\bullet
 involve

 a journal of mathematicsPersistence: a digit problem
Stephanie Perez and Robert Styer

Persistence: a digit problem

Stephanie Perez and Robert Styer
(Communicated by Kenneth S. Berenhaut)

We examine the persistence of a number, defined as the number of iterations of the function which multiplies the digits of a number until one reaches a single digit number. We give numerical evidence supporting Sloane's 1973 conjecture that there exists a maximum persistence for every base. In particular, we give evidence that the maximum persistence in each base 2 through 12 is $1,3,3,6,5$, $8,6,7,11,13,7$, respectively.

1. Introduction

Neil J. A. Sloane [1973] considered the function that multiplies the digits of a number and formally conjectured that the number of iterates needed to reach a fixed point is bounded. In particular, in base 10 , he conjectured that one needs at most 11 iterates to reach a single digit. The problem did arise earlier; see [Gottlieb 1969, Problems 28-28; Beeler et al. 1972].

Definition 1. Let $n=\sum_{j=0}^{r} d_{j} B^{j}$, with $0 \leq d_{j}<B$ for each d_{j}, be the base B expansion of n. We define the digital product function as $f(n)=\prod_{j=0}^{r} d_{j}$.

The persistence of a number n is defined as the minimum number k of iterates $f^{k}(n)=d$ needed to reach a single digit d.

Theorem 1. If $n \geq B$, then $n>f(n)$. If $0 \leq n<B$, then $f(n)=n$ is a fixed point. Thus, every n has a finite persistence.

Proof. Let $n=\sum_{j=0}^{r} d_{j} B^{j}$, with $0 \leq d_{j}<B$ for each d_{j} and $r>0$. Since $r>0$,

$$
n \geq d_{r} B^{r}>d_{r} \prod_{j=0}^{r-1} d_{j}=f(n)
$$

If $n<B$, then clearly $f(n)=n$. So, by induction on n one can show that every n has a finite persistence.

For the remainder of this section, assume the base B equals 10 .

[^0]| persistence | least n with given persistence | $\ln \ln n$ |
| :---: | ---: | :---: |
| 2 | 25 | 1.1690 |
| 3 | 39 | 1.2984 |
| 4 | 77 | 1.4688 |
| 5 | 679 | 1.8750 |
| 6 | 6788 | 2.1774 |
| 7 | 68889 | 2.4106 |
| 8 | 2677889 | 2.6947 |
| 9 | 26888999 | 2.8395 |
| 10 | 3778888999 | 3.0934 |
| 11 | 277777788888899 | 3.5043 |

Table 1. Smallest number with a given persistence.

Example. Let $n=23487$. Then

$$
\begin{aligned}
f(23487) & =2 \cdot 3 \cdot 4 \cdot 8 \cdot 7=1344, \\
f(1344) & =1 \cdot 3 \cdot 4 \cdot 4=48, \\
f(48) & =4 \cdot 8=32,
\end{aligned}
$$

and finally, $f(32)=3 \cdot 2=6$. In other words, $f^{4}(23487)=6$, so 23487 has persistence 4.

One easily sees that $n=23114871, n=642227$ and $n=78432$ also have persistence 4 since each of these has $f(n)=1344$. Thus, adding or removing the digit 1 does not change the persistence, nor does rearranging the digits or replacing digits that are products of smaller digits by these smaller digits.

In particular, since 288888899777777 has persistence 11, so do
1288888899777777, 11288888899777777 and 111288888899777777,
etc. Hence, there are an infinite number of integers with persistence 11.
We note some other immediate observations.
Let $n=543210$. Then $f(n)=0$, so it has persistence 1 . More generally, any number with a 0 digit has persistence 1 .

Let $n=54321$. Then $f(54321)=120$, so $f^{2}(54321)=0$. More generally, in base 10 , any number with a 5 digit, with an even digit, and with no 0 digit, has persistence 2.

Some preliminary calculations suggest that persistence depends on the size of the number. We list the smallest number with a given persistence (avoiding the contentious issue of defining the persistence of single digit numbers) in Table 1.

Figure 1. The double logarithm of the smallest number with persistence p versus p seems linear.

Table 1 and Figure 1 might suggest that the persistence grows roughly as the double logarithm of the number; using a linear fit to the log-log of the data, one might expect to find a number of size about $3 \cdot 10^{17}$ with persistence 12 . Sloane [1973] showed, however, that no number less than 10^{50} has persistence 12; this was extended by Carmody [2001] to 10^{233}, and Diamond [2010] extended it to 10^{333}, while we extend it to 10^{1500}.

This paper has grown out of the senior research paper of the first author, intrigued by the mention of the problem in [Guy 2004, Problem F25].

2. Results

This section summarizes some results which give bounds for the persistence in various bases. We used Maple to calculate these results.

Since a large random number almost always has a 0 digit, we can prove the following theorem.

Theorem 2. In any base B, the density of positive integers up to N with persistence greater than 1 approaches zero as N approaches infinity.

Proof. Assume $B>2$; the next theorem deals with base $B=2$.
Consider all numbers with k digits in base B, that is, all integers N with $B^{k-1} \leq$ $N<B^{k}$. There are precisely $(B-1)^{k}$ integers in this range without a 0 digit. Thus,
considering all integers in the range $0<N<B^{k}$, there are

$$
\sum_{j=1}^{k}(B-1)^{j}=\frac{(B-1)\left((B-1)^{k}-1\right)}{B-2}
$$

integers without a 0 digit. Thus, the density of integers with persistence greater than 1 up to B^{k} is

$$
\frac{(B-1)\left((B-1)^{k}-1\right)}{(B-2) B^{k}}=\frac{B-1}{B-2}\left(\left(1-\frac{1}{B}\right)^{k}-\frac{1}{B^{k}}\right)<2\left(1-\frac{1}{B}\right)^{k} .
$$

As k approaches infinity, this last term goes to zero, proving the asymptotic density goes to zero.

We now prove the well-known result that every number in base $B=2$ has persistence 1 (some authors define the persistence of a single digit to be 0 , so we only consider numbers with two or more digits).
Theorem 3. In base 2, each number $n>2$ has persistence 1 .
Proof. Either n has all digits equal to 1 , in which case $f(n)=1$, or n has at least one 0 digit, in which case $f(n)=0$.

Base 2 is the only base where we can prove Sloane's conjecture, but we can support his conjecture in other bases. In particular, Beeler and Gosper [1972, Item 57] showed that any number in base 3 with persistence greater than 3 must have more than 30739014 digits. We extend this to 10^{9} digits.
Theorem 4. In base 3, if $n<3^{10^{9}}$, then n has persistence at most 3 , and if $n<3^{10^{9}}$ has persistence 3 , then $f(n)=2^{3}$ or 2^{15}.

Proof. As noted above, if n has a digit of 0 , then it has persistence 1 , and if n has a digit of 1 , then the persistence is unchanged if we remove all 1 digits. Thus, we may assume n has every digit equal to 2 , so $f(n)=2^{k}$ for some k. One can verify that the powers of 2 below 87 have persistence 1 except 2^{3} and 2^{15}, which have persistence 2. Beeler and Gosper showed that each power of 2 between 2^{87} and $2^{30739014}$ contains a 0 in its base 3 expansion, and hence has persistence 1 . With today's faster computers, we easily extend this to all powers of 2 up to 10^{9}.
Theorem 5. In base 4 , if $n<4^{10^{9}}$, then n has persistence at most 3 . If $n<4^{10^{9}}$ has persistence 3 , then $f(n)=2^{a} 3^{b}$, where $(a, b)=(0,3),(1,3),(1,5),(0,6),(0,10)$, or (1, 11).

Proof. We have already noted that we need not consider any n with a digit of 0 or 1. Further, if n in base 4 has the digit 2 at least twice, then $f(n)$ has low-order digit 0 , so $f(f(n))=0$. Thus, we may assume n has at most one digit 2 and the rest of the digits are 3 ; in other words, $f(n)=2^{a} 3^{b}$ with $a \in\{0,1\}$. We now calculate the
persistence of 3^{b} and of $2 \cdot 3^{b}$ for all $b \leq 10^{9}$ and note that none have persistence greater than 1 except for the listed values. For $b>1000$, we do not actually calculate the persistence; we merely verify that there is a 0 digit in the last 64 digits.

Theorem 6. In base 5, if $n<5^{10000}$, then n has persistence at most 6 . If $n<5^{10000}$ has persistence 6 , then $f(n)=2^{40} 3^{2}$.

Proof. As before, we need not consider any n with a digit of 0 or 1 . If n has a digit of 4 , we may replace it by two digits 2 . Thus, we may assume n has all digits equal to 2 or 3 , in other words, $f(n)=2^{a} 3^{b}$ for $a \geq 0$ and $b \geq 0$. We now calculate the persistence of $2^{a} 3^{b}$ for a and b with $\lceil a / 2\rceil+b \leq 1000$; the factor of $1 / 2$ arises because each digit 4 is replaced by two digits 2 . For large $a+b$, we merely verify that there is a 0 digit in the last 64 digits. The calculations show that each such $2^{a} 3^{b}$ has persistence less than 5 except for $2^{40} 3^{2}$, which has persistence 5 ; hence, n has persistence at most 6 for all $n<5^{10000}$.

Theorem 7. In base 6 , if $n<6^{10000}$, then n has persistence at most 5 . If $n<6^{10000}$ has persistence 5 , then $f(n)=2^{a} 5^{b}$, where $(a, b)=(7,1),(1,4),(0,5),(7,2)$, $(4,4),(9,3),(7,4),(0,8)$, or (17, 2).

Proof. As before, we eliminate digits of 0 or 1 , and replace digits of 4 by two digits 2. If n has a digit of 3 and an even digit, then $f(f(n))=0$, so we may assume n either has all digits equal to 2 or 5 , or else n has all digits equal to 3 or 5 . In other words, $f(n)=2^{a} 5^{b}$ or $3^{a} 5^{b}$ for $a \geq 0$ and $b \geq 0$. We now calculate the persistence of $2^{a} 5^{b}$ for a and b with $\lceil a / 2\rceil+b \leq 10000$ (the factor of $1 / 2$ covers the case where each digit 4 is replaced by two digits 2), and also calculate the persistence of $3^{a} 5^{b}$ where $a+b \leq 10000$. The calculations show that all such expressions have persistence less than 4 except for the listed values, which have persistence 4 ; hence, n has persistence at most 5 for all $n<6^{10000}$.

Theorem 8. In base 7, if $n<7^{1000}$, then n has persistence at most 8 . If $n<7^{1000}$ has persistence 8 , then $f(n)=2^{a} 3^{b} 5^{c}$, where $(a, b, c)=(9,3,12),(9,17,4)$, $(11,8,10),(10,20,5),(10,8,16),(19,25,1),(1,44,0),(27,0,20),(39,24,1)$, or (11, 39, 3).

Proof. As before, we eliminate digits of 0 or 1, replace digits of 4 by two digits 2, and now also replace digits 6 by digits 2 and 3 . So, we may assume n has all digits equal to 2,3 or 5 . In other words, $f(n)=2^{a} 3^{b} 5^{c}$ for $a \geq 0, b \geq 0$, and $c \geq 0$. We now calculate the persistence of $2^{a} 3^{b} 5^{c}$; since we replaced digits of 4 by $2 \cdot 2$ and digits of 6 by $2 \cdot 3$, we must consider a, b, c with

$$
a+b+c-\min (a, b)-\left\lfloor\frac{a-\min (a, b)}{2}\right\rfloor \leq 1000 .
$$

We calculate the persistence of each such $2^{a} 3^{b} 5^{c}$ to find that all such expressions have persistence less than 6 except for the listed values, which have persistence 6 ; hence, n has persistence at most 7 for all $n<7^{1000}$.
Theorem 9. In base 8, if $n<8^{1000}$, then n has persistence at most 6 . If $n<8^{1000}$ has persistence 6 , then $f(n)=3^{3} 5^{4} 7^{2}$.
Proof. As before, we eliminate digits of 0 or 1 , replace digits of 4 by two digits 2, and now also replace digits 6 by digits 2 and 3 . So, we may assume n has all digits equal to $2,3,5$ or 7 . If there are three or more digits 2 , then $f(f(n))=0$. Therefore,

$$
f(n)=2^{d} 3^{a} 5^{b} 7^{c} \quad \text { for } a \geq 0, b \geq 0, c \geq 0, \text { and } d \in\{0,1,2\} .
$$

We consider a, b, c with $a+b+c \leq 1000$ to guarantee we are considering up to 1000 digits. We calculate the persistence of each such $2^{d} 3^{a} 5^{b} 7^{c}$ to find that all such expressions have persistence less than 5 except for $3^{3} 5^{4} 7^{2}$, which has persistence 5 ; hence, n has persistence at most 6 for all $n<8^{1000}$.
Theorem 10. In base 9 , if $n<9^{1000}$, then n has persistence at most 7. If $n<9^{1000}$ has persistence 7 , then $f(n)=2^{a} 5^{b} 7^{c}$, where $(a, b, c)=(1,1,5),(3,3,4),(24,1,1)$, $(4,6,4),(11,5,3)$, or $(16,7,1)$.
Proof. As before, we eliminate digits of 0 or 1, replace digits of 4 by two digits 2, replace digits 6 by digits 2 and 3 , and now also replace 8 by three digits 2 . So, we may assume n has all digits equal to $2,3,5$ or 7 . If there are two or more digits 3 , then $f(f(n))=0$, so we may assume $f(n)=2^{a} 5^{b} 7^{c}$ or $f(n)=3 \cdot 2^{a} 5^{b} 7^{c}$ for $a \geq 0, b \geq 0$, and $c \geq 0$. We now calculate the persistence of $3^{d} 2^{a} 5^{b} 7^{c}$ for $d=0$ or 1 ; in order to guarantee that we consider all numbers up to 1000 digits, we must consider a, b, c with $\lceil a / 3\rceil+b+c \leq 1000$. We calculate the persistence of each such $3^{d} 2^{a} 5^{b} 7^{c}$ to find that all such expressions have persistence less than 6 except for the listed values (all having $d=0$), which have persistence 6 ; hence, n has persistence at most 7 for all $n<9^{1000}$.

We now deal with base 10. Diamond [2010] calculated the persistence of all numbers $2^{a} 3^{b} 7^{c}$ and $3^{a} 5^{b} 7^{c}$ with $a \leq 1000, b \leq 1000$ and $c \leq 1000$. We verify his calculations and extend them to cover all numbers up to 1500 digits.
Theorem 11. In base 10, if $n<10^{1500}$, then n has persistence at most 11. If $n<10^{1500}$ has persistence 11 , then $f(n)=2^{4} 3^{20} 7^{5}$ or $2^{19} 3^{4} 7^{6}$.
Proof. As before, we eliminate digits of 0 or 1, replace digits of 4 by two digits 2 , replace digits 6 by digits 2 and 3, replace the digit 8 by three digits 2 , and now also replace 9 by two digits 3 . In base 10 , if we have both a digit 2 and a digit 5 , then $f(f(n))=0$. So, we may assume $f(n)=2^{a} 3^{b} 7^{c}$ or $f(n)=3^{a} 5^{b} 7^{c}$ for $a \geq 0$, $b \geq 0$, and $c \geq 0$. To consider all n with less than 1500 digits, we only need to
consider $f(n)=2^{a} 3^{b} 7^{c}$ with $\lfloor a / 3\rfloor+\lfloor b / 2\rfloor+c \leq 1500$, as well as $f(n)=3^{a} 5^{b} 7^{c}$ with $\lceil a / 2\rceil+b+c \leq 1500$. We find that all such expressions have persistence at most 9 , except for the listed exceptions which have persistence 10 ; hence, n has persistence at most 11 for all $n<10^{1500}$.
Theorem 12. In base 11 , if $n<11^{250}$, then n has persistence at most 13. If $n<11^{250}$ has persistence 13 , then $f(n)=2^{42} 3^{13} 5^{20} 7^{17}, 2^{91} 3^{37} 5^{7} 7^{6}$, or $2^{32} 3^{3} 5^{35} 7^{18}$.
Proof. As before, we eliminate digits of 0 or 1, replace digits of 4 by two digits 2, replace digits 6 by digits 2 and 3 , replace the digit 8 by three digits 2 , and now also replace 9 by two digits 3 . We may assume $f(n)=2^{a} 3^{b} 5^{c} 7^{d}$ for $a, b, c, d \geq 0$. To consider all n with less than 250 digits, we only need to consider $f(n)=2^{a} 3^{b} 5^{c} 7^{d}$ with $\lfloor a / 3\rfloor+\lfloor b / 2\rfloor+c+d \leq 250$. We find that all such expressions have persistence at most 11, except for the listed exceptions which have persistence 12; hence, n has persistence at most 13 for all $n<11^{250}$.
Theorem 13. In base 12 , if $n<12^{250}$, then n has persistence at most 7. If $n<12^{250}$ has persistence 7 , then $f(n)=2^{5} 5^{8} 11^{9}$ or $3^{5} 5^{1} 7^{6}$.
Proof. As before, we eliminate digits of 0 or 1, replace digits of 4 by two digits 2 , replace digits 6 by digits 2 and 3, replace the digit 8 by three digits 2 , and now also replace 9 by two digits 3 . We may assume $f(n)=2^{a} 5^{b} 7^{c} 11^{d}$ or $3^{a} 5^{b} 7^{c} 11^{d}$ or $6 \cdot 3^{a} 5^{b} 7^{c} 11^{d}$ for $a, b, c, d \geq 0$. To consider all n with less than 250 digits, we only need to consider $f(n)=2^{a} 5^{b} 7^{c} 11^{d}$ with $\lfloor a / 3\rfloor+b+c+d \leq 250$, and for $f(n)=3^{a} 5^{b} 7^{c} 11^{d}$ or $6 \cdot 3^{a} 5^{b} 7^{c} 11^{d}$, we consider $\lfloor a / 2\rfloor+b+c+d \leq 250$. We find that all such expressions have persistence at most 5 , except for the listed exceptions which have persistence 6 ; hence, n has persistence at most 7 for all $n<12^{250}$.

3. Conclusion

These calculations support Sloane's conjecture that the persistence is bounded for a given base. This makes sense since when a product of powers like $2^{a} 3^{b} 7^{c}$ has many digits, one expects to find a 0 digit among them. For instance, in base 10 , we saw that $2^{4} 3^{20} 7^{5}=937638166841712$ has persistence 10 , but

$$
\begin{gathered}
2^{3} 3^{20} 7^{5}=468819083420856, \quad 2^{4} 3^{19} 7^{5}=312546055613904, \\
2^{4} 3^{20} 7^{4}=133948309548816
\end{gathered}
$$

all have a digit of 0 . In general, almost all such powers will have a persistence of 1 .
We used simple Maple programs, so the calculations for each theorem above took several hours to a few days to run on a laptop.

The first author tried to develop a method to work backwards, in order to answer questions such as which numbers iterate to the digit 1 . We can devise many such interesting questions. Paul Erdős [Weisstein] asked what would happen if one
multiplies only the nonzero digits (i.e., ignore the zero digits). Presumably this Erdős multiplicative persistence is no longer bounded, and the question of which numbers iterate to the digit 1 becomes more interesting. See [Wagstaff 1981] for another fascinating variation. We hope this paper inspires others to pursue the many fascinating problems related to multiplicative persistence.

References

[Beeler et al. 1972] M. Beeler, R. Gosper, and R. Schroeppel, "HAKMEM", MIT AI Memo 239, 1972, http://www.inwap.com/pdp10/hbaker/hakmem/number.html\#item56.
[Carmody 2001] P. Carmody, "OEIS A003001, and a 'zero-length message" ", message on NMBRTHRY listserve, 23 July 2001, http://goo.gl/55n3LP.
[Diamond 2010] M. R. Diamond, "Multiplicative persistence base 10: some new null results", 2010, http://www.markdiamond.com.au/download/joous-3-1-1.pdf.
[Gottlieb 1969] A. J. Gottlieb, "Bridge, group theory, and a jigsaw puzzle", Technology Rev. 72 (1969), unpaginated.
[Guy 2004] R. K. Guy, Unsolved problems in number theory, 3rd ed., Springer, New York, 2004. MR 2005h:11003
[Sloane 1973] N. J. A. Sloane, "The persistence of a number", J. Recreational Math. 6:2 (1973), 97-98.
[Wagstaff 1981] S. S. Wagstaff, Jr., "Iterating the product of shifted digits", Fibonacci Quart. 19:4 (1981), 340-347. MR 83b:10012
[Weisstein] E. W.Weisstein, "Multiplicative persistence", webpage, http://mathworld.wolfram.com/ MultiplicativePersistence.html.
sperez03@villanova.edu
robert.styer@villanova.edu

Received: 2013-05-19 Revised: 2013-09-09 Accepted: 2013-12-23
Department of Mathematics and Statistics, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085-1699, United States

Department of Mathematics and Statistics, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085-1699, United States

involve

 msp.org/involve

 msp.org/involve EDITORS

 EDITORS}

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone @latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@ math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US $\$ 140 /$ year for the electronic version, and $\$ 190 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

involve 2015 vol. 8 no. 3

Colorability and determinants of $T(m, n, r, s)$ twisted torus knots for $n \equiv \pm 1(\bmod m)$ 361 Matt Delong, Matthew Russell and Jonathan Schrock
Parameter identification and sensitivity analysis to a thermal diffusivity inverse problem
Brian Leventhal, Xiaojing Fu, Kathleen Fowler and Owen ESLINGER385
A mathematical model for the emergence of HIV drug resistance during periodic401
bang-bang type antiretroviral treatmentNicoleta Tarfulea and Paul Read
An extension of Young's segregation game421
Michael Borchert, Mark Burek, Rick Gillman and Spencer RoachEmbedding groups into distributive subsets of the monoid of binary operations433
Gregory Mezera
Persistence: a digit problem 439
Stephanie Perez and Robert Styer
A new partial ordering of knots 447
Arazelle Mendoza, Tara Sargent, John Travis Shrontz and PaulDrube
Two-parameter taxicab trigonometric functions 467
Kelly Delp and Michael Filipski
${ }_{3} F_{2}$-hypergeometric functions and supersingular elliptic curves 481
Sarah Pitman
A contribution to the connections between Fibonacci numbers and matrix theory 491Miriam Farber and Abraham Berman
Stick numbers in the simple hexagonal lattice503
Ryan Bailey, Hans Chaumont, Melanie Dennis, Jennifer McLoud-Mann, Elise McMahon, Sara Melvin and GeoffreySchuette
On the number of pairwise touching simplices 513
Bas Lemmens and Christopher Parsons
The zipper foldings of the diamond521
Erin W. Chambers, Di Fang, Kyle A. Sykes, Cynthia M. Traub andPhilip Trettenero
On distance labelings of amalgamations and injective labelings of general graphs 535Nathaniel Karst, Jessica Oehrlein, Denise Sakai Troxell andJunjie Zhu

[^0]: MSC2010: 00A08, 97A20.
 Keywords: persistence, digit problem, multiplicative persistence, iterated digit functions.

