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We present a lovely connection between the Fibonacci numbers and the sums of
inverses of .0; 1/-triangular matrices, namely, a number S is the sum of the entries
of the inverse of an n�n .0; 1/-triangular matrix (for n� 3) if and only if S is an
integer between 2�Fn�1 and 2CFn�1. Corollaries include Fibonacci identities
and a Fibonacci-type result on determinants of a special family of .1; 2/-matrices.

1. Introduction

One of the ways to motivate students’ interest in linear algebra is to present inter-
esting connections between matrices and the Fibonacci numbers

F1 D F2 D 1; Fn D Fn�1CFn�2; n� 3:

For example, one can prove that F2
n �Fn�1FnC1 D .�1/nC1 by using induction

and the fact that

det
�

Fn Fn�1

FnC1 Fn

�
D det

�
Fn Fn�1

FnC1�Fn Fn�Fn�1

�
D det

�
Fn Fn�1

Fn�1 Fn�2

�
D� det

�
Fn�1 Fn

Fn�2 Fn�1

�
:

Similarly, one can determine the exact value of the n-th Fibonacci number, by
calculating the eigenvalues and the eigenvectors of

�
1
1

1
0

�
and using the equation 
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As another example of connections between Fibonacci numbers and matrix theory,
consider lower triangular matrices of the form0BBBBBBBB@

1 0 � � � � � � � � � 0

�1 1 0 � � � � � � 0

�1 �1 1 0 � � � 0

0 �1 �1 1
: : :

:::
:::

: : :
: : :

: : :
: : :

:::

0 � � � 0 �1 �1 1

1CCCCCCCCA
:

The inverses of these matrices are of the form0BBBBBBBBBB@

1 0 � � � � � � � � � � � � 0

1 1 0 � � � � � � � � � 0

2 1 1 0 � � � � � � 0

3 2 1 1 0
: : :

:::

5 3 2 1
: : :

: : :
:::

:::
: : :

: : :
: : :

: : :
: : :

:::
::: � � � 5 3 2 1 1

1CCCCCCCCCCA
;

which, due to their remarkable structure, are known as Fibonacci matrices. Various
properties of these matrices and their generalizations have been studied [Lee et al.
2002; Lee and Kim 2003; Wang and Wang 2008].

Fibonacci numbers are also widely used in algorithms in computer science [Atkins
and Geist 1987; Knuth 1997], such as algorithms for finding extrema, merging files,
searching in trees, etc. We provide here an example of their use in the searching of
ordered arrays, described in [Atkins and Geist 1987]. Suppose that we have a sorted
array with Fn�1 elements for some natural number n (we can always pad the array
with dummy elements in order to achieve such number of elements); for example,
let AD .0; 1; 2; 3; 5; 6; 9; 11; 15; 18; 20; 23/ be an array with F7�1D 12 elements.
We would like to check whether 15 is in A. First compare 15 with the F7�1-th
entry. Since 11< 15, we can eliminate all the entries to the left of the F7�1-th entry
(including the F7�1-th entry), and we are left with the array B D .15; 18; 20; 23/

which contains F5 � 1 D 4 elements. We now compare the F5�1-th entry in B

with 15, and since 20> 15, we eliminate 20 and 23, and we are left with the array
C D .15; 18/ that has F4� 1 entries. Finally, we compare the F4�1-th entry of C

to 15, and since 18> 15, we are left with 15 and have a match. The full algorithm
is described in [Atkins and Geist 1987]. Another interesting connection between
Fibonacci numbers and matrices is given in [Li 1993], where it is shown that the
maximal determinant of an n� n .0; 1/-Hessenberg matrix is Fn.
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Let S.X / denote the sum of the entries of a matrix X . Huang, Tam and Wu
[Huang et al. 2013] show, among other results, that a number S is equal to S.A�1/

for an adjacency matrix (a symmetric .0; 1/-matrix with trace zero) A if and only if
S is rational. More generally, they ask what can be said about the sum of the entries
of the inverse of a .0; 1/-matrix. We consider the class of triangular matrices and
show that a number S is equal to S.A�1/ for a triangular .0; 1/-matrix A if and
only if S is an integer. This follows from our main result which shows that for n� 3,
a number S is equal to S.A�1/ for an n�n triangular .0; 1/-matrix A if and only if

2�Fn�1 � S � 2CFn�1:

We use the following definitions and notation. Let e denote a vector of ones (so
S.A/D eT Ae) and An the set of n� n invertible .0; 1/-upper triangular matrices.
We will say that a matrix A2An, where n� 3, is maximizing if S.A�1/D 2CFn�1

and minimizing if S.A�1/D 2�Fn�1, and refer to maximizing and minimizing
matrices as extremal matrices. For a set of vectors V � Rn, a vector v 2 V is
absolutely dominant if for every u 2 V , jvi j � jui j, where i D 1; 2; : : : ; n.

We will use the following well-known properties of Fibonacci numbers (see, for
example, [Vorobiev 2002]):

Lemma 1.1. (i) 1C
Pn

kD1 Fk D FnC2;

(ii) 1C
Pn

kD1 F2k D F2nC1;

(iii)
Pn

kD1 F2k�1 D F2n.

The main result of the paper is proved in Section 2. In Section 3, we describe a
construction of extremal matrices with a beautiful Fibonacci pattern in their inverses,
and use it to obtain several Fibonacci identities. We conclude with a Fibonacci-type
result on determinants of .1; 2/-matrices in spirit of the result in [Li 1993].

2. The main result

Theorem 2.1. Let n � 3. Then S D S.A�1/ for some A 2 An if and only if S is
an integer between 2�Fn�1 and 2CFn�1; that is, 2�Fn�1 � S � 2CFn�1.

Proof. Obviously, S.A�1/ must be an integer since A�1 D adj.A/=det.A/ and
det.A/D 1. The main part of the proof consists of showing

(a) maxA2An
S.A�1/D 2CFn�1,

(b) minA2An
S.A�1/D 2�Fn�1, and

(c) for every integer S between 2�Fn�1 and 2CFn�1, there exists A 2An such
that S.A�1/D S .

To show (a) and (b) we prove the following lemma.
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Lemma 2.2. Let V D feT A�1 jA 2Ang. For the purposes of this lemma only, we
will let F0 D�1 (note that this is not a Fibonacci number). Then v D .vi/, where
vi D .�1/iFi�1, is an absolutely dominant vector of V .

Proof. For nD1, we have V Df.1/g; for nD2, we have V Df.1 1/; .1 0/g; and for
nD 3, we have V D f.1 1 1/; .1 0 1/; .1 1 0/; .1 0 0/; .1 1 �1/g. Therefore
the statement holds for n D 1; 2; 3. To prove the lemma for n � 4, we will use
induction. Suppose the lemma is true for k < n.

We will now show that the vector v, defined in the lemma, is an absolutely
dominant vector of the set V DfeT A�1 jA2Ang. Let A2An. Then A is of the form0@C ˛ ˇ

0 1 x

0 0 1

1A ;
where C 2An�2, ˛; ˇ 2

˚
0; 1

	n�2, and x 2
˚
0; 1

	
. Therefore,

A�1
D

0BBB@
C�1 �C�1

�
˛ ˇ

� �1 �x

0 1

�
0

�
1 �x

0 1

�
1CCCAD

0B@C�1 �C�1
�
˛ ˇ�x˛

�
0

�
1 �x

0 1

� 1CA :
We will use the following notation:

eT C�1
D
�
c1 c2 � � � cn�2

�
; ˛ D

�
˛1 ˛2 � � � ˛n�2

�T
;

ˇ D
�
ˇ1 ˇ2 � � � ˇn�2

�T
:

So

eT A�1
D

�
c1 c2 : : : cn�2 1�

Pn�2
iD1 ˛ici 1�x�

Pn�2
iD1 ci.ˇi �x˛i/

�
:

Consider the n-th entry of eT A�1. Since c1 D 1, n� 4, and �1� ˇi �x˛i � 1

for all 1� i � n� 2, it is easy to see that

�

n�2X
iD1

jci j � 1�x�

n�2X
iD1

ci.ˇi �x˛i/�

n�2X
iD1

jci j

for all possible x; ˛i ; ˇi 2 f0; 1g, where 1� i � n� 2. Since ˇi �˛i 2 f�1; 0; 1g,
it is possible to achieve equality in each inequality by taking

x D 1 and sign.ˇi �˛i/D sign.ci/; 1� i � n� 2 (1)

in the first, and

x D 1 and sign.ˇi �˛i/D� sign.ci/; 1� i � n� 2: (2)
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in the second. Now, since
ˇ̌
�
Pn�2

iD1 jci j
ˇ̌
D
ˇ̌Pn�2

iD1 jci j
ˇ̌
, we get that if A 2 An is

a matrix for which eT A�1 is an absolutely dominant vector, its n-th entry must be
equal to either

�

n�2X
iD1

jci j (3)

or
n�2X
iD1

jci j: (4)

Note that the maximal value of (3) is obtained by taking C such that eT C�1 is an ab-
solutely dominant vector of the set V DfeT A�1 jA2An�2g (and all the absolutely
dominant vectors will give the same value). The same is true of the minimal value
of (4). By the inductive hypothesis and using Lemma 1.1, the maximal value of (4) is

n�2X
iD1

jci j D 1C

n�3X
iD1

Fi D Fn�1

(and this value may be achieved by choosing an appropriate C ). Similarly, the
minimal value of (3) is �Fn�1. Let us now consider the .n�1/-th entry of eT A�1.
By the inductive hypothesis, its absolute value is bounded from above by Fn�2.
By taking C 2An�2 such that eT C�1 is an absolutely dominant vector, choosing
˛; ˇ such that either (1) or (2) is satisfied and using Lemma 1.1 and the inductive
hypothesis, we get that the .n�1/-th entry of eT A�1 is equal to either

1�

n�2X
iD1

˛ici D 1�

bn�3
2
cX

kD1

c2kC1 D 1C

bn�3
2
cX

kD1

F2k D F2bn�3
2
cC1; (5)

or

1�

n�2X
iD1

˛ici D 1� c1�

bn�2
2
cX

kD1

c2k D�

bn�2
2
cX

kD1

F2k�1 D�F2bn�2
2
c
: (6)

Note that if n is odd then expression (5) is equal to Fn�2, and if n is even then
expression (6) is equal to�Fn�2. In sum, using the inductive hypothesis, we showed
that the largest possible absolute value of the n-th entry of eT A�1 (such that A2An)
is Fn�1. In this case, we showed that it is possible to choose ˛ such that the absolute
value of the .n�1/-th entry of eT A�1 is Fn�2, the largest possible absolute value
due to the inductive hypothesis. Therefore, we showed that the vector v, defined
in the lemma, is an absolutely dominant vector for V D feT A�1 jA 2Ang. �
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We are now ready to prove (a) and (b). We represent A 2An in the same form
as in Lemma 2.2, and

eT A�1e D eT

0B@C�1 �C�1
�
˛ ˇ�x˛

�
0

�
1 �x

0 1

� 1CA e

D 2�xC eT C�1e� eT C�1
�
ˇC .1�x/˛

�
D 2�xC eT C�1.e�˛�ˇCx˛/:

Let uD e�˛�ˇCx˛. Note that if x D 1 then u 2 f0; 1gn�2, and if x D 0 then
u 2 f�1; 0; 1gn�2. In addition, note that

max
˚
2�xC eT C�1u j x D 0; ˛; ˇ 2 f0; 1gn�2

	
�max

˚
2�xC eT C�1u j x D 1; ˛; ˇ 2 f0; 1gn�2

	
: (7)

Now, since C 2 An�2, the first entry of eT C�1 is 1. If x D 0, then in order to
minimize the value of eT C�1u, we have to take the first entries of ˛ and ˇ to be 1.
On the other hand, if x D 1, then in order to minimize the value of eT C�1u, we
have to take the first entries of ˇ to be 1. The difference between these two cases
is 1, and therefore

min
˚
2�xC eT C�1u j x D 0; ˛; ˇ 2 f0; 1gn�2

	
�min

˚
2�xC eT C�1u j x D 1; ˛; ˇ 2 f0; 1gn�2

	
: (8)

Since we are only interested in the minimal and the maximal values of eT A�1e, we
may assume, by (7) and (8), that xD0. Therefore, eT A�1eD2CeT C�1.e�˛�ˇ/.
Using the notation of Lemma 2.2, we get

min
˚
2C eT C�1.e�˛�ˇ/ j ˛; ˇ 2 f0; 1gn�2

	
D 2�

n�2X
iD1

jci j (9)

and

max
˚
2C eT C�1.e�˛�ˇ/ j ˛; ˇ 2 f0; 1gn�2

	
D 2C

n�2X
iD1

jci j: (10)

Therefore, the minimal and the maximal values of eT A�1e are achieved by taking C

such that eT C�1 is an absolutely dominant vector of feT A�1 jA 2An�2g. Hence,



CONNECTIONS BETWEEN FIBONACCI NUMBERS AND MATRIX THEORY 497

by Lemmas 2.2 and 1.1,

max
A2An

S.A�1/Dmax
˚
2C eT C�1.e�˛�ˇ/ j ˛; ˇ 2 f0; 1gn�2;C 2An�2

	
D 3C

n�3X
iD1

Fi D 2CFn�1;

and similarly,

min
A2An

S.A�1/D 1�

n�3X
iD1

Fi D 2�Fn�1:

It is well known that every natural number is the sum of distinct Fibonacci
numbers. For the proof of (c), we need a slightly stronger observation.

Lemma 2.3. Let M be a natural number, and let n be an integer for which Fn�1 �

M < Fn. Then M can be represented as a sum of distinct Fibonacci elements from
the set fF1;F2; : : : ;Fn�2g.

Proof. For M D 1, the statement is true. Proceeding by induction, assume that it is
true for all integers less than M . Let n be an integer for which Fn�1 �M < Fn.
Since M < Fn, we get that M < Fn�2 C Fn�1, and hence M �Fn�2 < Fn�1.
Therefore, there exists k with n� 1 � k > 0 such that Fk�1 �M �Fn�2 < Fk ,
and hence by the inductive hypothesis, M �Fn�2 can be represented as a sum of
distinct Fibonacci elements from the set fF1;F2; : : : ;Fk�2g. Since n� 1� k, we
have n� 3 � k � 2, and so M can be represented as a sum of distinct Fibonacci
elements from the set fF1;F2; : : : ;Fn�2g. �

We conclude the proof of Theorem 2.1 by proving (c). Let S D 2CT , where
�Fn�1 � T � Fn�1. The cases T D Fn�1 and T D �Fn�1 were proved in
(a) and (b). For T D 0, let A be a triangular Toeplitz matrix with first row
.1 0 1 0 0 : : : 0/. Then S.A�1/D 2. Similarly, it is easy to prove the claim for
any S between 1 and n. For the other integers in Œ2�Fn�1; 2CFn�1� (and also for
1; 2; : : : ; n), let us consider the expression in (10). It is easy to see that in fact by
choosing appropriate ˛ and ˇ (and C such that eT C�1 is an absolutely dominant
vector), eT C�1.e�˛�ˇ/ can achieve any value of the form

˛1C

n�2X
iD2

˛iFi�1;

where ˛i 2 f0; 1g for all 1 � i � n � 2. Note that by Lemma 2.3, there exists
appropriate set f˛ig

n�2
iD1

such that

T D

n�2X
iD2

˛iFi�1 .we may choose ˛1 D 0/:
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Hence, for this choice of C , ˛ and ˇ, we get A such that S D T C 2D eT A�1e.
We obtain a similar result for the case S D 2�T , where 0� T �Fn�1, by looking
at expression (9), and this completes the proof. �

As an analogy to the result on rational numbers of [Huang et al. 2013] mentioned
in the introduction, we now have the following corollary.

Corollary 2.4. A number S is equal to S.A�1/ for a .0; 1/-triangular matrix A if
and only if S is an integer.

Define Gn to be the set of n�n matrices of the form ICB, where B is an n�n

upper triangular nilpotent matrix with entries from the interval Œ0; 1�. Then, using
the fact that for an invertible matrix A, A�1D adj.A/=det.A/, and that for A 2Gn,
det.A/D 1, we have A�1 D adj.A/ for A 2 Gn. Thus, since S.A�1/ is linear in
each one of the entries in such a matrix A, we conclude the following:

Corollary 2.5. max
A2Gn

S.A�1/D 2CFn�1 and min
A2Gn

S.A�1/D 2�Fn�1:

Remark 2.6. For a general n�n invertible .0; 1/-matrix A (which is not necessarily
triangular), the question regarding the minimal or the maximal value that S.A�1/

may obtain is still open. For n D 3; 4; 5; 6, the extremal values are exactly the
same as in the triangular case. However, for n D 7, there exist n � n invertible
.0; 1/-matrices M and N (which are presented below) such that S.M�1/D �7

and S.N�1/D 11, whereas in the triangular case, the minimal and the maximal
values are �6 and 10, respectively.

M D

0BBBBBBBBB@

1 0 1 0 1 0 0

0 1 1 0 1 0 0

0 0 1 1 1 1 1

0 0 0 1 1 0 0

0 0 0 0 1 1 1

0 0 1 0 0 1 0

0 0 1 0 0 0 1

1CCCCCCCCCA
; N D

0BBBBBBBBB@

1 0 1 0 1 1 1

0 1 1 0 1 1 1

0 0 1 1 0 0 1

0 0 0 1 1 1 1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

1 1 0 0 0 0 1

1CCCCCCCCCA
:

For larger values of n, the difference between the general and the triangular case
gets bigger.

3. Extremal matrices

Recall that an invertible triangular n� n .0; 1/-matrix A is extremal if

eT A�1e D 2˙Fn�1:
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The matrices I3 and I4 are maximizing matrices. The matrices0@1 1 1

0 1 0

0 0 1

1A and

0BB@
1 0 1 1

0 1 1 1

0 0 1 0

0 0 0 1

1CCA
are minimizing matrices.

Following the proof of Theorem 2.1, we can construct extremal matrices for
n � 5 that have a beautiful Fibonacci pattern in their inverses. For l D 2; 3,
partition the off-diagonal entries of an upper triangular n� n matrix into n� l sets,
S0;S1; : : : ;Sn�l�1. The set Sn�l�1 consists of the entries in the first two rows of
the last l columns. For i D 1; 2; : : : ; n� l � 2, the set Si consists of the entries
immediately to the left or immediately below the entries in SiC1, and S0 consists of
all the remaining entries which are above the main diagonal (two if l D 2 and four
if l D 3). For example, in the case that nD 9, Figure 1 (left) presents the partition
in the case l D 2, and Figure 1 (right) presents the partition in the case l D 3.

Let A be an invertible .0; 1/-upper triangular matrix, where the entries in Si are
taken modulo 2. It follows from the proof of Theorem 2.1 that A�1 is an n� n

upper triangular matrix where the diagonal entries are 1, the entries in S0 are 0,
and the entries in Si for i � 1 are .�1/iFi . For example, when nD 9, l D 2,

AD

0BBBBBBBBBBBBBBB@

1 0 1 0 1 0 1 0 0

0 1 1 0 1 0 1 0 0

0 0 1 1 0 1 0 1 1

0 0 0 1 1 0 1 0 0

0 0 0 0 1 1 0 1 1

0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCCA
; A�1

D

0BBBBBBBBBBBBBBB@

1 0 �1 1 �2 3 �5 8 8

0 1 �1 1 �2 3 �5 8 8

0 0 1 �1 1 �2 3 �5 �5

0 0 0 1 �1 1 �2 3 3

0 0 0 0 1 �1 1 �2 �2

0 0 0 0 0 1 �1 1 1

0 0 0 0 0 0 1 �1 �1

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCCA
I

and when nD 9, l D 3,

AD

0BBBBBBBBBBBBBBB@

1 0 1 0 1 0 1 1 1

0 1 1 0 1 0 1 1 1

0 0 1 1 0 1 0 0 0

0 0 0 1 1 0 1 1 1

0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCCA
; A�1

D

0BBBBBBBBBBBBBBB@

1 0 �1 1 �2 3 �5 �5 �5

0 1 �1 1 �2 3 �5 �5 �5

0 0 1 �1 1 �2 3 3 3

0 0 0 1 �1 1 �2 �2 �2

0 0 0 0 1 �1 1 1 1

0 0 0 0 0 1 �1 �1 �1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCCA
:
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×

×

×

Figure 1. The partition in the cases l D 2 (left) and l D 3 (right).

In general, if nC l is even, eT A�1e D 2�Fn�1, and hence A is a minimizing
extremal matrix (this also includes the case n D 4). If nC l is odd, eT A�1e D

2CFn�1, and hence A is a maximizing extremal matrix. Using these equalities,
we obtain the following Fibonacci identities:

Corollary 3.1.
Pn�4

iD1.n� i/.�1/iFiC4.�1/n�3Fn�3D .�1/n�1Fn�1� .n�2/.

Corollary 3.2.
Pn�5

iD1.n� i/.�1/iFi C 6.�1/n�4Fn�4 D .�1/nFn�1� .n� 2/.

4. Determinants of .1; 2/-matrices

In [Huang et al. 2013], the following remark, which follows from Cramer’s rule
and the multilinearity of the determinant, was presented:

Remark 4.1. For any nonsingular matrix A,

S.A�1/D
det.ACJ /� det.A/

det.A/
;

where J is the matrix whose entries are all 1.

Recall that it was proved in [Li 1993] that the maximal determinant of an n� n

Hessenberg (0,1)-matrix is Fn. Using our main result and Remark 4.1, we obtain
another family of matrices whose determinants are strongly related to the Fibonacci
sequence.

Let Wn be the family of n� n matrices such that for any A 2Wn,

Aij D

8<:
1 if j > i;

2 if j D i;

1 or 2 if j < i:

From Remark 4.1 and Theorem 2.1, we obtain the following corollary:

Corollary 4.2. Let n� 3. Then S D det.A/ for some A 2Wn if and only if S is an
integer that satisfies 3�Fn�1 � S � 3CFn�1.
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