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In this paper, we review some of the fundamental properties of the `1, or taxicab,
metric on R2. We define and give explicit formulas for two-parameter sine and
cosine functions for this metric space. We also determine the maximum of these
functions, which is greater than 1.

1. Introduction

The `1 metric on R2, the so-called taxicab metric, is often one of the first non-
Euclidean metrics a mathematics student encounters. For any points p = (p1, p2)

and q = (q1, q2) in R2, the metric is given by the formula

dT (p, q)= |p1− q1| + |p2− q2|.

The `1 metric is just one metric in a class of metrics defined on R2 known as
Minkowski metrics; see [Álvarez Paiva and Thompson 2005] for an introduction to
these metric spaces. Let � be a closed, bounded convex set in R2 which contains
and is symmetric about the origin. The set � defines a norm on R2, where � is the
unit disk. Given a norm ‖ · ‖, one can define a metric on R2 by d(p, q)= ‖p− q‖.
Examples of Minkowski metrics include the `p metrics, the `∞ or max metric, and
metrics with a unit disk that is a regular 2n-gon.

Length minimizing paths in the taxicab plane are not necessarily unique, so we use
the vector space properties of R2 and define lines to be the sets of points of the form
L = {tv+b | t ∈ R} for some fixed v and b. We can similarly define line segments,
triangles, rays, and angles (pairs of rays sharing an initial point). We define the
length of a line segment AB to be the distance between the endpoints, dT (A, B).

Given a metric d on a set X , a circle C of radius r is the set of all points p ∈ X
equidistant from a given point called the center. A circle in the taxicab metric is
a square with diagonals parallel to the x- and y-axes. In Euclidean space there is
an intrinsic notion of angle measure, radian measure, which is determined by the
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Figure 1. Euclidean right angles have taxicab angle measure of 2.

length of a particular circle arc. We can similarly define an intrinsic angle measure
in the taxicab plane, called t-radians.

Definition 1. Let C be a circle with radius r and center P . Given an angle with
vertex P , let s be the length of the subtended arc. The t-radian measure, θ , of a
taxicab angle is given by

θ =
s
r
.

It is this notion of angle measure which was used in these previous works [Akça
and Kaya 1997; Brisbin and Artola 1985; Thompson and Dray 2000] on taxicab
trigonometry. Another well-studied angle measure in a Minkowski metric uses the
area of the sector of the circle, rather than arc length, to define the angle measure.
(Due to a theorem of Haar, any area measure µ is proportional to Lebesgue measure;
see [Álvarez Paiva and Thompson 2004] for a discussion of areas in normed spaces.)
By Theorem 1 in [Düvelmeyer 2005], these two notions are equivalent (up to scale)
because the taxicab circle is an example of an equiframed curve. See [Düvelmeyer
2005] for the definition of equiframed curve.

Note that an `1 circle has 8 t-radians, which means in this metric, 4 is the analogue
of π . Some of the properties from Euclidean geometry have analogous statements
which are true in the taxicab plane. We will use the following propositions.

Proposition 2 [Thompson and Dray 2000, Theorem 4.2]. The angle sum of a
taxicab triangle is 4 t-radians.

We define a taxicab right angle to be an angle with measure 2 t-radians, which,
as in Euclidean geometry, is an angle which has measure equal to its supplement.

Proposition 3 [Thompson and Dray 2000, Lemma 2.5]. A Euclidean right angle
has taxicab angle measure of 2 t-radians, and the converse is also true.
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Figure 2. An `1 circle with two right-angled triangles.

Figure 1 gives a sketch of a proof of Proposition 3.
Proposition 3 implies that the vectors x and y form a right angle in the taxicab

plane if and only if they are orthogonal in the Euclidean sense. The study of
different notions of orthogonality in Minkowski spaces is an active area of research.
Two important orthogonality types in Minkowski spaces are Birkhoff orthogonality,
(x⊥ y if and only if ‖x−αy‖≥‖x‖ for all α) and James (or isosceles) orthogonality
(x⊥ y if and only if ‖x+y‖= ‖x−y‖). In the taxicab plane, Birkhoff orthogonality
is not symmetric and James orthogonality is not invariant under scalar multiplication,
which implies neither notion is equivalent to the definition of right angle that we
use above; see the recent survey [Alonso et al. 2012] for an explanation of these
facts and extensive discussion of orthogonality in normed linear spaces.

Not all angles in the taxicab geometry behave as nicely as right angles. In
Figure 2, the Euclidean angles α and β of the two triangles depicted are not equal,
but the taxicab angle measure of both is 1

2 .
A taxicab right triangle is in standard position if the base of the triangle is parallel

to the x-axis (see α-triangle in Figure 2). For triangles in standard position, we
can define the taxicab sine and cosine functions as we do in Euclidean geometry
with the cos θ and sin θ equal to the x- and y-coordinates on the unit circle. Indeed,
the piecewise linear formulas for these functions are given in [Thompson and Dray
2000; Akça and Kaya 1997] and with slightly different formulas in [Brisbin and
Artola 1985]. However, if we define sine and cosine as ratios of sides of right
triangles, considering only triangles in standard position will not give all possible
values. To illustrate this, we refer again to Figure 2.

Both triangles are right triangles with hypotenuse (the side opposite the 2 t-
radian angle) of length 1. Also, since α and β both have angle measure 1

2 , the other
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nonright angle is 4− 2− 1
2 =

3
2 . In the α-triangle, we compute the cosine of α

by taking the ratio of the lengths of the adjacent side and the hypotenuse, which
is 3

4 . However, looking at the β-triangle, we see the vertex of the right angle falls
outside of the unit circle, which implies that the length of the side adjacent to β,
and therefore the cosine of β, is greater than 1.

A natural question arises: what is the maximum value of the cosine of an angle
in the taxicab plane? In this paper, we define and give explicit formulas for two-
parameter sine and cosine functions, describing the possible side ratios of right
triangles in the taxicab plane. Using these formulas, we show the maximum value
to be 1/2+ 1/

√
2, which is greater than 1. Thus we obtain a quantitative measure

of a difference between the Euclidean and taxicab plane.
We would like to thank the referee for pointing out many references on the

geometry of Minkowski metric spaces, including [Thompson 1996]. In Chapter 8
of this text, Thompson defines two-parameter sine and cosine functions for general
Minkowski spaces. For Thompson’s function, the Minkowski cosine of two vectors
is zero if and only if the vectors x1 and x2 are Birkhoff orthogonal. This property
does not hold for our definition of cosine, so our functions are not a special case of
those defined by Thompson, even up to scale. Using the sine function, Thompson
defines an α which measures how far the Minkowski space is from Euclidean space,
leaving us with a question: is this α related to the value we obtain for the maximum
of our taxicab sine function?

2. A two-parameter sine and cosine function

Definition 4. Given two metric spaces (X, d1) and (Y, d2), a bijection f : X→ Y
is an isometry if for any two points p, q ∈ X ,

d1(p, q)= d2( f (p), f (q)).

Given a metric space X , the set of all isometries φ : X→ X forms a group, and
the set of isometries that fix a point forms a subgroup of this group. An important
subgroup is the set of isometries which fix the origin, which, by the Mazur–Ulam
theorem (see [Thompson 1996, Chapter 3]), are linear. Using this fact and the fact
that isometries map circles to circles with the same radius, one can see that the
group of isometries that fix the origin of (R2, dT ) is the group of symmetries of a
square, also called the dihedral group D4. This includes the set of rotations (by 0◦,
90◦, 180◦, and 270◦) and reflections across the x-axis, y-axis and the lines passing
through the origin with slope ±1. The full group of isometries is the semidirect
product D4oR2, which is proved in [Schattschneider 1984]. This group is generated
by translations and isometries that fix the origin.

Two triangles T1, T2 in the taxicab plane are congruent if there is a taxicab
isometry φ such that φ(T1)= T2. Note that due to the rigidity of the isometry group,
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Figure 3. Defining sine and cosine.

there is no taxicab isometry taking the α-triangle in Figure 2 to the β-triangle,
so there is no angle-side-angle theorem in taxicab geometry. We will define the
taxicab sine and cosine functions to have two angle parameters; one parameter is
the usual θ -angle parameter measured from a fixed axis, and the other φ-parameter
will denote the “direction” of the triangle in the plane (see Figure 3).

Before giving the definition, we describe a notion of orthogonal projection in
the taxicab plane. Let L be a line and P be a point. If P is on L , the orthogonal
projection of P onto L is P . If P is not on L , the orthogonal projection is a unique
point R on L for which the line segment OPR makes a Euclidean right angle with L;
Proposition 3 implies that this point R is also the unique point on L which makes a
taxicab right angle. The following definition, which is convenient for later proofs,
may seem somewhat unnatural; we refer the reader to Propositions 6 and 7 which
justify that this definition gives the desired “signed ratio” of side lengths.

Definition 5. Let L be the line through the origin O which makes reference angle φ
with the x-axis, where 0≤ φ < 2, and let P = (p1, p2) be a point on the unit circle
so that OP makes angle θ with L . Let R = (r1, r2) be the orthogonal projection
of P onto L . We define the taxicab cosine and sine of angle θ at reference angle φ as

tcosφ θ = r1+ r2, tsinφ θ = (r1− p1)+ (p2− r2).

Given a right triangle T with hypotenuse of length 1, there is a taxicab isometry
which maps T to a triangle of the form 4 PRO given in Definition 5, so T is
congruent to 4PRO .
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Let L⊥ be the perpendicular to L which also passes through the origin. The lines
L and L⊥ divide the plane into four quadrants, which we number I, II, III, IV in
the usual way.

Proposition 6. The value of tcosφ θ is positive for θ in L-L⊥ quadrants I and IV ,
and negative for θ in quadrants II and III. Similarly tsinφ θ is positive for θ in
quadrants I and II, and negative for θ in quadrants III and IV.

Proof. Let P = (p1, p2) and R = (r1, r2) be as given in Definition 5. When θ is in
quadrants I and IV, as defined by L and L⊥, the coordinate r1 is positive and r2 is
nonnegative (when φ = 0, the line L is the x-axis and r2 = 0). Therefore tcosφ θ ,
which is the sum of these coordinates, is positive. Similarly, when θ is in quadrants II
and III, r1 is negative and r2 is nonpositive; hence tcosφ θ is negative.

Recall that tsinφ θ = (r1− p1)+ (p2− r2). For a fixed φ, the coordinates of P
and R are continuous real-valued functions of θ , and therefore the functions r1− p1

and p2−r2 are also continuous functions. When 0<φ<2, each of these functions is
zero if and only if θ =4n for some integer n. This follows from the fact that the slope
of L is positive, which implies that the line through P and R has negative slope; so
p1= r1 or p2= r2 if and only if P= R. Therefore the sign of each of these functions,
r1− p1 and p2− r2, is constant for θ in quadrants I and II. Picking a specific angle
such as θ = 2 allows us to verify that both are positive, and therefore tsinφ θ is
positive. Choosing an angle in the range 4<θ <8 shows that both of these functions
are negative, and therefore tsinφ θ is also negative when θ is in quadrants III and IV.

When φ = 0, we have that r2 = 0 and r1 = p1; then tsinφ θ = p2, and the
result follows. �

Proposition 7. In the right triangle made by P , R and the origin O , |tcosφ θ | gives
the length of the side adjacent to θ , and |tsinφ θ | gives the length of the opposite side.

Proof. Fix an angle 0 ≤ φ < 2. The length of the adjacent side is the distance
from R to the origin, which is |r1| + |r2|. When θ is in quadrants I and IV (defined
by L and L⊥), both r1 and r2 are nonnegative, so

|r1| + |r2| = r1+ r2 = |tcosφ θ |.

When θ lies in quadrants II and III, both r1 and r2 are nonpositive, so

|r1| + |r2| = −r1− r2 =−(r1+ r2)= |tcosφ θ |.

The length of the side opposite of θ in triangle OPR is given by the distance
between P and R, which is |p1 − r1| + |p2 − r2|. Arguing as in Proposition 6,
when θ is in quadrants I and II, we have

|p1− r1| + |p2− r2| = (r1− p1)+ (p2− r2)= |tsinφ θ |,
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and when θ is in quadrants III and IV,

|p1− r1| + |p2− r2| = −(r1− p1)− (p2− r2)

=−
(
(r1− p1)+ (p2− r2)

)
= |tsinφ θ |. �

Proposition 8. The following identities hold.

tsinφ(θ − 4)=− tsinφ θ and tcosφ(θ − 4)=− tcosφ θ.

Proof. Let P and R be the points given in Definition 5 corresponding to θ , and P ′ and
R′ the points corresponding to θ−4. By Proposition 3, taxicab angles of measure 2
are Euclidean right angles, which means P and P ′ are antipodal points on the unit
circle and P ′=−P . The map (x, y)→ (−x,−y) is an isometry of the taxicab plane
which maps P to P ′. Angles are defined by the metric, and therefore isometries
preserve angle measure. It follows from the definition of R that R′=−R. Therefore,

tcosφ(θ − 4)=−r1− r2 =−(r1+ r2)=− tcosφ θ

and
tsinφ(θ − 4)= (−r1+ p1)+ (−p2+ r2)

=−
[
(r1− p1)+ (p2− r2)

]
=− tsinφ θ. �

3. Explicit formulas for sine and cosine functions

Theorem 9. Let φ be a taxicab reference angle such that 0≤ φ < 2 and let θ be a
taxicab angle measured relative to φ. Let

α =
1

φ2− 2φ+ 2
,

which is well-defined for all φ since φ2
− 2φ+ 2> 0. The sine and cosine of θ with

reference angle φ are given by

tsinφ θ =


α θ if −φ ≤ θ ≤ 2−φ,
1+α(θ − 2)(φ− 1) if 2−φ ≤ θ ≤ 4−φ,
α(4− θ) if 4−φ ≤ θ ≤ 6−φ,
−1+α(6− θ)(φ− 1) if 6−φ ≤ θ ≤ 8−φ,

and

tcosφ θ =


1+α θ(φ− 1) if −φ ≤ θ ≤ 2−φ,
α(2− θ) if 2−φ ≤ θ ≤ 4−φ,
−1+α(4− θ)(φ− 1) if 4−φ ≤ θ ≤ 6−φ,
α(θ − 6) if 6−φ ≤ θ ≤ 8−φ.
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Lemma 10. Let L be a line through the origin that makes angle φ with the x-axis,
where 0≤ φ < 2. The point of intersection between L and the unit taxicab circle is

Q =
(

2−φ
2

,
φ

2

)
.

Proof. Let Q = (q1, q2). Since Q lies on the unit circle and 0 ≤ φ < 2, both
coordinates are positive and

q1+ q2 = 1. (1)

Since the radius of the unit circle is 1, the definition of angle implies that φ is the
distance between Q and (1, 0). This distance is given by

|q1− 1| + |q2− 0| = 1− q1+ q2 = φ. (2)

We solve the system of linear equations consisting of (1) and (2) for q2 by adding
the two equations to get

q2 =
φ

2
;

substituting q2 into (1) gives us q1 = 1−φ/2, which is the desired result. �

3.1. Proof of Theorem 9 for −φ ≤ θ ≤ 2−φ. Let 0≤ φ < 2 and −φ ≤ θ ≤ 2−φ.
We will determine the coordinates of P and R, given in Definition 5, as functions
of φ and θ . Lemma 10 implies that the φ-axis (line L in Figure 3) intersects the
circle at

Q =
(

2−φ
2

,
φ

2

)
.

Since the φ-axis passes through the origin, we find that the equation is

L(x)=
φ

2−φ
x . (3)

Next, we determine the coordinates of P , the point of intersection between
the circle and the (θ+φ)-ray. Applying Lemma 10 again with angle θ+φ gives
coordinates

P =
(

2−φ− θ
2

,
φ+ θ

2

)
.

Proposition 3 implies that Euclidean right angles are taxicab right angles. There-
fore, to find the point R we determine the equation of the line perpendicular (in
the usual Euclidean sense) to the φ-axis, L P , through point P . Since the φ-axis
has slope φ/(2−φ), L P has slope (φ− 2)/φ. Since we know the coordinates of
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P = (p1, p2) and the slope, we can determine the equation for L P , which is

L P(x)=
(
φ− 2
φ

)
(x − p1)+ p2

=
(φ− 2)x

φ
+
(φ− 2)(θ +φ− 2)+φ(θ +φ)

2φ
. (4)

The point R is the intersection between the φ-axis and L P . Setting equations (3)
and (4) equal to each other and solving for the x-coordinate of R yields

r1 =
2−φ

2
+
(2−φ)(φθ − θ)
2(φ2− 2φ+ 2)

.

Plugging r1 into L (or L p) gives the y-coordinate of R,

r2 =
φ

2
+

φ2θ −φθ

2(φ2− 2φ+ 2)
.

Thus, the coordinates of R are

R =
(

2−φ
2
+
(2−φ)(φθ − θ)
2(φ2− 2φ+ 2)

,
φ

2
+

φ2θ −φθ

2(φ2− 2φ+ 2)

)
.

The result now follows by using the coordinates of R and P to compute tsinφ θ and
tcosφ θ by the formulas given in Definition 5. �

3.2. Proof for 2 − φ ≤ θ ≤ 4 − φ. We again find the coordinates of P and R to
compute tsinφ θ and tcosφ θ . When 2 < θ + φ < 4, the point P is in the second
quadrant (as defined by the x- and y-axes). Let θ1 be the portion of θ measured
from the y-axis, so θ1 = φ+ θ − 2.

Let f : R2
→ R2 be the map defined by (x, y) 7→ (y,−x). This map is an

order 4 isometry of the `1 metric. Note that f (0, 1)= (1, 0) and f (P) is in the first
quadrant. Since angle measure is defined by the metric, angle measure is preserved
by isometries. We can therefore apply Lemma 10 to f (P) to obtain the coordinates

f (P)=
(

2− θ1

2
,
θ1

2

)
.

To obtain the coordinates for P we apply the inverse map:

P = f −1
(

2− θ1

2
,
θ1

2

)
=

(
−
θ1

2
,

2− θ1

2

)
=

(
2−φ− θ

2
,

4−φ− θ
2

)
.

To finish the proof for this interval, we use the same procedure as in the proof
for the first interval; that is, we find the equation of the line perpendicular to the
φ-axis through P to determine the coordinates of the point R. The line through P
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perpendicular to L(x) is

L P(x)=
(
φ− 2
φ

)
(x − p1)+ p2

=
(φ− 2)x

φ
+
(φ− 2)(θ +φ− 2)+φ(4− θ −φ)

2φ
. (5)

To find r1, we set equations (3) and (5) equal to one another and solve for x ,
which gives

r1 =
(φ− 2)(θ − 2)
2(φ2− 2φ+ 2)

.

Plugging r1 into L(x) (Equation (3)) gives

r2 =
−φ(θ − 2)

2(φ2− 2φ+ 2)
.

The sine and cosine functions can now be computed from the formulas given in
Definition 5. �

3.3. Proof for 4 − φ ≤ θ ≤ 8 − φ. We will use the symmetry of the functions
to establish the formulas for the third and fourth intervals. Let θ be in the given
interval, and θ∗ = θ −4. Then −φ ≤ θ∗ ≤ 4−φ. We have determined formulas for
tsinφ(θ∗) and tcosφ(θ∗) in this interval, so applying Proposition 8 gives formulas
for angle θ in the remaining two intervals. �

It should be noted that our formulas are a generalization of those formulas in
[Thompson and Dray 2000; Akça and Kaya 1997]; if φ = 0, then θ is in standard
position and we obtain identical formulas.

4. Properties of the functions

4.1. Periodic extensions and graphs. In Definition 5, the generalized sine and
cosine functions were defined for all real numbers θ and for values of φ such that
0≤ φ < 2. It is evident from the definition that the θ -period of these functions is 8,
so for any integer k,

tcosφ(θ + 8k)= tcosφ θ and tsinφ(θ + 8k)= tsinφ θ.

There is a natural φ-extension of these functions; since rotation by right angles
gives isometries of the `1 metric, we extend the φ-domain of the generalized sine
and cosine functions to be φ-periodic with period 2. Therefore, for any integer s,

tcosφ+2s θ = tcosφ θ and tsinφ+2s θ = tsinφ θ.

It should be noted that the formulas for tsinφ θ and tcosφ θ given by P and R from
Definition 5 are only valid for values of φ in the first quadrant. Since Theorem 9
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Figure 4. Graph of the generalized sine function.

gives explicit formulas for entire φ and θ periods, we may use this theorem and the
two periodic properties stated above to give values for tsinφ θ and tcosφ θ for any
(φ, θ) ∈ R×R. Figure 4 contains a graph of tsinφ θ for two periods of φ and two
periods of θ .

Table 1 shows a family of cross-sections. Referring to the formulas in Theorem 9,
we see that for a fixed φ these functions are piecewise linear. We invite the interested
reader to verify that these functions are constant when θ = 2n for some integer n.

Recall that in the Euclidean metric, sin(θ +π/2)= cos θ . The cross-sections for
the sine and cosine functions when φ is fixed suggest a similar identity.

Proposition 11. tsinφ(θ + 2)= tcosφ θ .

Proof. While this identity follows from the symmetry of the space, Theorem 9 gives
explicit formulas for tsinφ θ and tcosφ θ , so we need only check the formulas to
verify this identity. Assume that 0 ≤ φ < 2 and −φ ≤ θ ≤ 2− φ, which implies
2−φ ≤ θ + 2≤ 4−φ. For angles in the interval [2−φ, 4−φ],

tsinφ θ = 1+α(θ − 2)(φ− 1).

Therefore,

tsinφ(θ + 2)= 1+α((θ + 2)− 2)(φ− 1)= 1+α θ(φ− 1),

which is equal to tcosφ θ when −φ ≤ θ ≤ 2−φ. The other intervals can be verified
similarly. �

4.2. Maximum and minimum values.

Theorem 12. The maximum value of tsinφ θ and tcosφ θ is 1/2+ 1/
√

2; the mini-
mum value is −(1/2+ 1/

√
2).
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tsinφ θ tcosφ θ tsinφ θ tcosφ θ

φ = 0 θ = 0

φ = .5 θ = 1.5

φ = .85 θ = 3

φ = 1 θ = 4.5

φ = 1.15 θ = 6

φ = 1.5 θ = 7.5

Domain: −φ ≤ θ ≤ 16−φ Domain: 0≤ φ ≤ 2

Table 1. Cross sections.

Proof. By Proposition 11, the maximum of the sine function is equal to the maximum
of the cosine function. Also, by Proposition 8, the minimum of the sine function
is equal to the negative of the maximum. Therefore it is sufficient to verify the
maximum of the sine function.

The sine function has a θ -period of 8 and a φ-period of 2. However, the maximum
of the sine function must occur when sine is positive, and hence θ must be in the
interval [0, 4] by Proposition 6. It is therefore sufficient to find the maximum of
tsinφ θ on the region defined by 0 ≤ φ ≤ 2 and 0 ≤ θ ≤ 4. We will use standard
techniques from multivariable calculus to maximize this function.

As tsinφ θ is piecewise defined, we will consider the intervals

[0, 2−φ], [2−φ, 4−φ], and [4−φ, 4].

Recall that

α =
1

φ2− 2φ+ 2
=

1
(φ− 1)2+ 1

,
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which is positive for all φ. When θ is in the interval [0, 2−φ], we have tsinφ θ =αθ ,
and θ in [4−φ, 4] implies tsinφ θ = α(4− θ). The partial derivatives with respect
to θ of these functions are α and −α; therefore, tsinφ θ is increasing with respect
to θ on [0, 2− φ] and decreasing in θ on [4− φ, 4]. This implies the absolute
maximum of tsinφ θ occurs when θ is in the middle interval.

When 2−φ ≤ θ ≤ 4−φ,

tsinφ θ = 1+
(θ − 2)(φ− 1)
φ2− 2φ+ 2

.

The partial derivatives are

∂

∂φ

[
1+

(θ − 2)(φ− 1)
φ2− 2φ+ 2

]
=
(2φ−φ2)(θ − 2)
(φ2− 2φ+ 2)2

,

∂

∂θ

[
1+

(θ − 2)(φ− 1)
φ2− 2φ+ 2

]
=

φ− 1
φ2− 2φ+ 2

.

These are both zero only when (φ, θ) = (1, 2). In this case, tsin1(2) = 1. We
now check the boundary conditions.

When φ= 0, we have 2≤ θ ≤ 4 and tsinφ θ = 2+(−θ/2), which has a maximum
of 1. Note that tsinφ θ has the same maximum when φ= 2 because of the φ-periodic
property previously stated.

When θ = 2−φ, we have

g(φ)= tsinφ(2−φ)= 1−
(φ− 1)φ
φ2− 2φ+ 2

.

The derivative of this function is

g′(φ)=
φ2
− 4φ+ 2

(φ2− 2φ+ 2)2
.

This function is zero when φ = 2±
√

2. Only one of these values, φ = 2−
√

2,
is in the region under consideration. For this value of φ, we have θ =

√
2 and we

see the value of the sine function is

tsin2−
√

2

√
2= 1/2+ 1/

√
2.

When θ = 4−φ, we have

h(φ)= tsinφ(4−φ)= 1−
(φ− 2)(φ− 1)
φ2− 2φ+ 2

.

The derivative of this function is

h′(φ)=
2−φ2

(φ2− 2φ+ 2)2
.
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For values of φ in the interval [0, 2], this derivative is zero when φ =
√

2. Then
θ = 4−

√
2, and

tsin√2

(
4−
√

2
)
=

1
2
+

1
√

2
.

We can therefore conclude for values in the region 0 ≤ φ ≤ 2 and 0 ≤ θ ≤ 4,
the function tsinφ θ achieves its absolute maximum, 1/2+ 1/

√
2, in two locations:(

2−
√

2,
√

2
)

and
(√

2, 4−
√

2
)
. �

Corollary 13. The hypotenuse of a right triangle in taxicab space is not always the
longest side of the triangle.
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