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Our research concerns how knots behave under crossing changes. In particular,
we investigate a partial ordering of alternating knots that results from perform-
ing crossing changes. A similar ordering was originally introduced by Kouki
Taniyama in the paper “A partial order of knots”. We amend Taniyama’s partial
ordering and present theorems about the structure of our ordering for more
complicated knots. Our approach is largely graph theoretic, as we translate each
knot diagram into one of two planar graphs by checkerboard coloring the plane.
Of particular interest are the class of knots known as pretzel knots, as well as
knots that have only one direct minor in the partial ordering.

1. Introduction

Basic knot theory. A knot K is a smooth embedding of a circle S1 in R3. Some
of our results generalize to links. A link L is a smooth embedding of multiple
disjoint copies of S1 in R3. Knot theorists generally do not want to work with
3-dimensional objects, which is why it is common to use knot diagrams. A knot
diagram D of the knot K is a way of projecting K onto R2. This projection is
one-to-one everywhere except a finite number of points called crossings where it
is two-to-one. At every crossing there is an unbroken line for the overstrand and
a broken line for the understrand. The overstrand corresponds to the arc that was
initially closer to the viewer in R3.

A leading problem in knot theory is that one knot K may have many different
diagrams that don’t look remotely similar. We then need methods to determine
when two knot diagrams represent the same knot.

The required machinery to deal with this problem are the Reidemeister moves,
which are a set of three moves that connect diagrams of the same knot. The
Reidemeister moves are shown in Figure 1. These moves are local, meaning the
knot is unchanged outside of the exhibited region. The fundamental result about
Reidemeister moves is the following:
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R1 R2

R3

Figure 1. Reidemeister moves.

Theorem 1.1 (Reidemeister). Two diagrams D1 and D2 represent the same knot K
if and only if they may be connected by a finite number of Reidemeister moves.

Proof. See [Reidemeister 1927] for a proof of this standard result. �

The crossing number c(K ) of a knot K is the minimum number of crossings
over all diagrams K . A minimal knot diagram is a diagram D where the number
of crossings equals c(K ). The standard way to denote knots takes the form Nn ,
where N denotes the crossing number of the knot and the subscript n is a traditional
ordering (which depends upon an invariant known as the determinant).

Our research concerns how knots behave under crossing changes. A crossing
change is a local operation that flips the role of the overstrand and the understrand
at a single crossing in a knot diagram. The most important thing to note here is
that a crossing change may change the underlying knot. An example of a crossing
change is shown in Figure 2. As with our images for the Reidemeister moves, it is
assumed that the link is unchanged outside of the region shown.

We focus on the class of knots known as prime alternating knots since they
have many nice properties that allow for stronger results. An alternating knot is
a knot with an alternating diagram, which is a knot diagram that alternates between
overstrands and understrands as one travels around the diagram in a fixed direction.
A prime knot is a knot that cannot be drawn as a connect sum of two nontrivial knots
(i.e., it doesn’t look like two or more nontrivial knots that have been strung together).
Figure 3 shows the granny knot, which is a connect sum of two trefoil knots 31.

The following two theorems are important results that make prime alternating
knots especially nice to work with.

Figure 2. Crossing change.



A NEW PARTIAL ORDERING OF KNOTS 449

Figure 3. A nonprime knot.

Figure 4. A nugatory crossing and untwisting that crossing.

Theorem 1.2 (Kauffman, Murasugi, and Thistlethwaite). Let K be a prime alter-
nating knot with diagram D. Then D is a minimal diagram for K if and only if D is
a reduced alternating diagram.

Proof. See [Adams 2004] for a proof of this foundational result. �

The term reduced above means that the diagram contains no nugatory crossings.
A crossing in a diagram D is a nugatory (removable) crossing if removing a
neighborhood of that crossing splits the knot diagram into two separate pieces.
These are the crossings that can obviously be eliminated (via a 180-degree twist) to
lower the crossing number of D without changing the underlying knot. See Figure 4.

Theorem 1.3 (Tait’s flyping conjecture, Menasco & Thistlethwaite). Let D1 and
D2 be two minimal diagrams of the same prime alternating knot K in S2. Then D1

can be transformed into D2 via a series of flypes.

Proof. See [Menasco and Thistlethwaite 1993] for the (surprisingly complex) proof
of this result, which had eluded knot theorists for a century. �

An example of a flype is shown in Figure 5. This operation involves a 180-degree
twist of the portion of the knot denoted by T (known as a tangle), effectively moving
a single half-twist from one side of that tangle to the other side. A flype is usually
a complex combination of Reidemeister moves, but just like the basic Reidemeister
moves, it does not change the underlying knot.

T

T

Figure 5. Flype operation.
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A partial ordering of knots. The starting point for our research was the partial
ordering on knots defined by Kouki Taniyama [1989]. To distinguish Taniyama’s or-
dering from our own, we will henceforth refer to this partial ordering as the T-order:

Definition 1.4. Let K1 and K2 be knots. The T-order defines K1 ≤ K2 if every
diagram of K2 can be transformed into some diagram of K1 via some number of
simultaneous crossing changes.

The number of simultaneous crossing changes required above depends upon the
diagram of K2 chosen, and there may not be a systematic way to determine the
required crossing changes in a given diagram of K2.

We present a modified version of Taniyama’s T-ordering that was also influenced
by the distinct partial ordering of Ernst, Diao, and Stasiak [Diao et al. 2009]. We
will call our ordering the V-order, in honor of Valparaiso University (the site of the
REU where we conducted this research).

Definition 1.5. Let K1 and K2 be prime alternating knots. The V-order defines K1 to
be a V-minor of K2 if there exists a minimal diagram of K2 that can be transformed
into some diagram of K1 via simultaneous crossing changes. We then define
(Kn, Kn−1, . . . , K2, K1) to be a proper sequence of knots if Ki is a V-minor of Ki+1

for all i , and K1 ≤ K2 if there exists a proper sequence containing both K1 and K2,
where K1 appears to the right of K2.

In this partial ordering (as was the case in Taniyama’s original partial ordering),
we do not differentiate between a knot, its reflection, and its reverse.

The reason that we present such a complicated definition involving proper se-
quences is to ensure that the resulting relation is transitive. One can quickly verify
that the V-order defines a partial order of alternating knots, meaning that

(1) K ≤ K for all K ;

(2) if K1 ≤ K2 and K2 ≤ K3, then K1 ≤ K3;

(3) if K1 ≤ K2 and K2 ≤ K1, then K1 = K2.

It is the third condition in the partial ordering definition above that requires us to re-
strict our attention solely to prime alternating knots. There exist nonalternating knots
such that K1 ≤ K2 and K2 ≤ K1, yet K1 6= K2 (see Theorem 2.3 for more details).

We represent the V-order with a Hasse diagram, which is a graphical way to
represent the relationships in the partial ordering. If two knots K1 and K2 are
connected by a series of edges on the Hasse diagram, and if K1 lies below K2 on
the edge, then K1 ≤ K2. We manually verified that the V-order is identical to the
T-order for the first eight nontrivial prime alternating knots (through 71), yielding
the Hasse diagram in Figure 6.

Note that our ordering requires that we check only one minimal diagram of K2

to verify K1 ≤ K2, while Taniyama’s ordering requires that we check all diagrams
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31

41

52 51

61 62 63

71

Figure 6. Partial ordering for the first eight prime knots.

of K2. Also notice that if K1 ≤ K2 in the T-order, then K1 ≤ K2 in the V-order.
The converse is not necessarily true a priori, although we conjecture that it is true
for prime alternating knots (see Conjecture 4.1). The V-order relates to Ernst, Diao,
and Stasiak’s work [Diao et al. 2009] in that their ordering allows for only one
crossing change, while ours allows for multiple simultaneous crossing changes. This
seemingly simple modification actually makes our ordering significantly more com-
plicated, yet also helps our ordering maintain a closer relationship with Taniyama’s
original ordering (which also allows for multiple simultaneous crossing changes).

In future sections, we will be especially interested in direct V-minors:

Definition 1.6. K1 is a direct V-minor of K3 if K1≤ K3 and there does not exist K2

(K2 6= K1, K3) such that K1 ≤ K2 ≤ K3.

Definition 1.7. K1 is a remote V-minor of K3 if K1 ≤ K3 and there exists K2

(K2 6= K1, K3) such that K1 ≤ K2 ≤ K3.

For example, as easily read from our Hasse diagram in Figure 6, the knot 31 is a
remote V-minor of 71 because 31 ≤ 51 ≤ 71. However, 31 is a direct V-minor of 51

since there does not exist a distinct knot K such that 31 ≤ K ≤ 51.

Graph theoretical methods in knot theory. By Theorem 1.1, we know that any
two diagrams of one knot may be connected via a series of Reidemeister moves, but
it is tedious to constantly redraw the diagram every time we perform a Reidemeister
move. To make calculations easier, we convert knot diagrams to a specific type of
signed planar graph that contains all of the same information. The procedure for
converting a knot diagram to a graph is as follows:

(1) Checkboard color the regions of the plane in the complement of the knot
diagram so that around each crossing there are two white regions and two gray
regions. Then mark each crossing by dropping a line segment connecting the
two regions that lie counterclockwise from the overstrand.
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1 2 3

0

0

0
1 2

Figure 7. Checkerboard graphs of 31.

(2) Pick one of the two colors. Place a vertex inside each region of this fixed color.

(3) If two of the chosen regions share a crossing, add an edge between the cor-
responding vertices in the graph. This edge is solid if the marking associated
with that crossing falls within the chosen regions and is dotted if the marking
falls within the regions of the other color.

Since we had two choices in (2) above, we get two distinct graphs for any knot
diagram. These graphs are always signed duals of one another. We illustrate this
entire procedure for the trefoil knot 31 in Figure 7, showing both of the resulting
planar graphs in the second row.

Our next challenge is to determine how the Reidemeister moves for knot diagrams
translate to checkerboard graphs, as we need a reliable way of determining when
two graphs represent the same underlying knot. It is important to note that every
Reidemeister move for knot diagrams actually corresponds to two graph Reidemeis-
ter moves that are duals of one another. We illustrate all of these graph Reidemeister
moves in Figure 8. In this figure, each diagram represents a local piece of the entire
checkerboard graph. E and F represent nodes in the graph that may or may not have
other edges entering them, while the small black vertices are adjacent only to the
edges shown. In the second R2 move, E∪F denotes that the central node is now ad-
jacent to all edges that were formerly incident upon either the E node or the F node.

One more important thing to note is that both graph representations of an alter-
nating diagram only have one type of edge (one of them has all solid edges, while
the signed dual has all dotted edges). This makes alternating diagrams especially
easy to identify from checkerboard graphs: you no longer have to trace along the
entire diagram to see if the knot alternates between overstrands and understrands!

Since our research deals with how knots behave under crossing changes, we
need to determine how a crossing change effects a knot diagram’s associated graph.
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E 0 ← R1→ E ← R1→ E 0

E ← R1∗→ E ← R1∗→ E

E F ← R2→ E F ← R2→ E F

E 0 F ← R2∗→ E ∪ F ← R2∗→ E 0 F

E F

J

0
← R3→

E F

J

E F

J

0
← R3∗→

E F

J

Figure 8. Reidemeister moves for graphs.

Crossing changes switch the roles of the overstrand and understrand at a single
crossing. In either checkerboard graph for the diagram, this changes the marking
on the associated edge and hence flips the type of edge that appears in the graph
(dotted to solid, or solid to dotted).

Finally, we need to know how flypes effect our graphs. Figure 9 shows the graph
representations of flypes. Just as with the Reidemeister moves, a flype has two
different graph representations that are (signed) duals of one another.

Notice that, in the first flype equivalence, we are rearranging edges that separate
the same two regions in our graph. In the second equivalence, we are rearranging
edges that connect the same two vertices.

E 2 F> ←→ E 2 F⊥

E

F

>
←→

F

E

⊥

Figure 9. Graph equivalents of a flype.
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31

41

52 51

61 62 63

7172 74 77 73 75 76

Figure 10. The V-order for prime alternating knots through 77.

2. Our partial ordering

Now we will investigate our V-order. Recall the definition:

Definition 2.1. Let K1 and K2 be prime alternating knots. The V-order defines K1 to
be a V-minor of K2 if there exists a minimal diagram of K2 that can be transformed
into some diagram of K1 via simultaneous crossing changes. We then define
(Kn, Kn−1, . . . , K2, K1) to be a proper sequence of knots if Ki is a V-minor of Ki+1

for all i , and K1 ≤ K2 if there exists a proper sequence containing both K1 and K2,
where K1 appears to the right of K2.

Our first goal was to directly expand the Hasse diagram of Section 1 up through
7-crossing prime alternating knots. If Conjecture 4.1 proves to be true, these results
will translate into a direct extension of Taniyama’s original T-order.

In order to directly determine which knots were V-minors of a particular knot K ,
we exhaustively checked all possible ways to make simultaneous crossing changes
on the graph for a fixed minimal diagram D of K . We checked all of the (com-
binatorially distinct) ways to make one crossing change at a time, and then two
crossing changes at a time, etc., up to half of the crossing number of K . We did
not need to change more than half of the crossings at a time because we do not
distinguish between a knot and its reflection: if changing some set of crossings
yields a diagram of K , then changing the complement of that set gives a diagram
of the reflection of K .

Our updated Hasse diagram is shown in Figure 10. See the Appendix for the
calculations that yielded this Hasse diagram.

Invariants and the V-order. The problem with the direct technique above is that
there are an extremely large number of cases to check for each knot. In order to
quickly eliminate many possible relationships in the V-order, we prove several
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Figure 11. A knot diagram with br(D)= 4.

results about the ordering that involve knot invariants. A knot invariant is a function
i : κ→α from the set of all knots κ to some algebraic structure α. Distinct diagrams
of the same knot must get sent to the same value by the invariant, so if an invariant
gives different values for two diagrams, they cannot represent the same knot.

The knot invariants we work with are crossing number c(K ), bridge index br(K ),
and braid index b(K ). It should be noted that some of our proofs in this section are
similar to those presented in [Endo et al. 2010], where Endo, Itah, and Taniyama
relate an entirely distinct partial ordering of links to common link invariants.

Theorem 2.2. Let K1, K2 be distinct knots with K1 ≤ K2, then c(K1)≤ c(K2).

Proof. Let K1 and K2 be knots, where K1 ≤ K2 and c(K2)= n. Then there exists
a minimal diagram D2 of K2 that can be transformed into a diagram D1 of K1 via
some number of simultaneous crossing changes. Now, D1 has n crossings, and thus
the crossing number of K1 can be at most n. �

The following theorem, which was originally proven by Taniyama [1989], is
more specific to our research since our V-order is restricted to alternating knots.

Theorem 2.3. Let K1, K2 be alternating knots with K1 ≤ K2, then c(K1) < c(K2).

Proof. Let K1 and K2 be alternating knots, where K1 ≤ K2 and c(K2)= n. Then
there exists a minimal diagram D2 of K2 that can be transformed into a diagram D1

of K1 by simultaneously changing some but not all of the crossings in D2. Now,
D1 has n crossings, so by Theorem 1.2, D1 cannot be a minimal diagram of K1.
Thus c(K1) < n. �

The second invariant we work with is the bridge number. The bridge number of
a knot diagram D of K is the number of local maximums in D with respect to the
y-coordinate in R2 (the number of “top points” in the diagram). The bridge index
br(K ) of a knot K is the minimal bridge number over all diagrams of K . Note that,
for every diagram D of K , there is one local minimum for every local maximum,
so the bridge number could have been defined using local minimums.

An example of a knot diagram D with br(D)= 4 is shown in Figure 11. Here
the box represents some (possibly complex) part of the knot diagram that contains
no local maxima or minima.

Theorem 2.4. If K1 ≤ K2, then br(K1)≤ br(K2).
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Figure 12. A knot diagram with b(K )= 3.

Proof. Let K1 and K2 be knots, where K1 ≤ K2 and br(K2)= n. Then there exists
a minimal bridge diagram D2 of K2 that can be transformed into a diagram D1

of K1 via some number of simultaneous crossing changes. Since D1 has n local
maxes, the bridge number of K1 can be at most n. �

The last invariant we work with is the braid index. The braid index b(K ) is the
minimal number of strands over all braid representations of a knot.

An example of a braid representation is shown in Figure 12. As with our figure
for bridge number, the box represents some (possibly complex) part of the knot
diagram that contains no local maxima or minima.

Theorem 2.5. If K1 ≤ K2, then b(K1)≤ b(K2).

Proof. Let K1 and K2 be knots where K1 ≤ K2 and b(K2)= n. Then there exists
a minimal braid diagram D2 of K2 (with n braid strands) that can be transformed
into a diagram D1 of K1 via some number of simultaneous crossing changes. Since
D1 has n braid strands, the braid index of K1 can be at most n. �

Direct V-minors. We now turn our attention to finding direct V-minors. Recall
that K1 is a direct V-minor of K3 if K1 ≤ K3 and there does not exist a distinct K2

such that K1 ≤ K2 ≤ K3. As we are restricting ourselves to prime alternating knots,
we will search for direct minors by finding alternating knots K1 ≤ K3 such that
c(K1)= c(K3)− 1. Theorem 2.3 ensures that all pairs of knots with this property
yield a direct V-minor. Although this strategy won’t find all direct V-minors, it will
locate most of them (as you can tell from our expanded Hasse diagram, the vast
majority of edges connect knots that differ by a crossing number of one).

Our primary tool in applying this strategy is the following theorem, which vastly
limits the number of cases where c(K1)= c(K3)− 1 is possible.

Theorem 2.6. Let K1 and K2 be alternating knots with K1 ≤ K2, and let G2 be
any minimal graph of K2.

(1) In G2, if we switch some but not all of the edges connecting two vertices, then
c(K1)≤ c(K2)− 2.

(2) In G2, if we switch some but not all of the edges separating two regions, then
c(K1)≤ c(K2)− 2.
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Proof. We are given that K1 and K2 are alternating knots with K1 ≤ K2. Let G2 be
an alternating graph of K2. Switch some but not all of the edges connecting two
vertices, so that those two vertices have at least one dotted edge and one solid edge
between them. In general these edges need not be directly adjacent. If they are not
directly adjacent, we can perform the flype below to make them adjacent:

E

F

>
∗ ∼

F

E

⊥∗

After performing this flype we can always perform an R2 move, which will
produce a graph with two edges less than the original G2. Thus, K1 has at most
c(K2)− 2 crossings and c(K1)≤ c(K2)− 2.

The proof for the case of switching some but not all of the edges separating two
regions is similar to above. Now the relevant flype that yields an R2 move takes
the form of the diagram below:

E 2 F G>
∗ ∼ E 2 F G⊥∗ �

When searching for direct V-minors, we restrict our attention to the combinatorial
cases that involve changing all crossings that connect a fixed pair of vertices or
all crossings that separate a fixed pair of regions (or a multiple number of such
cases). Using terminology from the literature, these cases correspond to changing
all crossings in fixed number of twist boxes. These guidelines directly guided the
calculations that we performed in the Appendix.

It should be noted that the conditions from Theorem 2.6, although necessary for
obtaining a direct V-minor with c(K1)= c(K2)− 1, are not sufficient to guarantee
that c(K1)= c(K2)− 1. Below is an example where we follow the conditions of
Theorem 2.6 but still end up with a knot such that c(K1)≤ c(K2)− 2.

Example 2.7. If we change both of the middle edges of the graph of 75, we drop
to the graph of 41, which has c(41)= c(75)− 3.

→ = 41
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3. Pretzel links and our partial ordering

Basic properties. A particularly simple class of links that behave nicely with respect
to our partial ordering are pretzel links. A link is a pretzel link if it has a diagram
that takes the form on the left side of Figure 13. Here the boxes represent twist
boxes full of half-twists in either direction. Since it is sometimes difficult to tell
whether a pretzel link is a one-component knot or a multiple-component link, all of
our theorems in this subsection have been extended to alternating links.

If we take the gray regions from our checkerboard coloring on the left, we see
that a pretzel link always has a graph of the form on the right side of Figure 13. Here
the half-twists in the link diagram translate into parallel edges between adjacent
vertices. We refer to graphs of this type as polygonal graphs. We denote the pretzel
link of Figure 13 by Pv(x1, x2, x3, . . . , xv), where v is the number of twist boxes in
the link diagram (or the number of vertices in the associated polygonal graph) and
xi is an integer corresponding to the number of half-twists in each twist box (or the
number of edges connecting the consecutive vertices vi and vi+1). We define vv to
precede v1. By convention, xi will be negative if all of the edges in the given twist
box are dotted, and positive if all of the edges are solid (if there are solid and dotted
edges between two fixed vertices, we immediately eliminate them with an R2 move).

For example, in Figure 14 we have P3(3, 3, 2)= 85. Notice that P3(3, 3, 2)=
P3(3, 2, 3)= P(2, 3, 3).

Pretzel links and our partial order. The reason that pretzel links are extremely
nice in relation to our partial ordering is that many of them have only one or two
direct V-minors (and almost all knots with only one or two direct V-minors appear
to be pretzel knots; see Section 4). Here we present several theorems characterizing
the role of several classes of pretzel links in our partial ordering.

x1
half-

twists

x2
half-

twists

x3
half-

twists

x1
edges

x2
edges

x3
edges

Figure 13. Pretzel knot diagram and its graph.
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Figure 14. 85 = P3(3, 3, 2).

The simplest class of pretzel links are (p, 2)-torus links. A (p, 2)-torus link is
a link with only a single twist box, where p is the total number of half-twists in
the twist box. They are so named because they fit upon the surface of a torus in R3

and wrap around the torus p times in the meridian direction for every two times
that they wrap around the torus in the longitudinal direction. If p is odd then the
(p, 2)-torus link is a knot; if p is even then the (p, 2)-torus link is a two-component
link. In terms of our pretzel link notation, the (p, 2)-torus link is Pp(1, 1, . . . , 1).
Figure 15 shows the general form for the checkerboard graph of a torus knot.

Theorem 3.1. Every V-minor of the (p, 2)-torus link is a (q, 2)-torus link with
q < p. Furthermore, the (p, 2)-torus link has a single direct V-minor in the
(p− 2, 2)-torus link.

Proof. Consider the graph Pp(1, . . . , 1) of the (p, 2)-torus link. If we change m< p
crossings in the polygonal graph’s sole twist box, there will be a solid edge next
to a dotted edge. This means that we can always perform an R2 move, removing
edges in pairs until the edges are all solid or all dotted. Every time we perform
an R2 move, we lose two edges. The resulting graph will always be of the form
Pp−2k(1, . . . , 1), where k is the minimum between the number of dotted edges and
the number of solid edges that we start with. �

This theorem supports what we already found for the torus knots 31, 51, 71 in our
Hasse diagram: the (p, 2)-torus knots line up in our Hasse diagram and have the
smaller (p, 2)-torus knots below them in a line. Note that many non-(p, 2)-torus
knots may have a (p, 2)-torus knot as their V-minor: our theorem doesn’t work in
the other direction.

. . . . . .

Figure 15. Left: (p, 2)-torus knot checkerboard graph. Right:
twist knot checkerboard graph.
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Another basic class of pretzel links are twist links, which are always one-
component knots. A twist knot is a pretzel link whose checkerboard graph is
of the form shown in Figure 15. Its two polygonal graphs are always of the form
Pc(K )−1(2, 1, 1, . . . , 1) and P3(c(K )− 2, 1, 1). The smallest nontrivial twist knots
are 31= P3(1, 1, 1), 41= P3(3, 1, 1), 51= P3(4, 1, 1), and 61= P3(4, 1, 1). Notice
that 31 is both a twist knot and a (p, 2)-torus knot.

Theorem 3.2. Every V -minor of the twist knot P3(n, 1, 1) is a twist knot P3(m, 1, 1)
with m < n. Furthermore, the twist knot P3(n, 1, 1) has a single direct V -minor in
P3(n− 1, 1, 1).

Proof. Changing m < n crossings in the big twist box always allows for R2
moves, similarly to Theorem 3.1. The result is always a twist knot of the form
P3(n−2k, 1, 1) for some integer k> 0. Changing one but not both of the remaining
two crossings always results in the unknot (technically a twist knot), as an R2 move
on the bottom allows us to completely untwist the knot. Changing both of the
remaining crossings results in the direct V-minor P3(n− 1, 1, 1); see the proof of
Theorem 3.3 for a more general demonstration of this fact. Changing both of the
remaining two crossings and some number of crossings in the big twist box results
in the same knot as changing the complement of these crossings, which falls into
the same case as above. In every case, we are left with a twist knot. �

As with Theorem 3.1, the implication of Theorem 3.2 is easily seen in our Hasse
diagram: the twist knots 31, 41, 51, etc. line up along the left side of the diagram
and only have other twist knots underneath them.

Theorems 3.1 and 3.2 are actually special cases of the theorem below, which
gives a very broad class of pretzel links with only one or two direct V-minors:

Theorem 3.3. Consider the pretzel link L = Pk+2(x, y, 1, 1, 1, . . .), where k > 1.

(1) If x, y 6= 1, then L has two direct V-minors, each of which has crossing number
c(L)− 1. These two V-minors, which are equivalent if x = y, have (possibly
nonpolygonal) graphs of the form

. . .

x−1
k−1

y consecutive edges

and

. . .

y−1
k−1

x consecutive edges

Here the x − 1, y− 1, and k− 1 refer to that number of parallel strands.

(2) If x=1, then L has one direct V-minor of the form P3(k, y−1, 1). Equivalently,
if y = 1, then L has only one direct V-minor of the form P3(k, x − 1, 1).
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Proof. Given L as defined above, the dual graph of Pk+2(x, y, 1, 1, 1, . . .) is
. . .. . .

k

Here we have k parallel strands in the middle, a string of x consecutive strands
of the left, and a string of y consecutive strands on the right. We choose to perform
our possible crossing changes on this dual graph.

From Theorem 2.6, we know that we can only achieve a direct V-minor L ′ with
c(L ′)= c(L)− 1 if we perform crossing changes on entire twist boxes. From the
diagram above, we clearly have three twist boxes: one on the left, one on the right,
and one with the k parallel strands down the middle. We then have three cases to
check, corresponding to changing all of the crossings in each twist box (notice that,
up to reflection, changing all crossings in two twist boxes yields the same knot as
changing all of the crossings in the remaining twist box).

First we change all crossings on the left side, giving
. . .. . .

k

After adding a free solid edge on the left side (corresponding to an R1 move), a
series of R3 moves reduces the graph to

. . .

x−1
k

Notice that this graph has c(L)+ 1 edges. After performing an R2 move in the
middle, we are left with the following graph with c(L)− 1 edges, corresponding to
the first direct V-minor from the theorem statement:

. . .

x−1
k−1
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Changing all of the crossings on the right side of the original graph is equivalent
to the above, and results in the second direct V-minor from the theorem statement.

Lastly, we consider changing all crossings in the middle twist box. This is equiv-
alent (up to reflection) to changing all of the crossings on the left and on the right,
which allows us to perform the procedure above two consecutive times to arrive at

y−1x−1
k−2

This graph has c(L)−2 edges and is actually a direct V-minor of the two c(L)−1
crossing knots derived above. Hence it is a remote V-minor of our original link.
Thus our link has only the two direct V-minors stated in the theorem.

Part (2) of the theorem is a special case of part (1). When x = 1, the string of
consecutive edges in the right graph from the theorem statement is a single edge
that adds to the twist box in the middle (which now has k parallel edges instead
of k− 1 parallel edges). The argument for y = 1 is similar. �

4. Future work

Our work revealed several questions that we hope to address in future papers. The
biggest open question that lay behind much of our research was what we referred
to as the minimal conjecture.

Conjecture 4.1 (The minimal conjecture). Let K2 be a prime alternating knot (link)
and let K1 be any knot (link). If there exists a minimal diagram of K2 that can
be transformed into a diagram of K1 via some number of simultaneous crossing
changes, then every diagram of K2 can be transformed into K1 via some number of
simultaneous crossing changes.

As noted earlier in the paper, if Conjecture 4.1 is true, it implies that the V-order
and T-order are equivalent for prime alternating knots. This means that our work
would be a direct refinement of Taniyama’s original methods. Unfortunately, this
conjecture seems to resist all direct methods of proof that we attempted.

In Section 3, we produced many knots with only one direct V-minor. For knots
with low crossing number, the only knots we found that had only one direct V-minor
were pretzel knots. This begs the following conjecture.

Conjecture 4.2. Pretzel knots are the only prime alternating knots with one direct
V-minor.

Below are a few additional general avenues of research that we may address in
future research.
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∼

∼

Figure 16. Top: 85 ≥ 31#31. Bottom: 816 ≥ 31#31.

Future Topic 4.3. All (p, 2)-torus knots K lack direct V-minors K ′ with c(K ′)=
c(K )−1. Most other knots seem to have at least one V-minor with c(K ′)= c(K )−1,
but there are still examples of non-(p, 2)-torus knots that fail in this regard. The
knots 85 and 816 are non-(p, 2)-torus knots K that have no direct V-minors K ′

with c(K ′) = c(K ) − 1. Is there something special about these knots that we
can generalize? Notice that these problematic eight-crossing knots are also the
eight-crossing alternating knots with nonprime V-minors; see Figure 16.

Is it possible to expand our work to nonprime or nonalternating links? At the
very least, is it possible to fully categorize which prime alternating knots have
nonprime or nonalternating knots directly beneath them in our ordering?

Future Topic 4.4. In relation to this final topic, we already have one result about
the placement of nonalternating knots within the V-order:

Theorem 4.5. Let L1 be a nonalternating link with c(L1) = n. Then there exists
an alternating link L2, where c(L2)= n, such that L1 ≤ L2.

Proof. If L1 is a nonalternating link with c(L1)= n, the minimal graph for L1 will
have both dotted and solid edges with n edges total. If we change all the dotted
edges to solid, we now have a graph of a link L2 with all solid edges. Since this
projection is reduced alternating, Theorem 1.2 implies that this graph of L2 is
minimal. So we have a minimal graph of L2 with crossing number n. We also can
see that L1 ≤ L2 since we are able to transform a minimal diagram of L2 into L1

via crossing changes. �

Appendix: Expansion of the Hasse diagram

Here we exhibit the calculations that yielded our expansion of the Hasse diagram in
Section 2. For each edge in the diagram, which corresponds to K1 ≤ K2, we show
a minimal diagram of K2 with the crossing changes needed to produce the direct
V-minor K1.
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K2 K1

31 ∼ 01

41 ∼ 31

51 ∼ 31

52 ∼ 41

61 ∼ 52

62 ∼ 51

62 ∼ 52

63 ∼ 51

63 ∼ 52
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K2 K1

71 ∼ 51

72 ∼ 61

73 ∼ 62

74 ∼ 61

75 ∼ 62

75 ∼ 63

76 ∼ 61

76 ∼ 62

76 ∼ 63
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K2 K1

77 ∼ 61

77 ∼ 62
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