\bullet
 in Olve a journal of mathematics

Colorability and determinants of $T(m, n, r, s)$ twisted torus knots for $n \equiv \pm 1(\bmod m)$

Matt DeLong, Matthew Russell and Jonathan Schrock

Colorability and determinants of $T(m, n, r, s)$ twisted torus knots for $n \equiv \pm 1(\bmod m)$

Matt DeLong, Matthew Russell and Jonathan Schrock
(Communicated by Kenneth S. Berenhaut)

Abstract

We develop theorems to compute the p-colorability of the families of $T(m, n, r, s$) twisted torus knots for $n \equiv \pm 1(\bmod m)$ by finding their determinants. Instead of the usual method of reducing crossing matrices to find the determinant, we describe a new method that is applicable for braid representations with full cycles and twists.

1. Introduction

In an undergraduate research project, Breiland, Oesper and Taalman [Breiland et al. 2009] used determinants to completely characterize the p-colorability of torus knots. Conceptually, twisted torus knots, a recent addition to the field first described by Dean [1996], are derived from torus knots. Thus, studying the determinants and p-colorability of twisted torus knots is a natural extension of [Breiland et al. 2009].

In our paper, we develop theorems for calculating the determinant of certain families of twisted torus knots $T(m, n, r, s)$, namely, when $n \equiv \pm 1(\bmod m)$. Table 1 presents a summary of our results. The columns for m, r, and s give the parity of those parameters (if the column for s is left blank, that means the parity of s has no effect on the formula for the determinant). The second column relates n to m, and the final column gives the determinant.

The organization of the paper is as follows. Section 2 provides background information and previously known results. Section 3 introduces a new method of finding the determinant of twisted torus knots and proves some preliminary results. In Section 4 we prove our main results. Finally, in Section 5, we conclude with suggestions for further research.

2. Background

2A. Torus knots and twisted torus knots. For m, n relatively prime, let $T(m, n)$ represent the torus knot that circles the meridian of a torus m times and the longitude

[^0]| m | n | r | s | $\operatorname{det}(T(m, n, r, s))$ |
| :---: | :---: | :---: | :---: | :---: |
| even | $m q \pm 1$ | even | | $\|m q \pm 1+r s \pm(m-r) q r s\|$ |
| even | $m q \pm 1$ | odd | odd | $\left\|r \pm\left(m r-r^{2}+1\right) q\right\|$ |
| even | $m q \pm 1$ | odd | even | $\|m q \pm 1\|$ |
| odd | $2 m q \pm 1$ | even | | $\|r s \pm 1\|$ |
| odd | $2 m q \pm 1$ | odd | odd | r |
| odd | $2 m q \pm 1$ | odd | even | 1 |
| odd | $(2 q+1) m \pm 1$ | even | | $\|m \mp(m-r) r s\|$ |
| odd | $(2 q+1) m \pm 1$ | odd | odd | $\left\|m r-r^{2}+1\right\|$ |
| odd | $(2 q+1) m \pm 1$ | odd | even | m |

Table 1. Summary of determinants of $T(m, n, r, s)$ twisted torus knots with $n \equiv \pm 1(\bmod m)$.
of a torus n times [Adams 2004]. $T(m, n)$ is the closure of the braid with m strands and n cycles, where we define a cycle on m strands as the passing of the right-most strand over the remaining $m-1$ strands.

A twisted torus knot can be constructed by beginning with the braid representation of a $T(m, n)$ torus knot and then performing s full twists on r parallel strands [Champanerkar et al. 2004]. We denote a twisted torus knot by $T(m, n, r, s)$, where m is the total number of strands in the braid representation, n is the number of cycles on the m strands, r is the number of strands to be twisted, and s is the number of full twists on the r strands, as in Figure 1. Obviously, m and r must be positive and $r \leq m$. Both n and s can be positive or negative; hence there are four possibilities for the signs of the parameters. However, the determinant and p-colorability are the same for a knot and its mirror image, so we assume that n is positive throughout.

An important equivalence that we will use several times is described in the following theorem, which was shown by Dean [1996] for $s= \pm 1$. His arguments can be extended to any value for s.

Figure 1. The $T(5,4)$ torus knot changed into a $T(5,4,3,1)$ twisted torus knot.

Theorem 2.1. The $T(m, n, r, s)$ twisted torus knot is equivalent to the $T(n, m, r, s)$ twisted torus knot.

2B. Colorability and determinants. A knot is p-colorable if the strands in a projection of the knot can be labeled according to the following three conditions [Livingston 1993]. The first is that each strand must be labeled with an integer from 0 to $p-1$. The second requires that at least two labels are distinct. The third requires that

$$
\begin{equation*}
x+y-2 z \equiv 0(\bmod p) \tag{1}
\end{equation*}
$$

at each crossing, where z is the label of the overstrand and x and y are the labels of the two understrands [loc. cit.]. Note that if a knot is colorable for some prime p, then it is colorable for any multiple of p.

A knot is p-colorable if and only if p divides the determinant of the knot. The determinant of a knot is the absolute value of the determinant of a minor crossing matrix constructed by removing a row and a column from the crossing matrix of a projection of the knot. A crossing matrix is a matrix representing the system of equations determined by requirement (1) at each crossing of a projection of the knot [loc. cit.].

The following result of Breiland et al. [2009] completely characterizes the colorability of torus knots. Recall that $T(m, n)$ and $T(n, m)$ are the same knot, so only two cases need to be considered.

Theorem 2.2. Let $T(m, n)$ be a torus knot and p a prime:
(i) If m and n are both odd, then $T(m, n)$ is not p-colorable.
(ii) If m is odd and n is even, then $T(m, n)$ is p-colorable if and only if $p \mid m$.

Their proof was a direct consequence of the following lemma, which they proved by evaluating Alexander polynomials at $t=-1$ [Livingston 1993].

Lemma 2.3. For any torus knot $T(m, n)$,
(i) if m and n are odd, then $\operatorname{det}(T(m, n))=1$;
(ii) if m is odd and n is even, then $\operatorname{det}(T(m, n))=m$.

3. Methods

3A. Computer experimentation. We wrote a program in Matlab that input the four parameters of a twisted torus knot and output the determinant of a minor crossing matrix of the knot, which is equal to the determinant of the knot up to sign. Table 2 is a sample of the program's output. The boldface lines identify the beginning of a new "family", where we fix m, n, and r, and let s vary.

m	n	r	s	$\operatorname{det}(C)$
$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$
4	3	2	2	$\mathbf{- 1}$
4	3	2	3	$\mathbf{- 3}$
4	3	2	4	$\mathbf{- 5}$
4	3	2	5	$\mathbf{- 7}$
$\mathbf{4}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$
4	3	3	2	3
4	3	3	3	1
4	3	3	4	3
4	3	3	5	1
$\mathbf{5}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$
5	3	2	2	3
5	3	2	3	5
5	3	2	4	7
5	3	2	5	9

m	n	r	s	$\operatorname{det}(C)$
$\mathbf{5}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{- 3}$
5	3	3	2	$\mathbf{- 1}$
5	3	3	3	$\mathbf{- 3}$
5	3	3	4	$\mathbf{- 1}$
5	3	3	5	$\mathbf{- 3}$
$\mathbf{5}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{- 1}$
5	3	4	2	$\mathbf{- 1}$
5	3	4	3	$\mathbf{- 1}$
5	3	4	4	$\mathbf{- 1}$
5	3	4	5	$\mathbf{- 1}$
$\mathbf{5}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1 1}$
5	4	2	2	17
5	4	2	3	23
5	4	2	4	29
5	4	2	5	35

Table 2. Experimental data on the determinants of twisted torus knot minor crossing matrices.

When r is even, the computed determinants of the $T(m, n, r, s)$ twisted torus knots form an arithmetic progression in s. When r is odd, the computed determinants oscillate between two values as s varies. Two questions naturally arise: what determines the starting values and differences in the progressions and what determines the values in the oscillations? In trying to answer these questions, we were able to make conjectures for several families of twisted torus knots. The next two subsections develop the techniques that we used to prove our conjectures.

3B. Definitions and notation. We define a coloring vector as a vector

$$
\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{m}\right)
$$

that lists the colors of m strands of a twisted torus knot from right to left between two consecutive cycles (for example, see the top of Figure 2). We also define a coloring matrix as a matrix that operates on a coloring vector according to the coloring relation (1). A coloring matrix represents the changes that occur to the colors on the m strands after a specified number of cycles and/or twists.

We define Γ_{m} to be the coloring matrix that represents the change after one cycle of m strands. Therefore, for a twisted torus knot with m strands and n cycles, the coloring matrix that represents the changes through the torus part (the part above the twists) of the knot is Γ_{m}^{n}. The Γ_{m} matrix representing one cycle of an arbitrary

Figure 2. One cycle of an arbitrary knot.
knot is an $m \times m$ matrix of the form

$$
\Gamma_{m}=\left(\begin{array}{cccccr}
2 & -1 & 0 & \cdots & 0 & 0 \tag{2}\\
2 & 0 & -1 & \cdots & 0 & 0 \\
2 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
2 & 0 & 0 & \cdots & 0 & -1 \\
1 & 0 & 0 & \cdots & 0 & 0
\end{array}\right),
$$

as can be seen from Figure 2 (see also [Breiland et al. 2009]).
We define χ_{r} as a coloring matrix that represents the change that occurs after one full twist of r strands in the lower part of a twisted torus knot projection. By definition, $\chi_{r}=\Gamma_{r}^{r}$ since there will be r cycles on r strands in one full twist. Later in this section we will explore special properties of some powers of χ_{r} matrices. Some of these properties have previously been stated by Przytycki [1998], using n-moves and half-twists.

Throughout, we will use χ_{r} to symbolize the $r \times r$ matrix that represents the changes occurring on only the r strands that are being twisted and also to symbolize the $m \times m$ matrix that represents the changes on all m strands in the lower part of the diagram. In this case, the rightmost $m-r$ strands are left unchanged, so this matrix will contain the original χ_{r} matrix in the lower right, while also having 1 s in the main diagonal from the upper left corner down to the start of the original χ_{r} matrix. We hope that the distinction will be clear from the context.

If $A_{1}, A_{2}, \ldots, A_{i}$ are coloring matrices that represent all of the changes that occur to the coloring vectors, in order, from the top of a projection of a twisted torus knot to the bottom, then we can form an overall coloring matrix for the twisted torus knot $A=A_{i} A_{i-1} \ldots A_{1}$. Then, if \boldsymbol{x} is the coloring vector at the top of the projection, the coloring vector \boldsymbol{x}^{\prime} at the bottom of the projection can be found using $A \boldsymbol{x}=\boldsymbol{x}^{\prime} \bmod p$. Thus, the twisted torus knot can be colored if and only if there exists a nonconstant vector \boldsymbol{x} such that $A \boldsymbol{x}=\boldsymbol{x} \bmod p$. In our calculations, A is generally equal to $\chi_{r}^{s} \Gamma_{m}^{n}$ for the twisted torus knot $T(m, n, r, s)$. For an example, see Figure 3.

3C. Determinants. The usual method of assessing p-colorability of a knot depends on the fact that the system of equations obtained from the coloring relation (1)

Figure 3. Coloring matrices for the $T(5,4,3,1)$ twisted torus knot.
at each crossing has a nontrivial solution $\bmod p$ if and only if any minor of the crossing matrix of the knot has determinant divisible by p [Livingston 1993]. Here we describe a slightly different method for finding the determinant of a twisted torus knot that utilizes coloring matrices rather than crossing matrices. This method has the advantage of dealing with much smaller matrices, which have some very nice forms and useful properties.

Recall that a knot has a nontrivial p-coloring if and only if there is a nonconstant vector \boldsymbol{x} such that $\boldsymbol{x}=A \boldsymbol{x} \bmod p$ for the coloring matrix A. So, we analyze the system of equations $B \boldsymbol{x}=\mathbf{0} \bmod p$, where $B=A-I$. Our treatment below of the matrix B mimics the usual treatment of a crossing matrix to find the determinant of a knot, as explained, for example, in [Livingston 1993].

First note that any constant vector \boldsymbol{x} satisfies $A \boldsymbol{x}=\boldsymbol{x}$, and so the system $B \boldsymbol{x}=\mathbf{0}$ has nontrivial solutions. However, when considering colorability, we are only looking for nonconstant solutions. By linearity, any two solutions to $B \boldsymbol{x}=\mathbf{0}$ can be added to yield another solution. Hence, if there were a nonconstant solution to $B \boldsymbol{x}=\mathbf{0} \bmod p$, then there must be one with $x_{i}=0$ for any choice of i.

Second, since the system $B \boldsymbol{x}=\mathbf{0}$ has nontrivial solutions, the rows of B are linearly dependent. Moreover, as can be seen from the forms of the coloring matrices given in the sequel, and remembering that $B=A-I$, the matrix B has the property that multiplying every other row in the matrix by -1 results in a matrix whose rows sum to the zero vector. This yields a dependence relation involving all the rows of B, and so any one of the equations represented by the matrix B is a result of the others.

Taking the two previous observations together, we note that in looking for nonconstant solutions, we can delete any row and any column from B, forming a minor that we denote as B^{\prime}. Then, the knot has a nontrivial p-coloring if and only if p divides the determinant of B^{\prime}. Moreover, since the matrix obtained from B by multiplying every other row by -1 has the property that any row and any column sums to 0 , the $\bmod p$ rank is independent of which row and column are deleted [Livingston 1993].

This construction is the same as the "black-box approach" used by Kauffman and Lopes [2009] to find determinants of rational knots. There they argue that the absolute value of the determinant of what we are calling B^{\prime} is equal to the classical determinant of the knot. We also note that the details of Oesper's calculation [2005] of determinants of weaving knots show concretely, in a similar setting to ours, how the classical determinant is obtained from the determinant of a minor of what we are calling a coloring matrix.

3D. Forms of matrices. Recall that the coloring matrix χ_{k} corresponds to a full twist on k strands. The form of χ_{k} is

$$
\left(\begin{array}{rrrrrrr}
1 & -2 & 2 & \cdots & 2 & -2 & 2 \tag{3}\\
2 & -3 & 2 & \cdots & 2 & -2 & 2 \\
2 & -2 & 1 & \cdots & 2 & -2 & 2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
2 & -2 & 2 & \cdots & 1 & -2 & 2 \\
2 & -2 & 2 & \cdots & 2 & -3 & 2 \\
2 & -2 & 2 & \cdots & 2 & -2 & 1
\end{array}\right)
$$

when k is odd, and

$$
\left(\begin{array}{rrrrrrrr}
3 & -2 & 2 & \cdots & 2 & -2 & 2 & -2 \tag{4}\\
2 & -1 & 2 & \cdots & 2 & -2 & 2 & -2 \\
2 & -2 & 3 & \cdots & 2 & -2 & 2 & -2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
2 & -2 & 2 & \cdots & 3 & -2 & 2 & -2 \\
2 & -2 & 2 & \cdots & 2 & -1 & 2 & -2 \\
2 & -2 & 2 & \cdots & 2 & -2 & 3 & -2 \\
2 & -2 & 2 & \cdots & 2 & -2 & 2 & -1
\end{array}\right)
$$

when k is even, as can be shown by induction.
3E. Properties of coloring matrices. Let χ_{k} be a coloring matrix, with k odd. Then, χ_{k} has the form (3). Squaring this immediately yields the following lemma. Its corollary is similar to a result of Przytycki [1998].

Lemma 3.1. For k odd, we have $\chi_{k}^{2}=I_{k}$.
Corollary 3.2. An even twist of an odd number of strands applied to a p-colorable torus knot or twisted torus knot will result in a new knot that is also p-colorable.

Proof. Since $\chi_{k}^{2}=I_{k}$ for k odd, it follows that any even twist of an odd number of strands will have the same colors at the top and bottom.

By induction, one can see that the coloring matrix χ_{k}^{q} for k even will have the form

$$
\left(\begin{array}{cccccc}
2 q+1 & -2 q & 2 q & \cdots & 2 q & -2 q \tag{5}\\
2 q & -2 q+1 & 2 q & \cdots & 2 q & -2 q \\
2 q & -2 q & 2 q+1 & \cdots & 2 q & -2 q \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
2 q & -2 q & 2 q & \cdots & 2 q+1 & -2 q \\
2 q & -2 q & 2 q & \cdots & 2 q & -2 q+1
\end{array}\right) .
$$

Given this result, we can immediately prove another lemma. Again, a result similar to its corollary was also demonstrated by Przytycki [1998].
Lemma 3.3. For k even, we have $\chi_{k}^{q} \equiv I_{k} \bmod q$.
Obviously, we could have stated that for k even, $\chi_{k}^{q} \equiv I_{k} \bmod 2 q$. However, in this paper, we will only utilize the result as given in the lemma.
Corollary 3.4. If the original torus knot was p-colorable, twisting an even number of strands s times, where $p \mid s$, will result in another p-colorable knot.
Proof. We have $\chi_{k}^{s}=\chi_{k}^{p j}$ for some j. Then, $\chi_{k}^{p j}=I_{k}^{j}=I_{k}(\bmod p)$. Therefore, when coloring $\bmod p$, the same colors will appear at the top and bottom of the twist.

In our proofs, we will use a few special powers of the Γ_{m} matrices, which we now calculate. First, we find $\Gamma_{m}^{m q+1}$ for m even. This is equal to $\Gamma_{m}^{m q} \Gamma_{m}=\chi_{m}^{q} \Gamma_{m}$. This is (5) times (2), which is

$$
\left(\begin{array}{cccccccc}
2 q+2 & -2 q-1 & 2 q & -2 q & \cdots & -2 q & 2 q & -2 q \tag{6}\\
2 q+2 & -2 q & 2 q-1 & -2 q & \cdots & -2 q & 2 q & -2 q \\
2 q+2 & -2 q & 2 q & -2 q-1 & \cdots & -2 q & 2 q & -2 q \\
2 q+2 & -2 q & 2 q & -2 q & \cdots & -2 q & 2 q & -2 q \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
2 q+2 & -2 q & 2 q & -2 q & \cdots & -2 q & 2 q-1 & -2 q \\
2 q+2 & -2 q & 2 q & -2 q & \cdots & -2 q & 2 q & -2 q-1 \\
2 q+1 & -2 q & 2 q & -2 q & \cdots & -2 q & 2 q & -2 q
\end{array}\right) .
$$

Here, we exhibit the form of $\Gamma_{m}^{m q-1}$ for m even, which is

$$
\left(\begin{array}{cccccc}
2 q & -2 q & 2 q & \cdots & 2 q & -2 q+1 \tag{7}\\
2 q-1 & -2 q & 2 q & \cdots & 2 q & -2 q+2 \\
2 q & -2 q-1 & 2 q & \cdots & 2 q & -2 q+2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
2 q & -2 q & 2 q & \cdots & 2 q & -2 q+2 \\
2 q & -2 q & 2 q & \cdots & 2 q-1 & -2 q+2
\end{array}\right) .
$$

When we multiply (7) by (2), we obtain (5). Therefore, the matrix (7) has been shown to be $\Gamma_{m}^{m q-1}$ since we have $\Gamma_{m}^{m q-1} \Gamma_{m}=\Gamma_{m}^{m q}=\chi_{m}^{q}$ and Γ_{m} is invertible.

Finally, we calculate $\Gamma_{m}^{2 m q \pm 1}$ for m odd. Since $\chi_{m}^{2 q}=I_{m}$,

$$
\begin{equation*}
\Gamma_{m}^{2 m q+1}=\Gamma_{m}^{2 m q} \Gamma_{m}=I_{m} \Gamma_{m}=\Gamma_{m} . \tag{8}
\end{equation*}
$$

Also,

$$
\left(\begin{array}{rrrrrr}
0 & 0 & 0 & \cdots & 0 & 1 \tag{9}\\
-1 & 0 & 0 & \cdots & 0 & 2 \\
0 & -1 & 0 & \cdots & 0 & 2 \\
\vdots & \vdots & \vdots & \ddots & & \vdots \\
0 & 0 & 0 & \cdots & 0 & 2 \\
0 & 0 & 0 & \cdots & -1 & 2
\end{array}\right)
$$

times (2) is equal to I_{m}. Thus (9) is equal to $\Gamma_{m}^{2 m q-1}$ since $\Gamma_{m}^{2 m q-1} \Gamma_{m}=\Gamma_{m}^{2 m q}=I_{m}$.

4. Results

We now calculate the determinants of $T(m, n, r, s)$, for some families of the parameters. We find $A=\chi_{r}^{s} \Gamma_{m}^{n}$ and then use the process from Section 3C to find the determinant of the knot by finding the determinant of a minor of $A-I$, which we do by row reduction. We use the second definition of χ_{r} matrices given in Section 3B - that is, a χ_{r} matrix is an $m \times m$ matrix that contains $m-r$ 1s along the main diagonal and the rest of the nonzero entries in the lower right of the matrix. For r even, we have

$$
\chi_{r}^{s}=\left(\begin{array}{ccccccccc}
1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \tag{10}\\
0 & 1 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 2 s+1 & -2 s & \cdots & 2 s & -2 s \\
0 & 0 & \cdots & 0 & 2 s & -2 s+1 & \cdots & 2 s & -2 s \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 2 s & -2 s & \cdots & 2 s+1 & -2 s \\
0 & 0 & \cdots & 0 & 2 s & -2 s & \cdots & 2 s & -2 s+1
\end{array}\right) .
$$

Recall from Lemma 3.1 that $\chi_{r}^{2}=I_{r}$ for r odd. For r, s odd we have

$$
\chi_{r}^{s}=\left(\begin{array}{rrrrrrrrr}
1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \tag{11}\\
0 & 1 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 1 & -2 & \cdots & -2 & 2 \\
0 & 0 & \cdots & 0 & 2 & -3 & \cdots & -2 & 2 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 2 & -2 & \cdots & -3 & 2 \\
0 & 0 & \cdots & 0 & 2 & -2 & \cdots & -2 & 1
\end{array}\right) .
$$

4A. $\boldsymbol{T}(\boldsymbol{m}, \boldsymbol{m} \boldsymbol{q}+\mathbf{1}, \boldsymbol{r}, \boldsymbol{s})$ family with \boldsymbol{m} even. By Theorem 2.1 , the $T(4,5,2, s)$ family of twisted torus knots is the same as the $T(5,4,2, s)$ family of twisted torus knots. By Table 2, we see that this family has determinants in an arithmetic progression with starting value 5 (the determinant of $T(4,5)$) and difference 6 . This is a special case of the following theorem, which states that related families of twisted torus knots will have determinants in arithmetic progressions with starting values at the determinant of the (untwisted) torus knot and a difference that depends on m, n, r, and s.

Theorem 4.1. A $T(m, m q+1, r, s)$ twisted torus knot, with m, r even and $m>r$, has determinant $\Delta=|m q+1+r s+(m-r) q r s|$.

Proof. Multiply the χ_{r}^{s} matrix (10) on the right by $\Gamma_{m}^{m q+1}$ (6), yielding
$\left(\begin{array}{cccccccccc}2 q+2 & -2 q-1 & \cdots & -2 q & 2 q & -2 q & 2 q & \cdots & 2 q & -2 q \\ 2 q+2 & -2 q & \cdots & -2 q & 2 q & -2 q & 2 q & \cdots & 2 q & -2 q \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 2 q+2 & -2 q & \cdots & -2 q & 2 q-1 & -2 q & 2 q & \cdots & 2 q & -2 q \\ 2 q+2 s+2 & -2 q & \cdots & -2 q & 2 q & -2 q-2 s-1 & 2 q+2 s & \cdots & 2 q+2 s & -2 q-2 s \\ 2 q+2 s+2 & -2 q & \cdots & -2 q & 2 q & -2 q-2 s & 2 q+2 s-1 & \cdots & 2 q+2 s & -2 q-2 s \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 2 q+2 s+2 & -2 q & \cdots & -2 q & 2 q & -2 q-2 s & 2 q+2 s & \cdots & 2 q+2 s & -2 q-2 s-1 \\ 2 q+2 s+1 & -2 q & \cdots & -2 q & 2 q & -2 q-2 s & 2 q+2 s & \cdots & 2 q+2 s & -2 q-2 s\end{array}\right)$.

Here, R_{m-r+1} is the first row with entries that contain an s. We subtract I_{m} and remove the first row and column:

$$
\left(\begin{array}{cccccccccc}
-2 q-1 & 2 q-1 & \cdots & -2 q & 2 q & -2 q & 2 q & \cdots & 2 q & -2 q \\
-2 q & 2 q-1 & \cdots & -2 q & 2 q & -2 q & 2 q & \cdots & 2 q & -2 q \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-2 q & 2 q & \cdots & -2 q-1 & 2 q-1 & -2 q & 2 q & \cdots & 2 q & -2 q \\
-2 q & 2 q & \cdots & -2 q & 2 q-1 & -2 q-2 s-1 & 2 q+2 s & \cdots & 2 q+2 s & -2 q-2 s \\
-2 q & 2 q & \cdots & -2 q & 2 q & -2 q-2 s-1 & 2 q+2 s-1 & \cdots & 2 q+2 s & -2 q-2 s \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-2 q & 2 q & \cdots & -2 q & 2 q & -2 q-2 s & 2 q+2 s & \cdots & 2 q+2 s-1 & -2 q-2 s-1 \\
-2 q & 2 q & \cdots & -2 q & 2 q & -2 q-2 s & 2 q+2 s & \cdots & 2 q+2 s & -2 q-2 s-1
\end{array}\right) .
$$

To find the determinant of this matrix, we use elementary row operations to convert the matrix into an upper triangular matrix, whose determinant we can then easily compute by taking the product of the diagonal entries. Using the row operations
$R_{1} \rightarrow R_{1}-R_{2}, R_{2} \rightarrow R_{2}-R_{3}, \ldots, R_{m-2} \rightarrow R_{m-2}-R_{m-1}$ yields the matrix

$$
\left(\begin{array}{rrrrlrccccccc}
-1 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & -1 & 0 & 1+2 s & -2 s & \cdots & 2 s & -2 s & 2 s \\
0 & 0 & 0 & 0 & \cdots & 0 & -1 & 0 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & -1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & -1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & -1 & 0 \\
-2 q & 2 q & -2 q & 2 q & \cdots & -2 q & 2 q & -\alpha & \alpha & \cdots & -\alpha & \alpha & -\alpha-1
\end{array}\right),
$$

where $\alpha=2 q+2 s$. (Note that the entries $\pm 2 s$ occur in row R_{m-r-1}.) We now reduce the last row using

$$
\begin{aligned}
& R_{m-1} \rightarrow R_{m-1}+\sum_{i=1}^{(m-r) / 2} 2 i q\left(R_{2 i}-R_{2 i-1}\right), \\
& R_{m-1} \rightarrow R_{m-1}+\sum_{i=1}^{(r-2) / 2}((m-r)(1+2 i s) q+2 i(q+s))\left(R_{m-r+2 i}-R_{m-r+2 i-1}\right) .
\end{aligned}
$$

This leaves us with

$$
\left(\begin{array}{rrrrrrrrrrrrr}
-1 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & -1 & 0 & 1+2 s & -2 s & \cdots & 2 s & -2 s & 2 s \\
0 & 0 & 0 & 0 & \cdots & 0 & -1 & 0 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & -1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & -1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \Delta
\end{array}\right),
$$

where
$\Delta=-1-2 q-2 s-q(2 s)(m-r)-((m-r)(1+(r-2) s) q+(r-2)(q+s))$.

The determinant of this upper triangular matrix is Δ since there are an even number of -1 s along the diagonal. We can rewrite Δ as $-1-m q-r s-(m-r) q r s$. As we explained in Section 3C, the determinant of the knot is the absolute value of the determinant of this matrix, so it follows that the determinant of the knot is equal to $|1+m q+r s+(m-r) q r s|$.

For these values of m and n but odd r, a different phenomenon results. For example, the $T(5,4,3, s)$ family has determinants that oscillate between 5 (the determinant of $T(5,4)$) and 7 . Next we show that this is representative of related families of twisted torus knots, which have determinants that oscillate between the determinant of the untwisted knot and another value that depends on m, n, and r. We first prove the following lemma for $s=1$.

Lemma 4.2. A $T(m, m q+1, r, 1)$ twisted torus knot, with m even and r odd, has determinant $\Delta=\left|r+\left(m r-r^{2}+1\right) q\right|$.

Proof. Multiply the χ_{r}^{s} matrix by $\Gamma_{m}^{m q+1}$. This is (11) times (6), which equals

$$
\left(\begin{array}{cccccccccc}
2 q+2 & -2 q-1 & \cdots & 2 q & -2 q & 2 q & -2 q & \cdots & 2 q & -2 q \\
2 q+2 & -2 q & \cdots & 2 q & -2 q & 2 q & -2 q & \cdots & 2 q & -2 q \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
2 q+2 & -2 q & \cdots & 2 q & -2 q-1 & 2 q & -2 q & \cdots & 2 q & -2 q \\
2 q & -2 q & \cdots & 2 q & -2 q & 2 q-1 & -2 q+2 & \cdots & 2 q-2 & -2 q+2 \\
2 q & -2 q & \cdots & 2 q & -2 q & 2 q-2 & -2 q+3 & \cdots & 2 q-2 & -2 q+2 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
2 q & -2 q & \cdots & 2 q & -2 q & 2 q-2 & -2 q+2 & \cdots & 2 q-1 & -2 q+3 \\
2 q & -2 q & \cdots & 2 q & -2 q & 2 q-2 & -2 q+2 & \cdots & 2 q-2 & -2 q+3 \\
2 q+1 & -2 q & \cdots & 2 q & -2 q & 2 q-2 & -2 q+2 & \cdots & 2 q-2 & -2 q+2
\end{array}\right) .
$$

Note the change from row R_{m-r} to R_{m-r+1}. Subtract I_{m} and remove the first row and column:

$$
\left(\begin{array}{cccccccccc}
-2 q-1 & 2 q-1 & \cdots & 2 q & -2 q & 2 q & -2 q & \cdots & 2 q & -2 q \\
-2 q & 2 q-1 & \cdots & 2 q & -2 q & 2 q & -2 q & \cdots & 2 q & -2 q \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-2 q & 2 q & \cdots & 2 q-1 & -2 q-1 & 2 q & -2 q & \cdots & 2 q & -2 q \\
-2 q & 2 q & \cdots & 2 q & -2 q-1 & 2 q-1 & -2 q+2 & \cdots & 2 q-2 & -2 q+2 \\
-2 q & 2 q & \cdots & 2 q & -2 q & 2 q-3 & -2 q+3 & \cdots & 2 q-2 & -2 q+2 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-2 q & 2 q & \cdots & 2 q & -2 q & 2 q-2 & -2 q+2 & \cdots & 2 q-1 & -2 q+2 \\
-2 q & 2 q & \cdots & 2 q & -2 q & 2 q-2 & -2 q+2 & \cdots & 2 q-3 & -2 q+3 \\
-2 q & 2 q & \cdots & 2 q & -2 q & 2 q-2 & -2 q+2 & \cdots & 2 q-2 & -2 q+1
\end{array}\right) .
$$

Reducing with $R_{1} \rightarrow R_{1}-R_{2}, R_{2} \rightarrow R_{2}-R_{3}, \ldots, R_{m-2} \rightarrow R_{m-2}-R_{m-1}$ gives
$\left(\begin{array}{rrrrlrrrrrrrr}-1 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -1 & 0 & 1 & -2 & \cdots & -2 & 2 & -2 \\ 0 & 0 & 0 & 0 & \cdots & 0 & -1 & 2 & -1 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & -1 & 2 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & -1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & -1 & 2 \\ -2 q & 2 q & -2 q & 2 q & \cdots & 2 q & -2 q & 2 q-2 & -2 q+2 & \cdots & -2 q+2 & 2 q-2 & -2 q+2\end{array}\right)$,
where the row containing the $\pm 2 \mathrm{~s}$ is R_{m-r-1}. We now reduce the last row using

$$
\begin{aligned}
& R_{m-1} \rightarrow R_{m-1}+ \sum_{i=1}^{(m-r-1) / 2} 2 i q\left(R_{2 i}-R_{2 i-1}\right), \\
& R_{m-1} \rightarrow R_{m-1}+\sum_{i=1}^{(r-3) / 2}(((2 i+1)(m-r)+1) q+2 i) R_{m-r+2 i} \\
&-\sum_{i=1}^{(r-1) / 2}(((2 i-1)(m-r)+1) q+2 i) R_{m-r+2 i-1}
\end{aligned}
$$

We now have the upper triangular matrix

$$
\left(\begin{array}{rrrrrrrrrrrrr}
-1 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & -1 & 0 & 1 & -2 & \cdots & -2 & 2 & -2 \\
0 & 0 & 0 & 0 & \cdots & 0 & -1 & 2 & -1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & -1 & 2 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & -1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & -1 & 2 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \Delta
\end{array}\right),
$$

where

$$
\begin{aligned}
\Delta=1-2 q- & 2(m-r-1) q \\
& +((r-2)(m-r)+1) q+r-3-2(((r-2)(m-r)+1)+r-1) .
\end{aligned}
$$

Since there are an even number of -1 s on the diagonal, the determinant is Δ, which simplifies to $-r-\left(m r-r^{2}+1\right) q$. The determinant of the knot is then $\left|r+\left(m r-r^{2}+1\right) q\right|$.

This immediately leads into a theorem:
Theorem 4.3. A $T(m, m q+1, r, s)$ twisted torus knot, with m even and r odd, has determinant $\Delta=\left|r+\left(m r-r^{2}+1\right) q\right|$ if s is odd, and determinant $\Delta=|m q+1|$ ifs is even.

Proof. If s is odd, χ_{r}^{s} will equal the one used in the proof of Lemma 4.2, so the determinant of $T(m, m q+1, r, s)$ would equal that of $T(m, m q+1, r, 1)$. If s is even, χ_{r}^{s} will be the identity, so the determinant of the knot would simply be the determinant of the $T(m, m q+1)$ torus knot, which is $m q+1$ by Lemma 2.3, since m is even and $m q+1$ is odd.

4B. $\boldsymbol{T}(\boldsymbol{m}, \boldsymbol{m} \boldsymbol{q}-\mathbf{1}, \boldsymbol{r}, \boldsymbol{s})$ family with \boldsymbol{m} even. We now proceed to investigate a similar family to the one just analyzed. In these proofs, instead of using some power of Γ_{m} that has a diagonal with -1 s in it to the upper right of the main diagonal, as in (6), we utilize different powers of Γ_{m} that have the property that there is a diagonal with -1 s in it to the lower left of the main diagonal, as in (7). By glancing at the values for the $T(4,3,2, s)$ family in Table 2, we conjecture that we will have an arithmetic progression beginning at the determinant of the $T(4,3)$ torus knot. We now prove that this is the case.

Theorem 4.4. A $T(m, m q-1, r, s)$ twisted torus knot, with m, r even, has determinant $\Delta=|m q-1+r s-(m-r) q r s|$.
Proof. Multiply the χ_{r}^{s} matrix by $\Gamma_{m}^{m q-1}$. This will be (10) times (7), which is

We subtract I_{m} from this. At this point, instead of deleting the first row and column as we have done previously, we choose to remove the last row and column:

$$
\left(\begin{array}{ccccccccc}
2 q-1 & -2 q & \cdots & 2 q & -2 q & 2 q & \cdots & -2 q & 2 q \\
2 q-1 & -2 q-1 & \cdots & 2 q & -2 q & 2 q & \cdots & -2 q & 2 q \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
2 q & -2 q & \cdots & 2 q-1 & -2 q-1 & 2 q & \cdots & -2 q & 2 q \\
2 q & -2 q & \cdots & 2 q & -2 q-2 s-1 & 2 q+2 s-1 & \cdots & -2 q-2 s & 2 q+2 s \\
2 q & -2 q & \cdots & 2 q & -2 q-2 s & 2 q+2 s-1 & \cdots & -2 q-2 s & 2 q+2 s \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
2 q & -2 q & \cdots & 2 q & -2 q-2 s & 2 q+2 s & \cdots & -2 q-2 s-1 & 2 q+2 s \\
2 q & -2 q & \cdots & 2 q & -2 q-2 s & 2 q+2 s & \cdots & -2 q-2 s-1 & 2 q+2 s-1
\end{array}\right) .
$$

The first row with entries containing a term with an s is R_{m-r+1}. We now reduce using the row operations

$$
\begin{gather*}
R_{2} \rightarrow R_{2}-R_{3}, \quad R_{3} \rightarrow R_{3}-R_{4}, \ldots, \quad R_{m-2} \rightarrow R_{m-2}-R_{m-1} \\
R_{m-1} \rightarrow R_{m-1}-R_{1}, \quad R_{1} \rightarrow R_{1}+R_{m-1} \tag{12}
\end{gather*}
$$

Additionally, we cyclically permute the rows by moving R_{1} to the bottom, while shifting all of the other rows up by one. This puts the diagonal of -1 s on the main diagonal using an even number of switches. Thus, the determinant remains unchanged. The matrix becomes

$$
\left(\begin{array}{rrrlcccccccc}
-1 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & -1 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & -1 & 2 s & -2 s+1 & 2 s & \cdots & -2 s & 2 s & -2 s \\
0 & 0 & 0 & \cdots & 0 & -1 & 0 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & -1 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & -1 & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & -2 s & 2 s & -2 s & \cdots & 2 s & -2 s-1 & 2 s-1 \\
2 q & -2 q & 2 q & \cdots & 2 q & -\alpha & \alpha & -\alpha & \cdots & \alpha & -\alpha-1 & \alpha-1
\end{array}\right),
$$

where R_{m-r-1} is the first row with entries $\pm 2 s$. (As before, $\alpha=2 q+2 s$.) We now reduce R_{m-2} with

$$
R_{m-2} \rightarrow R_{m-2}+\sum_{i=1}^{(m-2) / 2} R_{2 i-1}
$$

We then reduce R_{m-1} with

$$
\begin{aligned}
& R_{m-1} \rightarrow R_{m-1}+\sum_{i=1}^{(m-r-2) / 2} 2 i q\left(R_{2 i-1}-R_{2 i}\right)+(m-r) q R_{m-r-1}, \\
& R_{m-1} \rightarrow R_{m-1}+\sum_{i=1}^{r / 2}((m-r)(2 i q s-q)-(2 i-2) q-2 i s) R_{m-r-2+2 i} \\
& R_{m-1} \rightarrow R_{m-1}-\sum_{i=1}^{(r-2) / 2}((m-r)(2 i q s-q)-2 i q-2 i s) R_{m-r-1+2 i}
\end{aligned}
$$

Now we have successfully reduced the matrix into an upper-triangular matrix

$$
\left(\begin{array}{rrrrrcrccccc}
-1 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & -1 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & -1 & 2 s & -2 s+1 & 2 s & \cdots & -2 s & 2 s & -2 s \\
0 & 0 & 0 & \cdots & 0 & -1 & 0 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & -1 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & -1 & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & -1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \Delta
\end{array}\right) .
$$

with determinant
$\Delta=2 q+2 s-1-2 s(m-r) q-((m-r)((r-2) q s-q)-(r-2) q-(r-2) s)$.

As before, there are an even number of -1 s on the diagonal, and the row operations did not affect the determinant. Simplifying Δ, the determinant of the knot is $|-1+m q+r s-(m-r) q r s|$.

To investigate this family when r is odd, we begin with a lemma for the case $s=1$.

Lemma 4.5. $A T(m, m q-1, r, 1)$ twisted torus knot, with m even and r odd, has determinant $\Delta=\left|r-\left(m r-r^{2}+1\right) q\right|$.

Proof. Multiply the χ_{r}^{s} matrix by $\Gamma_{m}^{m q-1}$. This is (11) multiplied by (7), which gives

$$
\left(\begin{array}{ccccccccccc}
2 q & -2 q & \cdots & -2 q & 2 q & -2 q & 2 q & \cdots & -2 q & 2 q & -2 q+1 \\
2 q-1 & -2 q & \cdots & -2 q & 2 q & -2 q & 2 q & \cdots & -2 q & 2 q & -2 q+2 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
2 q & -2 q & \cdots & -2 q-1 & 2 q & -2 q & 2 q & \cdots & -2 q & 2 q & -2 q+2 \\
2 q & -2 q & \cdots & -2 q & 2 q-1 & -2 q+2 & 2 q-2 & \cdots & -2 q+2 & 2 q-2 & -2 q+2 \\
2 q & -2 q & \cdots & -2 q & 2 q-2 & -2 q+3 & 2 q-2 & \cdots & -2 q+2 & 2 q-2 & -2 q+2 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
2 q & -2 q & \cdots & -2 q & 2 q-2 & -2 q+2 & 2 q-2 & \cdots & -2 q+2 & 2 q-2 & -2 q+2 \\
2 q & -2 q & \cdots & -2 q & 2 q-2 & -2 q+2 & 2 q-2 & \cdots & -2 q+3 & 2 q-2 & -2 q+2 \\
2 q & -2 q & \cdots & -2 q & 2 q-2 & -2 q+2 & 2 q-2 & \cdots & -2 q+2 & 2 q-1 & -2 q+2
\end{array}\right)
$$

As in the previous proof, we delete the last row and column after subtracting I_{m} :

$$
\left(\begin{array}{cccccccccc}
2 q-1 & -2 q & \cdots & -2 q & 2 q & -2 q & 2 q & \cdots & -2 q & 2 q \\
2 q-1 & -2 q-1 & \cdots & -2 q & 2 q & -2 q & 2 q & \cdots & -2 q & 2 q \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
2 q & -2 q & \cdots & -2 q-1 & 2 q-1 & -2 q & 2 q & \cdots & -2 q & 2 q \\
2 q & -2 q & \cdots & -2 q & 2 q-1 & -2 q+1 & 2 q-2 & \cdots & -2 q+2 & 2 q-2 \\
2 q & -2 q & \cdots & -2 q & 2 q-2 & -2 q+3 & 2 q-3 & \cdots & -2 q+2 & 2 q-2 \\
2 q & -2 q & \cdots & -2 q & 2 q-2 & -2 q+2 & 2 q-1 & \cdots & -2 q+2 & 2 q-2 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
2 q & -2 q & \cdots & -2 q & 2 q-2 & -2 q+2 & 2 q-2 & \cdots & -2 q+2 & 2 q-2 \\
2 q & -2 q & \cdots & -2 q & 2 q-2 & -2 q+2 & 2 q-2 & \cdots & -2 q+1 & 2 q-2 \\
2 q & -2 q & \cdots & -2 q & 2 q-2 & -2 q+2 & 2 q-2 & \cdots & -2 q+3 & 2 q-3
\end{array}\right) .
$$

We apply the row operations given in (12). Also, R_{1} is moved to the bottom, and the other rows are shifted up one, giving
$\left(\begin{array}{rrrrlrrrrrrrrrr}-1 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -1 & 0 & -1 & 2 & -2 & \cdots & -2 & 2 & -2 & 2 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & -2 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & -2 & 1 \\ -1 & 0 & 0 & 0 & \cdots & 0 & -2 & 2 & -2 & 2 & \cdots & 2 & -2 & 3 & -3 \\ 2 q & -2 q & 2 q & -2 q & \cdots & -2 q & \beta & -\beta & \beta & -\beta & \cdots & -\beta & \beta & -\beta+1 & \beta-1\end{array}\right)$

Here, R_{m-r-1} contains the sequence of alternating $\pm 2 \mathrm{~s}$ and $\beta=2 q-2$. The absolute value of the determinant is unchanged by these row operations. To reduce R_{m-2}, we use

$$
R_{m-2} \rightarrow R_{m-2}+\sum_{i=1}^{(m-2) / 2} R_{2 i-1} .
$$

In so doing, we find that adding R_{m-r-1} to it creates a lot of cancellation. For the last row, we use

$$
\begin{aligned}
& R_{m-1} \rightarrow R_{m-1}+\sum_{i=1}^{(m-r-1) / 2} 2 q i\left(R_{2 i-1}-R_{2 i}\right), \\
& R_{m-1} \rightarrow R_{m-1}-\sum_{i=1}^{(r-1) / 2}(((2 i-1)(m-r)+1) q-2 i) R_{m-r-2+2 i}, \\
& R_{m-1} \rightarrow R_{m-1}-\sum_{i=1}^{(r-1) / 2}(((2 i+1)(m-r)-1) q-2 i) R_{m-r-1+2 i} .
\end{aligned}
$$

Our matrix has been transformed into

$$
\left(\begin{array}{rrrrrrrrrrrrrrr}
-1 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & -1 & 0 & -1 & 2 & -2 & \cdots & -2 & 2 & -2 & 2 \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & -2 & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \Delta
\end{array}\right),
$$

for

$$
\begin{aligned}
\Delta=2 q-3 & -2(m-r-1) q \\
& -(((r-2)(m-r)+1) q-(r-1))+2((r(m-r)-1) q-(r-2)) .
\end{aligned}
$$

There are $m-r-1$ entries of -1 on the main diagonal. Since $m-r-1$ is even, the determinant of this matrix is Δ, which simplifies to $-r+\left(m r-r^{2}+1\right) q$. The determinant of the knot is then $\left|r-\left(m r-r^{2}+1\right) q\right|$.

As in the proof of Theorem 4.3, this lemma leads directly to a corresponding theorem.

Theorem 4.6. A $T(m, m q-1, r, s)$ twisted torus knot, with m even and r odd, has determinant $\Delta=\left|r-\left(m r-r^{2}+1\right) q\right|$ if s is odd, and determinant $\Delta=|m q-1|$ ifs is even.

4C. $\boldsymbol{T}(\boldsymbol{m}, 2 \boldsymbol{m} q+1, r, s)$ family with \boldsymbol{m} odd. Now we begin our discussion of twisted torus knots when both m and n are odd. This represents a major change for two reasons. First, the $T(m, n)$ torus knot that we begin with will no longer be p-colorable for any p; by Lemma 2.3, it will have a determinant of 1 . Additionally, the powers of the Γ_{m} matrices that we use will no longer have q s in them. However, after examination of Table 2, the trend of having either an oscillating pattern or an arithmetic progression appears to hold when m and n are both odd (the determinants of the $T(5,3,4, s)$ family form an arithmetic progression with difference 0$)$. Although the details are slightly different, the methods of this section closely follow those of Section 4A. For space considerations, we suppress the matrices involved and only record the arithmetic details. We trust that the reader could supply the matrices if desired.

Theorem 4.7. A $T(m, 2 m q+1, r, s)$ twisted torus knot, with m odd, r even, and $m>r$, has determinant $\Delta=|r s+1|$.
Proof. Multiply the χ_{r}^{s} matrix by $\Gamma_{m}^{2 m q+1}$. By (8), this will be (10) times (2). As we did in Section 4A, we will return to our method of subtracting I_{m} and removing the first row and column. We do not have to reduce any of the first $m-r$ rows, as there are no entries to the left of the long diagonal in these rows. (The first row containing 2 s and -2 s happens to be R_{m-r}.) Therefore, we use a different process of row operations, as we only will work with the last r rows, as follows:

$$
\begin{gather*}
R_{m-r+1} \rightarrow R_{m-r+1}-R_{m-r+2}, \\
R_{m-r+2} \rightarrow R_{m-r+2}-R_{m-r+3}, \ldots R_{m-2} \rightarrow R_{m-2}-R_{m-1} . \tag{13}
\end{gather*}
$$

All that remains is to reduce R_{m-1}. Our procedure for doing this is

$$
R_{m-1} \rightarrow R_{m-1}+\sum_{i=1}^{(r-2) / 2} 2 s i\left(R_{m-r+2 i}-R_{m-r+2 i-1}\right)
$$

This converts the matrix into an upper triangular matrix with an odd number of -1 s along the diagonal and $-\Delta=-2 s-1-(r-2) s$ as the only other diagonal entry. The determinant of this matrix is then $\Delta=1+r s$. The determinant of the knot is thus $|1+r s|$.

Similarly, we can prove that when r is odd the determinants will oscillate. However, they now oscillate between 1 and some other value, as the determinant of a $T(m, 2 m q+1)$ torus knot is 1 by Lemma 2.3, because both m and $2 m q+1$ are odd.

Lemma 4.8. $A T(m, 2 m q+1, r, 1)$ twisted torus knot, with m, r odd, has determinant $\Delta=r$.
Proof. Multiply the χ_{r}^{s} matrix by $\Gamma_{m}^{2 m q+1}$. By (8), we have (11) multiplied by (2). We subtract I_{m} and remove the first row and column. Again, we do not have to reduce the first $m-r$ rows. (The first row with more than two entries is R_{m-r}.) We use the row operations given in (13) on the remaining rows.

The last row is the only one preventing an upper-triangular matrix. We remedy this with

$$
R_{m-1} \rightarrow R_{m-1}-\sum_{i=1}^{(r-3) / 2} 2 i\left(R_{m-r+2 i}+R_{m-r+2 i-1}\right)-(r-1) R_{m-2} .
$$

This leaves an upper triangular matrix with an odd number of -1 s on the diagonal and $-\Delta$ in the last diagonal entry, where $-\Delta=1+(r-3)-2(r-1)$. The determinant of this upper triangular matrix is Δ. Fortunately, Δ simplifies to r. The determinant of the knot is then just r. (Note that r can never be negative, as it represents the number of strands.)

Again this lemma leads to a full theorem.
Theorem 4.9. A $T(m, 2 m q+1, r, s)$ twisted torus knot, with m, r odd, has determinant $\Delta=r$ if s is odd, and determinant $\Delta=1$ ifs is even.

4D. $\boldsymbol{T}(\boldsymbol{m}, \mathbf{2 m q}-1, r, s)$ family with \boldsymbol{m} odd. The final family that we will investigate with our procedure is the $T(m, 2 m q-1, r, s)$ family. In many ways, these proofs correspond to those presented in Section 4B, which deal with the $T(m, m q-1, r, s)$ family, just as the proofs from Section 4C correspond to those from Section 4A. This is due to the fact that the diagonal with -1 s is to the lower left of the main diagonal, instead of the upper right. As in the previous section we suppress the matrices to save space.
Theorem 4.10. A $T(m, 2 m q-1, r, s)$ twisted torus knot, with m odd, r even, and $m>r$, has determinant $\Delta=|r s-1|$.
Proof. Multiply the χ_{r}^{s} matrix by $\Gamma_{m}^{2 m q-1}$, which is (10) times (9). As in the proofs of Theorem 4.4 and Lemma 4.5, we opt to delete the last row and column after subtracting I_{m}. Here, the first row with entries $\pm 2 s$ is R_{m-r+1}. In this proof, we use a different method of turning this matrix into a triangular matrix. Instead of subtracting each row from the row above it and ending up with an upper triangular matrix, we choose to subtract each row from the row below it, eventually reaching
a lower triangular matrix. This avoids any need to cyclically permute the rows. Our row operations are

$$
\begin{gather*}
R_{m-1} \rightarrow R_{m-1}-R_{m-2} \\
R_{m-2} \rightarrow R_{m-2}-R_{m-3}, \ldots R_{m-r+2} \rightarrow R_{m-r+2}-R_{m-r+1} . \tag{14}
\end{gather*}
$$

Because of our different procedure, we must reduce R_{m-r+1} (not R_{m-1}). We use

$$
R_{m-r+1} \rightarrow R_{m-r+1}+\sum_{i=1}^{(r-2) / 2} 2 i s\left(R_{m-2 i+1}-R_{m-2 i}\right)
$$

This gives a lower triangular matrix with an odd number of -1 s along the diagonal and $-\Delta=2 s-1+(r-2) s$ in row R_{m-r+1} as the only other entry on the diagonal. The determinant of this matrix is $\Delta=-1+r s$, and so the determinant of the knot is $|-1+r s|$.

Our final proof of this type investigates a case where r is odd. Again, we are confirmed by Table 2, in which one family satisfying the following conditions is $T(5,3,3, s)$.

Lemma 4.11. A $T(m, 2 m q-1, r, 1)$ twisted torus knot, with m, r odd, and $m>r$, has determinant $\Delta=r$.

Proof. Multiply the χ_{r}^{s} matrix by $\Gamma_{m}^{2 m q-1}$. This will be (11) multiplied by (9). As in the proof of Theorem 4.10, we subtract I_{m} and remove the last row and column. We again choose to subtract each row (beginning with R_{m-r+1}) from the row below it, with the intention of finding a lower-triangular matrix. Our row operations are those given in (14).

All that remains is to reduce R_{m-r+1}, which we do with

$$
R_{m-r+1} \rightarrow R_{m-r+1}-\sum_{i=1}^{(r-1) / 2} 2 i R_{m-2 i+1}-\sum_{i=1}^{(r-3) / 2} 2 i R_{m-2 i} .
$$

This leaves a lower triangular matrix with an odd number of -1 s along the diagonal, with the only other entry on the diagonal being $-\Delta=1+(r-3)-2(r-1)$ in R_{m-r+1}. The determinant of this matrix is $\Delta=r$. Thus, the determinant of the knot is r (which is always positive).

Naturally, this lemma gives a similar theorem.
Theorem 4.12. A $T(m, 2 m q-1, r, s)$ twisted torus knot, with m, r odd, has determinant $\Delta=r$ if s is odd, and determinant $\Delta=1$ if s is even.

4E. $T(m,(2 q+1) m+1, r, s)$ and $T(m,(2 q+1) m-1, r, s)$ families with m odd. In this section, we use our previous results to prove some important corollaries.

Corollary 4.13. The determinant of a $T(m,(2 q+1) m+1, r, s)$ twisted torus knot is $\Delta=\left|m r-r^{2}+1\right|$ for m, r, sodd, and $\Delta=m$ for m, r odd and s even.

Proof. First, consider the case of $T(m, m+1, r, s)$. Using Theorem 2.1, we rewrite this knot as $T(m+1, m, r, s)$. By Theorem 4.6, we see that its determinant is $\Delta=\left|r-\left((m+1) r-r^{2}+1\right)\right|=\left|m r-r^{2}+1\right|$ for s odd, and $\Delta=m$ for s even. Therefore, these are the determinants for the $T(m, m+1, r, s)$ knots. Since $\chi_{m}^{2}=I_{m}$ by Lemma 3.1, adding $2 q m$ cycles doesn't change the determinant, so $\operatorname{det}(T(m,(2 q+1) m+1, r, s))=\operatorname{det}(T(m+1, m, r, s))$ for any q.

The following three corollaries similarly follow from Theorems 4.4, 4.3, and 4.1.
Corollary 4.14. The determinant of a $T(m,(2 q+1) m+1, r, s)$ twisted torus knot is $\Delta=|m-(m-r) r s|$ for m odd and r even.

Corollary 4.15. The determinant of a $T(m,(2 q+1) m-1, r, s)$ twisted torus knot is $\Delta=\left|m r-r^{2}+1\right|$ for m, r, sodd, and $\Delta=m$ for m, r odd and s even.

Corollary 4.16. The determinant of a $T(m,(2 q+1) m-1, r, s)$ twisted torus knot is $\Delta=|m+(m-r) r s|$ for m odd and r even.

These four corollaries, together with the theorems presented in Sections 4C and 4D, complete all cases when $n \equiv \pm 1(\bmod m)$ because if $n \equiv \pm 1(\bmod m)$, then $n \equiv \pm 1(\bmod 2 m)$ or $n \equiv \pm m+1(\bmod 2 m)$. The theorems from Sections 4C and 4D took care of $n \equiv \pm 1(\bmod 2 m)$, while the four corollaries here fully covered the cases $n \equiv \pm m+1(\bmod 2 m)$.

4F. Counting p-colorings. The p-nullity of a knot is the dimension of the $\bmod p$ nullspace of a crossing matrix for the knot. A knot with p-nullity n has $p^{n}-p$ different p-colorings because there are n strands that can be assigned any of p different colors, whereas the remaining strands are then determined (subtracting p discards the trivial "colorings") [Brownell et al. 2006]. Two colorings of a knot are fundamentally different if they are not simply permutations of each other. If two colorings are fundamentally different, then they belong to different p-coloring classes; otherwise, they are in the same p-coloring class. Breiland, et al. [2009] showed that if a torus knot is p-colorable, then it has only one nontrivial p-coloring class. Our methods show a similar result for the twisted torus knots that we analyzed.

Theorem 4.17. If a twisted torus knot $T(m, n, r, s)$, with $n \equiv \pm 1(\bmod m)$, is p-colorable, it has $p^{2}-p$ different p-colorings, and hence only one nontrivial p-coloring class.

Proof. In each of our proofs, B^{\prime} was converted into a triangular matrix by row reduction. Note that all of the row operations were valid $\bmod p$ for any p, and so the $\bmod p$ nullspace of the matrix was unchanged. After reduction, all but one of the entries on the main diagonal were equal to ± 1. If the knot being analyzed was p-colorable - that is, if $p \mid \Delta$ - then there was only one value on the diagonal of the reduced matrix that was divisible by p. Thus, in assigning the values of the labels to the top strands, there were two free variables: one for the deleted column, and one for the column containing $\pm \Delta$. This implies that the p-nullity of the knot was 2 . \square

5. Conclusion

While the theorems presented in this paper provide examples of determinants from each of the possible combinations of the parities of the parameters of twisted torus knots, they do not completely characterize the determinants of all twisted torus knots. A natural goal would be a complete characterization. It may be possible to generalize the methods presented in this paper to all twisted torus knots; however, the families investigated in this paper were chosen because their matrices allowed for straightforward row-reduction schemes.

Future research could also investigate the patterns in labelings of twisted torus knots, two examples of which are shown in Figure 4. Breiland et al. [2009] showed that all possible p-colorings of a torus knot were equivalent under permutation of

Figure 4. A 5-coloring of the $T(5,4,3,2)$ twisted torus knot and an 11-coloring of the $T(4,5,2,1)$ twisted torus knot.
the labels to a "main coloring," which arose from labeling the uppermost strands of their projection with $0,1, \ldots, p-1$, in that order. However, many p-colorable twisted torus knots cannot be colored in this fashion - for example, the $T(4,5,2,1)$ twisted torus knot, which has determinant 11 by Theorem 4.1, cannot be 11 -colored this way. Alternatively, the $T(5,4,3,2)$ twisted torus knot, which has determinant 5 by Corollary 4.15 , can be 5 -colored using the main coloring. It would be interesting to determine which twisted torus knots can be p-colored using the main coloring.

Acknowledgements

This research was funded by a Taylor University Step Grant. We are indebted to Thomas Mattman for suggesting this project. We are also grateful to Colin Adams, Thomas Mattman, Laura Taalman, Cornelia Van Cott, and the anonymous referee for providing helpful feedback.

References

[Adams 2004] C. C. Adams, The knot book: An elementary introduction to the mathematical theory of knots, American Mathematical Society, Providence, RI, 2004. MR 2005b:57009 Zbl 1065.57003
[Breiland et al. 2009] A.-L. Breiland, L. Oesper, and L. Taalman, " p-coloring classes of torus knots", Missouri J. Math. Sci. 21:2 (2009), 120-126. MR 2010f:57011 Zbl 1175.57011
[Brownell et al. 2006] K. Brownell, K. O’Neil, and L. Taalman, "Counting m-coloring classes of knots and links", Pi Mu Epsilon Journal 12:5 (2006), 265-278.
[Champanerkar et al. 2004] A. Champanerkar, I. Kofman, and E. Patterson, "The next simplest hyperbolic knots", J. Knot Theory Ramifications 13:7 (2004), 965-987. MR 2005k:57010 Zbl 1064.57003
[Dean 1996] J. C. Dean, Hyperbolic knots with small Seifert-fibered Dehn surgeries, Ph.D. thesis, University of Texas at Austin, 1996.
[Kauffman and Lopes 2009] L. Kauffman and P. Lopes, "Determinants of rational knots", Discrete Math. Theor. Comput. Sci. 11:2 (2009), 111-122. MR 2010j:57007 Zbl 1207.57020
[Livingston 1993] C. Livingston, Knot theory, Carus Mathematical Monographs 24, Mathematical Association of America, Washington, DC, 1993. MR 94m:57021 Zbl 0887.57008
[Oesper 2005] L. Oesper, p-colorings of weaving knots, undergraduate thesis, Pomona College, 2005.
[Przytycki 1998] J. H. Przytycki, "3-coloring and other elementary invariants of knots", pp. 275295 in Knot theory (Warsaw, 1995), Banach Center Publ. 42, Polish Acad. Sci., Warsaw, 1998. MR 1634462 Zbl 0904.57002

Received: 2009-11-10
mtdelong@taylor.edu
russell2@math.rutgers.edu
schrockj@ornl.gov

Revised: 2013-06-27 Accepted: 2013-11-17
Department of Mathematics, Taylor University, 236 West Reade Avenue, Upland, IN 46989, United States

Department of Mathematics, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854, United States

Oak Ridge National Laboratory, P.O. Box 2008 MS6164, Oak Ridge, TN 37831, United States

involve

 msp.org/involve

 msp.org/involve EDITORS

 EDITORS}

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone @latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@ math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US $\$ 140 /$ year for the electronic version, and $\$ 190 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

involve 2015 vol. 8 no. 3

Colorability and determinants of $T(m, n, r, s)$ twisted torus knots for $n \equiv \pm 1(\bmod m)$ 361 Matt Delong, Matthew Russell and Jonathan Schrock
Parameter identification and sensitivity analysis to a thermal diffusivity inverse problem
Brian Leventhal, Xiaojing Fu, Kathleen Fowler and Owen ESLINGER385
A mathematical model for the emergence of HIV drug resistance during periodic401
bang-bang type antiretroviral treatmentNicoleta Tarfulea and Paul Read
An extension of Young's segregation game421
Michael Borchert, Mark Burek, Rick Gillman and Spencer RoachEmbedding groups into distributive subsets of the monoid of binary operations433
Gregory Mezera
Persistence: a digit problem 439
Stephanie Perez and Robert Styer
A new partial ordering of knots 447
Arazelle Mendoza, Tara Sargent, John Travis Shrontz and PaulDrube
Two-parameter taxicab trigonometric functions 467
Kelly Delp and Michael Filipski
${ }_{3} F_{2}$-hypergeometric functions and supersingular elliptic curves 481
Sarah Pitman
A contribution to the connections between Fibonacci numbers and matrix theory 491Miriam Farber and Abraham Berman
Stick numbers in the simple hexagonal lattice503
Ryan Bailey, Hans Chaumont, Melanie Dennis, Jennifer McLoud-Mann, Elise McMahon, Sara Melvin and GeoffreySchuette
On the number of pairwise touching simplices 513
Bas Lemmens and Christopher Parsons
The zipper foldings of the diamond521
Erin W. Chambers, Di Fang, Kyle A. Sykes, Cynthia M. Traub andPhilip Trettenero
On distance labelings of amalgamations and injective labelings of general graphs 535Nathaniel Karst, Jessica Oehrlein, Denise Sakai Troxell andJunjie Zhu

[^0]: MSC2010: primary 57 M 27 ; secondary $11 \mathrm{C} 20,05 \mathrm{C} 15$.
 Keywords: knot theory, determinants, colorability, twisted torus knots.

