup M such that G = MN and G/N ∼= M is p-nilpotent.
Since Op(G)∩M is normalized by N and M , and also by G, the uniqueness of N
yields N = Op(G). Obviously, P = N (P ∩ M). Since P ∩ M < P , there exists
a maximal subgroup P1 of P such that P ∩ M ≤ P1. Then P = NP1. Pick a
2-maximal subgroup P2 of P such that P2 ≤ P1. Under the hypothesis, P2 is either
weakly s-permutably embedded or weakly s-supplemented in G. If P2 is weakly
s-permutably embedded in G, then there is a subnormal subgroup T of G and an
s-permutably embedded subgroup (P2)se of G contained in P2 such that G = P2T
and P2 ∩ T ≤ (P2)se. Thus there is an s-permutable subgroup K of G such that
(P2)se is a Sylow p-subgroup of K . If KG 6= 1, then N ≤ KG ≤ K . It follows that
N ≤ (P2)se≤ P1, and thus P = N (P∩M)= N P1= P1, a contradiction. If KG = 1,
by Lemma 2.6, (P2)se is s-permutable in G. It follows from Lemma 2.11 that

P2 ∩ T ≤ (P2)se ≤ Op(G)= N .

Hence, (P2)se ≤ P1 ∩ N . It follows that

((P2)se)
G
= 1 or ((P2)se)

G
= P1 ∩ N = N .

If ((P2)se)
G
= 1, then P2 ∩ T = 1 and thus |T |p = p2. Hence T is p-nilpotent

by Lemma 2.4. Let Tp′ be the normal p-complement of T . Then Tp′ is a normal
Hall p′-subgroup of G since T is subnormal in G, which is a contradiction. If
((P2)se)

G
= P1 ∩ N = N , then N ≤ P1 and thus P = P1, a contradiction. Now we

may assume that P2 is weakly s-supplemented in G. Then there is a subgroup T
of G such that G = P2T and P2 ∩ T ≤ (P2)sG ≤ Op(G) = N by Lemma 2.11.
Similarly, we get that

((P2)sG)
G
= 1 or ((P2)sG)

G
= P1 ∩ N = N .

Arguing as before we may assume that ((P2)sG)
G
= 1 and deduce that T is p-

nilpotent. Let Tp′ be the normal p-complement of T . Since M is p-nilpotent, we
have that M has a normal Hall p′-subgroup Mp′ and M ≤ NG(Mp′) ≤ G. The
maximality of M and the fact that Op′(G) = 1 imply that M = NG(Mp′). By
using a deep result of Gross [1987, main theorem], there exists g ∈ G such that
T g

p′ = Mp′ . Hence T g
≤ NG(T

g
p′) = NG(Mp′) = M . But Tp′ is normalized by T ,

thus g can be considered to be an element of P2. It follows that G = P2T g
= P2 M

and P = P2(P ∩M)= P1, a contradiction.

Step 6: G has Hall p′-subgroups and any two Hall p′-subgroups of G are conjugate
in G.
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If every 2-maximal subgroup of P is weakly s-permutably embedded in G,
then G is p-nilpotent by Lemma 2.10, a contradiction. Thus there is a 2-maximal
subgroup P2 of P such that P2 is weakly s-supplemented in G. Then there exists
a subgroup T of G such that G = P2T and P2 ∩ T ≤ (P2)sG ≤ Op(G) = 1
by Lemma 2.11. By Lemma 2.4, T is p-nilpotent and thus T has normal p-
complement Tp′ . Obviously, Tp′ is also a Hall p′-subgroup of G. By [Gross 1987,
main theorem], we have that any two Hall p′-subgroups of G are conjugate in G.

Step 7: The final contradiction.
If NP < G, then NP meets the hypotheses of the theorem. The minimal choice

of G yields that NP is p-nilpotent. Let Np′ be the normal p-complement of N . It
is easy to see that Np′CG, so that Np′ = 1 by Step 4 and N is a nontrivial p-group,
contrary to Step 5. Consequently, we must have G = NP . From Step 6, G has Hall
p′-subgroups. Then we may assume that N has a Hall p′-subgroup Np′ . By the
Frattini argument,

G = N NG(Np′)= (P ∩ N )Np′NG(Np′)= (P ∩ N )NG(Np′),

and thus

P = P ∩G = P ∩ (P ∩ N )NG(Np′)= (P ∩ N )(P ∩ NG(Np′)).

Since NG(Np′) < G, we have P ∩ NG(Np′) < P . We pick a maximal subgroup P1

of P such that P ∩ NG(Np′) ≤ P1. Then P = (P ∩ N )P1. Let P2 be a 2-
maximal subgroup of P such that P2 ≤ P1. Under the hypothesis, P2 is either
weakly s-permutably embedded or weakly s-supplemented in G. If P2 is weakly
s-permutably embedded in G, then there is a subnormal subgroup T of G and an
s-permutably embedded subgroup (P2)se of G contained in P2 such that G = P2T
and P2 ∩ T ≤ (P2)se. Hence there is an s-permutable subgroup K of G such that
(P2)se is a Sylow p-subgroup of K . If KG 6= 1, then N ≤ KG ≤ K and so (P2)se∩N
is a Sylow p-subgroup of N . We have that (P2)se∩N ≤ P2∩N ≤ P∩N and P∩N
is a Sylow p-subgroup of N , thus (P2)se ∩ N = P2 ∩ N = P ∩ N . Consequently,

P = (N ∩ P)P1 = (P2 ∩ N )P1 = P1,

which is a contradiction. Thus KG = 1. By Lemma 2.6, (P2)se is s-permutable in G.
It follows from Lemma 2.11 that P2 ∩ T ≤ (P2)se ≤ Op(G)= 1. Since |T |p = p2,
T is p-nilpotent by Lemma 2.4. Let Tp′ be the normal p-complement of T . Then
Tp′ is a normal Hall p′-subgroup of G, a contradiction. Consequently, we may
assume P2 is weakly s-supplemented in G. Then there is a subgroup T of G such
that G = P2T and P2∩T ≤ (P2)sG ≤ Op(G)= 1 (where Op(G) denotes the p-core
of G) by Lemma 2.11. Since |T |p = p2, T is p-nilpotent by Lemma 2.4. Let Tp′

be the normal p-complement of T . Then Tp′ is a Hall p′-subgroup of G. By Step 6,
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Tp′ and Np′ are conjugate in G. Since Tp′ is normalized by T , there exists g ∈ P2

such that T g
p′ = Np′ . Hence

G = (P2T )g = P2T g
= P2 NG(T

g
p′)= P2 NG(Np′)

and
P = P ∩G = P ∩ P2 NG(Np′)= P2(P ∩ NG(Np′))≤ P1,

a final contradiction. �

The following corollaries are immediate from Theorem 3.1.

Corollary 3.2. Let p be the smallest prime dividing |G| and suppose G is A4-free.
Assume that H is a normal subgroup of G such that G/H is p-nilpotent. If there
exists a Sylow p-subgroup P of H such that every 2-maximal subgroup of P is
either weakly s-permutably embedded or weakly s-supplemented in G, then G is
p-nilpotent.

Corollary 3.3. Suppose that every 2-maximal subgroup of any Sylow subgroup of
a group G is either weakly s-permutably embedded or weakly s-supplemented in G.
If G is A4-free, then G is a Sylow tower group of supersolvable type.

In terms of the theory of formations, we have the following result:

Corollary 3.4. Let F be the class of groups with Sylow tower of supersolvable type
and suppose G is A4-free. Then G ∈ F if and only if there is a normal subgroup H
of G such that G/H ∈ F and every 2-maximal subgroup of any Sylow subgroup
of H is either weakly s-permutably embedded or weakly s-supplemented in G.

Proof. The necessity part is clear. We only need show the sufficiency part. Suppose
that this is not true and let G be a counterexample of minimal order. By Lemmas 2.2
and 2.3, every 2-maximal subgroup of any Sylow subgroup of H is either weakly
s-permutably embedded or weakly s-supplemented in H . By Corollary 3.3, H is
a Sylow tower group of supersolvable type. Let p be the maximal prime divisor
of |H | and let P be a Sylow p-subgroup of H . Then P is normal in G. Consider the
factor group G/P . It is easy to prove G/P meets the hypotheses of the theorem. By
the minimal choice of G, we get G/P ∈ F . Let N be a minimal normal subgroup
of G contained in P . The proof is divided into two steps.

Step 1: P = N .
If N < P , then (G/N )/(P/N ) ∼= G/P ∈ F . We will prove that G/N ∈ F .

If |P/N | ≤ p2, then G/N ∈ F by Lemma 2.4. If |P/N | > p2, then every
2-maximal subgroup of P/N is either weakly s-permutably embedded or weakly
s-supplemented in G/N by Lemmas 2.2 and 2.3. By the minimal choice of G, we
get G/N ∈ F . Since F is a saturated formation, N is the unique minimal normal
subgroup of G contained in P and N � 8(G). It follows from Lemma 2.7 that
P = F(P)= N , which is a contradiction.
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Step 2: The final contradiction.
If |N | ≤ p2, then G ∈ F by Lemma 2.9, a contradiction. Then |N | ≥ p3.

Since N C G, we may pick a 2-maximal subgroup N2 of N such that N2 C G p,
where G p is a Sylow p-subgroup of G. Then N2 is either weakly s-permutably
embedded or weakly s-supplemented in G. Let T be a supplement of N2 in G.
Then G = N2T = N T and N = N ∩N2T = N2(N ∩T ). This means that N ∩T 6= 1.
However, since N ∩ T is normal in G and N is minimal normal in G, we get
N ∩ T = N and thus T = G. If N2 is weakly s-permutably embedded in G, then
(N2)se ≥ N2 ∩G = N2 is s-permutably embedded in G. From Lemma 2.6, N2 is
s-permutable in G and O p(G) ≤ NG(N2), where O p(G) denotes the p-residual
subgroup.1 Thus N2CG p O p(G) = G. It follows that |N | = p2, a contradiction.
If N2 is weakly s-supplemented in G, then N2 = N2 ∩G ≤ (N2)sG . Similarly, we
also get that N2CG. We obtain the same contradiction, completing the proof. �
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A proposed measure of network cohesion for graphs arising from interrelated
economic activity is studied. The measure is the largest singular value of a row-
stochastic matrix derived from the adjacency matrix. It is shown here that among
graphs on n vertices, the star universally gives the (strictly) largest measure. Other
universal comparisons among graphs with larger measures are difficult to make,
but one is conjectured, and a selection of empirical evidence is given.

1. Introduction

In [Cavalcanti et al. 2012; 2013] the authors studied the role of network “cohesion”
in the equilibration of economic or other activity among agents whose interaction
is governed by a particular graph. An example is the one in which adjacency is
the bordering relationship among countries. Giannitsarou and Johnson (personal
communication, 2011) proposed a particular numerical measure of network cohesion
and raised the question of which graph on n vertices resulted in the highest measure.
That measure may be described as follows. Let A be the adjacency matrix of a
graph G, define B D AC I , and let D be the positive diagonal matrix whose
diagonal entries are the row sums of B. If RDD�1B, then R is row-stochastic,
and �.G/, the measure of cohesion, is the largest singular value of R. Recall that
the singular values of R are the square roots of the eigenvalues of RRT . Another
application where the matrix R has appeared is in [Echenique and Fryer 2007],
where it is referred to as the matrix of social interactions.

Here, we show that, for any n, �.G/ is maximized by the star Sn. The measure
�.G/ is 1 if and only if G is regular, and 1 is the smallest possible value (Section 2,
Proposition 1). Using our methods, it is difficult to determine, in advance, the
relative position in this order of other graphs. Indeed, for graphs naturally defined
on any number of vertices, the position often changes with n. However, we do
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conjecture that the star plus an edge that connects two of the pendant vertices is
next after the star, based, in part, on empirical evidence. After that, however, there
may be no universal third place independent of n.

In the next section we mention known results that we use, and develop some
new ideas that are important for our observations. In particular, the entries of
RRT have a nice and useful interpretation. Then, we show the star yields the
highest measure by showing that a lower bound for the square of its largest
singular value beats an upper bound for that of any other graph. Finally, in an
Appendix, we give a selection of empirical information of interest (Table 1 and
Figures 2, 3, 4, 5).

2. Background and tools

Given a graph G on n vertices, let A be the adjacency matrix of G. Unless otherwise
noted, our notation follows [West 1996]. Let RD D�1.AC I/, where D is the
unique positive diagonal matrix such that R is row-stochastic. Let �.G/ denote the
maximum eigenvalue of RRT , and note that �.G/D

p
�.G/.

Proposition 1. For any connected graph G on n vertices, �.G/� 1, and �.G/D 1

if and only if G is regular.

Proof. Note that G is regular if and only if R is doubly stochastic. If R is doubly
stochastic, then it is a convex combination of permutation matrices by Birkhoff’s
theorem [Horn and Johnson 1990, Theorem 8.1.7], and therefore the operator
norm of R, which equals the maximum singular value, is 1. Let e 2 Rn denote
the vector with 1 in every entry. By the Cauchy–Schwarz inequality, keT Rk2 �

heT R; e=
p

ni D
p

nDkeTk2, with equality if and only if eT R is a multiple of eT .
Therefore, when R is row-stochastic but not doubly stochastic, the operator norm
of R is strictly greater than one. It follows that �.G/ > 1 when G is not regular. �

Note that D = diag.fdi C 1gi21;:::;n/, where di is the degree of vertex i in G.
Let C D .AC I/.AC I/T . The .i; j / entry of C , which we denote by cij , is
the number of vertices that are adjacent to both vertex i and vertex j , with the
convention that two adjacent vertices are common neighbors of each other, that is,
cij D jN Œi �\N Œj �j. In particular cii D di C 1. Thus the entries of RRT are

rij D
cij

.di C 1/.dj C 1/
: (1)

Lemma 1. Let RRT be defined as above and assume that n > 2. When i ¤ j ,
the largest possible values of rij are 1

3
and 1

4
. If rij D

1
3

for some i ¤ j , then
di D dj D 2 with cij D 3 or fdi ; dj g D f1; 2g with cij D 2 (see Figure 1).
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i j

i j

Figure 1. Possible adjacency graphs when rij D
1
3

.

Proof. We may assume that dj � di . Note that cij � di C 1; thus rij � 1=.dj C 1/.
If rij >

1
4

, then dj D 1 or dj D 2. In the former case, di D dj D 1, which can only
happen if nD 2, since G is assumed to be connected. In the latter case, di D 1 or
di D 2 while dj D 2. If di D 1 and dj D 2, then rij D cij=6 2

˚
0; 1

6
; 1

3

	
; depending

on the value of cij . If di D dj D 2, then rij D cij=9 2
˚
0; 1

9
; 2

9
; 1

3

	
: �

Suppose that G is a connected graph with n vertices such that every vertex has
degree 1 (is pendant) except for a single central vertex with degree n� 1. We refer
to any such graph as a star on n vertices, denoted by Sn. We may assume without
loss of generality that vertex 1 is the central vertex of the star. Using (1), we see
that, for the star,

RRT
D

2666666664

g
n

1
n
� � � � � �

1
n

g
n

1
2

1
4
� � �

1
4

::: 1
4

1
2

: : :
:::

:::
:::
: : :

: : : 1
4

g
n

1
4
� � �

1
4

1
2

3777777775
:

Note that RRT �
1
4
I is of rank 2, and therefore it is possible to explicitly calculate

the characteristic polynomial of this matrix. Recall [Horn and Johnson 1990,
Theorem 1.2.12] that the characteristic polynomial of a matrix is given by

p.t/D tn
�E1tn�1

CE2tn�2
C � � �C .�1/nEn;

where each Ek is the sum of the k-by-k principal minors of the matrix. For
RRT �

1
4
I , only the 1-by-1 and 2-by-2 principal minors can be nonzero. Thus the

characteristic equation for RRT �
1
4
I is

p.t/D tn
�

�
1

n
C

1

4
.n� 1/

�
tn�1
C

�
n� 4

4n2

�
.n� 1/tn�2:
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The nonzero roots of this polynomial are

1
4
.n� 1/C 1

n
˙

q�
1
4
.n� 1/C 1

n

�2
�

n�4
n2

2
;

and therefore the maximum eigenvalue of RRT for the star on n vertices is

�.Sn/D
1

4
C

1
4
.n� 1/C 1

n
C

q�
1
4
.n� 1/C 1

n

�2
�

n�4
n2

2
:

3. The star is a maximum

We seek to estimate the maximum eigenvalue �.G/ of RRT . The row sums of
RRT place constraints on �.G/. By [Horn and Johnson 1990, Theorem 8.1.22],

min
i

�X
j

rij

�
� �.G/�max

i

�X
j

rij

�
: (2)

For the star on n vertices, RRT �
1
4
I contains an .n�1/-by-.n�1/ submatrix with

all entries equal to 1
4

. It follows from the inclusion principle [Horn and Johnson
1990, Theorem 4.3.15] that �.Sn/�

1
4
n. Combining this with the maximum row

sum, we see that 1
4
n� �.Sn/�

1
4
nC 1

n
.

The following observation is an immediate consequence of Lemma 1:

Lemma 2. Suppose that n > 2, and consider the rows of RRT . If row i has
diagonal entry rii D

1
k

with k � 4 and no off-diagonal entry equals 1
3

, then the sum
of the entries in row i is at most 1

k
C

1
4
.n� 1/.

Let us make a basic observation which we will use in the proofs of several
subsequent propositions.

Lemma 3. Let c > 0. The function x 7! 1=.xC1/Ccx is concave up for all x > 0,
and therefore its maximum on any interval Œa; b� � .0;1/ is attained at one of
the endpoints.

The following observations about the row sums of RRT cover the cases when
Lemma 2 does not apply:

Lemma 4. Suppose that n > 3. If row i has diagonal entry rii D
1
2

and G is not
the star, then the sum of the entries in row i is at most �1

6
C

1
n
C

1
4
n.

Proof. Since rii D
1
2

, di D 1. Let j denote the vertex adjacent to i . The sum of the
entries in row i is then

rii C rij C

X
m¤i;j

rim D
1

2
C

1

dj C 1
C

X
m¤i;j

cim

dmC 1
:
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Note that cimD1 if there is an edge connecting vertexj to vertex m and cimD0 other-
wise. Therefore we have the following upper bound for the sum of entries in row i :

rii C rij C

X
m¤i;j

rim �
1

2
C

1

djC1
C

X
m2N.j/

1

2.dmC1/
:

If dj D n� 1, and the graph is not the star, then there must be at least two vertices
m1 and m2 such that dm1

> 1 and dm2
> 1. In this case an upper bound for the

sum of the entries in row i is

1

2
C

1

n
C

1

4
.dj � 3/C 2

1

6
D�

1

6
C

1

n
C

1

4
n:

If dj < n� 1, then

rii C rij C

X
m¤i;j

rim �
1

2
C

1

dj C 1
C

X
m2N.j/

1

2.dmC 1/

�
1

2
C

1

dj C 1
C

1

4
.dj � 1/:

Since 2�dj <n�1, we use Lemma 3 to see that an upper bound for this expression is

max
n

13

12
;�

1

4
C

1

n�1
C

1

4
n
o
:

For n> 3,

max
n

13

12
;�

1

4
C

1

n�1
C

1

4
n
o
� �

1

6
C

1

n
C

1

4
n: �

Lemma 5. Suppose n> 3. If row i has diagonal entry rii D
1
3

, then the sum of the
entries in row i is less than �1

6
C

1
n
C

1
4
n.

Proof. Since rii D
1
3

, di D 2. Let j and k denote the two vertices adjacent to i .

Case I. If there is an edge connecting j and k, then cij D cik D 3. If m¤ i is a
vertex adjacent to both j and k, then

rim D
2

3.dmC 1/
�

2

9
:

If m is only adjacent to one of j or k, then

rim D
1

3.dmC 1/
�

1

6
:



268 CHARLES R. JOHNSON, BRIAN LINS, VICTOR LUO AND SEAN MEEHAN

Let d Dmaxfdj ; dkg and DDmaxfdj ; dkg. There are at most d �2 vertices other
than i that are common neighbors of both j and k, and there are at most D � d

remaining vertices other than i that could be adjacent to exactly one of j or k.
Therefore the sum of the entries in row i is at most

riiC rij C rikC
2

9
.d �2/C

1

6
.D�d/��

1

9
C

1

.d C 1/
C

1

.DC 1/
C

1

18
dC

1

6
D:

In this case, 2� d �D� n�1. By Lemma 3, it follows that the possible maximum
values in the expression above occur when either d DD D 2, or d D 2, D D n�1,
or d DD D n� 1. The corresponding upper bounds on the row sum are

1;
1

6
C

1

n
C

1

6
n; �

1

3
C

2

n
C

2

9
n:

Each of these bounds is less than �1
6
C

1
n
C

1
4
n for all n> 3.

Case II. If there is no edge connecting j with k, then cij D cik D 2. If m¤ i is a
vertex adjacent to both j and k, then

rim D
2

3.dmC 1/
�

2

9
:

If m is only adjacent to one of j or k, then

rim D
1

3.dmC 1/
�

1

6
:

Let d Dmaxfdj ; dkg and DDmaxfdj ; dkg. There are at most d �1 vertices other
than i that are common neighbors of both j and k, and there are at most D � d

remaining vertices other than i that could be adjacent to exactly one of j or k.
Therefore the sum of the entries in row i is at most

riiC rijC rikC
2

9
.d �1/C

1

6
.D�d/�

1

9
C

2

3.d C 1/
C

2

3.DC 1/
C

1

18
dC

1

6
D:

We know that 1 � d � D � n � 2. By Lemma 3, it follows that the possible
maximum values in the expression above occur when either d D D D 1, or
d D 1, D D n � 2, or d D D D n � 2. The corresponding upper bounds on
the row sum are

1;
1

6
C

2

3.n� 1/
C

1

6
n;

�1

3
C

4

3.n� 1/
C

2

9
n:

Once again, each of these bounds is less than �1
6
C

1
n
C

1
4
n for all n> 3. �
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Lemma 6. Suppose n> 3. If row i contains an off-diagonal entry rij D
1
3

, then the
sum of the entries in row i is at most �1

6
C

1
n
C

1
4
n.

Proof. There are three possible cases, depending on the possible degrees of i and j

given by Lemma 1.

Case I. If di D 1 and dj D 2, then there is only one other vertex, aside from i and j ,
that can share a common neighbor with i . Call that vertex k. The sum of entries in
row i is

rii C rij C rik D
1

2
C

1

3
C

1

2.dk C 1/
�

1

2
C

1

3
C

1

4
D

13

12
;

which is less than or equal to �1
6
C

1
n
C

1
4
n for all n> 3 (equality occurs only when

nD 4).

Case II. If di D 2 and dj D 1, then Lemma 5 implies that the sum of the entries in
row i is less than �1

6
C

1
n
C

1
4
n.

Case III. If di D dj D 2, then by Lemma 1, cij D 3. Let k denote the third common
neighbor of i and j . The sum of the entries in row i is then

rii C rij C rik C

X
m¤i;j;k

rim D
1

3
C

1

3
C

1

dk C 1
C

X
m¤i;j;k

1

3.dmC 1/

�
2

3
C

1

dk C 1
C

1

6
.dk � 2/

�
2

3
C

1

n� 1
C

1

6
.n� 4/

D
1

6
nC

1

n� 1
:

This upper bound is less than �1
6
C

1
n
C

1
4
n for all n> 3. �

Theorem 1. Of all connected graphs on n vertices, the star attains the maximum
value of � .

Proof. Suppose that G is not Sn. The contents of Lemmas 2, 4, 5, and 6 show that
the maximum row sum of RRT is less than or equal to �1

6
C

1
n
C

1
4
n. If n > 6,

then this upper bound is less than 1
4
n, and, by the comment after (2), we conclude

that �.G/ < �.Sn/ and therefore �.G/ < �.Sn/. When 3 < n � 6, we can verify
by explicit computation that �1

6
C

1
n
C

1
4
n< �.Sn/. When nD 3, the theorem can

be verified directly since there are only two connected graphs on 3 vertices. �
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Appendix

Here we present the values of �.G/ for every connected graph up to 6 vertices. The
graphs are given in graph6 string format [McKay 1981; 2005], and the values of
�.G/ are given to 8 decimal places. The values for the stars are given in boldface.

Esa? 1.26376262
Eta? 1.17779971
Ds_ 1.17686828
Epa? 1.12724256
Exg_ 1.12719000
E|i_ 1.11535507
E|g_ 1.10702341
ExGg 1.10124485
Dt_ 1.09692536
Cs 1.09445053
Exw_ 1.09118881
Ehg_ 1.08965849
Ex__ 1.08492159
Eli_ 1.08378641
E|__ 1.08125829
Ep{G 1.07743057
Elg_ 1.07386856
Et}G 1.06680419
E|w_ 1.06420788
Etq_ 1.06264937
Exo_ 1.06170523
Ep__ 1.06066017
EtuG 1.05968917
ExGG 1.05861770
D|_ 1.05825411
D|g 1.05543372
Dp_ 1.05417745
Eh__ 1.05150374
El__ 1.04879365
Er{G 1.04866795
EpsG 1.04851433
E|o_ 1.04562708
ExWG 1.04512215
ExwG 1.04350178
EpuG 1.04308838
Ez{G 1.04248210

EvsW 1.04127270
Et]G 1.04082858
Ev{W 1.04057352
EzPW 1.03944703
Elw_ 1.03869527
EvcG 1.03802560
Dx_ 1.03794998
Epo_ 1.03760887
Eto_ 1.03627677
Dto 1.03552399
ExPw 1.03508808
Exwo 1.03458078
EtUG 1.03375811
Edq_ 1.03272839
EzZw 1.03266215
EpgG 1.03266215
Er{W 1.03197929
EzwG 1.03138546
Cx 1.03138184
Ev_G 1.03126091
Dxw 1.02998084
EpWG 1.02979441
E~TW 1.02813174
Bo 1.02813174
Ep_G 1.02808843
ErwG 1.02792587
E~{G 1.02768976
Dl_ 1.02717603
E~SW 1.02636956
EzsG 1.02530775
Dlg 1.02465677
EvoW 1.02459474
ExOG 1.02421645
ExPW 1.02380968
D|c 1.02305146
EpSG 1.02303779

Elo_ 1.02301009
ExoG 1.02253862
E~{W 1.02245280
EvwW 1.02150256
E~sW 1.02136937
EzZW 1.02039571
EzoG 1.02034616
D~c 1.02031933
ErcG 1.01998619
EzWW 1.01866302
EzOW 1.01862583
EpUG 1.01823188
Ez[W 1.01792742
E~sG 1.01775521
E|qW 1.01732826
Exoo 1.01710090
Ez{w 1.01709947
EzSW 1.01709947
Dxo 1.01695288
Ezww 1.01494232
E~OW 1.01436311
Cz 1.01417394
Cp 1.01417394
E|sW 1.01400371
EroG 1.01390539
E~cG 1.01337635
ErwW 1.01293228
E~}W 1.01273126
Edo_ 1.01267470
Dh_ 1.01213081
Dpo 1.01188403
E|SW 1.01133377
E~_G 1.01111110
E|TW 1.01090626
EzcG 1.01084213
E~oW 1.01073140

Er_G 1.01059866
Dxc 1.00995156
EpOG 1.00969514
E~wW 1.00956370
ExOW 1.00891795
EroW 1.00885018
Ez_G 1.00805939
D~s 1.00764077
EzYW 1.00741994
ErOW 1.00711468
Epoo 1.00711468
E~yW 1.00707898
ExSW 1.00696806
ErWW 1.00696806
E|oW 1.00662172
Ezsw 1.00608114
Ezow 1.00603467
Dzs 1.00499991
Dzc 1.00459536
E~}w 1.00451397
E~uw 1.00445419
E|OW 1.00293400
E~YW 1.00274201
E~~w 1.00000000
Ezuw 1.00000000
Erow 1.00000000
ErYW 1.00000000
EpOW 1.00000000
D~{ 1.00000000
Dhc 1.00000000
C~ 1.00000000
Cr 1.00000000
Bw 1.00000000
A_ 1.00000000

Table 1. The value of �.G/ (to 8 decimal places) for every con-
nected graph with at most 6 vertices, with the values of stars given
in boldface.
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Figure 2. The graphs with the four highest singular values for
nD 5.
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Figure 3. The graphs with the four highest singular values for
nD 6.



272 CHARLES R. JOHNSON, BRIAN LINS, VICTOR LUO AND SEAN MEEHAN

0

1

2

3

4

5

6

0

1

2

3

4

5

6

�.G/D 1:35014262 �.G/D 1:26334444

0

1

2

3

4

5

6

0

1

2

3

4

5

6

�.G/D 1:21280950 �.G/D 1:20776980

Figure 4. The graphs with the four highest singular values for
nD 7.
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Figure 5. The graphs with the four highest singular values for
nD 8.
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More explicit formulas
for Bernoulli and Euler numbers

Francesca Romano

(Communicated by Ken Ono)

By directly considering Taylor coefficients and composite generating functions,
we employ a generalized Faà di Bruno formula for higher partial derivatives
using vector partitions to obtain identities that include explicit formulas for the
Bernoulli and Euler numbers. The formulas we obtain are generalized analogs of
the formulas obtained by D. C. Vella.

1. Introduction

The purpose of this paper is to extend the results of Vella [2008] using vector
partitions. Recall that the sequences of Bernoulli numbers Bn and Euler numbers En

have exponential generating functions x=.ex � 1/ and sech x respectively. Vella
obtained the identities

Bn D

X
�2Pn

.�1/m

1Cm

� m

�.�/

�� n

�

�
D

X
�2Cn

.�1/m

1Cm

� n

�

�
;

Bn D

X
1�m�n

.�1/mm!

1Cm
S.n;m/;

En D

X
�2Pn

even parts

.�1/m
� m

�.�/

�� n

�

�
D

X
�2Cn

even parts

.�1/m
� n

�

�
;

En D

X
1�m�n

.�1/mm! S.n;m; even/;

1D
X

1�r�j

.�1/r

.2r/!
E2r

X
�2P2j ;2r

odd parts

� 2r

�.�/

��2j

�

� jY
sD0

ŒE2s �
�2sC1 for all j > 0;
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where Pn is the set of integer partitions of n, Cn is the set of all ordered partitions
(i.e., compositions) of n, m is the length of � , �.�/ is the multiset of multiplicities of
� , S.n;m/ is the Stirling number of the second kind, that is, the number of ways of
partitioning a set of n elements into exactly m nonempty subsets, and S.n;m; even/
is the number of ways of partitioning a set of n elements into exactly m nonempty
subsets each with even cardinality.

Let

hB.x1; : : : ;x�/D
x1C � � �Cx�

ex1C���Cx� � 1
and hE.x1; : : : ;x�/D sech.x1C � � �Cx�/

be functions from R� into R, where � 2N. For a multiindex ˛D .˛1; : : : ; ˛�/2N�
0

we consider the generalized Bernoulli number B˛ to be ˛! times the ˛-th Taylor
coefficient of hB . We define generalized Euler numbers analogously. These general-
ized Bernoulli numbers and Euler numbers were recently introduced and studied in
[Di Nardo and Oliva 2012] in connection with multivariable Lévy processes. Note
that although it wasn’t explicitly said in [Di Nardo and Oliva 2012], B˛ D Bj˛j,
where j˛j D

P�
kD1 ˛k , and thus B˛ is simply the j˛j-th Bernoulli number. Also

notice that if ˛;ˇ 2 N�
0

and j˛j D jˇj then B˛ D Bˇ . The same can also be said
for the Euler numbers. In the present paper, we prove the precise analogues of the
identities above for these Bernoulli and Euler numbers by applying the multivariable
Faà di Bruno formula found in [Constantine and Savits 1996].

The point of view adopted in [Vella 2008] is that thinking explicitly about Taylor
coefficients yields tools with a lot of combinatorial leverage. The results of the
present paper rely even more heavily on this point of view. For example, it would
be interesting to have a combinatorial interpretation for the analogue of S.n;m/

that appears in our new formulas, but we obtain these formulas without such a
combinatorial interpretation.

2. Notation and review of vector partitions

In this section, we fix notation that parallels that used in [Constantine and Savits
1996] but will in the end yield formulas looking like those in [Vella 2008]. We also
restate the results from [Constantine and Savits 1996] in our notation. Below let N

denote the set of natural numbers, N0 the set of nonnegative integers. We regard
finite cartesian powers, such as N�

0
, and N� , where � 2 N, as sitting in the natural

way in the real vector space R� throughout.
Since the generalized Faà di Bruno formula found in [Constantine and Savits

1996] is expressed as a sum over the vector partitions of ˛D .˛1; : : : ; ˛�/2N�
0
, we

begin with a review of the vector partition notation we have adopted in this paper.
A vector partition � D .m1; : : : ;msIp1; : : : ;ps/ of ˛ is a multiset of vector parts
p1; : : : ;ps 2 N�

0
and their respective vector multiplicities m1; : : : ;ms 2 N

�
0

with
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�; s 2 N, where

sX
iD1

mi DmD .r1; : : : ; r�/ 2 N
�
0
; jmi j D

�X
jD1

mij > 0;

sX
iD1

jmi jpi D ˛:

Additionally, we require that the parts are lexicographically ordered, that is,

0� p1 � � � � � ps;

where pi � pj means pi and pj satisfy one of the following:

� jpi j< jpj j.

� jpi j D jpj j and pi1 < pj1.

� jpi j D jpj j and pi1Dpj1, pi2Dpj2; : : : ;pik Dpjk and pi.kC1/ <pj.kC1/

for some 1� k < �.

One readily checks that � defines a total ordering on N�
0
.

The set of vector partitions of ˛ of size s and total multiplicity m is denoted by
ps.˛;m/. Note that the size s is the number of vector parts in the partition and this
number differs from the total multiplicity of the partition. We let

p.˛;m/D

j˛j[
sD1

ps.˛;m/ and p.˛/D
[

1�jmj�j˛j

p.˛;m/;

and we always set 00D 1. The above definitions can be clarified by working through
the example below.

Example 2.1. Let � D 3 and � D 2. Take ˛ D .1; 2; 1/ where j˛j D 4. We will
verify that

� D
�
.1; 1/; .1; 0/I .0; 1; 0/; .1; 0; 1/

�
2 p2.˛;m/;

where mD .2; 1/. First observe that
P2

iD1 mi D .1; 1/C .1; 0/D .2; 1/Dm and
jm1j D 2> 0 and jm2j D 1> 0. Now observe that

2X
iD1

jmi jpi D 2.0; 1; 0/C 1.1; 0; 1/D .1; 2; 1/D ˛:

Finally, our last condition is met because p1 � p2 since jp1j D 1< 2D jp2j.

We will also make use of ordered vector partitions of ˛. The set of ordered
vector partitions of ˛ of total multiplicity m is denoted by sC.˛;m/. In order to
define sC.˛;m/, we must first define the following:

s.˛;m/D

�
.p
.1/
1
; : : : ;p.1/r1

I : : : Ip
.�/
1
; : : : ;p.�/r�

/ Wp
.i/
j 2N�0 and

�X
iD1

riX
jD1

p
.i/
j D˛

�
:



278 FRANCESCA ROMANO

This allows us to define our set of ordered vector partitions as follows:

sC.˛;m/D
˚
.p
.1/
1
; : : : ;p.1/r1

I : : : Ip
.�/
1
; : : : ;p.�/r�

/ 2 s.˛;m/ W

p
.i/
j 6D 0; i 2 f1; : : : ; �g; j 2 f1; : : : ; rig

	
:

We let sC.˛/D
S

1�jmj�j˛j s
C.˛;m/. The definition of an ordered vector partition

of ˛ of total multiplicity m can be clarified by working through the example below.

Example 2.2. Take � D 3 and �D 2, as before, with ˛D .1; 2; 1/. We will first
verify that � D ..0; 1; 0/; .1; 0; 1/I .0; 1; 0/; .0; 0; 0// 2 s.˛;m/ where mD .2; 1/.
Notice that the size of this ordered partition is 4, but jmj D 3. Now observe thatP2

iD1

Pri

jD1
p
.i/
j D .0; 1; 0/C .1; 0; 1/C .0; 1; 0/C .0; 0; 0/D .1; 2; 1/D ˛. Now

we can construct an element � 0 2 sC.˛;m/ by removing all elements of � equal
to .0; 0; 0/. Thus � 0 D ..0; 1; 0/; .1; 0; 1/I .0; 1; 0// 2 sC.˛;m/. Notice that � is a
different element of s.˛;m/ than � 00 D ..1; 0; 1/; .0; 1; 0/I .0; 1; 0/; .0; 0; 0// and
yields an element of sC.˛;m/ not equal to � 0.

3. The generalized Faà di Bruno formula

We begin this section by restating the multiindex notation found on page 504 in
[Constantine and Savits 1996], which will be used in the generalized Faà di Bruno
formula. In what follows, let ˛D .˛1; : : : ; ˛�/ 2 N�

0
, x D .x1; : : : ;x�/ 2 R� and

˛!D

�Y
iD1

.˛i !/; x˛ D

�Y
iD1

x
˛i

i ;

D0
x D identity operator; D˛

x D
@j˛j

@x
˛1

1
@x
˛2

2
� � � @x

˛�
�

for j˛j> 0:

Note that for w D .w1; : : : ; wv/ 2 N�
0
, we write w � ˛ if wk � ˛k for k D

1; 2; : : : ; �. A function h is an element of C˛.x
0/ if Dw

x h exists and is continuous
in a neighborhood of x0 for all w� ˛. Additionally, a function h is an element of
C n.x0/ if h 2 Cw.x

0/ for all jwj � n.
Now let g W R� �! R� and f W R� ! R be functions and h W R� ! R their

composition; that is, let

h.x1; : : : ;x�/D f
�
g.1/.x1; : : : ;x�/; : : : ;g

.�/.x1; : : : ;x�/
�
:

Assume that 0 6D ˛ D .˛1; : : : ; ˛�/ 2 N�
0

and x0 D .x0
1
; : : : ;x0

� / 2 R� are given,
g.1/; : : : ;g.�/ 2C˛.x

0/ and f 2C j˛j.y0/, where y0D .g.1/.x0/; : : : ;g.�/.x0//.
Then, setting h˛ D D˛

xh.x0/, fm D Dm
y f .y

0/, g
.i/
k
D Dk

xg.i/.x0/, and gk D

.g
.1/
k
; : : : ;g

.�/
k
/, we can state the generalized Faà di Bruno formula that appears as

the main result (Theorem 2.1) of [Constantine and Savits 1996]:
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Theorem 3.1. h˛ D
X

1�jmj�j˛j

fm

j˛jX
sD1

X
�2ps.˛;m/

.˛!/

sY
jD1

Œgpj �
mj

.mj !/Œpj !� jmj j
.

The proof of the above theorem found in [Constantine and Savits 1996] takes
into account issues of convergence. Now we can rigorously rewrite this generalized
formula to resemble the single variable formula used in [Vella 2008]. First let�

˛

�

�
D
˛!

� !
; � !D

sY
jD1

Œpj !� jmj j and �.�/!D

sY
jD1

.mj !/:

Now observe,

h˛ D
X

1�jmj�j˛j

fm

j˛jX
sD1

X
�2ps.˛;m/

.˛!/

sY
jD1

Œgpj �
mj

.mj !/Œpj !� jmj j

D

X
1�jmj�j˛j

.˛!/fm

X
�2p.˛;m/

sY
jD1

Œgpj �
mj

.mj !/Œpj !� jmj j

D

X
�2p.˛/

˛!Qs
jD1.mj !/Œpj !� jmj j

fm

sY
jD1

Œgpj �
mj

D

X
�2p.˛/

�
˛

�

�
�.�/!

fm

sY
jD1

Œgpj �
mj : (1)

Our formula for Taylor coefficients of h˛ follows:

Corollary 3.2.

T˛.hIx
0/D

X
1�jmj�j˛j

Tm.f Iy
0/

X
�2p.˛;m/

�
m

�.�/

� sY
jD1

�Y
kD1

ŒTpj .g
.k/
Ix0/�.mj /k :

(2)

Proof. This follows directly from (1), since

T˛.hIx
0/D

h˛

˛!
D

X
�2p.˛/

fm

� !�.�/!

sY
jD1

Œgpj �
mj

D

X
�2p.˛/

m!fm

m!�.�/!

sY
jD1

Œgpj �
mj

Œpj !� jmj j

D

X
�2p.˛/

�
m

�.�/

�fm

m!

sY
jD1

Q�

kD1
Œg
.k/
pj �

.mj /k

Œpj !�
P�

kD1
.mj /k
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D

X
�2p.˛/

�
m

�.�/

�fm

m!

sY
jD1

�Y
kD1

�
g
.k/
pj

pj !

�.mj /k

D

X
1�jmj�j˛j

fm

m!

X
�2p.˛;m/

�
m

�.�/

� sY
jD1

�Y
kD1

�
g
.k/
pj

pj !

�.mj /k

D

X
1�jmj�j˛j

Tm.f Iy
0/

X
�2p.˛;m/

�
m

�.�/

� sY
jD1

�Y
kD1

ŒTpj .g
.k/
Ix0/�.mj /k : �

We will also want to make use of the generalized Faà di Bruno formula that
considered ordered vector partitions. This is given by Theorem 3.4 of [Constantine
and Savits 1996]:

Theorem 3.3. h˛ D ˛!
X

1�jmj

fm

m!

X
�2s.˛;m/

�Y
iD1

riY
jD1

�
g
.i/

p
.i/

j

�
�
p
.i/
j !
� : .3/

Proposition 3.4. T˛.hIx
0/D

X
sC.˛/

Tm.f Iy
0/

�Y
iD1

riY
jD1

T
p
.i/

j

.g.i/Ix0/:

Proof. This follows directly from (3) by substituting formulas 3.3 and 3.8 of
[Constantine and Savits 1996] as follows:

T˛.hIx
0/D

h˛

˛!
D

X
1�jmj

fm

m!

X
�2s.˛;m/

�Y
iD1

riY
jD1

�
g
.i/

p
.i/

j

�
�
p
.i/
j !
�

D

X
1�jmj�j˛j

fm

X
�2p.˛;m/

j˛jY
jD1

Œgpj �
mj

.mj !/Œpj ! � jmj j

D

X
1�jmj�j˛j

m!fm

m!

X
�2p.˛;m/

j˛jY
jD1

Œgpj �
mj

.mj !/Œpj ! � jmj j

D

X
1�jmj�j˛j

fm

m!

X
�2sC.˛;m/

�Y
iD1

riY
jD1

�
g
.i/

p
.i/

j

�
�
p
.i/
j !
�

D

X
�2sC.˛/

fm

m!

�Y
iD1

riY
jD1

�
g
.i/

p
.i/

j

�
�
p
.i/
j !
� :

We used formula 3.3 in going from the first line to the second, and formula 3.8 in
going from the third to the fourth. �
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4. More Bernoulli and Euler number identities

Recall from Section 1 that if

hB.x1; : : : ;x�/D
x1C � � �Cx�

ex1C���Cx� � 1
and hE.x1; : : : ;x�/D sech.x1C � � �Cx�/;

then the ˛-th generalized Bernoulli and Euler numbers are B˛ D ˛! T˛.hBI 0/

and E˛ D ˛! T˛.hE I 0/ respectively. In [Vella 2008], the Bernoulli and Euler
number identities are expressed in terms of Stirling numbers of the second kind. In
this section, we will derive more Bernoulli and Euler number identities using the
multivariable analog of these Stirling numbers.

Recall the multivariable Stirling number of the second kind ,

S.˛;m/D
X

p.˛;m/

˛!

j˛jY
jD1

1

mj ! .pj !/jmj j
D

X
p.˛;m/

˛!

�.�/!� !
; (4)

introduced on page 516 of [Constantine and Savits 1996]. Additionally, we define

p.˛;m; even/D f.m1; : : : ;msIp1; : : : ;ps/ 2 p.˛;m/ W jpj j even;

for all j 2 f1; : : : ; sgg;

sC.˛;m; even/D f.p.1/
1
; : : : ;p.1/r1

I : : : Ip
.�/
1
; : : : ;p.�/r�

/ 2 sC.˛;m/ W jp
.i/
j j even;

for all i 2 f1; : : : �g; for all j 2 f1; : : : r�gg:

We analogously define p.˛;m; odd/ and sC.˛;m; odd/. Let

p.˛; even/D
[

1�jmj�j˛j

p.˛;m; even/;

sC.˛; even/D
[

1�jmj�j˛j

sC.˛;m; even/;

and similarly define p.˛; odd/ and sC.˛; odd/. We call the pi appearing in elements
of p.˛; even/ and p.˛;m; even/ even parts of ˛, and we define odd parts of ˛ in
the same manner. Furthermore, let

S.˛;m; even/D
X

p.˛;m;even/

˛!

j˛jY
jD1

1

mj ! .pj !/jmj j
D

X
p.˛;m;even/

˛!

�.�/!� !
; (5)

and similarly define S.˛;m; odd/.
Our next theorem gives more explicit identities for calculating Bernoulli numbers.

Theorem 4.1. If B˛ is the j˛j-th Bernoulli number, then

(a) B˛ D
X

�2p.˛/

.�1/m

1Cm

� m

�.�/

��
˛

�

�
D

X
�2sC.˛/

.�1/m

1Cm

�
˛

�

�
,
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(b) B˛ D
X

1�m�j˛j

.�1/mm!

1Cm
S.˛;m/.

Proof. Let g.x1; : : : ;x�/Dex1C���Cx��1 and f .y/D ln.1Cy/=y. Let x0D02R� .
Then Tpj .gI 0/D1=pj ! if pj >0, while Tm.f Iy

0/DTm.f I 0/D .�1/m=.1Cm/.
By Corollary 3.2,

T˛.hI 0/D
X

1�m�j˛j

.�1/m

1Cm

X
�2p.˛;m/

� m

�.�/

� sY
jD1

�
1

pj !

�
mj :

Since B˛ D ˛! T˛.f ıgI 0/, this yields part (a) because

B˛ D ˛! T˛.hI 0/D
X

1�m�j˛j

.�1/m

1Cm

X
�2p.˛;m/

� m

�.�/

�˛!

� !

D

X
�2p.˛/

.�1/m

1Cm

� m

�.�/

��
˛

�

�
D

X
�2sC.˛/

.�1/m

1Cm

�
˛

�

�
by Proposition 3.4. Part (b) follows from part (a) because

m! S.˛;m/D
X

�2p.˛;m/

� m

�.�/

��
˛

�

�
by (4). Collecting together partitions of a fixed total multiplicity yields:

B˛ D
X

1�m�j˛j

.�1/mm!

1Cm
S.˛;m/: �

Our next theorem gives more explicit identities for calculating Euler numbers.

Theorem 4.2. If E˛ is the j˛j-th Euler number, then

(a) E˛ D
X

�2p.˛;even/

.�1/m
� m

�.�/

��
˛

�

�
D

X
�2sC.˛;even/

.�1/m
�
˛

�

�
,

(b) E˛ D
X

1�m�j˛j

.�1/mm! S.˛;m; even/.

Proof. Let g.x1; : : : ;x�/D cosh.x1; : : : ;x�/ and f .y/D 1=y. Let x0 D 0 2 R� .
Then Tpj .gI 0/ D 1=pj ! for even parts and Tpj .gI 0/ D 0 for odd parts, while
Tm.f Iy

0/D Tm.f I 1/D .�1/m. From Corollary 3.2, we have

T˛.hI 0/D
X

1�m�j˛j

.�1/m
X

�2p.˛;m/

� m

�.�/

� sY
jD1

ŒTpj .gI 0/�
mj ;

but if any of the parts of � are odd, the product vanishes. Thus, the sum becomes
over partitions of only even parts, and
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T˛.hI 0/D
X

1�m�j˛j

.�1/m
X

�2p.˛;m;even/

� m

�.�/

� sY
jD1

�
1

pj !

�
mj :

Since E˛ D ˛! T˛.hI 0/, this yields part (a) because

E˛ D ˛! T˛.hI 0/D
X

1�m�j˛j

.�1/m
X

�2p.˛;m;even/

� m

�.�/

�˛!

� !

D

X
�2p.˛;even/

.�1/m
� m

�.�/

��
˛

�

�
D

X
�2sC.˛;even/

.�1/m
�
˛

�

�
by Proposition 3.4. Part (b) follows from part (a) because

m! S.˛;m/D
X

�2p.˛;m/

� m

�.�/

��
˛

�

�
by (5). Collecting together partitions of a fixed total multiplicity yields

E˛ D
X

1�m�j˛j

.�1/mm! S.˛;m; even/: �

Theorem 4.3. If E˛ is the j˛j-th Euler number, then

1D
X

1�m�j˛j

.�1/r

.2r/!
E2r

X
�2p.˛;2r;odd/

� 2r

�.�/

��
˛

�

� sY
jD1

ŒEpj �
mj :

Proof. Let g.x1; : : : ;x�/D2 tan�1.ex1C���Cx� /��=2 be the multivariable analogue
of the gudermannian function and set f .y/ D sec y. Let x0 D 0. Notice that
h.x1; : : : ;x�/ D sec.g.x1; : : : ;x�// D cosh.x1 C � � � C x�/. Then T˛.hIx

0/ D

T˛.hI 0/D 1=˛! when j˛j is even and T˛.hI 0/D 0 otherwise, while

Tm.f Iy
0/D Tm.f I 0/D

.�1/m=2

m!
Em

when m is even and Tm.f I 0/D 0 when m is odd. Letting mD 2r , we substitute

T2r .f I 0/D
.�1/r

.2r/!
E2r

into (2) of Corollary 3.2 to yield

1

˛!
D

X
1�2r�j˛j

.�1/r

.2r/!
E2r

X
�2p.˛;2r/

� 2r

�.�/

� sY
jD1

ŒTpj .gIx
0/�mj .
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From the basic properties of the gudermannian function,

g.x1; : : : ;x�/D

Z xi

0

sech.x1C � � �Cx�/ dxi

D

1X
j1;:::;j�D0

E.j1;:::;j�/

j1! � � � j� !

Z xi

0

x
j1

1
� � �xj�

� dxi

D

1X
j1;:::;j�D0

E.j1;:::;j�/

j1! � � � .ji C 1/! � � � j� !
x

j1

1
� � �x

jiC1
i � � �xj�

� :

Thus,

T.j1;:::;jiC1;:::;j�/.gIx
0/D T.j1;:::;jiC1;:::;j�/.gI 0/D

E.j1;:::;j�/

j1! � � � .ji C 1/! � � � j� !
:

It follows that T.j1;:::;jiC1;:::;j�/.gIx
0/D 0 unless j.j1; : : : ; jiC1; : : : ; j�/j is odd

because formula (a) of Theorem 4.2 implies that either E.j1;:::;j�/ D 0 or it is
possible to write .j1; : : : ; j�/ as the sum of only even parts. It follows that

1D
X

1�m�j˛j

.�1/r

.2r/!
E2r

X
�2p.˛;2r;odd/

� 2r

�.�/

��
˛

�

� sY
jD1

ŒEpj �
mj : �
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Crossings of complex line segments
Samuli Leppänen

(Communicated by Kenneth S. Berenhaut)

The crossing lemma holds in R2 because a real line separates the plane into
two disjoint regions. In C2 removing a complex line keeps the remaining point-
set connected. We investigate the crossing structure of affine line segment-like
objects in C2 by defining two notions of line segments between two points
and give computational results on combinatorics of crossings of line segments
induced by a set of points. One way we define the line segments motivates a
related problem in R3, which we introduce and solve.

1. Introduction

A graph is planar if it can be drawn on the plane such that none of its edges cross.
For any graph G, we define the crossing number cr(G) to be the smallest possible
number of edge crossings over all the planar drawings of G. In this paper, we
will study and present some computational results in the two-dimensional complex
plane motivated by the crossing number inequality. The crossing number inequality
is a well-known tool in discrete geometry as it gives a lower bound for the crossing
number of a graph [Ajtai et al. 1982]:

Theorem 1.1 (crossing number inequality). If an undirected graph with n vertices
and m edges satisfies m > 4n, then we have cr(G)≥ m3/64n2.

One of the applications of the inequality is a short proof [Székely 1997] of the
Szemerédi–Trotter theorem [1983]:

Theorem 1.2 (Szemerédi–Trotter theorem). Given n points and m lines in the
plane, the number of point-line pairs such that the point lies on the line is

O(n2/3m2/3
+ n+m).

Theorem 1.2 generalizes to the two-dimensional complex plane [Tóth 2003] with
lines of complex variable and points in the two-dimensional complex plane, and in
a slightly weaker form to spaces of higher dimension [Solymosi and Tao 2012].

MSC2010: primary 51M05, 51M30, 52C35; secondary 51M04.
Keywords: discrete geometry, crossing inequality.
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The main motivation of our work is the question of whether a suitable gen-
eralization of the crossing number inequality could yield a simple proof for the
complex generalization of the Szemerédi–Trotter theorem in similar vein as in the
real counterpart. The answer to this question is still out of reach and very little
is known. One significant difficulty in understanding the crossing number of a
graph in C2 is that interpreting an edge in such a graph as a line segment is not
as straightforward as in R2. One natural way to attempt to understand crossings
of graphs in C2 is to look for complete graphs without crossings. In R2 it is well
known that the complete graph with five or more vertices always has at least one
crossing. Analogously, given a set of five or more points in R2, if we connect all the
points with line segments, at least two of the line segments will cross. It is not clear
to what extent the same is true in C2, and this will be the main focus of our study.
In Section 2, we will present two ways to define a complex line segment and devise
an algorithm that looks for configurations of n points such that the corresponding
complete graph has no crossings. We will discuss the results and based on them
give two conjectures regarding arrangements of points in C2 and crossings of the
line segments between them. In Section 3, we introduce and present a solution to a
problem in R3 motivated by our earlier discussion.

2. Line segments in C2

The two-dimensional complex plane is the set of points

C2
= {(z1, z2) : z1, z2 ∈ C},

and a complex line determined by the constants a, b ∈ C is the subset

{(u, v) ∈ C2
: v = au+ b}.

The two-dimensional complex plane can be considered as a four-dimensional
real Euclidean space with complex lines being two-dimensional affine subspaces.
Since lines in C2 are two-dimensional, it is not obvious how to define a line
segment between two points z1, z2 ∈C2. In general, we want a line segment to be a
region enclosed by a simply connected curve on the complex line that contains the
points z1, z2. For simplicity, we focus on two particular types of line segments: one
given by the closed disk that has z1 and z2 as its antipodal points and another that is
the union of the two closed disks centered at z1 and z2, both having radius ‖z1−z2‖.

Before making these notions precise, let us briefly discuss the problem we will
study: any arrangement of five points in R2 is such that if we draw the line segments
between all the points, then at least two of the line segments cross1. The same is

1By crossing of line segments we mean an intersection of two line segments that is not an endpoint
of either line segment.
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not true for every configuration of four points. This is equivalent to saying that
the smallest complete graph with nonzero crossing number is the one with five
vertices, K5. We are interested in studying to what extent this is true for complex
line segments in C2, or in particular, what is the number of points such that the
induced line segments necessarily contain at least one crossing? We will present a
computational algorithm that looks for configurations of points with no crossings
for a given number of points. Using the algorithm, we can look for a lower bound
for the number of points such that the induced graph does not have a crossing.

Let us denote the set of points in C2 by

P = {z1, z2, . . . , zn}

= {(u1, v1), (u2, v2), . . . , (un, vn)}, ui , vi ∈ C,

and a line containing the points zi , z j by

L i j = {(u, au+ b)⊂ C2
: a, b ∈ C s.t. auk + b = vk, k = i, j}.

We can now introduce the two notions of line segments.

Definition. Call the set

SI(z1, z2)=
{

z ∈ L12 :

∥∥∥z−
z1+ z2

2

∥∥∥≤ ∥∥∥ z1− z2

2

∥∥∥}
a textitline segment of type I.

Definition. Call the set

SII(z1, z2)= {z ∈ L12 : ‖z− z1‖ ≤ ‖z1− z2‖ or ‖z− z2‖ ≤ ‖z1− z2‖}

a line segment of type II.

If the type of the line segment is irrelevant, we will just write S(z1, z2). We say
that the line segments S(zi , z j ) and S(zk, zl) (where no two points are equal) have
a crossing if and only if

S(zi , z j )∩ S(zk, zl)= L i j ∩ Lkl 6=∅.

Computational setup. We observe that if two line segments do not cross, then the
intersection point of the lines defined by the points lies outside of at least one of
the line segments. This motivates us to look for configurations of points where the
intersection point of any two lines is in some sense close to the boundary of the
curve defining the line segment.

Let zi , z j , zk, zl be distinct points of the set P . Denote by z = L i j ∩ Lkl the
intersection of one of the pairs of lines induced by the points. For an intersection
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of line segments of type I, set

r I
i j =

∥∥z− zi+z j
2

∥∥
1
2‖zi − z j‖

to measure the relative distance of the intersection point from the center of the
circle defining the line segment. For the lines L i j and Lkl , define

ρI
i j,kl =max{r I

i j , r
I
kl}.

For each pair of lines, ρI
i j,kl picks the one for which the intersection point of the

lines is relatively further from the center of the circle defining the line segment.
Finally, set

ρI
= min

zi ,z j ,zk ,zl∈P
{ρI

i j,kl, ρ
I
ik, jl, ρ

I
il, jk},

where all the points zi , z j , zk, zl are distinct. Similarly, for an intersection of line
segments of type II, set

r II
i j =min

{
‖z− zi‖

‖zi − z j‖
,
‖z− z j‖

‖zi − z j‖

}
,

and define the quantities ρII
i j,kl and ρII in the same way we did for the line segment

of type I. In what follows, we will just write ρ instead of ρI or ρII when it does not
matter which type of line segment is in question. Furthermore, notice that ρ is a
function of the set of points P , but to simplify notation we will leave it unwritten.

Evidently if ρ > 1, none of the line segments defined by the points in the
configuration have a crossing. We will use a randomized algorithm to search for
configurations with ρ close to 1 in hope of either finding a configuration that
contains no crossing of the induced line segments or a configuration that is extremal
in the sense that ρ ≈ 1.

The way our algorithm works is as follows: Initially start with a random config-
uration P0 = {z1, . . . , zn}. On iteration k, choose an index j ∈ {1, . . . , n} randomly
using a uniform distribution and set ẑ j = z j + ε, where ε ∈ C2 is some uniformly
distributed random variable with 0 mean and small variance. If the ρ computed for
the new configuration is larger than the ρ of the configuration from the previous
iteration, replace z j by ẑ j in the configuration, otherwise do nothing.

In order to justify the algorithm, let us make the following remarks: The results
of the described algorithm provide us with lower bounds for the number of points
whose induced complete graph does not necessarily have a crossing. The algorithm
makes small local perturbations to maximize the quantity ρ, but it is not clear
whether or not there are several local optima that differ from a global optimum.
Therefore, the cases where the algorithm fails to find a noncrossing configuration
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are inconclusive. However, when applied to R2, the algorithm found noncrossing
configurations for four points but not for five, agreeing with known results.

Results. Our computational experiments motivate the following remark and two
conjectures:

Remark. There is a configuration of seven points in C2 such that none of the line
segments of type I between any pairs of points have a crossing.

One such configuration, with ρI
≈ 1.1047, is

z1 = (0.4358− 0.3796i, 0.5726+ 0.3896i),

z2 = (−0.3382+ 0.0719i,−0.1316+ 0.3220i),

z3 = (0.6391+ 0.0141i, 0.8889− 0.3292i),

z4 = (0.6302− 0.5513i, 0.2813− 0.8285i),

z5 = (0.9731− 1.3291i, 2.3615+ 0.4571i),

z6 = (1.7105− 0.7780i,−1.4009− 0.8982i),

z7 = (0.0099− 0.9417i, 1.3350− 0.9040i).

We were not able to produce a configuration of eight points such that ρI
≥ 1. We

observed that when executing the search algorithm with 20000 iterations ten times,
ρI was found to lie between 0.978347 and 0.999998. Hence we state the following
conjecture:

Conjecture. Every configuration of eight points in C2 has four points such that the
line segments of type I induced by the points have an intersection. In particular,
there exists a configuration of eight points such that ρI

= 1.

For line segments of type II, we were not able to produce a configuration of four
points such that ρII > 1 after executing the search algorithm with 20000 iterations
ten times. We noticed that there exists a configuration such that ρII

= 1; for example,
consider the points

z1 = (0, 0),

z2 = (1, 0),

z3 =
( 1

2 +
√

3
2 i, 0

)
,

z4 = (u, v), where u, v ∈ C, v 6= 0.

It is not difficult see that this configuration has the claimed property, as z1, z2 and z3

all lie on the same complex line and have equal distance from each other. Thus the
following conjecture is motivated:
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Conjecture. Every configuration of four points in C2 is such that at least two of
the line segments of type II induced by the points have an intersection.

3. A related problem in R3

Line segments of type I define a disk with two given points as antipodal points.
In the above treatment, we were interested in configurations of points in C2 such
that the line segments between the points do not intersect. This motivates a similar
question in R3, which we will introduce and produce a solution for.

Consider a set of n points P = {p1, p2, . . . , pn} ⊂ R3. For each pair of
points pi , p j , denote by Ti j some plane containing both points and by Di j the
closed disk lying on Ti j with antipodal points pi , p j . In other words,

Di j =

{
x ∈ R3

: x ∈ Ti j ,

∥∥∥x −
pi − p j

2

∥∥∥≤ ∥∥∥ pi − p j

2

∥∥∥}.
We will call D={Di j : i < j, i, j =1, . . . , n} a disk system induced by P . For a pair
of such disks, Di j , Dkl ∈D, we say that the disks intersect properly if Di j∩Dkl * P .
Fixing the set P does not trivially determine if there is a pair of disks that intersect
properly in D since there is some freedom in choosing each of the planes Ti j (i.e.,
the rotation of the disk Di j around the line passing through pi and p j ). We are
now interested in determining the conditions for the set P such that none of the
pairs of disks intersect properly. In what follows, we prove the following result:

Theorem 3.1. The maximal size of the set P such that the induced disks do not
intersect properly is four. In such a configuration all the points lie on a plane T ,
and three of the points form a triangle with one point in its interior. All the disks
intersect T perpendicularly.

Remark. Notice the differences between line segments of type I we defined in
Section 2 and the disks considered here: the line segments of type I reside in
four-dimensional space and their rotation along the axis given by the two points
is fixed. In addition, when considering the proper intersections of the disks Di j

and Dkl here, we do not require that i, j, k, l are all different.

Proofs. We will first characterize proper intersections of two disks sharing a com-
mon point. Then using this characterization, we show that for three points, there
is only one way of choosing the rotations of the disks such that no two intersect
properly, which quickly implies Theorem 3.1.

Two disks. To keep notation simple, let v,w ∈ R3 be two nonparallel vectors. Let
Tv, Tw be two planes such that Tv is spanned by v and some (still unspecified)
vector, and Tw is similarly spanned by w and some other vector. Denote by Dv the
disk lying in Tv such that the antipodal points of Dv are the origin and v, and by
Dw the disk lying in Tw with the origin and w as antipodal points.
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Figure 1. The disk Dv, line S and its spanning vector s on the Tv-plane.

Since Tv and Tw both contain the origin, their intersection is always nonempty.
Let S= Tv∩Tw be the line given by the intersection of the two planes and s a vector
such that S= span s. Ignoring the trivial case of span v= span s or spanw= span s,
we have that Tv = span(v, s) and Tw = span(w, s). Therefore, the disks Dv, Dw

and thus their intersection is determined by the three vectors v,w and s.
The line S is given by the intersection of the planes Tv and Tw, but what does

it tell us about the intersection of the disks? First, let us see how things look on
the Tv-plane (see Figure 1). If s is perpendicular to v, then clearly the disk Dv

does not intersect the plane Tw outside of the origin and hence cannot intersect Dw

properly. Otherwise it is clear that there exists some real α 6= 0 such that αs ∈ Dv ,
i.e., S intersects Dv outside the origin.

The same conclusion naturally holds for the disk Dw. Let us use this observation
to prove the following lemma:

Lemma 3.2. The disks Dv and Dw intersect properly if and only if

〈v, s〉〈w, s〉> 0.

Proof. If Dv and Dw intersect properly, there is some nonzero α ∈ R such that
αs ∈ Dv ∩ Dw since the intersection S∩ Dv ∩ Dw is not just the origin. Then, from
the way we have defined the disks Dv , Dw to lie on the planes Tv, Tw (see Figure 1),
it follows that the projection of αs to the vector v has the same direction as v, and the
projection of αs to w has the same direction as w. In other words, 〈v, αs〉> 0 and
〈w, αs〉> 0. Multiplying these two inequalities together yields α2

〈v, s〉〈w, s〉> 0.
On the other hand, if 〈v, s〉〈w, s〉 > 0, then either 〈v, s〉 and 〈w, s〉 are both

strictly positive or negative. Assume they are both positive. This means that for an
arbitrarily small α > 0, we must have αs ∈ Dv and αs ∈ Dw, i.e., αs ∈ Dv ∩ Dw,
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Figure 2. The region of all the vectors u satisfying 〈v,u〉〈w,u〉≤0
on the plane spanned by v,w (shaded).

so the intersection of the disks contains points other than the origin. If both of the
inner products are negative, the same conclusion holds for −α. �

To see one useful interpretation of the above lemma, let us consider the orthogonal
projection s ′ of s to the plane T = span(v,w). First, note that 〈v, s〉 = 〈v, s ′〉 and
〈w, s〉 = 〈w, s ′〉, so

〈v, s〉〈w, s〉 = 〈v, s ′〉〈w, s ′〉.

Therefore, the set of vectors s such that the disks Dv , Dw do not intersect properly,
i.e., 〈v, s〉〈w, s〉 ≤ 0, is characterized by the cone C in T (see Figure 2), where

C = {u ∈ T : 〈u, v〉 ≤ 0 and 〈u, w〉 ≥ 0 or 〈u, v〉 ≥ 0 and 〈u, w〉 ≤ 0}.

Three disks. We will now look at the implications of Lemma 3.2 to configurations
of three disks. First we will show a fact from plane geometry concerning triangles
and cones. Let a, b, c be noncollinear points on the plane and abc the corresponding
triangle. To each vertex of the triangle we can associate a cone, as in Figure 2. Let the
cones associated with the points a, b and c be called Ca,Cb and Cc (see Figure 3).

Lemma 3.3. The intersection of the cones is empty, that is, Ca ∩Cb ∩Cc =∅.

Proof. Assume that the angle α = 6 bac corresponding to the point a is the largest
angle of the triangle. Since the opening angle of the cone is the same as the
corresponding angle in the triangle, the opening angle of Ca is greater than the
opening angles of Cb and Cc. Denote by l the line passing through the point a such
that l halves the angle α. Then l divides the plane into two parts, one containing
the point b and once containing the point c; denote these half-planes by Hb and Hc.

Since the opening angle of Ca is greater than the opening angle of Cb and Cc, and
the opening angles of the cones are equal to the corresponding angles in the triangle,
we have that the opening angles of Cb and Cc are strictly less than π/2. Thus Cb
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a b

c

p′
Ca

Cb

Cc

Figure 3. The triangle abc, the projection p′ of p and the cones
Ca,Cb and Cc.

or Cc cannot contain any points in the triangle and so a /∈Cb∪Cc. Therefore, the inter-
section Ca∩Cb is entirely contained in Hb\l and the intersection Ca∩Cc in Hc\l. �

Now we can show that there is only one way three points can induce a disk system
without proper intersections. The points a, b, c lie on a plane T and determine a
triangle abc. Each vertex of the triangle is a touching point of two disks, and each
side of the triangle is the rotation axis of one disk. The rotation of a disk determines
a plane containing the corresponding side of the triangle. If none of the three planes
are equal, there are exactly two different cases for their intersection: either all three
planes intersect in one point, or they are all perpendicular to the plane T and thus
do not have a common intersection point.

We will show now that if the three planes have a mutual intersection point, then
at least two of the disks will intersect properly. So assume there is a point p where
the three planes intersect, and consider the orthogonal projection p′ of p onto the
plane T containing the points a, b, c (see Figure 3). As we saw earlier, if two disks
touching in one vertex of the triangle do not intersect properly, then the line segment
from the vertex to p′ lies in the cone associated with the vertex. So to require that
none of the pairs of disks intersect is the same as requiring that p′ ∈ Ca ∩Cb ∩Cc,
which by Lemma 3.3 is not possible.

We have justified the following:

Lemma 3.4. The only disk system induced by three points such that no two disks
intersect properly is the one where all the disks perpendicularly intersect the plane
containing the points.

Theorem 3.1 follows now without much effort. First, assume there is a configura-
tion of four points p1, . . . , p4 such that no two disks intersect properly and all the
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points do not lie on the same plane. Then by Lemma 3.4, the disks induced by p1, p2

and p3 must all perpendicularly intersect the plane T containing p1, p2 and p3.
But the points p1, p2 and p4 lie on a plane T ′ 6= T , and the induced disks have to
intersect T ′ perpendicularly. Therefore D12 intersects T and T ′ perpendicularly,
which leaves no option other than T = T ′, which contradicts our assumption.

Hence, for any number of points, we have to have that the points lie on a plane
in order to not have properly intersecting disks in the induced disk system. The
points and the disks give rise to a complete graph on the plane, as we can think of
the points as vertices and the rotation axes as edges of the graph. Clearly the disks
intersect properly if the graph has crossing edges. Any complete graph with five or
more vertices has an edge crossing, which concludes the proof of Theorem 3.1.
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On the ε-ascent chromatic index of complete graphs
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(Communicated by Jerrold Griggs)

An edge ordering of a graph G = (V, E) is an injection f : E→Z+, where Z+ is
the set of positive integers. A path in G for which the edge ordering f increases
along its edge sequence is called an f-ascent; an f-ascent is maximal if it is
not contained in a longer f-ascent. The depression ε(G) of G is the smallest
integer k such that any edge ordering f has a maximal f -ascent of length at most k.
Applying the concept of ascents to edge colourings rather than edge orderings,
we consider the problem of determining the minimum number χε(Kn) of colours
required to edge colour Kn , n ≥ 4, such that the length of a shortest maximal
ascent is equal to ε(Kn)= 3. We obtain new upper and lower bounds for χε(Kn),
which enable us to determine χε(Kn) exactly for n = 7 and n ≡ 2 (mod 4) and to
bound χε(K4m) by 4m ≤ χε(K4m)≤ 4m+ 1.

1. Introduction

Following [Schurch 2013a; 2013b], we consider the following question:

Question 1. For n ≥ 4, what is the smallest integer r(n) for which there exists a
proper edge colouring of Kn in colours 1, . . . , r(n) such that a shortest maximal
path of increasing edge labels has length three?

Schurch showed that r(n) ≤ 2n− 3 for all n ≥ 4. This bound enabled him to
determine r(n) for n ∈ {4, 5} and to show that 7≤ r(6)≤ 8. In Section 2 we give a
lower bound for r(n) and in Section 3 we improve the general upper bound to

r(n)≤
⌊

3n−3
2

⌋
.

We then improve this bound for even values of n. Consequently, we obtain r(7)= 9,
r(n)= n+ 1 if n ≡ 2 (mod 4), and n ≤ r(n)≤ n+ 1 if n ≡ 0 (mod 4) and n ≥ 8.
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Keywords: edge ordering of a graph, increasing path, depression, edge colouring.
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We begin with a short historical account of the background to this problem. An
edge ordering of a finite, simple graph G is an injection f : E(G)→Z+, where Z+

is the set of positive integers. Denote the set of all edge orderings of G by F(G).
A path v1, . . . , vk (where vk 6= v1) in G such that f (v1) < · · ·< f (vk) is called an
f-ascent; an f-ascent is maximal if it is not contained in a longer f-ascent. The
height H( f ) of an edge ordering f is the length of a longest f-ascent, and the
flatness of f , denoted by h( f ), is the length of a shortest maximal f-ascent of G.

Chvátal and Komlós [1971] posed the problem of determining

α(Kn)= min
f ∈F(Kn)

{H( f )}

of the complete graph Kn . This is a difficult problem and α(Kn) is known only for
1≤ n≤ 8 (see [Burger et al. 2005; Chvátal and Komlós 1971]). The parameter α(G)
for complete and other finite graphs was also investigated in [Bialostocki and Roditty
1987; Burger et al. 2005; Calderbank et al. 1984; Graham and Kleitman 1973;
Mynhardt et al. 2005; Roditty et al. 2001; Yuster 2001].

For an arbitrary finite graph G, Cockayne et al. [2006] considered the problem
of determining ε(G)=max f ∈F(G){h( f )}, that is, the maximum length, taken over
all edge orderings f ∈ F(G), of a shortest maximal f-ascent. The parameter ε(G)
is known as the depression of G and its computation is likewise a difficult problem.
Another interpretation of the depression of G is that any edge ordering f of G has a
maximal f -ascent of length at most ε(G), and ε(G) is the smallest integer for which
this statement is true. Graphs with depression two were characterized in [Cockayne
et al. 2006], while trees with depression three were characterized in [Mynhardt 2008].
Graphs with no adjacent vertices of degree three or higher that have depression three
were characterized in [Mynhardt and Schurch 2013]. Further work on depression
can be found in [Cockayne and Mynhardt 2006; Gaber-Rosenblum and Roditty
2009; Schurch and Mynhardt 2014; 2014; Schurch 2013a; 2013b].

An edge ordering of G is also a proper edge colouring — a labelling of the
edges of G such that adjacent edges have different labels. The minimum number
of labels, also called colours, is called the edge chromatic number or the chromatic
index χ ′(G). It is well known (see [Chartrand et al. 2011, Section 10.2], for
example) that χ ′(Kn)= n− 1 if n is even and χ ′(Kn)= n if n is odd. A 1-factor
of G is a 1-regular spanning subgraph of G, and G is 1-factorable if E(G) can be
partitioned into 1-factors. If G is 1-factorable, then G is r -regular for some r and
χ ′(G)= r . König’s theorem (see [Chartrand et al. 2011, Theorem 10.15]) states
that every r-regular bipartite graph is 1-factorable. In particular, the chromatic
index of the complete bipartite graph Kn,n is given by χ ′(Kn,n)= n.

Noticing that the labels of some edges in an edge ordering of G may be unim-
portant when determining ε(G), Schurch applied the concept of ascents to edge
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colourings and called the minimum number of colours in a proper edge colouring c
of G such that h(c) = ε(G) the ε-ascent chromatic index of G, denoted χε(G).
Unlike the case for general graphs, the depression of Kn is easy to determine:
ε(K1)= 0, ε(K2)= 1, ε(K3)= 2 and ε(Kn)= 3 for all n ≥ 4 (see [Cockayne et al.
2006]); that is, there does not exist an edge ordering or an edge colouring of Kn

such that a shortest maximal ascent has length four or more. Note that χε(K1)= 0,
χε(K2)= 1, χε(K3)= 3, and determining χε(Kn) for n ≥ 4 is equivalent to finding
the smallest integer r(n) such that there exists a proper edge colouring c of Kn in
colours 1, . . . , r(n) with h(c)= 3, as formulated in Question 1.

2. Lower bound for the ε-ascent chromatic index of Kn

We begin with a simple lower bound for χε(Kn), which slightly improves the bound
in [Schurch 2013b, Proposition 8] in the special case where G = Kn .

Theorem 1. If n ≥ 4, then

χε(Kn)≥


n if n ≡ 0 (mod 4),
n+ 1 if n ≡ 1, 2 (mod 4),
n+ 2 if n ≡ 3 (mod 4).

Proof. Let c be a proper edge colouring of Kn in colours 1, . . . , r such that h(c)= 3.
Such a colouring exists because ε(Kn)= 3 if n ≥ 4. For i = 1, . . . , r , define

Ei = {e ∈ E(Kn) : c(e)= i}.

Then |Ei | ≤ bn/2c for each i . Also, no vertex v is incident with an edge e ∈ E1

and an edge e′ ∈ Er , otherwise e, e′ is a maximal c-ascent of length two, which
contradicts h(c)= 3. Thus |E1∪ Er | ≤ bn/2c and E1∪ Er is an independent set of
edges, that is, E1∪ Er , E2, . . . , Er−1 is also a proper edge colouring of Kn . Hence
r ≥ χ ′(Kn)+ 1. In particular,

χε(Kn)≥

{
n if n ≡ 0 (mod 4),
n+ 1 if n ≡ 1 (mod 4).

Assume n ≡ 2 (mod 4); say n = 4p + 2. Then Kn has (2p + 1)(4p + 1) edges.
Suppose r = χ ′(Kn)+ 1= n. The upper bound

|E1 ∪ Er |, |E2|, . . . , |Er−1| ≤

⌊n
2

⌋
implies that

|E1 ∪ Er | = |E2| = · · · = |Er−1| =

⌊n
2

⌋
= 2p+ 1.

Since |E1|+ |Er | = 2p+1, an odd number, |E1| 6= |Er |. Without loss of generality
say |E1| = k, where k ≤ p, and |Er | = 2p+1−k. Suppose e ∈ E2 is not adjacent to
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any edge in E1. Since |E1∪ Er | = 2p+1= bn/2c, e is adjacent to an edge e′ ∈ Er .
But then e, e′ is a maximal c-ascent of length two, which contradicts h(c)=3. There-
fore each edge in E2 is adjacent to an edge in E1, and since c is a proper edge colour-
ing, |E2| ≤ 2|E1| = 2k ≤ 2p < bn/2c, a contradiction. Thus r ≥ n+ 1 as required.

Assume n ≡ 3 (mod 4); say n = 4p + 3. Then |E(Kn)| = (4p + 3)(2p + 1).
Suppose r = χ ′(Kn)+ 1 = n + 1. As in the case n ≡ 2 (mod 4), we obtain that
|E1 ∪ Er | = |E2| = · · · = |Er−1| = bn/2c = 2p+ 1 and that each edge in E2 is
adjacent to an edge in E1. There is one vertex v that is not incident with any edge
in E1 ∪ Er , but an edge in E2 incident with v also needs to be adjacent to an edge
in E1. We obtain a contradiction as above and the result follows. �

3. Upper bounds for the ε-ascent chromatic index of Kn

In Section 3.1 we provide a new general upper bound for χε(Kn). We improve this
bound for even values of n in Sections 3.2 (the case n ≡ 0 (mod 4)) and 3.3 (the
case n ≡ 2 (mod 4)).

3.1. A general bound. For n ≥ 6, we now describe an edge colouring c of Kn

in b(3n − 3)/2c colours, as illustrated in Figure 1 for n ∈ {6, 7}, and prove in
Theorem 3 that h(c)= 3. Let V (Kn)= {v0, . . . , vn−1} and p = dn/2e.

• For i ∈ {0, . . . , p− 1} and j ∈ {i + 1, . . . , n− 1}, let c(viv j )= i + j .

• For i ∈ {p, . . . , n− 2} and j ∈ {i + 1, . . . , n− 1}, let c(viv j )= i + j − 2p.

Lemma 2. For all n ≥ 6, the colouring c defines a proper edge colouring of Kn in
b(3n− 3)/2c colours.
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Figure 1. Edge colourings of K6 and K7 with flatness three.
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Proof. Suppose that c(viv j )= c(viv j ′) for some j < j ′. After a brief reflection, we
deduce that i + j = i + j ′− 2p. But i + j ≥ i and

i + j ′− 2p ≤ i + n− 1− 2dn/2e ≤ i − 1,

hence c(viv j ) > c(viv j ′), contradicting our assumption.
Since the smallest colour is 0+ 1= 1 and the largest colour is

p− 1+ n− 1=
⌈

n
2

⌉
+n− 2=

⌊
n−1

2

⌋
+ n− 1=

⌊3n− 3
2

⌋
,

the colouring c uses exactly b(3n− 3)/2c colours. �

Theorem 3. For all n ≥ 6, the colouring c of Kn has flatness equal to three.

Proof. To prove that h(c)= 3, it is sufficient to prove this:

Statement. For any vi ∈ V (Kn) and edges e = v jvi and f = vivk such that
c(e) < c( f ), there exists

(Sa) an edge g = v j ′v j , j ′ /∈ {i, j, k}, such that c(g) < c(e), or

(Sb) an edge g = vkvk′ , k ′ /∈ {i, j, k}, such that c( f ) < c(g).

Hence suppose there exist indices i, j, k ∈ I = {0, . . . , n−1} such that for edges
e= v jvi and f = vivk , we have c(e) < c( f ), but neither (Sa) nor (Sb) holds. Then

c(v j ′v j ) > c(e) for all j ′ ∈ I −{i, j, k}, (1)
and

c(vkvk′) < c( f ) for all k ′ ∈ I −{i, j, k}. (2)

We consider three cases, depending on the values of i and j .

Case 1: j ≤ p−1. Then, regardless of the values of i and j ′, c(v j ′v j )= j + j ′ and
c(e)= i + j . By (1), j ′ > i for all j ′ ∈ I −{i, j, k}. Hence i ≤ 2. But p ≥ 3 since
n ≥ 6, and therefore i ≤ p−1. Now i+ j = c(e) < c( f )= i+k implies that j < k.
Therefore one of the following three subcases holds:

(i) j = 0, k = 1 and i = 2,

(ii) j = 0 and k > i = 1,

(iii) i = 0 and k > j > 0.

If (i) holds, then c(v jvk) = 1. Since n ≥ 6, there exists k ′ ∈ I − {0, 1, 2} such
that c(vkvk′) = k + k ′ ≥ k ′ + 1 ≥ 4 > c( f ) = i + k = 3, contradicting (2). If
(ii) holds, then c( f ) = 1 + k. If k ≤ p − 1, then vk is adjacent to vp, where
p /∈ {0, 1, k}, and c(vkvp)= k+ p > c( f ), contradicting (2); while if k ≥ p, then
vk is adjacent to v2 and c(v2vk)= k+2> c( f ), again a contradiction. If (iii) holds,
then c(e) = j < k = c( f ). If k ≤ p− 1, then j < p− 1 and vk is adjacent to vp,
where p /∈ {0, j, k}, giving a contradiction as in (ii). If k ≥ p, then there exists
` ∈ {1, 2}− { j} such that c(vkv`)= k+ ` > k, once again a contradiction.
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Case 2: j ≥ p and i ≤ p− 1. Then c(e)= i + j . Since i ≤ p− 1 and n ≥ 6, there
exists j ′ ∈ I −{i, j, k} such that j ′ ≥ p. Then c(v j ′v j )= j+ j ′−2p> i+ j by (1);
that is, i < j ′− 2p ≤ 0, which is impossible.

Case 3: min{i, j}≥ p. Then c(e)= i+ j−2p. Suppose there exists j ′∈ I−{i, j, k}
such that j ′≥ p. Then c(v j ′v j )= j+ j ′−2p and thus j ′> i by (1). Since i, j ′≥ p,

c( f )= c(vivk)=

{
i + k if k ≤ p− 1,
i + k− 2p if k ≥ p,

and

c(vkv j ′)=

{
j ′+ k if k ≤ p− 1,
j ′+ k− 2p if k ≥ p.

Thus, regardless of the value of k, c(vkv j ′) > c( f ). Since j ′ ∈ I − {i, j, k}, this
contradicts (2). Hence there does not exist j ′ ∈ I −{i, j, k} such that j ′ ≥ p. Since
n≥ 6, we have |{p, . . . , n−1}| ≥ 3. We deduce that n ∈ {6, 7} and {p, . . . , n−1}=
{i, j, k} so that c(e) = i + j − 2p and c( f ) = i + k − 2p, where j < k since
c(e) < c( f ). For either value of n, c( f ) ≤ 3 and k ≥ 4. Let j ′ = 0 < p. Then
j ′∈ I−{i, j, k} and c(v j ′vk)= j ′+k= k≥4>3≥ c( f ), again contradicting (2). �

The following corollary to Lemma 2 and Theorem 3 improves Theorem 17 of
[Schurch 2013b].

Corollary 4. For n ≥ 6, we have χε(Kn)≤ b(3n− 3)/2c.

Combining Theorem 1 and Corollary 4 we improve Proposition 20 of [Schurch
2013b] and also obtain the new value χε(K7).

Corollary 5. χε(K6)= 7 and χε(K7)= 9.

3.2. The case n ≡ 0 (mod 4). Our next result is an improved upper bound for
χε(Kn) in the case where n ≡ 0 (mod 4) and n ≥ 8. Say n = 4m and V (Kn) =

{u0, . . . , u2m−1, v0, . . . , v2m−1}. Let G and H be the subgraphs of Kn induced
by {u0, . . . , u2m−1} and {v0, . . . , v2m−1}, respectively. Then G ∼= H ∼= K2m and
each of them is (2m−1)-edge colourable. We describe a colouring c1 of Kn in the
colours 1, . . . , 4m+ 1 as follows.

• In G, let c1 be any proper edge colouring of K2m in the 2m − 1 colours
{1, 2} ∪ {m+ 3, . . . , 3m− 1}.

• In H , let c1 be any proper edge colouring of K2m in the 2m − 1 colours
{4m, 4m+ 1} ∪ {m+ 3, . . . , 3m− 1}.

• We still need to colour the edges of the complete bipartite graph F ∼= K2m,2m

induced by the edges uiv j , with i, j ∈ {0, . . . , 2m−1}. But χ ′(K2m,2m)= 2m
and there are 2m unused colours 3, . . . ,m + 2 and 3m, . . . , 4m − 1. Colour
the edges of F with these colours.
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It is clear that c1 is a proper edge colouring of K4m in 4m+ 1 colours.

Theorem 6. For all m ≥ 2, the colouring c1 of K4m has flatness equal to three.

Proof. Let F , G and H be the subgraphs of K4m defined above and let e, f ∈ E(K4m)

be adjacent edges such that c1(e) < c1( f ). We show that (Sa) or (Sb) holds, as
stated in the proof of Theorem 3. We consider three cases, depending on the choice
of e and f .

Case 1: {e, f }∩E(F)=∅. Assume first e, f ∈ E(G); say e= u j ui and f = ui uk .
Then c1(e) < c1( f )≤ 3m− 1, and uk is adjacent to some vertex v` ∈ V (H) such
that c1(ukv`)= 4m− 1> c1( f ). Hence (Sb) holds. Similarly, if e, f ∈ E(H), say
e = v jvi and f = vivk , then c1( f ) > c1(e) ≥ m + 3, and v j is adjacent to some
vertex u` ∈ V (G) such that c1(v j u`)= 3< c1(e). Hence (Sa) holds.

Case 2: |{e, f } ∩ E(F)| = 1. By symmetry we may assume that e ∈ E(F); say
e = uiv j . If f ∈ E(G), say f = ui uk , then c1(e) ∈ {3, . . . ,m + 2} and c1( f ) ∈
{m + 3,m + 4, . . . , 3m − 1}. Since m ≥ 2, uk is adjacent to at least two vertices
vt1, vt2 of H such that c1(ukvt`)∈ {3m, . . . , 4m−1} for `= 1, 2, and we may choose
a subscript t`, say t1, such that t1 6= j . Then v j , ui , uk, vt1 is a c1-ascent of length
three and (Sb) holds. On the other hand, if f ∈ E(H), say f = v jvk , then c1(e)≥ 3.
In this case ui is adjacent to a vertex u` such that c1(u`ui ) ∈ {1, 2} and (Sa) holds.

Case 3: {e, f }⊆ E(F). First, if e= uiv j and f = v j uk , then there exists at least one
index `∈{0, . . . , 2m−1}−{i, k} such that c1(u`ui )∈{1, 2}. Then u`, ui , v j , uk is a
c1-ascent of length three and (Sa) holds. Finally, if e=vi u j and f =u jvk , then there
exists at least one index `∈{0, . . . , 2m−1}−{i, k} such that c1(vkv`)∈{4m, 4m+1}.
Then vi , u j , vk, v` is a c1-ascent of length three and (Sb) holds. �

Combining Theorems 1 and 6 we narrow down χε(Kn) to two possible values in
infinitely many cases.

Corollary 7. For all n ≥ 8 and n ≡ 0 (mod 4), we have n ≤ χε(Kn)≤ n+ 1.

3.3. The case n ≡ 2 (mod 4). We now assume that n ≡ 2 (mod 4) and n ≥ 10.
Say n = 4m + 2 and V (Kn) = {u0, . . . , u2m, v0, . . . , v2m}. Let G and H be the
subgraphs of Kn induced by {u0, . . . , u2m} and {v0, . . . , v2m}, respectively. Then
G ∼= H ∼= K2m+1 and each of them is (2m+1)-edge colourable. We describe an
edge colouring c2 of Kn in the colours 1, . . . , 4m+ 3. This colouring is similar to
the colouring c1 above, but not quite as straightforward. See Figure 2 for a partial
colouring of K10.

• In G, let c2 be any proper edge colouring of K2m+1 in the 2m + 1 colours
{1, 2} ∪ {m+ 3, . . . , 3m+ 1}.

• In H , let c2 be any proper edge colouring of K2m+1 in the 2m + 1 colours
{4m+ 2, 4m+ 3} ∪ {m+ 3, . . . , 3m+ 1}.
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Figure 2. Part of the edge colouring c2 of K10.

We still need to colour the edges of the complete bipartite graph F ∼= K2m+1,2m+1

induced by the edges uiv j , with i, j ∈ {0, . . . , 2m}. By König’s theorem, F is
1-factorable. Note that for each colour k in the edge colouring of G there is exactly
one vertex that is not incident with an edge coloured k, and conversely, for each
vertex ui there is exactly one colour that does not occur as colour of an edge incident
with ui . A similar remark holds for H . Without loss of generality, say colour 2 does
not occur at u0, colour 1 does not appear at u2m , colour 4m + 3 does not appear
at v0 and colour 4m+ 2 does not appear at v2m . Since colour 2 does not occur at
u0, all other colours of the colouring do and thus there exists a vertex us ∈ V (G)
such that c2(u0us)= 1. Since colour 4m+ 2 does not appear at v2m , there exists a
vertex vt ∈ V (H) such that c2(v2mvt)= 4m+ 3.

• Colour the edges u0v0 and u2mv2m of F with colours 2 and 4m+2, respectively.
For i, j ∈ {1, . . . , 2m−1} and k ∈ {m+3, . . . , 3m+1}, colour uiv j with colour
k if and only if no edge incident with ui in G or with v j in H is coloured k.

We have now coloured a 1-factor F0 of F , and F − F0 is a 2m-regular bipartite
graph, which is 1-factorable by König’s theorem. Let F ′1 be a 1-factor of F − F0

that contains the edge v0us . If u2mvt /∈ F ′1, let F1 = F ′1, and if u2mvt ∈ F ′1, let
uiv j ∈ F ′1−{v0us, u2mvt } and define F1= (F ′1−{uiv j , u2mvt })∪{uivt , u2mv j }. Now
F−F0−F1 is 1-factorable. Let F2 be a 1-factor of F−F0−F1 that contains u2mvt .

• Colour the edges in F1 with colour 3 and the edges in F2 with colour 4m+ 1.
Colouring F− F0− F1− F2 with the 2m−2 unused colours 4, . . . ,m+2 and
3m+ 2, . . . , 4m yields a proper edge colouring of K4m+2.
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Theorem 8. For all m ≥ 2, the colouring c2 of K4m+2 has flatness equal to three.

Proof. Let F , J , G and H be the subgraphs of K4m+2 defined above and let
e, f ∈ E(K4m+2) be adjacent edges such that c2(e) < c2( f ). We show that (Sa) or
(Sb) holds, as stated in the proof of Theorem 3. If {e, f } ∩ E(F) = ∅, the proof
follows similar to Case 1 in the proof of Theorem 6. We consider two further cases.

Case 1: |{e, f } ∩ E(F)| = 1. By symmetry we may assume that e ∈ E(F); say
e = uiv j . First suppose that f ∈ E(G), say f = ui uk . Since c2( f ) > c2(e) ≥ 2,
c2( f ) ∈ {m+ 3, . . . , 3m+ 1}. As in Case 2 of the proof of Theorem 3, (Sb) holds.
Now suppose f = v jvk ∈ E(H). If c2(e) = 2, then i = j = 0 and c2(u0us) = 1.
If c2(e) 6= 2 then c2(e) > 2 and there exists an index ` such that c2(ui u`) ∈ {1, 2}.
Thus us, ui , v j , vk or u`, ui , v j , vk is a c2-ascent of length three and (Sa) holds.

Case 2: {e, f } ⊆ E(F). Suppose e = uiv j and f = v j uk . If e = u0v0 and
f = v0us , then c2(e) = 2 and c2( f ) = 3. Therefore there exists a vertex u` such
that c2(usu`) ∈ {m + 3, . . . , 3m + 1} and (Sb) holds. If e = u0v0 and k 6= s, then
us, u0, v0, vk is a c2-ascent of length three and (Sa) holds. For all other choices
of e = uiv j and f = v j uk it follows as in Case 3 of the proof of Theorem 3 that
(Sa) or (Sb) holds. Suppose e= vi u j and f = u jvk . If e= vt u2m and f = u2mv2m ,
then c2(e) = 4m + 1 and c2( f ) = 4m + 2. There exists a vertex v` such that
c2(v`vt) ∈ {m+3, . . . , 3m+1} and thus (Sa) holds. If f = u2mv2m and i 6= t , then
vi , v2m, u2m, vt is a c2-ascent of length three and (Sb) holds. All other cases are
dealt with as in Case 3 of the proof of Theorem 3. �

Combining Theorems 1 and 8 and Corollary 4 determines χε(Kn) for all n ≡
2 (mod 10), n ≥ 6.

Corollary 9. For all n ≥ 6 and n ≡ 2 (mod 10), we have χε(Kn)= n+ 1.

4. Conclusion

In Theorem 1 we proved a lower bound for χε(Kn), and in Corollary 4 we improved
the previously known general upper bound for χε(Kn) from 2n−3 to b(3n−3)/2c.
Corollary 7 improves this bound for n≡ 0 (mod 4) and allows us to bound χε(K4m)

by 4m ≤ χε(Kn) ≤ 4m + 1. Finally, Corollary 9 determines χε(Kn) for all n ≡
2 (mod 4), n ≥ 6. Based on the results for even n and the values χε(K5)= 7 and
χε(K7)= 9, we formulate the following conjecture.

Conjecture 10. For all n ≥ 4, we have χε(Kn)= χ
′(Kn)+ 2.
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Bisection envelopes
Noah Fechtor-Pradines

(Communicated by Frank Morgan)

We study the envelope of the family of lines which bisect the interior region of
a simple, closed curve in the plane. We determine this bisection envelope for
polygons and show that polygons with no parallel pairs of sides are characterized
by their bisection envelope. We show that the bisection envelope always has at
least three and an odd number of cusps. We investigate the winding numbers
of bisection envelopes, and use this to show that there are an infinite number of
curves with any given bisection envelope and show how to generate them. We
obtain results on the intersections of bisecting lines. Finally, we give a relationship
between the internal area of a curve and that of its bisection envelope.

1. Introduction and overview

We study the envelope of the family of lines that bisect the interior region of a
given simple, closed curve in the plane. This concept, which we call the bisection
envelope, was explored in [Fusco and Pratelli 2011]; however, here we apply it to a
more general class of curves. Fusco and Pratelli only used the bisection envelope
in relation to Zindler sets — convex sets whose bisecting chords have fixed length:
they used as a tool to rewrite the problem of minimizing the area of a Zindler set
with fixed bisecting chord length.

Specifically, let S be a simple compact curve which is piecewise of class C1

with a finite number of pieces. Let L be the set of lines lθ that have direction θ
and bisect the interior of S. The bisection envelope of S is the envelope of the
lines in L. For curves S that are bisection convex (see Definition 2.2), we show
that the bisection envelope is the midpoint locus of bisecting chords. Furthermore,
we show that for curves that are strictly bisection convex (see Definition 2.3) we
can parametrize the bisection envelope by a function f such that f (θ) lies on lθ ,
and find the derivative of f , defined at all but a finite number of points. Where
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this derivative exists we show it is of the form vθ (cos θ, sin θ), and give conditions
on S such that for a scalar vθ ,

f (θ)= f (0)+
∫ θ

0
vt(cos t, sin t) dt.

We show that zeros of f ′(θ) (which are also zeros of vθ ) each corresponds to a
bisecting chord at whose endpoints the tangents to S are parallel. We also show a
relation between sign changes of vθ and the appearance of cusps on the bisection
envelope. These results are summarized in Theorem 1.

In Section 3, we examine the bisection envelopes of polygons, showing that they
are the union of sections of hyperbolas. Furthermore, for each hyperbola, there exist
two sides of S which are segments of its asymptotes. We also show Theorem 2,
which states that polygons with no mutually tangent sides are uniquely defined by
their bisection envelopes.

Section 4 addresses curves with identical bisection envelopes. We show how to
generate a curve S ′ from the bisection envelope B of a strictly bisection convex curve
S satisfying certain criteria by letting S ′ be the image of a function g, defined as

g(θ)= f (θ)+ r(θ)(cos θ, sin θ),

where r(θ) is a radius function that can be changed to produce different S ′. The
main result of Section 4 is Theorem 3, which states that if the generated S ′ does
not intersect B, then B is indeed the bisection envelope of both S and S ′.

To prove Theorem 3, we first prove Theorem 4, which concerns the winding
numbers of bisection envelopes. Specifically, let m P be the number of lines through
a point P tangent to B. We show that

m P =−2w(P)+ 1,

where w(P) is the winding number of B about P with θ increasing from 0 to π .
In Section 5, we examine the interior areas of S ′ and B. The interior area of B

is usually not well-defined, as it can be self-intersecting, therefore we define the
interior area of a curve 0 by the integral

A(0)=
1
2

∮
0

x dy− y dx .

From this definition, we use the construction in Section 4 to break apart A(S ′) to
give Theorem 5, which states that

A(S ′)=
∫ 2π

0

r2(θ)

2
dθ + 2A(B).

We also show that A(B) is never positive and use this to show that certain curves
with maximal interior area are rotationally symmetric (see Corollary 5.3). We
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conclude by computing the internal area of the bisection envelope of an equilateral
triangle, and thus deduce a constant universal to all triangles: 3

4 ln 2− 1
2 , the ratio

of the area of a triangle to the area of its bisection envelope.

2. Basic properties

For the entirety of this paper, it is assumed that S is a curve in R2 which is compact,
continuous, simple, and piecewise of class C1 with a finite number of pieces.

We now define the bisection envelope.

Definition 2.1. Given such a curve S, define L to be the family of lines that bisect
the interior area of S. Each lθ ∈ L is the bisecting line in direction θ . Define the
bisection envelope B of S to be the envelope of L; that is,

B =
{

P | P = lim
ε→0

lθ ∩ lθ+ε , 0≤ θ < π
}
.

We now restrict the class of curves S to be studied.

Definition 2.2. Define S and L as above. We say that S is bisection convex if for
all θ , lθ intersects S in exactly two points. Alternatively, for every point A on S, there
exists a unique point B also on S such that the line AB bisects the interior area of S.

We also create a tighter restriction.

Definition 2.3. Define S and L as before. We say that S is strictly bisection convex
if it is bisection convex and for all θ , lθ is not tangent to S. At any point where
there are two tangents to S — one from each side — the lθ through that point is
distinct from both tangents.

Henceforth, unless otherwise stated, it is assumed that S is strictly bisection
convex.

Define A(θ) and B(θ) to be the endpoints of the bisecting chord in direction θ ,
with B(θ)= A(θ +π). We distinguish between A(θ) and B(θ) by demanding that
for each point Q 6= A(θ), B(θ) on the bisecting chord, the vector A(θ)− Q points
in positive direction θ and the vector B(θ)− Q points in positive direction θ +π .

Proposition 2.4. Assume that S is bisection convex. Then A(θ) varies continuously
with θ .

Proof. First, we note that any two bisecting chords must intersect in the interior
of S, for if they did not, the interior of S would be split into three regions, one of
which would have zero area, which does not make sense.

From this, we have limε→0 lθ+ε = lθ , as the limit of the intersection point lθ+ε∩lθ
is bounded. This also implies that the limit as ε→ 0 of the distance from A(θ + ε)
to the intersection point lθ+ε ∩ lθ is bounded. Therefore, the limit as ε→ 0 of the
perpendicular distance from A(θ + ε) to lθ is zero.
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We have that limε→0 A(θ+ε) must be a point P on lθ which intersects S, where
for every other point Q on the bisecting chord with direction θ , the vector P − Q
points in positive direction θ . There is only one such point, A(θ); therefore,

lim
ε→0

A(θ + ε)= A(θ),

and A(θ) varies continuously with θ . �

From this, B(θ) also varies continuously with θ . We now determine the bisection
envelope of bisection convex curves.

Proposition 2.5. Let S be bisection convex. Fix θ and let A = A(θ) and B = B(θ).
Then,

lim
ε→0

lθ ∩ lθ+ε =
A+ B

2
. (2-1)

Proof. Let A(θ + ε) = Aε and B(θ + ε) = Bε . Let lθ ∩ lθ+ε = Oε , and let
limε→0 lθ ∩ lθ+ε = O; see Figure 1. Define a(ε) = d(Aε, Oε), b(ε) = d(Bε, Oε),
and extend to let a(0)= d(A, O) and b(0)= d(O, B).

Since lθ , lθ+ε are bisecting line segments,

A(AOε Aε)=A(BOεBε), (2-2)

where AOε Aε and BOεBε are not triangles, but rather the regions enclosed by
S, lθ , and lθ+ε .

For fixed ε, we have the inequality

1
2εm2

≤A(AOε Aε)≤ 1
2εM2,

where m and M are the minimum and maximum values of d(Aδ, Oε) for 0≤ δ ≤ ε.
As m ≤ a(ε)≤ M ,

1
2εm2

≤
1
2εa2(ε)≤ 1

2εM2.

The previous two inequalities have the same bounds, therefore∣∣A(AOε Aε)− 1
2εa2(ε)

∣∣≤ 1
2ε(M

2
−m2). (2-3)

From the continuity of S, we have

lim
ε→0

1
2ε(M

2
−m2)

ε
=

1
2(a

2(0)− a2(0))= 0.

Combining this with (2-3) and using an identical argument for A(BOεBε), we have∣∣A(AOε Aε)− 1
2εa2(ε)

∣∣= o(ε),∣∣A(BOεBε)− 1
2εb2(ε)

∣∣= o(ε).
(2-4)
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Bε

BA

Aε

Oε

ε

Figure 1. The situation considered in the proof of Proposition 2.5.

By the triangle inequality and (2-2), we have that∣∣ 1
2εa2(ε)− 1

2εb2(ε)
∣∣≤ ∣∣ 1

2εa2(ε)−A(AOε Aε)
∣∣+ ∣∣A(AOε Aε)− 1

2εb2(ε)
∣∣

=
∣∣A(AOε Aε)− 1

2εa2(ε)
∣∣+ ∣∣A(BOεBε)− 1

2εb2(ε)
∣∣.

It follows from this and (2-4) that∣∣ 1
2εa2(ε)− 1

2εb2(ε)
∣∣= o(ε),∣∣ 1

2a2(0)− 1
2 b2(0)

∣∣= 0,

a(0)= b(0). (2-5)

Therefore O is the midpoint of A and B. �

Hence, B is the locus of midpoints of the intersections of each lθ ∈ L with S.
Define a function f : R→ R2, with f (θ +π)= f (θ), such that f (θ) signifies

the point on B that is the midpoint of the bisecting chord of S with direction θ .
The image of this function is B. We are interested in the derivative of this function,
where it exists.

Proposition 2.6. Let S be strictly bisection convex. Fix θ such that S is of class C1

at the endpoints A(θ), B(θ) of the bisecting chord with direction θ . Then f ′(θ) is
defined, and if f ′(θ) is nonzero, then lθ is tangent to B at f (θ).

Proof. It suffices to derive f ′(θ) and show that it is either zero or a nonzero vector
pointing in direction θ .

Without loss of generality, let the axes be redefined such that direction θ is along
the x-axis.

Define A, B, Aε , Bε , Oε as in the proof of Proposition 2.5. Let

M =
A+ B

2
and Mε =

Aε + Bε
2

.

Let r = d(A,M)= d(M, B), r(ε)= d(Aε,Mε)= d(Mε, Bε), λ(ε)= d(Oε,Mε).
Let α(ε)= m 6 Aε AOε and β(ε)= m 6 BεBOε .

Let ah(ε) and av(ε) be the horizontal and vertical components of
−−→
AAε , positive in

directions θ and θ+π/2 respectively. Define bh(ε) and bv(ε) similarly; see Figure 2.
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By definition,

f ′(θ)= lim
ε→0

−−−→
M Mε

ε
= lim
ε→0

−−→
AAε +

−−→
B Bε

2ε

= lim
ε→0

(
ah(ε)+ bh(ε)

2ε
,

av(ε)+ bv(ε)
2ε

)
. (2-6)

By inspection,

av(ε)=−(r(ε)− λ(ε)) sin ε and bv(ε)= (r + λ(ε)) sin ε.

Thus

lim
ε→0

av(ε)+ bv(ε)
ε

= lim
ε→0

(r − r(ε)+ 2λ(ε))sin ε
ε
= 0, (2-7)

as limε→0 r(ε)= r and limε→0 Mε = limε→0 Oε =M , which follow from definition
and Proposition 2.5.

As ah(ε)=−av(ε) cot(α(ε)) and bh(ε)=−bv(ε) cot(β(ε)), we have

lim
ε→0

ah(ε)+bh(ε)

ε

= lim
ε→0

(
r(ε) cot(α(ε))−r cot(β(ε))−λ(ε) cot(β(ε))−λ(ε) cot(α(ε))

)sin ε
ε

= lim
ε→0

(
r(cot(α(ε))−cot(β(ε)))−cot(α(ε))(r−r(ε))−λ(ε) cot(β(ε))

−λ(ε) cot(α(ε))
)sin ε
ε

= r(cotα−cotβ), where α = lim
ε→0

α(ε), β = lim
ε→0

β(ε). (2-8)

This follows from the same limits stated earlier, as S is strictly bisection convex
and thus neither α nor β are 0 or π . Note that α and β are not necessarily defined —
the limits only exist if S is of class C1 locally at A and B, and thus α and β are
not defined for only a finite number of values of θ . Where they are defined, we can
combine (2-6), (2-7), and (2-8), giving

f ′(θ)=
(

r(cotα− cotβ)
2

, 0
)
, (2-9)

and so f ′(θ) is defined. Since f ′(θ) has y-component 0, it points in direction θ
if it is nonzero. �

Directly from (2-9), we have:

Corollary 2.7. We have f ′(θ)= 0 if and only if the tangents to S at the endpoints
of the bisecting chord with direction θ are parallel, that is, when α = β.

Proposition 2.6 can be further extended to cover more points on B.
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Bε

BA

Aε

Oε
MεM

α

β

av(ε)

ah(ε)

λ(ε) bh(ε)

bv(ε)

ε

Figure 2. The situation considered in the proof of Proposition 2.6.

Proposition 2.8. If f ′ is zero or undefined at a finite number of points, then for
all θ , lθ is tangent to B at f (θ).

Proof. Define tθ to be the tangent to B at f (θ).
If there are only a finite number of points for which f ′ is zero or undefined, then

there are only a finite number of values of θ for which Proposition 2.6 does not
hold. Thus, around any of these values θ0, there exists a neighborhood for which
Proposition 2.6 does hold. For small ε, θ0+ ε will lie in this neighborhood. Also,
f is continuous, so the lines lθ ∈ L vary continuously with θ , and it is clear that

tθ0 = lim
ε→0

tθ0+ε = lim
ε→0

lθ0+ε = lθ0 . �

From the derivation in Proposition 2.6, it is true that wherever f ′ is defined, it
points in direction θ ; thus, each defined f ′(θ) is a scalar multiple of (cos θ, sin θ).

Also from Proposition 2.6, we have:

Proposition 2.9. Wherever f ′(θ) is defined, f ′ is continuous at θ .

Proof. From (2-9) we have that, where f ′(θ) is defined, it is continuous if r , cotα,
and cotβ vary continuously with θ .

We have that r is half of the distance between the points A(θ) and B(θ), which
vary continuously by Proposition 2.4, and therefore varies continuously for any θ .

From the fact that S is strictly bisection convex, the angle α must remain
between 0 and π ; therefore, cotα varies continuously if α varies continuously.
The angle α is defined as the difference in direction of the bisecting line and the
direction of the tangent to S at A(θ). The direction of the bisecting line is θ , so it
varies continuously. Where f (θ) is defined, S is of class C1 locally at A(θ), and
as A(θ) is a continuous parametrization of S, the tangents to S around A(θ) vary
continuously with θ . Thus α varies continuously with θ .

An identical argument can be used to show that β varies continuously with θ ,
and the result follows. �

From this, we have that f ′ is undefined in at most a finite number of places over
any period of length 2π , and it is only at these points that it is discontinuous.
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Definition 2.10. Define vθ := f ′(θ) · (cos θ, sin θ), where f ′ is defined. Then vθ
has the following properties:

(1) |vθ | = | f ′(θ)|.

(2) vθ+π =−vθ .

(3) f ′(θ)= vθ (cos θ, sin θ).

(4)
∫ θ0+π

θ0
vθ (cos θ, sin θ) dθ = (0, 0).

These follow directly from the definition of vθ and from Proposition 2.6. Also
note that the integral shown is defined, as the number of discontinuities of vθ over
the interval is the same as the number of discontinuities of f ′, thus finite, and the
set of discontinuity points has measure 0.

Proposition 2.11. If vθ is not identically zero, then over any interval [θ0, θ0+π ]

where vθ0 6= 0, vθ changes sign an odd number of times, and at least thrice.

Proof. As vθ0+π = −vθ0 , we know that vθ must change sign at least once in the
interval and must change an odd number of times.

Assume that only one sign change occurs over the interval [θ0, θ0+π ]. Then
there exists a value θ1 (not necessarily unique) with θ0 < θ1 < θ0+π such that over
the interval [θ0, θ1], vθ ≤ 0 and over the interval [θ1, θ0+π ], vθ ≥ 0, or vice versa.
Either way, this ensures that vθ does not change sign over the interval [θ1, θ1+π ].

Consider the component of f ′(θ) in direction θ1+π/2. We observe that

0=
∫ θ1+π

θ1

f ′(θ) · (cos(θ1+π/2), sin(θ1+π/2)) dθ

=

∫ θ1+π

θ1

vθ (cos θ, sin θ) · (−sin(θ1), cos(θ1)) dθ

=

∫ θ1+π

θ1

vθ sin(θ − θ1) dθ. (2-10)

Neither vθ nor sin(θ − θ1) change sign between the bounds of the integral; thus,
their product does not change sign (and is not identically zero by assumption), and
(2-10) cannot be equal to 0, a contradiction.

This implies there is more than one sign change in any such interval [θ0, θ0+π ],
so there are at least three, the next odd number. �

Remark 2.12. The notion of sign changes of vθ has a geometric manifestation. For
every point or interval where vθ changes sign, a cusp or corner, respectively, appears
on B. If vθ is zero at a finite number of points, then corners do not occur, and we
have one cusp per sign change in an interval of length π . With these conditions, we
extend Proposition 2.11 to B geometrically — if B is not a point and has no corners,
then it has an odd number of cusps, and at least three cusps.
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Note that this collection of results becomes much cleaner if we assume S to be
entirely of class C1.

Theorem 1. If S is strictly bisection convex and of class C1, then there exist n ≥ 3
lines lθ that bisect the interior area of S such that the tangents to S at A(θ) and B(θ)
are parallel. If n is finite, then there exist m cusps on the bisection envelope B of S,
with n ≥ m ≥ 3 and m odd.

Proof. From our assumptions and Propositions 2.6 and 2.9, f ′ is defined everywhere
and is continuous; therefore, from the definition of vθ , we know that vθ is continuous.
Therefore, if we let m be the number of sign changes of vθ and n be the number of
zeros, we have n ≥ m. A zero of vθ is a zero of f (θ), and thus by Corollary 2.7,
there are n lines lθ such that the tangents to S at A(θ) and B(θ) are parallel. If n is
finite, then vθ is not identically zero, so by Proposition 2.11, m is odd and at least 3.
With n finite, no corners exist on B, so from Remark 2.12, we have that m is the
number of cusps on B. �

3. Bisection envelopes of polygons

From Proposition 2.5, we know that the bisection envelope of a bisection convex
curve is the midpoint locus of the bisecting chords of its interior area. We apply this
fact to the computation of the bisection envelope of a bisection convex polygon.

Let A(θ), B(θ) be the endpoints of the bisecting chord with direction θ , with
A(θ +π) = B(θ) = A(θ −π). If S is a polygon, we can split the interval [0, π)
into a finite number of subintervals [0, θ1), [θ1, θ2), . . . , [θn, π) such that on each
subinterval, the locus of each of A(θ) and B(θ) is a line segment.

Proposition 3.1. The locus of points M(θ) = (A(θ)+ B(θ))/2 over any of the
intervals [θi , θi+1) is either a section of a hyperbola or a point.

Proof. Let all points A(θ) lie on line k1 and all points B(θ) lie on line k2. If
k1 and k2 are parallel, it follows from Corollary 2.7 that the locus of M(θ) is
a point. Otherwise, k1 and k2 meet at a point Q. Let a(θ) = d(A(θ), Q) and
b(θ)= d(B(θ), Q).

If we construct the triangles 4A(θ)Q B(θ), they each have area 1
2a(θ)b(θ) sin γ ,

where γ is the angle between k1 and k2, a constant; see Figure 3. Furthermore, the
chords A(θ)B(θ) are area preserving on S; therefore, the triangles have constant
area, or

1
2a(θ)b(θ) sin γ = ca(θ)b(θ)=

2c
sin γ

= c′, (3-1)

for some constant c′.
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Q

A(θ)

B(θ)

M(θ)

k2

k1

γ

a(θ)

b(θ)

Figure 3. The situation considered in the proof of Proposition 3.1

Thus there exist distinct unit vectorsw1,w2 parallel to k1, k2 respectively such that

M(θ)= Q+
a(θ)w1+ b(θ)w2

2
= Q+

a(θ)w1+ (c′/a(θ))w2

2
. (3-2)

We see that M(θ) is a linear transformation of the set of points(
a(θ),

c′

a(θ)

)
,

which represents a section of a hyperbola. Note that the image of a hyperbola under
a linear transformation is itself a hyperbola. �

Proposition 3.2. On any such interval [θi , θi + 1), if the locus of M(θ) is a section
of a hyperbola, the asymptotes of the hyperbola are the two lines k1 and k2, where
k1 and k2 contain all A(θ) and B(θ), respectively.

The proof of Proposition 3.2 is left to the reader.

Proposition 3.3. The bisection envelope B of a polygon S is the union of a finite
number of sections of hyperbolas. Let the set of all asymptotes of these hyperbolas
be H , and let the set of all lines that contain the sides of S be G. Then H ⊆ G, with
equality if no two lines in G are parallel.

This follows from the previous two propositions.
This makes the calculation of a bisection envelope of a polygon significantly eas-

ier — one must only find the bisecting lines through the vertices and their midpoints;
this then strictly defines each of the hyperbolas on each section [θi , θi+1).

Example 3.4. The bisection envelope of an equilateral triangle 4ABC of side
length two centered on the origin with A = (0, 2/

√
3), B = (1,−1/

√
3), and

C = (−1,−1/
√

3) can be found as follows.
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Figure 4. The bisection envelope of an equilateral triangle found in Example 3.4.

Let A′, B ′,C ′ be on the triangle such that the chord AA′ is bisecting, and so
forth. The bisection envelope is split into 3 sections: a section of a hyperbola from
(A+ A′)/2 to (B+ B ′)/2 with asymptotes AC and BC , and two other congruent
hyperbolic sections; see Figure 4.

Specifically, we have

A′ =
(

0,−
1
√

3

)
, B ′ =

(
−

1
2
,

1

2
√

3

)
, C ′ =

(
1
2
,

1

2
√

3

)
.

Therefore
A+A′

2
=

(
0,

1

2
√

3

)
,

B+B ′

2
=

(
1
4
,−

1

4
√

3

)
,

C+C ′

2
=

(
−

1
4
,−

1

4
√

3

)
. (3-3)

The three hyperbolas, from A to B, B to C , and C to A respectively, are((
y−

2
√

3

)
+
√

3 x
)(

y+
1
√

3

)
= c1, (3-4)((

y−
2
√

3

)
−
√

3 x
)((

y−
2
√

3

)
+
√

3 x
)
= c2, (3-5)(

y+
1
√

3

)((
y−

2
√

3

)
−
√

3 x
)
= c3. (3-6)

By plugging in (3-3) above, we can find

c1 =−
3
4 , c2 =

3
2 , c3 =−

3
4 .

This defines the bisection envelope fully.

Theorem 2. A polygon with no mutually parallel sides is uniquely defined by its
bisection envelope.

Proof. From observations in Proposition 3.1, the assumptions in the theorem give us
that the bisection envelope of this polygon does not contain any static points. This
is to say, over each of the intervals [θi , θi+1), M(θ) is not a point but a section of a
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hyperbola, and therefore, there exists a bijection between the points on the interval
[θi , θi+1) and the points on the locus of the restriction of M(θ) to that range.

From Proposition 3.2, we know the two lines k1, k2, upon which A(θ), B(θ)
must lie. A(θ) and B(θ) must each lie on the line in direction θ through M(θ), a
line distinct from k1 and k2, so the points A(θ), B(θ) are strictly determined over
the interval [θi , θi+1). This can be done for every such interval, and the union of all
such intervals is [0, π); thus we achieve uniqueness for the loci of A(θ), B(θ) over
all θ , giving the result. �

4. Backwards construction

The natural question arises: are there multiple curves with the same bisection
envelope? Given a bisection envelope B, can we generate all suitable curves with B
as their bisection envelope?

First we ask, what curves can be bisection envelopes? Suppose that B is a
bisection envelope associated to some strictly bisection convex curve S which is
piecewise of class C1 with a finite number of pieces. Its bisecting lines are L= {lθ },
as explained earlier.

Define f : R → R2 by f (θ) = limε→0 lθ ∩ lθ+ε . From Proposition 2.5, we
know this is the midpoint of the bisecting chord in direction θ , described by the
function M(θ) presented in Proposition 3.1. Then we have:

Proposition 4.1. The function f is continuous.

Proof. This follows immediately from the definition M(θ) := (A(θ)+ B(θ))/2, as
we have from Proposition 2.4 that A(θ) and B(θ) vary continuously along S. �

Since S has tangents which vary continuously everywhere except a finite number
of points, by Proposition 2.6, f ′ is defined everywhere but a finite number of points,
and where it is defined, it is of the form vθ (cos θ, sin θ) for a scalar vθ . Therefore,
it is possible to define f as the Lebesgue integral of f ′, giving

f (θ) := f (0)+
∫ θ

0
vt(cos t, sin t) dt. (4-1)

The value of f (0) is unimportant — it can just be set to the origin.
Now we generate a curve S ′ from f and a radius function r : R→ R, with

r(θ + π) = r(θ) and r(θ) > 0. We define the function r to be continuous and
piecewise of class C1 with a finite number of pieces.

Define S ′ to be the image of the function

g(θ) := f (θ)+ r(θ)(cos θ, sin θ). (4-2)
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We have then that S ′ is continuous, compact, and piecewise of class C1 with a
finite number of pieces; however, we do not have that it is simple. It is clear that

g(θ + 2π)= g(θ) and
g(θ)+ g(θ +π)

2
= f (θ).

Thus the chords g(θ)g(θ +π) are area-preserving if S ′ has a well-defined interior
and if the chords lie strictly within this interior except at their endpoints, that is,
if S ′ is simple and bisection convex. The remainder of Section 4 is concerned with
the proof of Theorem 3.

Theorem 3. Let f, g be defined as above.
Let S ′ be the image of g and B be the image of f . If S ′∩B = ∅, then B is the

bisection envelope of S ′.

To prove Theorem 3, we use a consequence of the following result.

Theorem 4. Let f be defined as above with image B. Let L be the set of lines lθ
through f (θ) in direction θ for all θ .

Given a point P ∈ R2
\B, let m P be the number of lines in L for which P lies

on lθ , and let w(P) be the winding number of f around P with θ increasing over
an interval of π . Then

m P =−2w(P)+ 1. (4-3)

The proof of Theorem 4 begins by looking at the winding number of a simpler
function.

Lemma 4.2. Define the function

fP(θ)= ( f (θ)− P)
(

cos θ −sin θ
sin θ cos θ

)
.

If f (θ) 6= P for all θ then, over the interval 0 ≤ θ < 2π , let n P be the number of
values of θ for which fP(θ) lies on the x-axis, and let wP be the winding number of
fP(θ) about the origin. Then

wP =−
1
2 n P . (4-4)

Proof. We have

f ′P(θ)= f ′(θ)
(

cos θ −sin θ
sin θ cos θ

)
+ ( f (θ)− P)

(
−sin θ −cos θ

cos θ −sin θ

)
= vθ (1, 0)+ fP(θ)

(
0 −1
1 0

)
= (vθ + y,−x), where fP(θ)= (x, y). (4-5)

Note that if x > 0, y′ < 0, and vice versa.
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Now consider fP(θ) over the half-open interval [0, 2π). We have fP(θ +π)=

fP(θ), so the image of fP is a closed loop, and fP(θ) is never equal to (0, 0), so it
has a winding number about the origin.

Let θ1 < θ2 < · · · < θn P be the values of θ for which fP(θ) lies on the x-axis.
Let fP(θ1)= (x1, 0) and so on, with xi 6= 0 by assumption. Then

xi = g− f ′P(θi ) · (0, 1)=− lim
h→0+

f (θi + h) · (0, 1)− f (θi ) · (0, 1)
h

= g− lim
h→0+

f (θi + h) · (0, 1)
h

.

Similarly,

xi+1 = lim
λ→0+

f (θi − λ) · (0, 1)
λ

.

But in the domain (θi , θi+1) we have that f (θ) · (0, 1) is continuous and, by our
choices of θi , nonzero, so it has constant sign. Therefore, for all h, λ sufficiently
small and greater than zero,

sign
(

f (θi + h) · (0, 1)
)
= sign

(
f (θi+1− λ) · (0, 1)

)
.

Thus

sign xi =− sign
f (θi + h) · (0, 1)

h
=− sign

f (θi+1− λ) · (0, 1)
λ

=− sign xi+1.

Therefore the xi alternate signs. This also implies n P is even and xi is positive
for n P/2 values.

The winding number of a curve 0 about a point P can be calculated descriptively
by fixing a ray R from P in any direction and counting the number of intersections
of 0 with R. For each intersection where the derivative is counterclockwise about P,
we add 1, and where the derivative is clockwise, we subtract 1. The final total
is the winding number. Note that if the derivative is along the ray or zero at any
intersections, a more subtle approach is required, but this is not the case here.

If we fix the ray from the origin along the x-axis in positive direction for fP , we
see from (4-5) that at each intersection the derivative is counterclockwise about the
origin; therefore wP =−

1
2 n P . �

Now we show the relation between the winding numbers of f (θ) about P and
fP(θ) about the origin.

Lemma 4.3. Let the winding number of f (θ) about P over the interval [0, π) be
w(P) and the winding number of fP(θ) about the origin over the interval [0, 2π)
be wP . Then

wP = 2w(P)− 1. (4-6)
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Proof. An alternative method of determining the winding number of a function
relies on the calculation of an integral; several forms exist, although this proof uses
the form

1
2π

∫ b

a

f ′(x) ·
(
( f (x)− P)

( 0
−1

1
0

))
| f (x)− P|2

dx (4-7)

for a function f (x) about P on the interval (a, b). Now we calculate

wP =
1

2π

∫ 2π

0

f ′P(θ) ·
(
( fP(θ)− 0)

( 0
−1

1
0

))
| fP(θ)− 0|2

dθ

=
1

2π

∫ 2π

0

(
f ′(θ)

( cos θ
sin θ

−sin θ
cos θ

)
+ ( f (θ)− P)

(
−sin θ

cos θ
−cos θ
−sin θ

))
| f (θ)− P|2

·

(
( f (θ)− P)

( cos θ
sin θ

−sin θ
cos θ

)( 0
−1

1
0

))
dθ

=
1

2π

∫ 2π

0

(
f ′(θ)

( cos θ
sin θ

−sin θ
cos θ

))
·

(
( f (θ)− P)

( cos θ
sin θ

−sin θ
cos θ

)( 0
−1

1
0

))
| f (θ)− P|2

dθ

+
1

2π

∫ 2π

0

(
( f (θ)− P)

(
−sin θ

cos θ
−cos θ
−sin θ

))
·

(
( f (θ)− P)

( sin θ
−cos θ

cos θ
sin θ

))
| f (θ)− P|2

dθ.

For the first half of this sum we note that
( cos θ

sin θ
−sin θ

cos θ

)
and

( 0
−1

1
0

)
commute, and

recall that a dot product is unaffected by an isometry applied to both multiplicands.
Furthermore, note that f is periodic in π , so this integral can be split into two
identical parts. For the second half of the sum, recall that v · (−v)=−|v|2. This
allows us to simplify to

wP = 2

(
1

2π

∫ π

0

f ′(θ) ·
(
( f (θ)− P)

( 0
−1

1
0

))
| f (θ)− P|2

dθ

)
+

1
2π

∫ 2π

0
−1 dθ

= 2w(P)− 1. �

The results of the two preceding lemmas can be combined to achieve Theorem 4.

Proof of Theorem 4. When P is on lθ , fP(θ) lies on the x-axis, but

fP(θ +π)=− fP(θ) 6= (0, 0) and lθ+π = lθ ,

so the number m P of distinct lines lθ containing P is equal to half the number of
times fP(θ) lies on the x-axis in the interval [0, 2π). Using Lemmas 4.2 and 4.3,

m P = n P/2=−wP =−2w(P)+ 1. �
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Corollary 4.4. Every point P in the exterior of B lies on precisely one bisecting
line lθ .

Proof. Since P is on the exterior of B, we have w(P)= 0, and the result follows
from Theorem 4. �

Remark 4.5. This also implies that no bisection envelope can have strictly positive
winding number about any point, or the value m P would be negative and have
no meaning. Intuitively, this could be observed from fP , which may not wind
counterclockwise about the origin.

Theorem 4 can be used to show the first step in proving Theorem 3.

Lemma 4.6. If S ′ lies on the exterior of B, then it is not self-intersecting and each lθ
intersects S ′ exactly twice, at g(θ) and g(θ +π).

Proof. If either of these conditions are false, there exist two lines lθ1, lθ2 that intersect
at some point on S ′, say at P . But S ′, and thus P , lies on the exterior of B; thus
w(P)= 0. By Theorem 4, this leads to the contradiction

2≤ m P = 2(−0)+ 1= 1. �

Lemma 4.7. Given two continuous, compact curves C1,C2 ∈ R2, if C2 lies fully in
the interior of C1, then for each P ∈ R2, there exists a point P1 ∈ C1 such that for
all P2 ∈ C2,

d(P1, P) > d(P2, P).

Proof. If P2 lies on the interior of C1, then there is a ball around P2 that lies on the
interior of C1. The ray starting at P passing through P2 extends to points past P2 but
still in the interior of C1. Since C1 is bounded, eventually this ray must intersect C1

at a point Q, and d(Q, P) > d(P2, P).
Let P1 be a point on C1 such that d(P1, P) is maximal (this can be done as C1

is compact). Then
d(P1, P)≥ d(Q, P) > d(P2, P)

for all P2. This can be done for every point P. �

Lemma 4.8. S ′ cannot lie fully in the interior of B.

Proof. From the definition of g, for a point P1 on B, there exist points P2 = P1+ a
and P ′2 = P1− a on S ′ for some nonzero vector a (r is defined to be greater than
zero); then P2, P1, and P ′2 are collinear in that order.

It follows that given any reference point P , P1 cannot be the furthest of these
points from P; thus by the contrapositive of Lemma 4.7, S ′ is not fully in the
exterior of B. �
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Proof of Theorem 3. If S ′∩B=∅, then S ′ lies fully in the exterior of B — it cannot
lie in the interior by Lemma 4.8. By Lemma 4.6, S ′ must not be self-intersecting,
so it has a well-defined interior, and each line lθ touches S ′ at exactly two points.
Thus the chords gθgθ+π are fully contained in the interior of S ′. By Proposition 2.5,
they are area preserving, and gθgθ+π = gθ+πgθ+2π , so they are bisecting lines of
the interior of S ′. From the definitions, f (θ) is the midpoint of g(θ) and g(θ +π),
so again by Proposition 2.5, B is the bisection envelope of S ′. �

Remark 4.9. Note that S is strictly bisection convex; therefore by Proposition 2.6,
there are no points on B where the limit of | f ′(θ)| is infinite. However, B is also
the bisection envelope of S ′, so S ′ is also strictly bisection convex.

Remark 4.10. If the radius function r is sufficiently large, S ′ cannot intersect B.
This implies that for any strictly bisection convex S, there are an infinite number
of other strictly bisection convex curves S ′ that share its bisection envelope, each
generated by a different r .

5. Relations between areas

Using the construction from the previous section, we now determine the interior
area of S ′ as the sum of two integrals, one involving r(θ) and another that gives
the interior area of f (θ). Note that we assume f and g are differentiable almost
everywhere throughout this section.

We define (and denote) interior area of a closed, continuous curve purely based
upon the line integral

A(0)=
1
2

∮
0

x dy− y dx (5-1)

irrespective of whether the curve has a well-defined interior. Note that whenever the
curve 0 is simple, that is, when discussion of area makes sense, this area function
gives its exact area, positive or negative depending on the direction we integrate
about 0. Also note that this integral functions equivalently to the double integral∫∫

R2\0

w(0, P) dx dy, (5-2)

where P = (x, y) and w(0, P) is the winding number of 0 about P .

Theorem 5. A(S ′)=
∫ 2π

0

r2(θ)

2
dθ + 2A(B). (5-3)

Proof. We recall that S ′ is parametrized by

g(θ)= f (0)+
∫ θ

0
vt(cos t, sin t) dt + r(θ)(cos θ, sin θ).

Since f (0) is arbitrary, we take it to be zero.
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Next we take the derivative and separate the x and y components, giving

g′(θ)=
(
vθ cos θ + r ′(θ) cos θ − r(θ) sin θ, vθ sin θ + r ′(θ) sin θ + r(θ) cos θ

)
.

We expand and simplify A(S ′) using standard trigonometric identities.

A(S ′)=
1
2

∮
S

x dy− y dx =
1
2

∫ 2π

0

(
x

dy
dθ
− y

dx
dθ

)
dθ

=
1
2

∫ 2π

0

((∫ θ

0
vt cos t dt + r(θ) cos θ

)(
vθ sin θ + r ′(θ) sin θ + r(θ) cos θ

)
−

(∫ θ

0
vt sin t dt + r(θ) sin θ

)(
vθ cos θ + r ′(θ) cos θ − r(θ) sin θ

))
dθ

=

∫ 2π

0

r2(θ)

2
dθ +

1
2

∫ 2π

0

∫ θ

0
vtvθ (sin(θ − t)) dt dθ

+
1
2

∫ 2π

0

(
r ′(θ)

∫ θ

0
vt sin(θ − t) dt + r(θ)

∫ θ

0
vt cos(θ − t) dt

)
dθ. (5-4)

Observe that, from the points in Definition 2.10,∫ θ+π

0
vt sin((θ +π)− t) dt =

∫ θ+π

π

−vt+π sin((θ +π)− t) dt

=−

∫ θ

0
vt sin(θ − t) dt. (5-5)

Similarly, ∫ θ+π

0
vt cos((θ +π)− t) dt =−

∫ θ

0
vt cos(θ − t) dt. (5-6)

By splitting the integrals and replacing variables, the final line of (5-4) can be
rewritten to give

1
2

∫ π

0
r ′(θ)

∫ θ

0
vt sin(θ − t) dt dθ + 1

2

∫ π

0
r ′(θ +π)

∫ θ+π

0
vt sin(θ +π − t) dt dθ

+
1
2

∫ π

0
r(θ)

∫ θ

0
vt cos(θ− t) dt dθ+ 1

2

∫ π

0
r(θ+π)

∫ θ+π

0
vt cos(θ+π− t) dt dθ.

As r(θ +π)= r(θ), this can further be written as

1
2

∫ π

0
r ′(θ)

(∫ θ

0
vt sin(θ − t) dt +

∫ θ+π

0
vt sin(θ +π − t) dt

)
dθ

+
1
2

∫ π

0
r(θ)

(∫ θ

0
vt cos(θ − t) dt +

∫ θ+π

0
vt cos(θ +π − t) dt

)
dθ.
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However, from (5-5) and (5-6) this entire expression amounts to zero. From (5-4),
we are left with

A(S ′)=
∫ 2π

0

r2(θ)

2
dθ + 1

2

∫ 2π

0

∫ θ

0
vtvθ (sin(θ − t)) dt dθ. (5-7)

In a similar fashion to the above, the second term can be rewritten as

1
2

∫ π

0
vθ

(∫ θ

0
vt sin(θ − t) dt −

∫ θ+π

0
vt sin(θ +π − t) dt

)
dθ.

Note the change in the negative sign, as vθ+π =−vθ . By (5-5) this is equal to

2
(

1
2

∫ π

0

∫ θ

0
vtvθ sin(θ − t) dt dθ

)
. (5-8)

Now applying (5-1) to B, we recall that B is parametrized by

f (θ)= f (0)+
∫ θ

0
vt(cos t, sin t) dt,

with derivative
f ′(θ)= (vθ cos θ, vθ sin θ).

Thus

A(B)= 1
2

∮
B

x dy− y dx = 1
2

∫ π

0

(
x

dy
dθ
− y

dx
dθ

)
dθ

=
1
2

∫ π

0

(∫ θ

0
vt cos t vθ sin θ dt −

∫ θ

0
vt sin t vθ cos θ dt

)
dθ

=
1
2

∫ π

0

∫ θ

0
vtvθ sin(θ − t) dt dθ. (5-9)

Combining (5-7), (5-8), and (5-9), it is finally achieved that

A(S ′)=
∫ 2π

0

r2(θ)

2
dθ + 2A(B). �

This formula may be useful in determining the area of a bisection envelope where
the integral (5-9) is much more difficult than finding r(θ) then calculating (5-3).

A property of B described in Remark 4.5 allows us to bound A(B).

Proposition 5.1. A(B)≤ 0.

Proof. Remark 4.5 notes that, for all P 6∈ B,

w(B, P)≤ 0.
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Thus from (5-2),

A(B)=
∫∫

R2\B
w(B, P) dx dy ≤ 0. �

Proposition 5.2. Let S ′ be piecewise of class C1 with a finite number of pieces. If
A(B) = 0, then B is a point.

Proof. If A(B)= 0, then from the reasoning in Proposition 5.1, w(B, P)= 0 for
all P not on B.

Consider three bisecting lines lθ1, lθ2, lθ3 with mutual intersections A, B,C . As-
sume the three points are distinct. From continuity, we have that all points P in the
interior of 4ABC lie on at least three lines lθ . By Theorem 3, this implies that for
all such P , w(P)≤−1, and therefore P must be on B. Hence, B is a space-filling
curve on some subset of R2 that contains 4ABC . However, f is of class C1 at all
but a finite number of points, so it cannot be a space-filling curve.

It follows that any three bisecting lines are concurrent, and thus, all bisecting
lines are concurrent, and B is a point. �

Corollary 5.3. Of all bisection convex curves S ′ piecewise of class C1 with a finite
number of pieces such that ∫ 2π

0

r2(θ)

2
dθ = k

for some fixed k, those with maximal interior area have 180◦ rotational symmetry.

Proof. From Theorem 5 and Proposition 5.1, these curves clearly have maximal
interior area when A(B)= 0. By Proposition 5.2, this is only possible if B is a point,
say P . From the definition of g, S ′ has 180◦ rotational symmetry about P . �

Remark 5.4. The proof of Corollary 5.3 shows that if we drop the restriction that S ′

is piecewise of class C1 with a finite number of pieces and rather assume it is only
piecewise of class C1, then the bisection envelope consists of all the points of
intersection between bisecting lines and this envelope might be space-filling. We
are unable to rule out the possibility of a space-filling bisection envelope and leave
it as an open question: can f be differentiable almost everywhere and space-filling?

Lastly, we use Theorem 5 to find the internal area of the bisection envelope of
an equilateral triangle calculated in Example 3.4.

Example 5.5. The bisection envelope of a triangle is not self-intersecting; therefore
its interior area is well-defined and is recognized to be −A(B). Rearranging
Theorem 5, we have

−A(B)=
∫ 2π

0 r2(θ)/2 dθ −A(S ′)
2

.
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Now A(S ′) is the area of an equilateral triangle with side length 2 or
√

3. Also, by
symmetry, r has period π/3, and therefore we rewrite

−A(B)= 3
∫ π/3

0

r2(θ)

2
dθ −

√
3

2
. (5-10)

Rotation of the triangle has no effect on area, and thus we rotate so that the three
medians have directions 0, π/3, 2π/3 with A, B,C being the vertices that lie on
the respective medians.

Let A(θ), B(θ) be the intersection points of lθ with the triangle, where A(0)= A,
B(π/3)= B. Let a(θ)= d(A(θ),C) and b(θ)= d(B(θ),C). Since the A(θ)B(θ)
are bisecting chords, we have 1

2a(θ)b(θ) sin(π/3)=
√

3/2, which implies

a(θ)b(θ)= 2. (5-11)

We now apply the sine and cosine laws to get 2r(θ) sin
(
π

2
− θ

)
= a(θ)sin π

3
on

the one hand, which yields

a(θ)=
4
√

3
r(θ) cos θ, (5-12)

and on the other hand

4r2(θ)= a2(θ)+ b2(θ)− 2a(θ)b(θ) cos π
3
. (5-13)

Combining (5-11), (5-12), and (5-13) we have

(2− 8
3 cos2 θ)r4(θ)+ r2(θ)−

3
8 cos2 θ

= 0. (5-14)

Thus we find
r2(θ)

2
=

1±
√

3 tan θ
32
3 cos2 θ − 8

. (5-15)

We choose the ± to be a −, otherwise as θ → π/6, we have that r2(θ) goes to
infinity. This function is integrable by standard methods by a change of variable to
u = cot θ and then through use of partial fractions. We calculate∫ π/3

0

r2(θ)

2
dθ = 1

8

√
3 ln(1+

√
3 tan θ)

∣∣π/3
0 =

√
3

4
ln 2. (5-16)

This can now be inserted back into (5-10), giving the result

−A(B)= 3
√

3
4

ln 2−
√

3
2
≈ 0.03440. (5-17)

Remark 5.6. As ratios of areas and ratios of lengths along a line are unaffected by
linear transformations, the bisection envelope of a curve will remain unchanged
under a linear transformation. As any triangle is the image of any other triangle
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under some linear transformation, it follows that the ratio A(B) :A(S ′) is a constant
when S ′ is a triangle. Therefore, for all triangles S ′,

A(B)
A(S ′)

=
3
4 ln 2− 1

2 ≈ 0.01986. (5-18)

In other words, every triangle has a bisection envelope with area roughly a fiftieth
of its area.
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Degree 14 2-adic fields
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Christopher Shill and Erin Strosnider
(Communicated by Nigel Boston)

We study the 590 nonisomorphic degree 14 extensions of the 2-adic numbers
by computing defining polynomials for each extension as well as basic invariant
data for each polynomial, including the ramification index, residue degree, dis-
criminant exponent, and Galois group. Our study of the Galois groups of these
extensions shows that only 10 of the 63 transitive subgroups of S14 occur as a
Galois group. We end by describing our implementation for computing Galois
groups in this setting, which is of interest since it uses subfield information, the
discriminant, and only one other resolvent polynomial.

1. Introduction

Hensel’s p-adic numbers are a foundational tool in 21st century number theory, with
applications to such areas as number fields, elliptic curves, and representation theory
(among others). They are also the subject of much current research themselves, with
several studies aimed at classifying arithmetic invariants of finite extensions of the
p-adic numbers. Among the most useful invariants to identify are the ramification
index, residue degree, discriminant, and Galois group (of the normal closure) of
each extension. For such a pursuit, we can take the following classical result as
motivation [Lang 1994, p. 54].

Theorem 1.1. For a fixed prime number p and positive integer n, there are only
finitely many nonisomorphic extensions of the p-adic numbers of degree n.

When p - n, all extensions are tamely ramified and are well understood [Jones
and Roberts 2006]. Likewise, when p = n, the situation has been solved since the
early 1970s [Amano 1971; Jones and Roberts 2006]. The difficult cases where p | n
and n is composite have been dealt with on a case-by-case basis for low degrees n
and small primes p. Jones and Roberts [2004; 2006; 2008] have classified the cases
where n ≤ 10, and the case of degree 12 is dealt with in [Awtrey 2012; Awtrey and
Shill 2013; Awtrey et al. ≥ 2015a; ≥ 2015b].
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In this paper, we are concerned with classifying degree 14 extensions of the 2-adic
numbers. In particular, we focus on computing defining polynomials for each field
as well as the Galois group for each of these polynomials. The other invariants are
straightforward to compute using basic number field commands in [PARI 2012]. In
Section 2, we lay the theoretical groundwork for computing Galois groups of p-adic
fields using the theory of ramification groups. A consequence of this section is that
every degree 14 extension of Q2 has a unique septic subfield. In Section 3, we use the
result of Section 2 to compute defining polynomials. In the final section, we discuss
our method of determining the Galois groups of the polynomials found in Section 3.

2. Ramification groups

The aim of this section is to show that every degree 14 2-adic field has a unique septic
subfield. To accomplish this, we introduce the basic properties of ramification groups
and use those properties to deduce structural information about degree 14 extensions
of Q2. For a more detailed exposition of ramification group theory, see [Serre 1979].

Definition 2.1. Let L/Qp be a Galois extension with Galois group G. Let v be the
discrete valuation on L and let ZL denote the corresponding discrete valuation ring.
For an integer i ≥−1, we define the i -th ramification group of G to be the set

Gi = {σ ∈ G : v(σ (x)− x)≥ i + 1 for all x ∈ ZL}.

The ramification groups define a sequence of decreasing normal subgroups which
are eventually trivial and which give structural information about the Galois group
of a p-adic field. For example, the following result is useful for determining possible
Galois groups of p-adic fields. A proof can be found in [Serre 1979, Chapter 4].

Lemma 2.2. Let L/Qp be a Galois extension with Galois group G, and let Gi

denote the i-th ramification group. Let p denote the unique maximal ideal of ZL

and U0 the units in L. For i ≥ 1, let Ui = 1+ pi .

(a) For i ≥ 0, Gi/Gi+1 is isomorphic to a subgroup of Ui/Ui+1.

(b) The group G0/G1 is cyclic and isomorphic to a subgroup of the group of roots
of unity in the residue field of L. Its order is prime to p.

(c) The quotients Gi/Gi+1 for i ≥ 1 are abelian groups and are direct products of
cyclic groups of order p. The group G1 is a p-group.

(d) The group G0 is the semidirect product of a cyclic group of order prime to p
with a normal subgroup whose order is a power of p.

(e) The groups G0 and G are both solvable.

Suppose f is an irreducible polynomial of degree 14 defined over Q2 and let G
be its Galois group. From Lemma 2.2, we see that G is a solvable transitive
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subgroup of S14. Furthermore, G contains a solvable normal subgroup G0 such that
G/G0 is cyclic. The group G0 contains a normal subgroup G1 such that G1 is a
2-group (possibly trivial). Moreover, G0/G1 is cyclic of order dividing 2[G:G0]− 1.
Direct computation on the 63 transitive subgroups of S14 (using [GAP 2008],
for example) shows that only 15 of the 63 are possibilities for the Galois group
of f . Using the transitive group notation in [GAP 2008], these 15 groups are
TransitiveGroup(14,n), where n is one of the following possibilities:

{1, 4, 5, 6, 7, 9, 11, 18, 21, 29, 35, 40, 41, 44, 48}.

Showing that every degree 14 extension of Q2 has a unique septic subfield amounts
to showing that each of the above 15 groups possesses the corresponding group-
theoretic property. In particular, let K/Q2 be a degree 14 extension defined by an
irreducible polynomial f , and consider the subfields of K up to isomorphism. The
list of the Galois groups of the Galois closures of the proper nontrivial subfields
of K is important for our work. We call this the subfield Galois group content of K ,
and we denote it by sgg(K ).

The sgg content of an extension is an invariant of its Galois group. Indeed,
suppose the normal closure of K/Q2 has Galois group G and let E be the subgroup
fixing K . By Galois theory, the nonisomorphic subfields of K correspond to the
intermediate subgroups F , up to conjugation, such that E ≤ F ≤ G. Specifically,
if K ′ is a subfield and F is its corresponding intermediate group, then the Galois
group of the normal closure of K ′ is equal to the permutation representation of G
acting on the cosets of F in G. Consequently, it makes sense to speak of the sgg
content of a transitive subgroup as well.

For each of these 15 groups, we used [GAP 2008] to compute their sgg content.
We found that 5 of these groups — 4, 7, 40, 41, 48 — had 7T4 in their sgg content.
This means that polynomials whose Galois group is one of these 5 possibilities
must define an extension with a septic subfield whose normal closure has Galois
group 7T4. But as we will see in the next section, the only possible Galois groups
of degree 7 polynomials over Q2 are either 7T1 or 7T3. This means that these 5
groups cannot occur as the Galois group of a degree 14 2-adic field.

Therefore, there are only 10 possible Galois groups of degree 14 extensions
of Q2. For each of these possible Galois groups, Table 3 shows their respective sgg
contents. Notice that each group has exactly one entry of the form 7Tj. This shows
that degree 14 extensions of Q2 have a unique septic subfield.

3. Defining polynomials

As a consequence of Section 2, every degree 14 extension of Q2 can be realized
uniquely as a quadratic extension of a septic 2-adic field. Defining polynomials for
degree 14 2-adic fields are therefore straightforward to compute.
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e G poly

1 7T1 u7= x7
− x + 1

7 7T3 t7= x7
− 2

Table 1. Septic extensions of Q2, including the ramification
index e and Galois group G of a defining polynomial poly.

First, we compute all septic 2-adic fields. Such fields are tamely ramified and are
therefore easy to classify using [Jones and Roberts 2006]. Table 1 shows that there
are two septic 2-adic fields, the unramified extension (with cyclic Galois group)
and a totally ramified extension (with 7T3= C7 : C3 as its Galois group). Next, for
each septic 2-adic field, we compute all of its quadratic extensions using [Awtrey
2010]. In each case, there are 511 such quadratic extensions. But some of these
1022 extensions are isomorphic. Using Panayi’s algorithm [Pauli and Roblot 2001],
we discard isomorphic extensions to find a total of 590 nonisomorphic degree 14
extensions of Q2. Polynomials are available on request by emailing the first author.

Table 2 contains numerical data on the numbers of these extensions, excluding the
unramified extensions of the two septic 2-adic fields. The “base” column references
the two polynomials in Table 1. The column c is the discriminant exponent, G is the
Galois group of the defining polynomial, and #Q14

2 is the number of nonisomorphic
extensions over Q2. Notice that there are 78 extensions that are ramified quadratic
extensions of the unramified septic 2-adic field. There are 510 ramified quadratic
extensions of the unique totally ramified septic 7-adic field. These 588 extensions
plus the unramified extensions of the two septic 2-adic fields give 590 total degree 14
extensions of Q2. Krasner’s mass formula [1966] verifies that these are all such
extensions. We note that the number of extensions can also be verified using an
implementation of [Pauli and Roblot 2001] in [PARI 2012].

4. Galois groups

It remains to identify the Galois group over Q2 for each of the 590 polynomials.
We follow the standard approach for determining Galois groups [Hulpke 1999].
We compute enough group-theoretic and field-theoretic invariants so as to uniquely
identify a polynomial with its corresponding Galois group. Our strategy is to divide
the above list of 10 groups into smaller pieces that are easily distinguished from
each other. Our first division will be at the level of centralizer order. The order of
the centralizer in S14 of the Galois group is useful as it corresponds to the size of
the automorphism group of the stem field defined by the polynomial. We divide
these smaller sets even further based on their sgg content and their parity. The
parity of a group G is +1 if G ⊆ A14 and −1 otherwise. Likewise, the parity
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base c G #Q14
2

u7 14 14T1 2
u7 14 14T6 2
u7 14 14T9 6
u7 14 14T21 7
u7 14 14T29 21

u7 21 14T1 4
u7 21 14T9 8
u7 21 14T29 28

t7 14 14T11 1
t7 14 14T18 1

t7 16 14T11 1
t7 16 14T18 1
t7 16 14T35 1
t7 16 14T44 1

t7 18 14T11 2
t7 18 14T18 2
t7 18 14T35 2
t7 18 14T44 2

base c G #Q14
2

t7 20 14T5 2
t7 20 14T18 8
t7 20 14T44 6

t7 22 14T11 2
t7 22 14T18 6
t7 22 14T35 6
t7 22 14T44 18

t7 24 14T11 4
t7 24 14T18 12
t7 24 14T35 12
t7 24 14T44 36

t7 26 14T11 4
t7 26 14T18 12
t7 26 14T35 28
t7 26 14T44 84

t7 27 14T5 4
t7 27 14T18 56
t7 27 14T44 196

Table 2. Ramified quadratic extensions of septic 2-adic fields.

of a polynomial f is +1 if its discriminant is a square in Q2 and −1 otherwise.
When this information is not enough, we introduce a single resolvent polynomial
[Stauduhar 1973] and use information about its irreducible factors over Q2. This
resolvent, denoted as f364, has degree 364. It corresponds to the subgroup S11× S3

of S14 and can be computed as a linear resolvent on 3-sets [Soicher and McKay
1985], i.e., as a resultant. It can also be computed in the following way. Let f (x)
define a degree 14 extension over Q2, and let r1, r2, . . . , r14 be the roots of f . Then,

f364(x)=
12∏

i=1

13∏
j=i+1

14∏
k= j+1

(x − ri − r j − rk).

We note that in our search for suitable resolvent polynomials, we also looked at a
lower degree linear resolvent (corresponding to the group S2× S12), subfields of the
field defined by this lower degree resolvent, and other subfield information of f364.
In order to keep the computational difficulty of our algorithm as low as possible,
we focused on subfields of degree less than 12, with a preference toward quadratic
subfields of the fields defined by the irreducible factors of the linear resolvents.
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G parity |CS14(G)| sgg f364 quad subs #Q14
2

14T1 −1 14 2T1, 7T1 7
14T5 −1 2 2T1, 7T3 7

14T6 +1 2 7T1 146, 282, 564 2
14T21 +1 2 7T1 146, 565 7

14T9 −1 2 7T1 146, 565 one 14
14T29 −1 2 7T1 146, 565 none 49

14T11 +1 2 7T3 282, 422, 56, 168 14
14T35 +1 2 7T3 422, 562, 168 49

14T18 −1 2 7T3 422, 562, 168 one 98
14T44 −1 2 7T3 422, 562, 168 none 343

Table 3. Invariant data for possible Galois groups of degree 14
2-adic fields.

Under these constraints, we found the degree 56 factors of f364 to be the smallest
degree factors that accomplished our needs.

Table 3 contains all pertinent invariant data for each Galois group. Notice that
all groups can be distinguished using parity, centralizer order, sgg content, and the
degrees of the factors of f364 except for two sets: 14T9/14T29 and 14T18/14T44.
But in both cases, the groups can be distinguished by counting quadratic subfields
of the fields defined by the degree 56 factors of f364. In these two cases, we have
also verified Galois group computations with [Milstead et al. 2015] by computing
sizes of splitting fields. As before, we include the column #Q14

2 , which represents
the number of nonisomorphic extensions over Q2 with the corresponding Galois
group (which can also be inferred from Table 2). The other columns are defined as
follows: |CS14(G)| gives the size of the centralizer of the group in S14, sgg gives
the sgg content of the group, f364 gives the degrees of the irreducible factors of
f364, and “quad subs” gives the number of quadratic subfields of the fields defined
by the degree 56 factors of f364.

On our workstation — two quad-core Intel Xeon processors (2.4GHz) — our
Galois group computations finished in just over 4 months (125 days). The most
difficult cases (where the Galois group was either 14T9/14T29 or 14T18/14T44)
took on average 20–25 hours per polynomial.
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Counting set classes with Burnside’s lemma
Joshua Case, Lori Koban and Jordan LeGrand

(Communicated by Kenneth S. Berenhaut)

Mathematical tools from combinatorics and abstract algebra have been used to
study a variety of musical structures. One question asked by mathematicians and
musicians is: how many d-note set classes exist in a c-note chromatic universe? In
the music theory literature, this question is answered with the use of Pólya’s enu-
meration theorem. We solve the problem using simpler techniques, including only
Burnside’s lemma and basic results from combinatorics and abstract algebra. We
use interval arrays that are associated with pitch class sets as a tool for counting.

1. Introduction

For the past three decades, mathematical tools from combinatorics and abstract
algebra have been used to study a variety of musical structures. The elements of a
c-note chromatic universe are typically labeled 0, 1, 2, . . . , c−1 and are considered
elements of Zc, the group of integers modulo c. In the traditional 12-note chromatic
universe, C is labeled 0. Following the language of [Clough and Myerson 1985], a
d-note pitch class set in a c-note chromatic universe is a subset of {0, 1, . . . , c−1} of
size d . As explained in [Reiner 1985; Hook 2007], two pitch class sets are considered
equivalent if one can be obtained from the other either by rotation or reflection. A d-
note set class contains all equivalent d-note pitch class sets. One question asked by
musicians and music theorists is: how many d-note set classes exist in a c-note chro-
matic universe? Figure 1 shows a way to visualize the case where c= 12 and d = 7.

Let n be a positive integer. The Euler ϕ-function, ϕ(n), is the number of positive
integers that are less than or equal to n that are also relatively prime to n.

Theorem 1.1 [Reiner 1985; Hook 2007]. The number of d-note set classes in a
c-note chromatic universe is

1
2c

T (c, d)+
1
2

I (c, d), (1-1)
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where

T (c, d)=
∑

j |gcd(c,d)

ϕ( j)
( c/j

d/j

)
and

I (c, d)=


(c/2−1
bd/2c

)
if c is even and d is odd,(

bc/2c
bd/2c

)
otherwise.

C

C]

D

D]

E

F
F]

G

G]

A

A]

B

C]

D

D]

E

F
F]

G

G]

A

A]

B
C

A]

B
C

C]

D

D]

E

F
F]

G

G]

A

rotate clockwise twice

invert through C-F] axis

Figure 1. Visualizing a 7-note pitch class set in a 12-note chro-
matic universe. The three pitch class sets {C, C], E, F, G, A, B},
{C], D, D], F], G, A, B}, and {C, C], D], F, G, G], B} are equiva-
lent and are therefore all part of the same set class.
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In the music theory literature, Theorem 1.1 is proved using an advanced com-
binatorial theorem, namely Pólya’s enumeration theorem (the final theorem stated
in [Brualdi 2010]). Our contribution is that we make Theorem 1.1 more accessible
by using only tools that would be seen in introductory classes in combinatorics and
abstract algebra. The most advanced concept is Burnside’s lemma, which appears in
[Reiner 1985; Hook 2007] as a general tool for counting the number of equivalence
classes generated by a group action, but is abandoned in the proof of Theorem 1.1 in
favor of Pólya’s result. In [Graham et al. 2008], the application of Burnside’s lemma
to our problem is discussed, but only specific examples, and not a general result,
are reported. An additional contribution is that we use the structure of interval
arrays (see Section 2), which were introduced in [Clough and Myerson 1985] and
developed in [Fripertinger 1992], but have not been connected to this theorem.

2. Equivalent pitch class sets

The dihedral group of order 2n, D2n , is the set of symmetries of a regular n-gon.
There are n rotations and n reflections. Musically, rotations are known as transposi-
tions and reflections are known as inversions.

Mathematically speaking, the number of d-note set classes in a c-note chromatic
universe is the number of equivalence classes when D2c acts on the set of d-
note pitch class sets. In Figure 1, all 7-note pitch class sets that are equivalent
to {C, C], E, F, G, A, B} can be found by inverting and transposing the left-most
figure in all 24 possible ways. Consult [Hook 2007] for more details about group
actions in this context.

Let {i1, i2, . . . , id} be a d-note pitch class set. Without loss of generality, let
i1 < i2 < · · ·< id . The interval array associated with this d-note pitch class set is

〈i2− i1, i3− i2, . . . , id − id−1, i1− id〉,

where all subtraction is done modulo d [Fripertinger 1992, Definition 2.5]. Note that
〈 j1, j2, . . . , jd〉 is the interval array of a d-note pitch class set in a c-note chromatic
universe if and only if j1+ j2+ · · ·+ jd = c [Fripertinger 1992, Remark 2.4]. See
Table 1.

Instead of counting the number of equivalence classes when D2c acts on the set
of d-note pitch class sets, we will count the number of equivalence classes when

7-note pitch class set pitch class set in Zc interval array

{C, C], E, F, G, A, B} {0, 1, 4, 5, 7, 9, 11} 〈1, 3, 1, 2, 2, 2, 1〉
{C], D, D], F], G, A, B} {1, 2, 3, 6, 7, 9, 11} 〈1, 1, 3, 1, 2, 2, 2〉
{C, C], D], F, G, G], B} {0, 1, 3, 5, 7, 8, 11} 〈1, 2, 2, 2, 1, 3, 1〉

Table 1. The interval arrays for the pitch class sets in Figure 1.
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D2d acts on {〈 j1, j2, . . . , jd〉 | j1+ j2+ · · ·+ jd = c}, the set of interval arrays. In
Theorem 2.3 of the same work, Fripertinger proves that the number of equivalence
classes is the same in both situations.

3. Algebraic and combinatorial tools

Below are the theorems from introductory combinatorics [Brualdi 2010] and abstract
algebra [Dummit and Foote 2004] that we will apply.

Theorem 3.1. Let n and k be positive integers. Then

k
(n

k

)
= n

(n−1
k−1

)
.

Theorem 3.2. The equation x1 + x2 + · · · + xk = n has
(n−1

k−1

)
positive-integral

solutions.

Theorem 3.3 (hockey stick theorem). If m and n are nonnegative integers, then
n∑

k=0

( k
m

)
=

( n+1
m+1

)
.

Theorem 3.4. Let j , k, and n be integers such that 0≤ j ≤ k ≤ n. Then

n−k+ j∑
m= j

(m
j

)(n−m
k− j

)
=

(n+1
k+1

)
.

Theorem 3.5. In a group, assume that element a has order d. Then

〈a j
〉 = 〈agcd(d, j)

〉 and |〈a j
〉| =

d
gcd(d, j)

.

Theorem 3.6. If m is a positive divisor of d , then the number of elements of order m
in a cyclic group of order d is ϕ(m).

Theorem 3.7 (Burnside’s lemma). Let G be a group acting on a set S. The number
of equivalence classes is

1
|G|

∑
g∈G

Fix(g),

where Fix(g) is the number of elements of S that are fixed by g.

4. The main theorem proved with Burnside’s lemma

Theorem 4.1. The number of d-note set classes in a c-note chromatic universe is

1
2d

TB(c, d)+
1
2

I (c, d), (4-1)
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where

TB(c, d)=
∑

m|d and d|cm

ϕ(d/m)
(cm/d−1

m−1

)
,

and I (c, d) is defined as in Theorem 1.1.

Proof. Instead of visualizing a regular c-gon and counting the number of equivalence
classes when D2c acts on the set of d-note pitch class sets, as is typically done,
we visualize a regular d-gon and count the number of equivalence classes when
D2d acts on the set of interval arrays {〈 j1, j2, . . . , jd〉 | j1 + j2 + · · · + jd = c}.
According to Burnside’s lemma, we must count the number of interval arrays that
are fixed by elements of D2d .

First, we consider the d inversions. Assume that c and d are both odd. We have
a regular d-gon whose vertices are labeled j1, j2, . . . , jd . Every possible axis of
inversion passes through a single vertex. Let A be the value of that vertex, and let
B = (c− A)/2. See Figure 2. Once the value of A is chosen, Theorem 3.2 says
there are ( c−A

2 − 1
d−1

2 − 1

)
ways to assign values to the vertices that add up to B. Also note that A must be
odd, and it ranges from 1 to c− (d − 1). Thus the number of interval arrays fixed
by this inversion is

c−(d−1)∑
A=1
A odd

( c−A
2 − 1

d−1
2 − 1

)
,

which equals
(
(c−1)/2
(d−1)/2

)
by the hockey stick theorem. Since there are d inversions,

the sum of the number of interval arrays fixed by an inversion is d
(
bc/2c
bd/2c

)
.

A

B B

Figure 2. The inversion when d is odd.
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B

A

B
B B

Figure 3. Two inversions when d is even.

When c is even and d is odd, repeat the previous argument, except that A must
be even and it ranges from 2 to c− (d − 1). The hockey stick theorem yields( c−2

2
d−1

2

)
,

and the sum of the number of interval arrays fixed by an inversion is d
(c/2−1
bd/2c

)
.

Now assume that c and d are both even. When d is even, there are two types of
inversions: d/2 of each type in Figure 3. For an inversion through opposite edges,
Theorem 3.2 says there are

(c/2−1
d/2−1

)
ways to assign values to the d/2 vertices that

add up to B = c/2. For an inversion through a pair of vertices, A is chosen and
then B = (c− A)/2. Note that A must be even and ranges from 2 to c− (d − 2).
The number of interval arrays fixed by this inversion is

c−(d−2)∑
A=2

A even

(
A− 1

1

)( c−A
2 − 1

d−2
2 − 1

)
=

c−(d−2)∑
A=2

A even

(
A
1

)( c−A
2 − 1

d−2
2 − 1

)
−

c−(d−2)∑
A=2

A even

( c−A
2 − 1

d−2
2 − 1

)

= 2
( c

2
d
2

)
−

( c
2 − 1
d
2 − 1

)
,

where the first term simplifies by Theorem 3.4 and the second term simplifies by
Theorem 3.3. The sum of the number of interval arrays fixed by the d inversions is

d
2

( c
2 − 1
d
2 − 1

)
+

d
2

(
2
( c

2
d
2

)
−

( c
2 − 1
d
2 − 1

))
= d

( c
2
d
2

)
.

The argument when c is odd and d is even is identical.
Second, we consider the d transpositions R1, R2, . . . , Rd , where R1 is a single

transposition clockwise which generates the cyclic group of order d. Let m be a
divisor of d . According to Theorem 3.5, each R j with gcd(d, j)=m generates the
same subgroup, and this subgroup has order d/m. If an interval array can be fixed



COUNTING SET CLASSES WITH BURNSIDE’S LEMMA 343

A

AA

B B

B

Figure 4. If d = 6, rotating the hexagon 120◦ is acting on the
interval arrays with R2, an element of order 3. If an interval array
is fixed, then the values A and B must each be repeated twice.

by a transposition of order d/m, it is necessary that (d/m) | c or, equivalently, that
d | cm. Thus, if m | d and d | cm, the number of interval arrays fixed by an element
of order d/m is the number of ordered partitions of

c
d/m

=
cm
d

into m parts. According to Theorem 3.2, this can be done
(cm/d−1

m−1

)
ways. Moreover,

Theorem 3.6 says that ϕ(d/m) transpositions have order d/m. Thus the sum of all
Fix(R j ) is ∑

m|d and d|cm

ϕ(d/m)
(cm/d−1

m−1

)
.

See Figure 4 for an example. Applying Burnside’s lemma completes the proof. �

Theorem 4.2. Expressions (1-1) and (4-1) are equal.

Proof. Since these expressions both count the number of d-note set classes in a
c-note chromatic universe, they are equal. However, we provide a different proof,
outside the context of music theory.

We must show that

1
c

∑
j |gcd(c,d)

ϕ( j)
(

c/j
d/j

)
=

1
d

∑
m|d and d|cm

ϕ(d/m)

(
cm/d − 1

m− 1

)
. (4-2)

We start with the right-hand side and reindex, letting j = d/m. Then

1
d

∑
m|d and d|cm

ϕ(d/m)

(
cm/d − 1

m− 1

)
=

1
d

∑
d/j |d and d| cd

j

ϕ( j)
(

c/j − 1
d/j − 1

)

=
1
d

∑
j |gcd(c,d)

ϕ( j)
(

c/j − 1
d/j − 1

)
.
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The last equality is valid because{
j : j |gcd(c, d)

}
=
{

j : (d/j)|d and d |(cd/j)
}
.

The equality of (4-2) follows from termwise equality, as a result of Theorem 3.1. �
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Border rank of ternary trilinear forms
and the j-invariant

Derek Allums and Joseph M. Landsberg

(Communicated by David Royal Larson)

We first describe how one associates a cubic curve to a given ternary trilinear
form φ ∈C3

⊗C3
⊗C3. We explore relations between the rank and border rank of

the tensor φ and the geometry of the corresponding cubic curve. When the curve
is smooth, we show there is no relation. When the curve is singular, normal forms
are available, and we review the explicit correspondence between the normal
forms, rank and border rank.

1. Introduction

Given a multilinear map, i.e., a tensor1, how hard is it to evaluate? Two ways
mathematicians have chosen to quantify “hard” are the notions of rank and border
rank. We say a tensor φ ∈ V1⊗· · ·⊗Vn is of rank 1 if it is of the form v1⊗· · ·⊗vn ,
where each vi ∈ Vi .

Definition 1.1. Let φ ∈ V1⊗· · ·⊗Vn . The rank of φ, denoted R(φ) is the smallest
natural number r such that φ=

∑r
j=1 φ j , where each φ j ∈ V1⊗· · ·⊗Vn is of rank 1.

To better understand this concept, consider the reduction to linear algebra, in
which φ ∈ V1⊗ V2 may be considered as a linear map V ∗1 → V2. Recall that every
linear map on finite dimensional vector spaces can be written as a matrix, after
choosing bases, and that the rank of a matrix M is the number of rank 1 matrices Mi

needed to write M =
∑

i Mi . In this special case, the above definition is natural.2

But rank doesn’t give us the whole picture when n> 2. To illustrate this, consider
the following classical example.

MSC2010: 15A72, 68Q17.
Keywords: algebraic geometry, border rank of tensors, j-invariant of cubic, ternary trilinear forms.

1Throughout the paper, we will assume the reader is familiar with the tensor product of vector
spaces. For a quick review, see the Appendix.

2However, it is worth mentioning that rank as it is defined here is one of several generalizations of
the rank of a linear map (e.g., multilinear rank).
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The tensor

φ = a1⊗ b1⊗ c1+ a1⊗ b1⊗ c2+ a1⊗ b2⊗ c1+ a2⊗ b1⊗ c1

is of rank at most 3 since

φ = a1⊗ b1⊗ (c1+ c2)+ a1⊗ b2⊗ c1+ a2⊗ b1⊗ c1,

and it is not of rank 2 by explicit computation. However, notice that φ is the limit
as ε→ 0 of the following sequence of rank 2 tensors:

φ(ε)=
1
ε

(
(ε− 1)a1⊗ b1⊗ c1+ (a1+ εa2)⊗ (b1+ εb2)⊗ (c1+ εc2)

)
.

So the rank of the tensor is 3, but we can approximate it as closely as we like with
rank 2 tensors. We say φ has border rank 2, and we have the following definition.

Definition 1.2. A tensor φ ∈ V1⊗ · · ·⊗ Vn is said to be of border rank r , denoted
R(φ) = r , if it is the limit of tensors of rank r but not of tensors of rank s for
any s < r .

One way to approach the difficult general problem of understanding the border
rank of tensors is to reduce multilinear algebra to linear algebra. Below is one such
reduction, in which we consider φ ∈ A⊗ B⊗C = C3

⊗C3
⊗C3 as a linear map

A∗→ B⊗C and then represent the image in B⊗C as a matrix. We then take the
determinant of this representation to find an associated cubic curve to φ.

Choose bases {ai }, {bi }, {ci } for A, B,C , respectively, with {a∗i }, {b
∗

i }, {c
∗

i } the
dual bases. Now let

φ =
∑
i, j,k

φi jk ai ⊗ b j ⊗ ck ∈ A⊗ B⊗C,

where φi jk ∈ C are constants and let

a∗ = xa∗i + ya∗2 + za∗3 , x, y, z ∈ C,

be an arbitrary element of A∗ = (C3)∗. Then, the matrix representation of φ
parametrized by a∗, denoted [φy a∗], has ( j, k)-th entry

[φy a∗] j,k = φ1 jk x +φ2 jk y+φ3 jk z.

In the same way, we can find matrix representations [φy b∗] and [φy c∗] parametrized
by b∗ ∈ B∗ and c∗ ∈ C∗. For the tensors we study in this paper, all of these repre-
sentations turn out to be equal, so we work with [φy a∗] without loss of generality.

Let’s look at an example. If

φ = a1⊗ b1⊗ c1+ a2⊗ b2⊗ c2+ a3⊗ b1⊗ c2+ a3⊗ b3⊗ c3,

then,
φ111 = φ222 = φ312 = φ333 = 1,
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and φi jk = 0 otherwise. Thus,

[φy a∗] =

x z 0
0 y 0
0 0 z

 .
Now take the determinant to find the determinantal cubic associated to φ,

xyz = 0.

It has been known since as early as 1938 (see e.g., [Thrall and Chanler 1938]) that
any cubic curve in three variables is projectively equivalent to one of the following:

(1) triple line x3
= 0

(2) double line and a line x2 y = 0

(3) 3 lines intersecting at a point xy(x − y)= 0

(4) 3 lines in general position xyz = 0

(5) a conic and a tangent line z(x2
+ yz)= 0

(6) a conic and a transverse line x(x2
+ yz)= 0

(7) cuspidal cubic x3
− y2z = 0

(8) node x3
+ y3
− xyz = 0

(9) a smooth cubic: the general case

(10) a cubic identically zero

The tensors to which these other singular cases correspond are dealt with in [Thrall
and Chanler 1938] and later in more modern language in [Ng 1995]. In particular,
normal forms are given, and in [Allums 2011], the border rank of each of these
singular tensors is calculated.

Since the singular cases have been dealt with, the next question is: how is border
rank related to the intrinsic geometry of the determinantal cubic in the general case?
That is, how does the border rank vary in the open set of smooth cubics? To answer
this, we need to introduce the classical invariants S, T and J , which are rational
functions in the coefficients of a cubic.

Under the action of SL(C, 3) on the cubic, there is a unique (up to scale) degree 4
invariant S and a unique (up to scale) degree 6 invariant T [Sturmfels 1993]. These
generate the ring of invariants of a cubic of which

J :=
S3

T 2− 64S3 ,
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the j-invariant, is a member. The invariants S and T are extrinsic invariants of the
curve, while J is an intrinsic invariant3. Here this means S and T classify the curve
up to change of coordinates while J classifies smooth cubics up to isomorphism
as abelian varieties, i.e., as groups and as algebraic varieties. One goal of this
paper is to find out what relationship, if any, exists between the border rank of
φ ∈ C3

⊗C3
⊗C3 and the geometry of its determinantal cubic curve. Equivalently,

we want to describe the relationship between border rank and S, T and thus J .
The maximum possible border rank of φ ∈ C3

⊗C3
⊗C3 is 5 [Landsberg 2012],

and since a tensor of border rank 5 depends on twelve parameters, we start with
a smaller case and consider tensors of border rank 4, which we show depend on
only three parameters in Proposition 3.1. We take such a tensor and calculate
the invariants S and T of its determinantal cubic, summarizing our analysis in
Proposition 3.2. In particular, we conclude that there is no meaningful relationship
between the border rank of φ and S or T , and thus no meaningful relationship
between border rank and J , if the cubic is smooth.

2. Background

Some background material is given in the appendix. We present the rest here, with
most of it coming from [Landsberg 2012].

There exists a geometric interpretation of border rank as follows. Let V be a
finite dimensional complex vector space and let X ⊂ PV be a variety. For any
point q not on X , we define the join of q and X to be the set of all secant lines
containing q and some point of X , denoted J (q, X). If q = x ∈ X , we do the same
thing, but we also allow tangent lines at x since a tangent line is a limit of secant
lines. The secant variety of X is

σ(X) :=
⋃
x∈X

J (x, X),

where the bar denotes Zariski closure. The notation J (X, X)= σ(X) is also used.
We can also define the join of two distinct varieties Y, Z ⊂ PV by

J (Y, Z)=
⋃
q∈Y

J (q, Z),

where J (q, Z) is the set of all secant lines containing q ∈ Y and some point of Z .

Definition 2.1 [Landsberg 2012]. The join of k varieties X1, . . . , Xk ⊂ PV is the
closure of the union of the corresponding secant (k−1)-planes, or by induction,

3Consider the difference between “extrinsic” and “intrinsic” in surface theory: mean curvature is
extrinsic (invariant under Euclidean motion) but Gauss curvature is intrinsic (invariant under isometry).
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J (X1, . . . , Xk)= J (X1, J (X2, . . . , Xk)). Define the k-th secant variety of X to be
σk(X)= J (X, . . . , X), the join of k copies of X .

We move on to another crucial concept: the Segre variety.

Definition 2.2. The n-factor Segre variety is the image of the map

Seg : PV1× · · ·×PVn→ P(V1⊗ · · ·⊗ Vn),

([v1], . . . , [vn]) 7→ [v1⊗ · · ·⊗ vn].

Note that for fixed n ∈N, the image of the Segre map is the projectivization of
the rank 1 n-tensors.

A tensor φ ∈ V1⊗ · · ·⊗ Vn may be interpreted as a linear map

V ∗1 → V2⊗ · · ·⊗ Vn, . . . , V ∗n → V1⊗ · · ·⊗ Vn−1.

Recall a matrix is rank 1 if and only if all its 2× 2 minors are 0. The set of rank 1
tensors in V1⊗ · · ·⊗ Vn is exactly the set of tensors such that each of the previous
linear maps has rank 1 [Landsberg 2012]. The collection of these 2× 2 minors are
homogeneous polynomials called flattenings. Thus, using Definition 5.3, the set
of tensors of rank 1 is an algebraic variety.

Tensors of border rank r are described as limits of tensors of rank r , so the set
of tensors of border rank at most r is the closure of the set of tensors of rank r ,
where a tensor of rank r is contained in the linear span of r points of the set of
tensors of rank 1. Since in this case the Zariski and Euclidean closures coincide
(see [Mumford 1976, Theorem 2.33]), the (projectivization of the) set of tensors
of border rank at most r is thus exactly σr (Seg(PV1× · · ·×PVn)), and so we now
have an entirely geometric interpretation of border rank with which to work. In
particular, we can now restate some of the introduction in more modern language.

For A⊗ B ⊗C = C3
⊗C3

⊗C3, the representation of φ as a matrix defines a
vector space of matrices in φ(A∗)⊂ B⊗C of dimension 3 parametrized by a∗ ∈ A∗.
When we move into projective space, it becomes a copy of P2

⊂ P(B ⊗C). By
requiring that its determinant vanish, we are demanding that the matrix be of rank
at most 2. That is, we want the matrix to be contained in σ2(Seg(PB×PC)). Our
goal is then to see how border rank varies in the intersection

{P(φ(A∗)) | φ ∈ A⊗ B⊗C} ∩ σ2(Seg(PB×PC)).

3. Primary results

First, we show that a general point in σ4 := σ4(Seg(PA×PB×PC)), i.e., a tensor
of border rank 4, depends on only three parameters.

Proposition 3.1. A general point in σ4, up to the action of GL(C, 3), depends on
exactly three parameters.
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Proof. Let ζi , αi , βi , γi ∈C be constants and choose bases {ai }, {bi }, {ci } for A, B,C .
We first show that a1⊗b1⊗c1+a2⊗b2⊗c2+a3⊗b3⊗c3 is a general point in σ3

by beginning with an arbitrary general point in σ3. To do this, define

ui = αi1 a1+αi2 a2+αi3 a3,

v j = β j1 b1+β j2 b2+β j3 b3,

wk = γk1 c1+ γk2 c2+ γk3 c3,

where αi p, β j p, γkp are constants such that each set {ui }, {v j }, {wk} is linearly
independent, which can be done in any open set; so this is a sufficiently arbitrary
choice of elements. Let

u1⊗ v1⊗w1+ u2⊗ v2⊗w2+ u3⊗ v3⊗w3

be a general point in σ3. Since our group of normalizations, GL(C, 3), is 9-
dimensional, we can send each ui 7→ a1, v j 7→ b j and wk 7→ ck , totaling nine
transformations. We then have

a1⊗ b1⊗ c1+ a2⊗ b2⊗ c2+ a3⊗ b3⊗ c3, (11)

as desired. A general point in σ4 is obtained by taking an arbitrary point in
Seg(PA×PB×PC) and adding it to (11) to obtain a point on an honest secant line:

a1⊗ b1⊗ c1+ a2⊗ b2⊗ c2+ a3⊗ b3⊗ c3

+ (α1a1+α2a2+α3a3)⊗ (β1b1+β2b2+β3b3)⊗ (γ1c1+ γ2c2+ γ3c3).

Since GL(C, 3) is 9-dimensional, we may make six dimensions worth of changes
by sending αi ai 7→ ai and β j b j 7→ b j , with three dimensions worth of changes
left over. However, these transformations add additional constants to the first three
summands; we end up with

3∑
i=1

1
αiβi

ai ⊗ bi ⊗ ci + (a1+ a2+ a3)⊗ (b1+ b2+ b3)⊗ (γ1c1+ γ2c2+ γ3c3).

Using our last three dimensions to send

1
αiβi

ci 7→ ci

gives

3∑
i=1

ai⊗bi⊗ci+(a1+a2+a3)⊗(b1+b2+b3)⊗(α1β1γ1c1+α2β2γ2c2+α3β3γ3c3).

Finally, for the sake of notation, relabel

λi = αiβiγi .
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Thus, a general point in σ4,

a1⊗ b1⊗ c1+ a2⊗ b2⊗ c2+ a3⊗ b3⊗ c3

+ (a1+ a2+ a3)⊗ (b1+ b2+ b3)⊗ (λ1c1+ λ2c2+ λ3c3),

depends on only the three parameters λ1, λ2, λ3. �

Note that the action of GL(C, 3) on σ4 does not change S or T as these are
invariant under changes of coordinates. Now represent this tensor as a matrix, as
described in the introduction:x + λ1(x + y+ z) λ2(x + y+ z) λ3(x + y+ z)

λ1(x + y+ z) y+ λ2(x + y+ z) λ3(x + y+ z)
λ1(x + y+ z) λ2(x + y+ z) z+ λ3(x + y+ z)

 .
Take the determinant to find the determinantal cubic curve, which is

(1+ γ1+ γ2+ γ3)xyz+ γ1 y2z+ γ1 yz2
+ γ2x2z+ γ2xz2

+ γ3x2 y+ γ3xy2. (12)

From here, one uses the formulae for S and T found in [Sturmfels 1993].

Proposition 3.2. The border rank of φ ∈C3
⊗C3
⊗C3 is not related to the projective

geometry of its determinantal cubic curve, if it is smooth.

Proof. The polynomials S and T are in the ten coefficients of a cubic in general,
but as shown in Proposition 3.1, the coefficients of our curve depends only on three
parameters γ1, γ2, γ3, so here S and T are in three variables. Now fix γ1 = γ2 = 1.
Then S and T become nonconstant polynomials in the single complex variable γ3:

S = 1
16γ

4
3 −

5
12γ

3
3 +

7
8γ

2
3 +

43
108γ3+

169
1296 ,

T =− 1
8γ

6
3 +

5
4γ

5
3 −

113
24 γ

4
3 +

283
54 γ

3
3 +

691
216γ

2
3 −

559
324γ3−

2197
5832 .

By Picard’s theorem, S and T each either attain every value in C or attain all but
one value in C. However, if there was some w ∈ C not hit by S or T , then S = w
would have no solution. But since C is algebraically closed, S−w = 0 does have
a root. Thus, S and T are onto, so we may obtain any value for them by suitable
choices of γ1, γ2, γ3. �

4. On the 24 singular cases

Define
1 := T 2

− 64S3

to be the discriminant of a cubic curve. Since a cubic is singular if and only if
1= 0, one expects each of the determinantal cubics associated to the normal forms
in [Ng 1995] to have 1= 0. The determinantal cubics are:
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xyz = 0 {1, 2, 3, 5, 6, 8}

xyz− x3
= 0 {4, 9, 10}

(λ− 1)xyz = 0 {7}

y2z+ yz2
= 0 {11}

x2 y+ xy2
= 0 {12}

x2 y− xz2
= 0 {13, 14}

(λ− 1)(λz3
+ xyz)= 0 {15}

xyz− λz3
+ y3
= 0 {16}

xyz+ λx3
= 0 {17, 18}

z2 y− zy2
− xy2

= 0 {19}

xz2
+ y3
+µzy2

= 0 {20}

−µx2 y− xy2
+ x2z = 0 {21, 22}

(λ3λ5)z3
+ (λ1λ5+ λ4λ6)xz2

+ (λ2λ6)y2z+ (λ2λ5+ λ3λ6)yz2

− (λ4λ6+ λ1λ5)xy2
+ (λ1λ6)xyz = 0 {23}

−µz3
− 2µ3 y2z+ 3µ2 yz2

+ 3µxy2
= 0 {24}

The set of numbers to the right are the normal forms to which the curve corresponds
and

λ1 = (λ− 1), λ2 = (λ− 1)2(λ2
+ λ+ 1), λ3 = (λ

2
− 1)(λ2

+ λ+ 1),

λ4 = (λ+ 1), λ5 = (λ
2
+ 1), λ6 = (λ

2
− 1),

where λ 6= 0, 1 for {7, 15}; λ 6= 0 for {16, 17, 18}; λ 6= 0, ω for {23} (where ω3
= 1);

µ = 0, 1 for {20, 21, 22}; and µ 6= 0 for {24}. Using the formulae in [Sturmfels
1993], we find 1= 0 for each of these cubics.

Notice that some of these cubics are projectively equivalent. Some of these
equivalences are immediate4, such as

{1, 2, 3, 5, 6, 8}, {7} ∼ (4),

{4, 9, 10}, {15}, {17, 18} ∼ (6),

{11}, {12} ∼ (3),

{16} ∼ (8),

4Explanation of notation by example: The cubics {1, 2, 3, 5, 6, 8} in [Ng 1995] correspond to
xyz = 0 above, and this corresponds to three lines in general position, which is case (4) in [Thrall and
Chanler 1938]. Additionally, {7} corresponds to (λ− 1)xyz = 0, which is projectively equivalent to
xyz = 0 and so (4) as well. Thus we write {1, 2, 3, 5, 6, 8}, {7} ∼ (4).
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where the numbers to the right come from the classification in the introduction. To
find the others, we find the singular points and expand in a Taylor series about that
point. We then look at the second order term: if it is of rank 1, then the singularity is
a cusp, and if it is of rank 2, the singularity is a node. As an example, let’s examine
f (x, y, z)= x2 y− xz2, which is the cubic corresponding to {13, 14}. The curve is
singular at a point p if and only if the differential, D, vanishes at p. In this case,

D = (2xy− z2, x2,−2xz).

Since D(p)= 0 if and only if p = [x : y : z] = [0 : 1 : 0], this is our singular point.
Expand in a Taylor series about this point:

f (x, y, z)= f (p)+ x fx(p)+ y fy(p)+ z fz(p)+ 1
2 x2 fxx(p)+ · · · .

The only nonzero term of second order is 1
2 x2 fxx(p)= x2, which is of rank 1. Thus,

our curve has a cusp and corresponds to case (7).
The classification of the remaining cases is a simple exercise in calculus, and we

end up with
{13, 14}, {19}, {20}, {21, 22}, {24} ∼ (7),

{23} ∼ (8).

5. Appendix

We begin with the definition of the tensor product of vector spaces. Although the
tensor product is typically defined by its universal property, those familiar with it will
have no trouble relating the following definition, which is sufficient for our purposes,
to the standard one. In all cases, ⊗=⊗C and recall that for a vector space V , we
denote by V ∗ the dual space to V , which is the space of all linear maps V → C.

Definition 5.1. Let V1, . . . , Vn,W be finite-dimensional vector spaces. A map
f : V1×· · ·×Vn→W is said to be n-linear if it is linear in each factor. The tensor
product of these spaces is

V1⊗ · · ·⊗ Vn ⊗W = { f : V ∗1 × · · ·× V ∗n →W | f is n-linear}.

Note that when W = C, we have that

V1⊗ · · ·⊗ Vn ⊗W = V1⊗ · · ·⊗ Vn ⊗C' V1⊗ · · ·⊗ Vn.

This is a standard result, whose statement in full generality can be seen in, e.g.,
Theorem 5.7 in [Hungerford 1980]. It is a straightforward exercise to show that
V ⊗W is the space of linear maps V ∗→ W , the space of linear maps W ∗→ V ,
the space of bilinear maps V ∗×W ∗→ C, etc. Inductively, we have many different
equivalent ways to realize V1⊗ · · ·⊗ Vn ⊗W . The tensor product of vector spaces
is again a vector space, whose elements are called tensors.
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Next, since our work is done in complex projective space, we need a defini-
tion; n-dimensional complex projective space is the space of all one-dimensional
subspaces (lines) in Cn+1 [Harris 1995]:

Definition 5.2. Define n-dimensional complex projective space to be

Pn
= PCn

:= (Cn+1
\{0})/∼,

where ∼ is the equivalence relation given by Cn
3 (v1, . . . , vn)∼ (λv1, . . . , λvn)

for some nonzero scalar λ.

For a complex vector space V of finite dimension, denote the set of equivalence
classes of some v ∈ V by [v] ∈ PV . Let

π : V \{0} → PV,

v 7→ [v]

denote the projection. For a subset Z ⊂ PV , let Ẑ := π−1(Z) denote the cone
over Z . Call the image of such a cone in projective space its projectivization. We
need a final crucial definition from [Harris 1995]:

Definition 5.3. A projective variety is the projectivization of the set of common
zeros of some collection of homogeneous polynomials on V .

Should the reader want to read more relevant background material, see the
sections on the tensor product in [Landsberg 2012; Hungerford 1980; Dummit
and Foote 2004] and the sections on basic algebraic geometry in [Landsberg 2012;
Harris 1995].
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On the least prime congruent to 1 modulo n

Jackson S. Morrow
(Communicated by Kenneth S. Berenhaut)

For any integer n > 1, there are infinitely many primes congruent to 1 .mod n/.
In this note, the elementary argument of Thangadurai and Vatwani is modified
to improve their upper estimate of the least such prime when n itself is a prime
greater than or equal to 5.

Preliminaries

For any integer n� 1, the n-th cyclotomic polynomial is

ˆn.x/D
Y

1�m�n
gcd.m;n/D1

.x� e2� im=n/:

This is a monic polynomial of degree '.n/, where ' denotes Euler’s phi function,
and the roots of this polynomial are the primitive complex n-th roots of unity.
It is well-known that ˆn.x/ is irreducible over Q, with integer coefficients, and
xn� 1D

Q
d jn ˆd .x/. From the last equation, we have

ˆn.x/D
xn� 1Q

d jn
d<n

ˆd .x/
: (1)

It is a consequence of a well-known result of Dirichlet [1889] that for each
integer n > 0, there are infinitely many primes of the form knC 1, where k is a
positive integer. The problem of determining, or estimating, the smallest prime
p�.n/ � 1 mod n has attracted interest. In [Heath-Brown 1992; Linnik 1944a;
1944b; Xylouris 2009], estimates of the form p�.n/� c1nc2 , with c1; c2 constants
independent of n, are proven using highly nonelementary methods of analytic
number theory. Recently, elementary proofs of weaker bounds on p�.n/ have
been given. In [Sabia and Tesauri 2009], it is shown that p�.n/ � .3n� 1/=2; in
[Thangadurai and Vatwani 2011], this is improved to p�.n/� 2'.n/C1� 1. Here
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we adapt the methods of [Thangadurai and Vatwani 2011] (which were adapted
from [Sabia and Tesauri 2009]) to prove the following theorem.

Theorem. Let n� 5 be a prime. The smallest prime p�.n/� 1 .mod n/ satisfies
the bound

p�.n/� .2n
C 1/=3:

Main result

From (1), we see that if n is a prime, then

ˆn.X /D
X n� 1

X � 1
DX n�1

C � � �C 1; (2)

and if n is an odd prime,

ˆ2n.X /D
X 2n� 1

ˆ1.X /ˆ2.X /ˆn.X /
D

X 2n� 1

.X � 1/.X C 1/ˆn.X /

D
X 2.n�1/CX 2.n�2/C � � �C 1

X n�1CX n�2C � � �C 1

DX n�1
�X n�2

C � � � �X C 1

D

n�1X
iD0

.�X /i :

(3)

The main result will follow from (3) and the following lemma.

Lemma 1 [Sabia and Tesauri 2009]. For any integers m, b � 2, any prime divisor
of ˆm.b/ is either a divisor of m or is congruent to 1 .mod m/.

Suppose that n� 5 is prime. By Lemma 1 and (3),

ˆ2n.2/D

n�1X
iD0

.�2/i
D

.�2/n� 1

�3
D

2nC 1

3

has prime divisors of 2n or primes congruent to 1 .mod 2n/. The prime divisors of
2n are 2 and n. Since 2nC 1 is odd and 2nC 1� 3 mod n, neither 2 nor n divides
.2nC 1/=3. Therefore,

p�.n/� .2n
C 1/=3:
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