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Colorability and determinants of T (m, n, r, s)
twisted torus knots for n ≡±1 (mod m)

Matt DeLong, Matthew Russell and Jonathan Schrock
(Communicated by Kenneth S. Berenhaut)

We develop theorems to compute the p-colorability of the families of T (m, n, r, s)
twisted torus knots for n ≡±1 (mod m) by finding their determinants. Instead
of the usual method of reducing crossing matrices to find the determinant, we
describe a new method that is applicable for braid representations with full cycles
and twists.

1. Introduction

In an undergraduate research project, Breiland, Oesper and Taalman [Breiland et al.
2009] used determinants to completely characterize the p-colorability of torus knots.
Conceptually, twisted torus knots, a recent addition to the field first described by
Dean [1996], are derived from torus knots. Thus, studying the determinants and
p-colorability of twisted torus knots is a natural extension of [Breiland et al. 2009].

In our paper, we develop theorems for calculating the determinant of certain fam-
ilies of twisted torus knots T (m, n, r, s), namely, when n ≡±1 (mod m). Table 1
presents a summary of our results. The columns for m, r , and s give the parity of
those parameters (if the column for s is left blank, that means the parity of s has no
effect on the formula for the determinant). The second column relates n to m, and
the final column gives the determinant.

The organization of the paper is as follows. Section 2 provides background
information and previously known results. Section 3 introduces a new method of
finding the determinant of twisted torus knots and proves some preliminary results.
In Section 4 we prove our main results. Finally, in Section 5, we conclude with
suggestions for further research.

2. Background

2A. Torus knots and twisted torus knots. For m, n relatively prime, let T (m, n)
represent the torus knot that circles the meridian of a torus m times and the longitude

MSC2010: primary 57M27; secondary 11C20, 05C15.
Keywords: knot theory, determinants, colorability, twisted torus knots.
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m n r s det(T (m, n, r, s))

even mq ± 1 even |mq ± 1+ rs± (m− r)qrs|
even mq ± 1 odd odd |r ± (mr − r2

+ 1)q|
even mq ± 1 odd even |mq ± 1|

odd 2mq ± 1 even |rs± 1|
odd 2mq ± 1 odd odd r
odd 2mq ± 1 odd even 1

odd (2q + 1)m± 1 even |m∓ (m− r)rs|
odd (2q + 1)m± 1 odd odd |mr − r2

+ 1|
odd (2q + 1)m± 1 odd even m

Table 1. Summary of determinants of T (m, n, r, s) twisted torus
knots with n ≡±1 (mod m).

of a torus n times [Adams 2004]. T (m, n) is the closure of the braid with m strands
and n cycles, where we define a cycle on m strands as the passing of the right-most
strand over the remaining m− 1 strands.

A twisted torus knot can be constructed by beginning with the braid representation
of a T (m, n) torus knot and then performing s full twists on r parallel strands
[Champanerkar et al. 2004]. We denote a twisted torus knot by T (m, n, r, s),
where m is the total number of strands in the braid representation, n is the number of
cycles on the m strands, r is the number of strands to be twisted, and s is the number
of full twists on the r strands, as in Figure 1. Obviously, m and r must be positive
and r ≤m. Both n and s can be positive or negative; hence there are four possibilities
for the signs of the parameters. However, the determinant and p-colorability are the
same for a knot and its mirror image, so we assume that n is positive throughout.

An important equivalence that we will use several times is described in the
following theorem, which was shown by Dean [1996] for s =±1. His arguments
can be extended to any value for s.

Figure 1. The T (5, 4) torus knot changed into a T (5, 4, 3, 1)
twisted torus knot.
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Theorem 2.1. The T (m, n, r, s) twisted torus knot is equivalent to the T (n,m, r, s)
twisted torus knot.

2B. Colorability and determinants. A knot is p-colorable if the strands in a pro-
jection of the knot can be labeled according to the following three conditions
[Livingston 1993]. The first is that each strand must be labeled with an integer
from 0 to p− 1. The second requires that at least two labels are distinct. The third
requires that

x + y− 2z ≡ 0 (mod p) (1)

at each crossing, where z is the label of the overstrand and x and y are the labels of
the two understrands [loc. cit.]. Note that if a knot is colorable for some prime p,
then it is colorable for any multiple of p.

A knot is p-colorable if and only if p divides the determinant of the knot. The
determinant of a knot is the absolute value of the determinant of a minor crossing
matrix constructed by removing a row and a column from the crossing matrix of
a projection of the knot. A crossing matrix is a matrix representing the system of
equations determined by requirement (1) at each crossing of a projection of the
knot [loc. cit.].

The following result of Breiland et al. [2009] completely characterizes the
colorability of torus knots. Recall that T (m, n) and T (n,m) are the same knot, so
only two cases need to be considered.

Theorem 2.2. Let T (m, n) be a torus knot and p a prime:

(i) If m and n are both odd, then T (m, n) is not p-colorable.

(ii) If m is odd and n is even, then T (m, n) is p-colorable if and only if p | m.

Their proof was a direct consequence of the following lemma, which they proved
by evaluating Alexander polynomials at t =−1 [Livingston 1993].

Lemma 2.3. For any torus knot T (m, n),

(i) if m and n are odd, then det(T (m, n))= 1;

(ii) if m is odd and n is even, then det(T (m, n))= m.

3. Methods

3A. Computer experimentation. We wrote a program in Matlab that input the four
parameters of a twisted torus knot and output the determinant of a minor crossing
matrix of the knot, which is equal to the determinant of the knot up to sign. Table 2
is a sample of the program’s output. The boldface lines identify the beginning of a
new “family”, where we fix m, n, and r , and let s vary.



364 MATT DELONG, MATTHEW RUSSELL AND JONATHAN SCHROCK

m n r s det(C) m n r s det(C)

4 3 2 1 1 5 3 3 1 −3
4 3 2 2 −1 5 3 3 2 −1
4 3 2 3 −3 5 3 3 3 −3
4 3 2 4 −5 5 3 3 4 −1
4 3 2 5 −7 5 3 3 5 −3
4 3 3 1 1 5 3 4 1 −1
4 3 3 2 3 5 3 4 2 −1
4 3 3 3 1 5 3 4 3 −1
4 3 3 4 3 5 3 4 4 −1
4 3 3 5 1 5 3 4 5 −1
5 3 2 1 1 5 4 2 1 11
5 3 2 2 3 5 4 2 2 17
5 3 2 3 5 5 4 2 3 23
5 3 2 4 7 5 4 2 4 29
5 3 2 5 9 5 4 2 5 35

Table 2. Experimental data on the determinants of twisted torus
knot minor crossing matrices.

When r is even, the computed determinants of the T (m, n, r, s) twisted torus
knots form an arithmetic progression in s. When r is odd, the computed deter-
minants oscillate between two values as s varies. Two questions naturally arise:
what determines the starting values and differences in the progressions and what
determines the values in the oscillations? In trying to answer these questions, we
were able to make conjectures for several families of twisted torus knots. The next
two subsections develop the techniques that we used to prove our conjectures.

3B. Definitions and notation. We define a coloring vector as a vector

x = (x1, x2, . . . , xm)

that lists the colors of m strands of a twisted torus knot from right to left between
two consecutive cycles (for example, see the top of Figure 2). We also define a
coloring matrix as a matrix that operates on a coloring vector according to the
coloring relation (1). A coloring matrix represents the changes that occur to the
colors on the m strands after a specified number of cycles and/or twists.

We define 0m to be the coloring matrix that represents the change after one cycle
of m strands. Therefore, for a twisted torus knot with m strands and n cycles, the
coloring matrix that represents the changes through the torus part (the part above
the twists) of the knot is 0n

m . The 0m matrix representing one cycle of an arbitrary
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xm xm−1 x3 x2 x1

x1 2x1−xm 2x1−xm−1 2x1−x3 2x1−x2

Figure 2. One cycle of an arbitrary knot.

knot is an m×m matrix of the form

0m =



2 −1 0 · · · 0 0
2 0 −1 · · · 0 0
2 0 0 · · · 0 0
...
...

...
. . .

...
...

2 0 0 · · · 0 −1
1 0 0 · · · 0 0


, (2)

as can be seen from Figure 2 (see also [Breiland et al. 2009]).
We define χr as a coloring matrix that represents the change that occurs after

one full twist of r strands in the lower part of a twisted torus knot projection. By
definition, χr = 0

r
r since there will be r cycles on r strands in one full twist. Later

in this section we will explore special properties of some powers of χr matrices.
Some of these properties have previously been stated by Przytycki [1998], using
n-moves and half-twists.

Throughout, we will use χr to symbolize the r × r matrix that represents the
changes occurring on only the r strands that are being twisted and also to symbolize
the m×m matrix that represents the changes on all m strands in the lower part of
the diagram. In this case, the rightmost m− r strands are left unchanged, so this
matrix will contain the original χr matrix in the lower right, while also having 1s
in the main diagonal from the upper left corner down to the start of the original χr

matrix. We hope that the distinction will be clear from the context.
If A1, A2, . . . , Ai are coloring matrices that represent all of the changes that occur

to the coloring vectors, in order, from the top of a projection of a twisted torus knot
to the bottom, then we can form an overall coloring matrix for the twisted torus knot
A= Ai Ai−1 . . . A1. Then, if x is the coloring vector at the top of the projection, the
coloring vector x′ at the bottom of the projection can be found using Ax = x′ mod p.
Thus, the twisted torus knot can be colored if and only if there exists a nonconstant
vector x such that Ax= x mod p. In our calculations, A is generally equal to χ s

r 0
n
m

for the twisted torus knot T (m, n, r, s). For an example, see Figure 3.

3C. Determinants. The usual method of assessing p-colorability of a knot depends
on the fact that the system of equations obtained from the coloring relation (1)
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04
5

χ1
3

Figure 3. Coloring matrices for the T (5, 4, 3, 1) twisted torus knot.

at each crossing has a nontrivial solution mod p if and only if any minor of the
crossing matrix of the knot has determinant divisible by p [Livingston 1993]. Here
we describe a slightly different method for finding the determinant of a twisted
torus knot that utilizes coloring matrices rather than crossing matrices. This method
has the advantage of dealing with much smaller matrices, which have some very
nice forms and useful properties.

Recall that a knot has a nontrivial p-coloring if and only if there is a nonconstant
vector x such that x = Ax mod p for the coloring matrix A. So, we analyze the
system of equations Bx = 0 mod p, where B = A− I . Our treatment below of the
matrix B mimics the usual treatment of a crossing matrix to find the determinant of
a knot, as explained, for example, in [Livingston 1993].

First note that any constant vector x satisfies Ax = x, and so the system Bx = 0
has nontrivial solutions. However, when considering colorability, we are only
looking for nonconstant solutions. By linearity, any two solutions to Bx = 0 can
be added to yield another solution. Hence, if there were a nonconstant solution to
Bx = 0 mod p, then there must be one with xi = 0 for any choice of i .

Second, since the system Bx = 0 has nontrivial solutions, the rows of B are
linearly dependent. Moreover, as can be seen from the forms of the coloring matrices
given in the sequel, and remembering that B = A− I , the matrix B has the property
that multiplying every other row in the matrix by −1 results in a matrix whose rows
sum to the zero vector. This yields a dependence relation involving all the rows of B,
and so any one of the equations represented by the matrix B is a result of the others.

Taking the two previous observations together, we note that in looking for noncon-
stant solutions, we can delete any row and any column from B, forming a minor that
we denote as B ′. Then, the knot has a nontrivial p-coloring if and only if p divides
the determinant of B ′. Moreover, since the matrix obtained from B by multiplying
every other row by −1 has the property that any row and any column sums to 0, the
mod p rank is independent of which row and column are deleted [Livingston 1993].
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This construction is the same as the “black-box approach” used by Kauffman
and Lopes [2009] to find determinants of rational knots. There they argue that the
absolute value of the determinant of what we are calling B ′ is equal to the classical
determinant of the knot. We also note that the details of Oesper’s calculation [2005]
of determinants of weaving knots show concretely, in a similar setting to ours, how
the classical determinant is obtained from the determinant of a minor of what we
are calling a coloring matrix.

3D. Forms of matrices. Recall that the coloring matrix χk corresponds to a full
twist on k strands. The form of χk is

1 −2 2 · · · 2 −2 2
2 −3 2 · · · 2 −2 2
2 −2 1 · · · 2 −2 2
...

...
...
. . .

...
...
...

2 −2 2 · · · 1 −2 2
2 −2 2 · · · 2 −3 2
2 −2 2 · · · 2 −2 1


(3)

when k is odd, and 

3 −2 2 · · · 2 −2 2 −2
2 −1 2 · · · 2 −2 2 −2
2 −2 3 · · · 2 −2 2 −2
...

...
...
. . .

...
...
...

...

2 −2 2 · · · 3 −2 2 −2
2 −2 2 · · · 2 −1 2 −2
2 −2 2 · · · 2 −2 3 −2
2 −2 2 · · · 2 −2 2 −1


(4)

when k is even, as can be shown by induction.

3E. Properties of coloring matrices. Let χk be a coloring matrix, with k odd.
Then, χk has the form (3). Squaring this immediately yields the following lemma.
Its corollary is similar to a result of Przytycki [1998].

Lemma 3.1. For k odd, we have χ2
k = Ik .

Corollary 3.2. An even twist of an odd number of strands applied to a p-colorable
torus knot or twisted torus knot will result in a new knot that is also p-colorable.

Proof. Since χ2
k = Ik for k odd, it follows that any even twist of an odd number of

strands will have the same colors at the top and bottom. �
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By induction, one can see that the coloring matrix χq
k for k even will have the form

2q + 1 −2q 2q · · · 2q −2q
2q −2q + 1 2q · · · 2q −2q
2q −2q 2q + 1 · · · 2q −2q
...

...
...

. . .
...

...

2q −2q 2q · · · 2q + 1 −2q
2q −2q 2q · · · 2q −2q + 1


. (5)

Given this result, we can immediately prove another lemma. Again, a result
similar to its corollary was also demonstrated by Przytycki [1998].

Lemma 3.3. For k even, we have χq
k ≡ Ik mod q.

Obviously, we could have stated that for k even, χq
k ≡ Ik mod 2q. However, in

this paper, we will only utilize the result as given in the lemma.

Corollary 3.4. If the original torus knot was p-colorable, twisting an even number
of strands s times, where p | s, will result in another p-colorable knot.

Proof. We have χ s
k=χ

pj
k for some j . Then, χ pj

k = I j
k = Ik (mod p). Therefore, when

coloring mod p, the same colors will appear at the top and bottom of the twist. �

In our proofs, we will use a few special powers of the 0m matrices, which we
now calculate. First, we find 0mq+1

m for m even. This is equal to 0mq
m 0m = χ

q
m0m .

This is (5) times (2), which is

2q + 2 −2q − 1 2q −2q · · · −2q 2q −2q
2q + 2 −2q 2q − 1 −2q · · · −2q 2q −2q
2q + 2 −2q 2q −2q − 1 · · · −2q 2q −2q
2q + 2 −2q 2q −2q · · · −2q 2q −2q
...

...
...

...
. . .

...
...

...

2q + 2 −2q 2q −2q · · · −2q 2q − 1 −2q
2q + 2 −2q 2q −2q · · · −2q 2q −2q − 1
2q + 1 −2q 2q −2q · · · −2q 2q −2q


. (6)

Here, we exhibit the form of 0mq−1
m for m even, which is

2q −2q 2q · · · 2q −2q + 1
2q − 1 −2q 2q · · · 2q −2q + 2

2q −2q − 1 2q · · · 2q −2q + 2
...

...
...
. . .

...
...

2q −2q 2q · · · 2q −2q + 2
2q −2q 2q · · · 2q − 1 −2q + 2


. (7)

When we multiply (7) by (2), we obtain (5). Therefore, the matrix (7) has been
shown to be 0mq−1

m since we have 0mq−1
m 0m = 0

mq
m = χ

q
m and 0m is invertible.
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Finally, we calculate 02mq±1
m for m odd. Since χ2q

m = Im ,

02mq+1
m = 02mq

m 0m = Im0m = 0m . (8)
Also, 

0 0 0 · · · 0 1
−1 0 0 · · · 0 2

0 −1 0 · · · 0 2
...

...
...
. . .

...
...

0 0 0 · · · 0 2
0 0 0 · · · −1 2


(9)

times (2) is equal to Im . Thus (9) is equal to 02mq−1
m since 02mq−1

m 0m = 0
2mq
m = Im .

4. Results

We now calculate the determinants of T (m, n, r, s), for some families of the parame-
ters. We find A=χ s

r 0
n
m and then use the process from Section 3C to find the determi-

nant of the knot by finding the determinant of a minor of A−I , which we do by row
reduction. We use the second definition of χr matrices given in Section 3B — that
is, a χr matrix is an m×m matrix that contains m−r 1s along the main diagonal and
the rest of the nonzero entries in the lower right of the matrix. For r even, we have

χ s
r =



1 0 · · · 0 0 0 · · · 0 0
0 1 · · · 0 0 0 · · · 0 0
...
...
. . .

...
...

...
. . .

...
...

0 0 · · · 1 0 0 · · · 0 0
0 0 · · · 0 2s+ 1 −2s · · · 2s −2s
0 0 · · · 0 2s −2s+ 1 · · · 2s −2s
...
...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 2s −2s · · · 2s+ 1 −2s
0 0 · · · 0 2s −2s · · · 2s −2s+ 1


. (10)

Recall from Lemma 3.1 that χ2
r = Ir for r odd. For r, s odd we have

χ s
r =



1 0 · · · 0 0 0 · · · 0 0
0 1 · · · 0 0 0 · · · 0 0
...
...
. . .

...
...

...
. . .

...
...

0 0 · · · 1 0 0 · · · 0 0
0 0 · · · 0 1 −2 · · · −2 2
0 0 · · · 0 2 −3 · · · −2 2
...
...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 2 −2 · · · −3 2
0 0 · · · 0 2 −2 · · · −2 1


. (11)
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4A. T (m, mq + 1, r, s) family with m even. By Theorem 2.1, the T (4, 5, 2, s)
family of twisted torus knots is the same as the T (5, 4, 2, s) family of twisted
torus knots. By Table 2, we see that this family has determinants in an arithmetic
progression with starting value 5 (the determinant of T (4, 5)) and difference 6.
This is a special case of the following theorem, which states that related families of
twisted torus knots will have determinants in arithmetic progressions with starting
values at the determinant of the (untwisted) torus knot and a difference that depends
on m, n, r , and s.

Theorem 4.1. A T (m,mq + 1, r, s) twisted torus knot, with m, r even and m > r ,
has determinant 1= |mq + 1+ rs+ (m− r)qrs|.

Proof. Multiply the χ s
r matrix (10) on the right by 0mq+1

m (6), yielding



2q+2 −2q−1 · · · −2q 2q −2q 2q · · · 2q −2q
2q+2 −2q · · · −2q 2q −2q 2q · · · 2q −2q
...

...
. . .

...
...

...
...

. . .
...

...

2q+2 −2q · · · −2q 2q−1 −2q 2q · · · 2q −2q
2q+2s+2 −2q · · · −2q 2q −2q−2s−1 2q+2s · · · 2q+2s −2q−2s
2q+2s+2 −2q · · · −2q 2q −2q−2s 2q+2s−1 · · · 2q+2s −2q−2s

...
...

. . .
...

...
...

...
. . .

...
...

2q+2s+2 −2q · · · −2q 2q −2q−2s 2q+2s · · · 2q+2s −2q−2s−1
2q+2s+1 −2q · · · −2q 2q −2q−2s 2q+2s · · · 2q+2s −2q−2s


.

Here, Rm−r+1 is the first row with entries that contain an s. We subtract Im and
remove the first row and column:

−2q−1 2q−1 ·· · −2q 2q −2q 2q ·· · 2q −2q
−2q 2q−1 ·· · −2q 2q −2q 2q ·· · 2q −2q
...

...
. . .

...
...

...
...

. . .
...

...

−2q 2q ·· · −2q−1 2q−1 −2q 2q ·· · 2q −2q
−2q 2q ·· · −2q 2q−1 −2q−2s−1 2q+2s ·· · 2q+2s −2q−2s
−2q 2q ·· · −2q 2q −2q−2s−1 2q+2s−1 ·· · 2q+2s −2q−2s
...

...
. . .

...
...

...
...

. . .
...

...

−2q 2q ·· · −2q 2q −2q−2s 2q+2s ·· · 2q+2s−1 −2q−2s−1
−2q 2q ·· · −2q 2q −2q−2s 2q+2s ·· · 2q+2s −2q−2s−1


.

To find the determinant of this matrix, we use elementary row operations to con-
vert the matrix into an upper triangular matrix, whose determinant we can then easily
compute by taking the product of the diagonal entries. Using the row operations
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R1→ R1− R2, R2→ R2− R3, . . . , Rm−2→ Rm−2− Rm−1 yields the matrix

−1 0 1 0 · · · 0 0 0 0 · · · 0 0 0
0 −1 0 1 · · · 0 0 0 0 · · · 0 0 0
0 0 −1 0 · · · 0 0 0 0 · · · 0 0 0
0 0 0 −1 · · · 0 0 0 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
...
. . .

...
...

...

0 0 0 0 · · · −1 0 1+ 2s −2s · · · 2s −2s 2s
0 0 0 0 · · · 0 −1 0 1 · · · 0 0 0
0 0 0 0 · · · 0 0 −1 0 · · · 0 0 0
0 0 0 0 · · · 0 0 0 −1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
...
. . .

...
...

...

0 0 0 0 · · · 0 0 0 0 · · · −1 0 1
0 0 0 0 · · · 0 0 0 0 · · · 0 −1 0
−2q 2q −2q 2q · · · −2q 2q −α α · · · −α α −α− 1



,

where α = 2q + 2s. (Note that the entries ±2s occur in row Rm−r−1.) We now
reduce the last row using

Rm−1→ Rm−1+

(m−r)/2∑
i=1

2iq(R2i−R2i−1),

Rm−1→ Rm−1+

(r−2)/2∑
i=1

(
(m−r)(1+2is)q+2i(q+s)

)
(Rm−r+2i−Rm−r+2i−1).

This leaves us with

−1 0 1 0 · · · 0 0 0 0 · · · 0 0 0
0 −1 0 1 · · · 0 0 0 0 · · · 0 0 0
0 0 −1 0 · · · 0 0 0 0 · · · 0 0 0
0 0 0 −1 · · · 0 0 0 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
...
. . .

...
...

...

0 0 0 0 · · · −1 0 1+ 2s −2s · · · 2s −2s 2s
0 0 0 0 · · · 0 −1 0 1 · · · 0 0 0
0 0 0 0 · · · 0 0 −1 0 · · · 0 0 0
0 0 0 0 · · · 0 0 0 −1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
...
. . .

...
...

...

0 0 0 0 · · · 0 0 0 0 · · · −1 0 1
0 0 0 0 · · · 0 0 0 0 · · · 0 −1 0
0 0 0 0 · · · 0 0 0 0 · · · 0 0 1



,

where

1=−1− 2q − 2s− q(2s)(m− r)−
(
(m− r)(1+ (r − 2)s)q + (r − 2)(q + s)

)
.
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The determinant of this upper triangular matrix is 1 since there are an even number
of −1s along the diagonal. We can rewrite 1 as −1−mq − rs− (m− r)qrs. As
we explained in Section 3C, the determinant of the knot is the absolute value of the
determinant of this matrix, so it follows that the determinant of the knot is equal
to |1+mq + rs+ (m− r)qrs|. �

For these values of m and n but odd r , a different phenomenon results. For
example, the T (5, 4, 3, s) family has determinants that oscillate between 5 (the
determinant of T (5, 4)) and 7. Next we show that this is representative of related
families of twisted torus knots, which have determinants that oscillate between the
determinant of the untwisted knot and another value that depends on m, n, and r .
We first prove the following lemma for s = 1.

Lemma 4.2. A T (m,mq + 1, r, 1) twisted torus knot, with m even and r odd, has
determinant 1= |r + (mr − r2

+ 1)q|.

Proof. Multiply the χ s
r matrix by 0mq+1

m . This is (11) times (6), which equals

2q + 2 −2q − 1 · · · 2q −2q 2q −2q · · · 2q −2q
2q + 2 −2q · · · 2q −2q 2q −2q · · · 2q −2q
...

...
. . .

...
...

...
...

. . .
...

...

2q + 2 −2q · · · 2q −2q − 1 2q −2q · · · 2q −2q
2q −2q · · · 2q −2q 2q − 1 −2q + 2 · · · 2q − 2 −2q + 2
2q −2q · · · 2q −2q 2q − 2 −2q + 3 · · · 2q − 2 −2q + 2
...

...
. . .

...
...

...
...

. . .
...

...

2q −2q · · · 2q −2q 2q − 2 −2q + 2 · · · 2q − 1 −2q + 3
2q −2q · · · 2q −2q 2q − 2 −2q + 2 · · · 2q − 2 −2q + 3

2q + 1 −2q · · · 2q −2q 2q − 2 −2q + 2 · · · 2q − 2 −2q + 2



.

Note the change from row Rm−r to Rm−r+1. Subtract Im and remove the first row
and column:

−2q − 1 2q − 1 · · · 2q −2q 2q −2q · · · 2q −2q
−2q 2q − 1 · · · 2q −2q 2q −2q · · · 2q −2q
...

...
. . .

...
...

...
...

. . .
...

...

−2q 2q · · · 2q − 1 −2q − 1 2q −2q · · · 2q −2q
−2q 2q · · · 2q −2q − 1 2q − 1 −2q + 2 · · · 2q − 2 −2q + 2
−2q 2q · · · 2q −2q 2q − 3 −2q + 3 · · · 2q − 2 −2q + 2
...

...
. . .

...
...

...
...

. . .
...

...

−2q 2q · · · 2q −2q 2q − 2 −2q + 2 · · · 2q − 1 −2q + 2
−2q 2q · · · 2q −2q 2q − 2 −2q + 2 · · · 2q − 3 −2q + 3
−2q 2q · · · 2q −2q 2q − 2 −2q + 2 · · · 2q − 2 −2q + 1



.
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Reducing with R1→ R1− R2, R2→ R2− R3, . . . , Rm−2→ Rm−2− Rm−1 gives

−1 0 1 0 · · · 0 0 0 0 · · · 0 0 0
0 −1 0 1 · · · 0 0 0 0 · · · 0 0 0
0 0 −1 0 · · · 0 0 0 0 · · · 0 0 0
0 0 0 −1 · · · 0 0 0 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · −1 0 1 −2 · · · −2 2 −2
0 0 0 0 · · · 0 −1 2 −1 · · · 0 0 0
0 0 0 0 · · · 0 0 −1 2 · · · 0 0 0
0 0 0 0 · · · 0 0 0 −1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · 0 0 0 0 · · · −1 2 −1
0 0 0 0 · · · 0 0 0 0 · · · 0 −1 2
−2q 2q −2q 2q · · · 2q −2q 2q−2 −2q+2 · · · −2q+2 2q−2 −2q+2



,

where the row containing the ±2s is Rm−r−1. We now reduce the last row using

Rm−1→ Rm−1+

(m−r−1)/2∑
i=1

2iq(R2i − R2i−1),

Rm−1→ Rm−1+

(r−3)/2∑
i=1

((
(2i + 1)(m− r)+ 1

)
q + 2i

)
Rm−r+2i

−

(r−1)/2∑
i=1

((
(2i − 1)(m− r)+ 1

)
q + 2i

)
Rm−r+2i−1.

We now have the upper triangular matrix

−1 0 1 0 · · · 0 0 0 0 · · · 0 0 0
0 −1 0 1 · · · 0 0 0 0 · · · 0 0 0
0 0 −1 0 · · · 0 0 0 0 · · · 0 0 0
0 0 0 −1 · · · 0 0 0 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
...
. . .

...
...

...

0 0 0 0 · · · −1 0 1 −2 · · · −2 2 −2
0 0 0 0 · · · 0 −1 2 −1 · · · 0 0 0
0 0 0 0 · · · 0 0 −1 2 · · · 0 0 0
0 0 0 0 · · · 0 0 0 −1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
...
. . .

...
...

...

0 0 0 0 · · · 0 0 0 0 · · · −1 2 −1
0 0 0 0 · · · 0 0 0 0 · · · 0 −1 2
0 0 0 0 · · · 0 0 0 0 · · · 0 0 1



,
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where

1= 1− 2q − 2(m− r − 1)q

+
(
(r − 2)(m− r)+ 1

)
q + r − 3− 2

((
(r − 2)(m− r)+ 1

)
+ r − 1

)
.

Since there are an even number of −1s on the diagonal, the determinant is 1,
which simplifies to −r − (mr − r2

+ 1)q. The determinant of the knot is then
|r + (mr − r2

+ 1)q|. �

This immediately leads into a theorem:

Theorem 4.3. A T (m,mq+ 1, r, s) twisted torus knot, with m even and r odd, has
determinant 1= |r + (mr − r2

+ 1)q| if s is odd, and determinant 1= |mq + 1|
if s is even.

Proof. If s is odd, χ s
r will equal the one used in the proof of Lemma 4.2, so the

determinant of T (m,mq + 1, r, s) would equal that of T (m,mq + 1, r, 1). If s
is even, χ s

r will be the identity, so the determinant of the knot would simply be
the determinant of the T (m,mq + 1) torus knot, which is mq + 1 by Lemma 2.3,
since m is even and mq + 1 is odd. �

4B. T (m, mq − 1, r, s) family with m even. We now proceed to investigate a
similar family to the one just analyzed. In these proofs, instead of using some power
of 0m that has a diagonal with −1s in it to the upper right of the main diagonal,
as in (6), we utilize different powers of 0m that have the property that there is a
diagonal with −1s in it to the lower left of the main diagonal, as in (7). By glancing
at the values for the T (4, 3, 2, s) family in Table 2, we conjecture that we will have
an arithmetic progression beginning at the determinant of the T (4, 3) torus knot.
We now prove that this is the case.

Theorem 4.4. A T (m,mq − 1, r, s) twisted torus knot, with m, r even, has deter-
minant 1= |mq − 1+ rs− (m− r)qrs|.

Proof. Multiply the χ s
r matrix by 0mq−1

m . This will be (10) times (7), which is

2q −2q · · · 2q −2q 2q −2q · · · 2q −2q+1
2q−1 −2q · · · 2q −2q 2q −2q · · · 2q −2q+2
...

...
. . .

...
...

...
...

. . .
...

...

2q −2q · · · 2q−1 −2q 2q −2q · · · 2q −2q+2
2q −2q · · · 2q −2q−2s−1 2q+2s −2q−2s · · · 2q+2s −2q+2
2q −2q · · · 2q −2q−2s 2q+2s−1 −2q−2s · · · 2q+2s −2q+2
2q −2q · · · 2q −2q−2s 2q+2s −2q−2s−1 · · · 2q+2s −2q+2
...

...
. . .

...
...

...
...

. . .
...

...

2q −2q · · · 2q −2q−2s 2q+2s −2q−2s · · · 2q+2s −2q+2
2q −2q · · · 2q −2q−2s 2q+2s −2q−2s · · · 2q+2s−1 −2q+2



.
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We subtract Im from this. At this point, instead of deleting the first row and
column as we have done previously, we choose to remove the last row and column:

2q−1 −2q · · · 2q −2q 2q · · · −2q 2q
2q−1 −2q−1 · · · 2q −2q 2q · · · −2q 2q
...

...
. . .

...
...

...
. . .

...
...

2q −2q · · · 2q−1 −2q−1 2q · · · −2q 2q
2q −2q · · · 2q −2q−2s−1 2q+2s−1 · · · −2q−2s 2q+2s
2q −2q · · · 2q −2q−2s 2q+2s−1 · · · −2q−2s 2q+2s
...

...
. . .

...
...

...
. . .

...
...

2q −2q · · · 2q −2q−2s 2q+2s · · · −2q−2s−1 2q+2s
2q −2q · · · 2q −2q−2s 2q+2s · · · −2q−2s−1 2q+2s−1


.

The first row with entries containing a term with an s is Rm−r+1. We now reduce
using the row operations

R2→ R2− R3, R3→ R3− R4, . . . , Rm−2→ Rm−2− Rm−1,

Rm−1→ Rm−1− R1, R1→ R1+ Rm−1. (12)

Additionally, we cyclically permute the rows by moving R1 to the bottom, while
shifting all of the other rows up by one. This puts the diagonal of −1s on the
main diagonal using an even number of switches. Thus, the determinant remains
unchanged. The matrix becomes

−1 0 1 · · · 0 0 0 0 · · · 0 0 0
0 −1 0 · · · 0 0 0 0 · · · 0 0 0
...

...
...
. . .

...
...

...
...
. . .

...
...

...

0 0 0 · · · 0 1 0 1 · · · 0 0 0
0 0 0 · · · −1 2s −2s+ 1 2s · · · −2s 2s −2s
0 0 0 · · · 0 −1 0 1 · · · 0 0 0
0 0 0 · · · 0 0 −1 0 · · · 0 0 0
...

...
...
. . .

...
...

...
...
. . .

...
...

...

0 0 0 · · · 0 0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 0 0 · · · −1 0 1
1 0 0 · · · 0 −2s 2s −2s · · · 2s −2s− 1 2s− 1

2q −2q 2q · · · 2q −α α −α · · · α −α− 1 α− 1



,

where Rm−r−1 is the first row with entries ±2s. (As before, α = 2q+ 2s.) We now
reduce Rm−2 with

Rm−2→ Rm−2+

(m−2)/2∑
i=1

R2i−1.
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We then reduce Rm−1 with

Rm−1→ Rm−1+

(m−r−2)/2∑
i=1

2iq(R2i−1− R2i )+ (m− r)q Rm−r−1,

Rm−1→ Rm−1+

r/2∑
i=1

(
(m− r)(2iqs− q)− (2i − 2)q − 2is

)
Rm−r−2+2i ,

Rm−1→ Rm−1−

(r−2)/2∑
i=1

(
(m− r)(2iqs− q)− 2iq − 2is

)
Rm−r−1+2i .

Now we have successfully reduced the matrix into an upper-triangular matrix

−1 0 1 · · · 0 0 0 0 · · · 0 0 0
0 −1 0 · · · 0 0 0 0 · · · 0 0 0
...

...
...
. . .

...
...

...
...
. . .

...
...

...

0 0 0 · · · 0 1 0 1 · · · 0 0 0
0 0 0 · · · −1 2s −2s+ 1 2s · · · −2s 2s −2s
0 0 0 · · · 0 −1 0 1 · · · 0 0 0
0 0 0 · · · 0 0 −1 0 · · · 0 0 0
...

...
...
. . .

...
...

...
...
. . .

...
...

...

0 0 0 · · · 0 0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 0 0 · · · −1 0 1
0 0 0 · · · 0 0 0 0 · · · 0 −1 0
0 0 0 · · · 0 0 0 0 · · · 0 0 1



.

with determinant

1= 2q+2s−1−2s(m− r)q−
(
(m− r)((r −2)qs−q)− (r −2)q− (r −2)s

)
.

As before, there are an even number of −1s on the diagonal, and the row
operations did not affect the determinant. Simplifying 1, the determinant of the
knot is | − 1+mq + rs− (m− r)qrs|. �

To investigate this family when r is odd, we begin with a lemma for the case s=1.

Lemma 4.5. A T (m,mq − 1, r, 1) twisted torus knot, with m even and r odd, has
determinant 1= |r − (mr − r2

+ 1)q|.

Proof. Multiply the χ s
r matrix by 0mq−1

m . This is (11) multiplied by (7), which gives
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2q −2q · · · −2q 2q −2q 2q · · · −2q 2q −2q+1
2q−1 −2q · · · −2q 2q −2q 2q · · · −2q 2q −2q+2
...

...
. . .

...
...

...
...

. . .
...

...
...

2q −2q · · · −2q−1 2q −2q 2q · · · −2q 2q −2q+2
2q −2q · · · −2q 2q−1 −2q+2 2q−2 · · · −2q+2 2q−2 −2q+2
2q −2q · · · −2q 2q−2 −2q+3 2q−2 · · · −2q+2 2q−2 −2q+2
...

...
. . .

...
...

...
...

. . .
...

...
...

2q −2q · · · −2q 2q−2 −2q+2 2q−2 · · · −2q+2 2q−2 −2q+2
2q −2q · · · −2q 2q−2 −2q+2 2q−2 · · · −2q+3 2q−2 −2q+2
2q −2q · · · −2q 2q−2 −2q+2 2q−2 · · · −2q+2 2q−1 −2q+2



.

As in the previous proof, we delete the last row and column after subtracting Im :

2q − 1 −2q · · · −2q 2q −2q 2q · · · −2q 2q
2q − 1 −2q − 1 · · · −2q 2q −2q 2q · · · −2q 2q
...

...
. . .

...
...

...
...

. . .
...

...

2q −2q · · · −2q − 1 2q − 1 −2q 2q · · · −2q 2q
2q −2q · · · −2q 2q − 1 −2q + 1 2q − 2 · · · −2q + 2 2q − 2
2q −2q · · · −2q 2q − 2 −2q + 3 2q − 3 · · · −2q + 2 2q − 2
2q −2q · · · −2q 2q − 2 −2q + 2 2q − 1 · · · −2q + 2 2q − 2
...

...
. . .

...
...

...
...

. . .
...

...

2q −2q · · · −2q 2q − 2 −2q + 2 2q − 2 · · · −2q + 2 2q − 2
2q −2q · · · −2q 2q − 2 −2q + 2 2q − 2 · · · −2q + 1 2q − 2
2q −2q · · · −2q 2q − 2 −2q + 2 2q − 2 · · · −2q + 3 2q − 3



.

We apply the row operations given in (12). Also, R1 is moved to the bottom, and
the other rows are shifted up one, giving

−1 0 1 0 · · · 0 0 0 0 0 · · · 0 0 0 0
0 −1 0 1 · · · 0 0 0 0 0 · · · 0 0 0 0
0 0 −1 0 · · · 0 0 0 0 0 · · · 0 0 0 0
0 0 0 −1 · · · 0 0 0 0 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · −1 0 −1 2 −2 · · · −2 2 −2 2
0 0 0 0 · · · 0 1 −2 1 0 · · · 0 0 0 0
0 0 0 0 · · · 0 0 1 −2 1 · · · 0 0 0 0
0 0 0 0 · · · 0 0 0 1 −2 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 0 0 0 0 · · · 1 −2 1 0
0 0 0 0 · · · 0 0 0 0 0 · · · 0 1 −2 1
−1 0 0 0 · · · 0 −2 2 −2 2 · · · 2 −2 3 −3
2q −2q 2q −2q · · · −2q β −β β −β · · · −β β −β+1 β−1



.
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Here, Rm−r−1 contains the sequence of alternating±2s and β=2q−2. The absolute
value of the determinant is unchanged by these row operations. To reduce Rm−2,
we use

Rm−2→ Rm−2+

(m−2)/2∑
i=1

R2i−1.

In so doing, we find that adding Rm−r−1 to it creates a lot of cancellation. For the
last row, we use

Rm−1→ Rm−1+

(m−r−1)/2∑
i=1

2qi(R2i−1− R2i ),

Rm−1→ Rm−1−

(r−1)/2∑
i=1

((
(2i − 1)(m− r)+ 1

)
q − 2i

)
Rm−r−2+2i ,

Rm−1→ Rm−1−

(r−1)/2∑
i=1

((
(2i + 1)(m− r)− 1

)
q − 2i

)
Rm−r−1+2i .

Our matrix has been transformed into

−1 0 1 0 · · · 0 0 0 0 0 · · · 0 0 0 0
0 −1 0 1 · · · 0 0 0 0 0 · · · 0 0 0 0
0 0 −1 0 · · · 0 0 0 0 0 · · · 0 0 0 0
0 0 0 −1 · · · 0 0 0 0 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · −1 0 −1 2 −2 · · · −2 2 −2 2
0 0 0 0 · · · 0 1 −2 1 0 · · · 0 0 0 0
0 0 0 0 · · · 0 0 1 −2 1 · · · 0 0 0 0
0 0 0 0 · · · 0 0 0 1 −2 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 0 0 0 0 · · · 1 −2 1 0
0 0 0 0 · · · 0 0 0 0 0 · · · 0 1 −2 1
0 0 0 0 · · · 0 0 0 0 0 · · · 0 0 1 −2
0 0 0 0 · · · 0 0 0 0 0 · · · 0 0 0 1



,

for

1= 2q − 3− 2(m− r − 1)q

−
((
(r − 2)(m− r)+ 1

)
q − (r − 1)

)
+ 2

(
(r(m− r)− 1)q − (r − 2)

)
.

There are m− r − 1 entries of −1 on the main diagonal. Since m− r − 1 is even,
the determinant of this matrix is 1, which simplifies to −r + (mr − r2

+ 1)q . The
determinant of the knot is then |r − (mr − r2

+ 1)q|. �
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As in the proof of Theorem 4.3, this lemma leads directly to a corresponding
theorem.

Theorem 4.6. A T (m,mq− 1, r, s) twisted torus knot, with m even and r odd, has
determinant 1= |r − (mr − r2

+ 1)q| if s is odd, and determinant 1= |mq − 1|
if s is even.

4C. T (m, 2mq + 1, r, s) family with m odd. Now we begin our discussion of
twisted torus knots when both m and n are odd. This represents a major change
for two reasons. First, the T (m, n) torus knot that we begin with will no longer be
p-colorable for any p; by Lemma 2.3, it will have a determinant of 1. Additionally,
the powers of the 0m matrices that we use will no longer have qs in them. However,
after examination of Table 2, the trend of having either an oscillating pattern or an
arithmetic progression appears to hold when m and n are both odd (the determi-
nants of the T (5, 3, 4, s) family form an arithmetic progression with difference 0).
Although the details are slightly different, the methods of this section closely follow
those of Section 4A. For space considerations, we suppress the matrices involved
and only record the arithmetic details. We trust that the reader could supply the
matrices if desired.

Theorem 4.7. A T (m, 2mq + 1, r, s) twisted torus knot, with m odd, r even, and
m > r , has determinant 1= |rs+ 1|.

Proof. Multiply the χ s
r matrix by 02mq+1

m . By (8), this will be (10) times (2). As
we did in Section 4A, we will return to our method of subtracting Im and removing
the first row and column. We do not have to reduce any of the first m− r rows, as
there are no entries to the left of the long diagonal in these rows. (The first row
containing 2s and −2s happens to be Rm−r .) Therefore, we use a different process
of row operations, as we only will work with the last r rows, as follows:

Rm−r+1→ Rm−r+1− Rm−r+2,

Rm−r+2→ Rm−r+2− Rm−r+3, . . . Rm−2→ Rm−2− Rm−1. (13)

All that remains is to reduce Rm−1. Our procedure for doing this is

Rm−1→ Rm−1+

(r−2)/2∑
i=1

2si(Rm−r+2i − Rm−r+2i−1).

This converts the matrix into an upper triangular matrix with an odd number
of −1s along the diagonal and −1=−2s−1− (r −2)s as the only other diagonal
entry. The determinant of this matrix is then 1= 1+ rs. The determinant of the
knot is thus |1+ rs|. �
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Similarly, we can prove that when r is odd the determinants will oscillate.
However, they now oscillate between 1 and some other value, as the determinant of
a T (m, 2mq+1) torus knot is 1 by Lemma 2.3, because both m and 2mq+1 are odd.

Lemma 4.8. A T (m, 2mq + 1, r, 1) twisted torus knot, with m, r odd, has determi-
nant 1= r .

Proof. Multiply the χ s
r matrix by 02mq+1

m . By (8), we have (11) multiplied by (2).
We subtract Im and remove the first row and column. Again, we do not have to
reduce the first m−r rows. (The first row with more than two entries is Rm−r .) We
use the row operations given in (13) on the remaining rows.

The last row is the only one preventing an upper-triangular matrix. We remedy
this with

Rm−1→ Rm−1−

(r−3)/2∑
i=1

2i(Rm−r+2i + Rm−r+2i−1)− (r − 1)Rm−2.

This leaves an upper triangular matrix with an odd number of −1s on the
diagonal and −1 in the last diagonal entry, where −1 = 1+ (r − 3)− 2(r − 1).
The determinant of this upper triangular matrix is 1. Fortunately, 1 simplifies to r .
The determinant of the knot is then just r . (Note that r can never be negative, as it
represents the number of strands.) �

Again this lemma leads to a full theorem.

Theorem 4.9. A T (m, 2mq + 1, r, s) twisted torus knot, with m, r odd, has deter-
minant 1= r if s is odd, and determinant 1= 1 if s is even.

4D. T (m, 2mq − 1, r, s) family with m odd. The final family that we will in-
vestigate with our procedure is the T (m, 2mq − 1, r, s) family. In many ways,
these proofs correspond to those presented in Section 4B, which deal with the
T (m,mq − 1, r, s) family, just as the proofs from Section 4C correspond to those
from Section 4A. This is due to the fact that the diagonal with −1s is to the lower
left of the main diagonal, instead of the upper right. As in the previous section we
suppress the matrices to save space.

Theorem 4.10. A T (m, 2mq − 1, r, s) twisted torus knot, with m odd, r even, and
m > r , has determinant 1= |rs− 1|.

Proof. Multiply the χ s
r matrix by 02mq−1

m , which is (10) times (9). As in the proofs
of Theorem 4.4 and Lemma 4.5, we opt to delete the last row and column after
subtracting Im . Here, the first row with entries ±2s is Rm−r+1. In this proof, we
use a different method of turning this matrix into a triangular matrix. Instead of
subtracting each row from the row above it and ending up with an upper triangular
matrix, we choose to subtract each row from the row below it, eventually reaching
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a lower triangular matrix. This avoids any need to cyclically permute the rows. Our
row operations are

Rm−1→ Rm−1− Rm−2,

Rm−2→ Rm−2− Rm−3, . . . Rm−r+2→ Rm−r+2− Rm−r+1. (14)

Because of our different procedure, we must reduce Rm−r+1 (not Rm−1). We use

Rm−r+1→ Rm−r+1+

(r−2)/2∑
i=1

2is(Rm−2i+1− Rm−2i ).

This gives a lower triangular matrix with an odd number of −1s along the
diagonal and −1= 2s−1+ (r −2)s in row Rm−r+1 as the only other entry on the
diagonal. The determinant of this matrix is 1=−1+ rs, and so the determinant
of the knot is | − 1+ rs|. �

Our final proof of this type investigates a case where r is odd. Again, we are
confirmed by Table 2, in which one family satisfying the following conditions is
T (5, 3, 3, s).

Lemma 4.11. A T (m, 2mq − 1, r, 1) twisted torus knot, with m, r odd, and m > r ,
has determinant 1= r .

Proof. Multiply the χ s
r matrix by 02mq−1

m . This will be (11) multiplied by (9). As
in the proof of Theorem 4.10, we subtract Im and remove the last row and column.
We again choose to subtract each row (beginning with Rm−r+1) from the row below
it, with the intention of finding a lower-triangular matrix. Our row operations are
those given in (14).

All that remains is to reduce Rm−r+1, which we do with

Rm−r+1→ Rm−r+1−

(r−1)/2∑
i=1

2i Rm−2i+1−

(r−3)/2∑
i=1

2i Rm−2i .

This leaves a lower triangular matrix with an odd number of −1s along the
diagonal, with the only other entry on the diagonal being−1= 1+(r−3)−2(r−1)
in Rm−r+1. The determinant of this matrix is 1= r . Thus, the determinant of the
knot is r (which is always positive). �

Naturally, this lemma gives a similar theorem.

Theorem 4.12. A T (m, 2mq − 1, r, s) twisted torus knot, with m, r odd, has deter-
minant 1= r if s is odd, and determinant 1= 1 if s is even.
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4E. T (m, (2q+1)m+1, r, s) and T (m, (2q+1)m−1, r, s) families with m odd.
In this section, we use our previous results to prove some important corollaries.

Corollary 4.13. The determinant of a T (m, (2q + 1)m+ 1, r, s) twisted torus knot
is 1= |mr − r2

+ 1| for m, r, s odd, and 1= m for m, r odd and s even.

Proof. First, consider the case of T (m,m+1, r, s). Using Theorem 2.1, we rewrite
this knot as T (m + 1,m, r, s). By Theorem 4.6, we see that its determinant is
1 = |r − ((m + 1)r − r2

+ 1)| = |mr − r2
+ 1| for s odd, and 1 = m for s

even. Therefore, these are the determinants for the T (m,m+ 1, r, s) knots. Since
χ2

m = Im by Lemma 3.1, adding 2qm cycles doesn’t change the determinant, so
det
(
T (m, (2q + 1)m+ 1, r, s)

)
= det

(
T (m+ 1,m, r, s)

)
for any q . �

The following three corollaries similarly follow from Theorems 4.4, 4.3, and 4.1.

Corollary 4.14. The determinant of a T (m, (2q + 1)m+ 1, r, s) twisted torus knot
is 1= |m− (m− r)rs| for m odd and r even.

Corollary 4.15. The determinant of a T (m, (2q + 1)m− 1, r, s) twisted torus knot
is 1= |mr − r2

+ 1| for m, r, s odd, and 1= m for m, r odd and s even.

Corollary 4.16. The determinant of a T (m, (2q + 1)m− 1, r, s) twisted torus knot
is 1= |m+ (m− r)rs| for m odd and r even.

These four corollaries, together with the theorems presented in Sections 4C
and 4D, complete all cases when n ≡ ±1 (mod m) because if n ≡±1 (mod m),
then n ≡±1 (mod 2m) or n ≡±m+1 (mod 2m). The theorems from Sections 4C
and 4D took care of n≡±1 (mod 2m), while the four corollaries here fully covered
the cases n ≡±m+ 1 (mod 2m).

4F. Counting p-colorings. The p-nullity of a knot is the dimension of the mod p
nullspace of a crossing matrix for the knot. A knot with p-nullity n has pn

− p
different p-colorings because there are n strands that can be assigned any of p
different colors, whereas the remaining strands are then determined (subtracting p
discards the trivial “colorings”) [Brownell et al. 2006]. Two colorings of a knot
are fundamentally different if they are not simply permutations of each other. If
two colorings are fundamentally different, then they belong to different p-coloring
classes; otherwise, they are in the same p-coloring class. Breiland, et al. [2009]
showed that if a torus knot is p-colorable, then it has only one nontrivial p-coloring
class. Our methods show a similar result for the twisted torus knots that we analyzed.

Theorem 4.17. If a twisted torus knot T (m, n, r, s), with n ≡ ±1 (mod m), is
p-colorable, it has p2

− p different p-colorings, and hence only one nontrivial
p-coloring class.
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Proof. In each of our proofs, B ′ was converted into a triangular matrix by row
reduction. Note that all of the row operations were valid mod p for any p, and so
the mod p nullspace of the matrix was unchanged. After reduction, all but one of
the entries on the main diagonal were equal to ±1. If the knot being analyzed was
p-colorable — that is, if p |1— then there was only one value on the diagonal of the
reduced matrix that was divisible by p. Thus, in assigning the values of the labels to
the top strands, there were two free variables: one for the deleted column, and one
for the column containing ±1. This implies that the p-nullity of the knot was 2. �

5. Conclusion

While the theorems presented in this paper provide examples of determinants from
each of the possible combinations of the parities of the parameters of twisted torus
knots, they do not completely characterize the determinants of all twisted torus
knots. A natural goal would be a complete characterization. It may be possible to
generalize the methods presented in this paper to all twisted torus knots; however,
the families investigated in this paper were chosen because their matrices allowed
for straightforward row-reduction schemes.

Future research could also investigate the patterns in labelings of twisted torus
knots, two examples of which are shown in Figure 4. Breiland et al. [2009] showed
that all possible p-colorings of a torus knot were equivalent under permutation of

4 3 2 1 0

0 1 2 3 4

4 3 2 1 0

0 1 2 3 4

4 3 2

2 0 1

1 0 2

2 3 4

4 1 0

0 1 4

4 3 2 1 0

4 0 1 0

0 7 0 10

10 9 2 9

9 8 9 5

5 1 2 1

1 8

8 4

4 0 1 0

Figure 4. A 5-coloring of the T (5, 4, 3, 2) twisted torus knot and
an 11-coloring of the T (4, 5, 2, 1) twisted torus knot.
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the labels to a “main coloring,” which arose from labeling the uppermost strands
of their projection with 0, 1, . . . , p− 1, in that order. However, many p-colorable
twisted torus knots cannot be colored in this fashion — for example, the T (4, 5, 2, 1)
twisted torus knot, which has determinant 11 by Theorem 4.1, cannot be 11-colored
this way. Alternatively, the T (5, 4, 3, 2) twisted torus knot, which has determinant 5
by Corollary 4.15, can be 5-colored using the main coloring. It would be interesting
to determine which twisted torus knots can be p-colored using the main coloring.
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Parameter identification and sensitivity analysis
to a thermal diffusivity inverse problem

Brian Leventhal, Xiaojing Fu, Kathleen Fowler and Owen Eslinger

(Communicated by Suzanne Lenhart)

The solution to inverse problems is an application shared by mathematicians, sci-
entists, and engineers. For this work, a set of shallow soil temperatures measured
at eight depths between 0 and 30 cm and sampled every five minutes over 24 hours
is used to determine the diffusivity of the soil. Thermal diffusivity is a modeling
parameter that impacts how heat flows through soil. In particular, it is not known
in advance if the subsurface region is homogeneous or heterogeneous, which
means the thermal diffusivity may or may not depend on depth. To this end, it is
not clear which assumptions may apply to represent the physical system embedded
within the parameter estimation problem. Analytic methods and a simulation
based least-squares approach to approximate the diffusivity are compared to fit
the temperature profiles to different heat flow models. The simulation is based
on a spatially dependent, nonsteady-state discretization to a partial differential
equation. To complete the work, a statistical sensitivity study using analysis
of variance is used to understand how errors that arise in the modeling phase
impact the final model. We show that for the analytic methods, errors in the initial
fitting of the temperature data to sinusoidal boundary conditions can have a strong
impact on the thermal diffusivity values. Our proposed framework shows that this
soil sample is heterogeneous and that modeling depends significantly on data used
as top and bottom boundary conditions. This work offers a protocol to determine
the soil type and model sensitivities using analytic, numerical, and statistical
approaches and is applicable to modifications of the classic heat equation found
across disciplines.

1. Introduction

Inverse problems arise routinely across science and engineering disciplines. Using
a mathematical approach to such parameter estimation problems avoids the tedious
task of trial-and-error to match a mathematical model to experimental data. For this
work, we consider a heat transport model in the shallow subsurface and use both
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analytic and numerical approaches to fit data. Part of the challenge is that the nature
of the subsurface is not known in advance; thus it is not clear which model applies
or whether assumptions made to apply analytic models are reasonable. In applying
numerical approaches, assumptions on the types of boundary conditions can sig-
nificantly impact the results. In the presence of such uncertainty and the possible
addition of experimental error, the identified parameters may give suboptimal fits
or provide values far from truth. This work offers a protocol to determine the soil
type and model sensitivities using analytic, numerical, and statistical approaches
by comparing common approaches to heat flow in the shallow subsurface and
studying how choices made during the modeling phase can impact the results of
the inverse problem.

The propagation of heat in the subsurface can be modeled by the second-order
partial differential equation

@T

@t
DK

@2T

@z2
; (1)

where T .z; t/ is the time-dependent temperature distribution at depth z> 0 for t > 0.
Thermal diffusivity, K cm/min, which describes how easily heat propagates through
the medium, is proportionally related to thermal conductivity such that

K D
Ok

�c
; (2)

where Ok is the thermal conductivity, � is the density and c is the heat capacity.
Although in (1), K is often assumed to be constant in practice, due to the complex
nature of the subsurface, K is usually spatially dependent. We refer to these as
homogeneous and heterogeneous soils respectively. Heat flow in the heterogeneous
case would be described by

@T

@t
D

@

@z

�
K
@T

@z

�
DK

@2T

@z2
C
@K

@z

@T

@z
; (3)

where now K DK.z/. Analytic solutions to various forms of these models exist
[Carslaw and Jaeger 1986; Powers 2006; Narasimhan 2009] and have been studied
for decades. Alternatively, given the spatially distributed thermal conductivity along
with initial and boundary temperature, the temperature distribution over time can
be approximated numerically.

The inverse of this problem is the focus of this study. Mathematical approaches
can be used to help guide practitioners on the nature of the subsurface since it is not
known in advance how much the soil type actually varies. Specifically, subsurface
temperature data monitored at seven depths between 0 and 30 cm and logged over
time were used to determine the thermal diffusivity of the test site. Figure 1 below
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Figure 1. Temperature data.

shows temperature data as a function of time and depth. Analytic methods for
determining K from temperature profiles have been proposed in the literature and
implemented using data taken from the Loess Plateau in China [Gao et al. 2009].
Some of those methods are compared here but are based on the assumption that the
soil is homogeneous. We compare these approaches to a simulation-based approach
using a numerical approximation to the heterogeneous model in (3) and a minimiza-
tion of the least-squares error between the model output and the temperature data.
Since all of these methods include choices made during the modeling phase, we
conduct a sensitivity study to understand how these choices impact the final model.
The sensitivity study is based on a statistical analysis of variance.

We proceed by describing the methods used to determine the thermal diffusivity,
both analytically and numerically, and then presenting those results in Sections 2
and 3. We follow with the sensitivity analysis in Section 4 and point the way
towards future work in Section 5.

2. Analytic approaches

We consider four methods that approximate K values explicitly using temperature
values at different depths. The methods are based on the homogeneous model in (1).

If we consider boundary conditions of the form

T .0; t/D TaCA sin.! t C�/ (4)

and
lim

z!1
T .z; t/D Ta; (5)

an analytic solution to (1) is given by

T .z; t/D TaCAe�z=D sin
�
! t �

z

D
C�

�
; (6)



388 BRIAN LEVENTHAL, XIAOJING FU, KATHLEEN FOWLER AND OWEN ESLINGER

with D D
p

2K=!. Here, (4) states that the surface temperature varies as a sinu-
soidal function whose parameters include the time-average temperature Ta (ıC), am-
plitude A (ıC), radial frequency ! (rad s�1) and phase constant � (rad). The bottom
boundary condition (5) indicates that as depth increases sufficiently, the soil temper-
ature is not affected by the surface temperature and thus maintains a constant value.

Four analytic methods were used to approximate the thermal conductivities at
seven locations. The seven locations are between different depths, i.e., between
0 and 1 cm, between 1 and 5 cm, between 5 and 10 cm, and continuing until
30 cm deep. The methods described in [Gao et al. 2009; Horton et al. 1983] call
for a homogeneous soil thermal conductivity profile. With thermal conductivity
assumed homogeneous, the analytic methods call for only two depths to estimate
the conductivity. To perform the analytic methods, the raw data temperatures need
to be approximated by a sinusoidal curve of the form

T1.z1; t/D T 1CA1 sin.! t C�1/; (7)

T2.z2; t/D T 2CA2 sin.! t C�2/; (8)

where A1;A2 are half of the difference between the daytime maximum and night-
time minimum amplitudes for the soil depths. Furthermore, T 1;T 2 are the arith-
metic averages of the daytime maximum soil temperature and the nighttime mini-
mum soil temperature at depths z1; z2. The initial phases of the soil temperature,
�1 and �2, are obtained using a least-squares fit (as opposed to using a spline
to fit the data) because numerical values for those parameters are needed in the
analytic models to determine the conductivity. The resulting least-squares problem
is nonlinear and a variety of optimization methods would apply. Since a genetic
algorithm [Holland 1973] was being used in the project elsewhere, it was used here
as well. Genetic algorithms require no gradient information for minimization and
are thus attractive choices for an off-the-shelf optimization approach.

Since sinusoidal approximation is only needed at two depths for the analytic
models, the two depths whose sinusoidal curves give the least error compared to
the raw error are used to compute the thermal conductivity. With each producing a
residual of 10�1, the data located one centimeter and five centimeters deep were
used. Tables 1 and 2 show the results of the fit curve for each of the seven days of
data. Table 3 shows the top boundary condition sinusoidal parameters as well.

The four methods considered for this experiment are the amplitude method, the
phase method, the arctangent method and the logarithmic method. Essentially, if
we assume that K is independent of depth (i.e., the media is homogeneous) and
that the boundary temperature is sinusoidal, then the analytic solution of the one
dimensional heat equation can be used to approximate K. The amplitude and phase
methods are directly based on the analytic solution above. The arctangent and
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day A1 ! �1 T 1

1 1.45 �101 6.51 �10�3 3.13 3.98 �101

2 1.54 �101 5.58 �10�3 5.58 3.99 �101

3 1.45 �101 5.46 �10�3 5.46 3.88 �101

4 1.38 �101 5.16 �10�3 5.16 3.73 �101

5 1.58 �101 3.94 �10�3 3.94 3.35 �101

6 1.64 �101 5.49 �10�3 5.49 3.74 �101

7 1.73 �101 3.94 �10�3 2.44 3.28 �101

Table 1. Parameters obtained at a depth of 1 cm.

day A2 ! �2 T 2

1 8.73 �101 5.75 �10�3 3.25 3.75 �101

2 8.65 �101 5.69 �10�3 1.55 3.80 �101

3 8.12 �101 5.11 �10�3 1.67 3.69 �101

4 7.60 �101 5.02 �10�3 1.19 3.62 �101

5 8.37 �101 5.60 �10�3 2.66 3.66 �101

6 9.93 �101 3.87 �10�3 1.97 3.31 �101

7 9.39 �101 4.51 �10�3 2.95 3.47 �101

Table 2. Parameters obtained at a depth of 5 cm.

day amplitude ! phase T

1 1.74 �101 6.81 �10�3 3.00 3.76 �101

2 2.14 �101 5.68 �10�3 2.33 3.82 �101

3 1.96 �101 5.21 �10�3 2.18 3.61 �101

4 1.84 �101 4.85 �10�3 2.81 3.35 �101

5 2.05 �101 4.79 �10�3 2.40 3.34 �101

6 2.28 �101 5.48 �10�3 2.59 3.51 �101

7 2.26 �101 5.27 �10�3 2.92 3.48 �101

Table 3. Parameters obtained for the boundary condition.

logarithmic methods are based on the notion that a Fourier series can reduce errors
introduced by the assumption that a single sinusoidal wave is sufficient to estimate
the surface temperature. We state these approaches here and point the reader to
[Gao et al. 2009; Horton et al. 1983] for more details.

The amplitude method:

K D
!.z1� z2/

2

2 ln.A1=A2/2
: (9)
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The phase method:

K D
!.z1� z2/

2

2.�1��2/2
: (10)

The arctangent method: This method is based on the notion that soil temperature
can be described by a Fourier series,

T D T C

nX
iD1

.ai sin.i! t/C bi cos.i! t//:

With nD 2, K can be estimated with

K D

 
!�z2

2 arctan .T1�T3/.T 0
2
�T 0

4
/�.T2�T4/.T 0

1
�T 0

3
/

.T1�T3/.T 0
1
�T 0

3
/C.T2�T4/.T 0

2
�T 0

4
/

!2

; (11)

where temperatures Tj and T 0j are recorded at 6 hour time intervals and two different
depths z1; z2.

The logarithmic method: Using the same assumptions as the arctangent method,
K can be expressed as

K D

 
0:012�z

ln .T1�T3/2C.T2�T4/2

.T 0
1
�T 0

3
/2C.T 0

2
�T 0

4
/2

!2

: (12)

Table 4 shows the results for each method for the seven days studied. As can
be observed, the amplitude method and logarithmic method estimate the thermal
conductivity on the same order of magnitude over the seven days. The other two
methods, phase and arctangent, estimate the thermal conductivities with significant
variability. They do not hold the order of magnitude constant over the seven days,
thus producing significantly different results from other methods.

day amplitude phase arctangent logarithm

1 1.11 �10�2 2.18 9.43 �10�2 1.45 �10�2

2 9.39 �10�3 6.29 �10�2 1.63 �10�1 3.92 �10�3

3 9.91 �10�3 7.73 �10�2 2.86 �10�1 4.56 �10�3

4 1.02 �10�3 9.62 �10�1 5.19 3.04 �10�3

5 8.43 �10�3 1.98 �10�2 2.75 �10�2 1.21 �10�3

6 9.69 �10�3 5.12 �10�1 2.95 �10�2 2.91 �10�3

7 7.93 �10�3 1.30 �10�1 5.09 �10�2 3.42 �10�3

Table 4. Estimated conductivities (cm/min).
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Figure 2. Estimated conductivities.

The thermal conductivity changes with days shown by Figure 2. As there are
noteworthy differences between each method, the arctangent and phase methods
seem to have the most significant change.

The thermal conductivities found can be used to determine temperature profiles
for each method. As seen in Figure 3, not one method provides an accurate
estimation of the data profile. Large errors in the original sinusoidal fitting or the
inaccuracy of assuming thermal conductivity homogeneity could account for this
difference in estimation. To this end, although attractive for their simplicity, the
analytic methods do not provide an accurate approximation to the data.

The assumption that thermal conductivity is homogeneous throughout the soil
may be inaccurate. Instead of assuming homogeneity from 0 to 30 cm, homogeneity
can be assumed on small subintervals. This assumption is reasonable if the porous
media is layered so that it is homogeneous in x�y directions and constant on layered
intervals in the z direction. These results are shown in Table 5. By displaying a
change in thermal conductivity with depth in Figure 5, results either confirm that
homogeneity was an inaccurate assumption or that errors from the initial fitting are
having an impact on the final values.

depth (cm) amplitude phase arctangent logarithmic

1–5 8.50 �10�3 7.20 �10�2 2.52 �10�1 2.90 �10�3

5–10 1.70 �10�2 3.70 �10�2 2.40 �10�2 1.40 �10�3

10–15 7.70 �10�3 3.17 �10�2 8.73 �10�2 3.20 �10�3

15–20 3.58 �10�2 8.60 �10�1 1.64 �10�2 5.79 �10�4

20–25 6.19 �10�2 6.03 �10�2 8.09 �10�1 3.88 �10�5

25–30 2.05 �10�2 2.88 �10�2 4.90 �10�2 4.26 �10�3

Table 5. Differences in conductivities at each depth on day 7.
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Figure 3. Temperature distributions.

We will show later that small variations in fitting the sinusoidal curve impact
the analytic solutions greatly. Moreover, with regard to the inaccurate assump-
tion of homogeneity, a new approach is taken below. We proceed by analyzing
the simulation-based optimization approach to conduct the experiment with the
assumption that thermal conductivities are heterogeneous.

3. Simulation-based approach

In the first approach, thermal conductivities are calculated using four analytic
methods. However, the results indicate that the assumption of homogeneity may not
be valid. To this end, an optimization framework where the least-squares error (LSE)
between data and a simulated temperature profile facilitates the incorporation of
spatially varying thermal conductivities. For the simulation, finite differences
were used to discretize (3) in space with backward Euler in time. To validate the
simulation tool, results were compared to a problem with a known solution using a
forcing term f .z; t/ on the right hand side and a known function K.z/ to ensure
accurate truncation error. To account for the fact that data would be used in the
subsequent study for K, we use a spline to describe the variation of K in space and
then differentiate it to obtain @K=@z.
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Figure 4. Structure of the optimization scheme.

In this new context, the logged data T obs is an Nt � Nz matrix, where Nt is the
number of time points and Nz is the number of spatial nodes. The least-squares
problem is then

min
K2�

J.K/D

1
2

PN
iD1.
yTi.K/�T obs

i /2

1
2

PN
iD1.T

obs
i /2

; (13)

where � represents reasonable bound constraints on K. The simulated temperature
profile yT .K/ is obtained by numerically solving the heat equation. Since the
temperature at the surface has been recorded from the meteorology station, a
Dirichlet boundary condition can be easily incorporated.

Because evaluation of the objective function in (13) requires output from a
simulation tool, we use sampling methods for the optimization since gradient
information is not available. To proceed, we use the same genetic algorithm that
was used to fit the sinusoidal boundary condition from the above study. The
optimization framework is displayed in Figure 4. At each iteration, the optimizer
will pick a set of six K values based on the bounds � and previous function
evaluations. This vector of K values is then used as input for the numerical solver
for the heat equation that outputs the temperature profile. The simulated profile is
compared to actual data to obtain the error at the current iteration. The optimization
terminates when the error becomes sufficiently small, resulting with the current set
of K values as a potential optimal solution.

With the simulation tool in place, we fit the temperature profile in each layer at
24 hours by optimizing conductivities at 1, 5, 10, 15, 20, 25, and 30 cm. As a first
attempt, we assumed that the conductivity varies linearly between these locations
and was constant from 30 cm to the location of the bottom boundary condition and
between the top of the domain and 1 cm. To this end, since the mean subsurface
temperature is not known, we also include the temperature at the bottom depth
as a decision variable. We used a depth of 70 cm to enforce the bottom boundary
condition and used �z D 0:1 cm and �t D 0:1 minutes. The temperature data used
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depth K (cm/min)

1 cm 3.2809 �10�2

5 cm 3.1440 �10�1

10 cm 2.6486 �10�2

15 cm 3.9509 �10�1

20 cm 1.9201 �10�1

25 cm 9.8476 �10�3

30 cm 2.6704 �10�1

Table 6. Preliminary optimization results, for a temperature of
35:3ıC, LSED 5:9633 �10�5 and ED 0:895ıC.

over space and time is given above in Figure 1. The temperatures range from about
13 to 67ıC in the first 24 hours. Table 6 shows the optimal values obtained for each
depth at the 24th hour. The last two rows show the least-squares error (LSE) and
the maximum temperature difference (E) over each depth.

The results are promising and the temperature fit can be seen in Figure 5. The
maximum error across all depths over time is only 6:2ıC, which is a significantly
lower than the corresponding first day results in Figure 3. These results confirm
that the data likely corresponds to heterogeneous soil. However, in general, this
is not known in advance. Thus, it is important to understand the strengths and
weaknesses of all methods applied here. To this end, the sensitivity study presented
in the next section quantifies how errors in these modeling components impact the
overall quality of the inverse problem solution.

Figure 5. Comparison of simulated temperatures and data at each
sensor location over time and maximum temperature difference.
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4. Sensitivity analysis

Analysis of variance (ANOVA) is a way to determine whether model parameters
have an effect on the model output by comparing the ratio of the variation between
sample means to the variation within each sample. For this study, we consider
how the parameters in both analytic and simulation-based approaches impact the
estimation of K and the model fit. The starting point for the procedure is to sort
each parameter into groups. Analysis is done by considering changes in a response
as the group changes. Specifically, ANOVA is a hypothesis test with null hypothesis
H0D�1D�2D � � � D�k , where k is the number of experimental groups. Each �
represents the mean of the single parameter, often called a factor, that is being
found by the values in each experimental group. When rejecting the null hypothesis,
the alternative hypothesis states that at least one mean is different from another;
however, it does not specify which one. The experimental groups are different
equally spaced intervals for a single variable. The ANOVA examines the source of
variation by finding the sum of squares of deviation from the mean for each of these
groups. Using a statistical F-test, the procedure is able to determine whether or not
at least one mean is deviating from the others. The F-test will produce a p-value;
if this value is below a significance of 0.05 then the null hypothesis is rejected. If
the significance is above 0.05, the null hypothesis is failed to be rejected. For this
work, we seek to understand the sensitivity of parameters for both the analytic and
the numerical approaches to matching the temperature data.

4.1. Sensitivity analysis of analytic methods. Even if a soil sample is homoge-
neous, there could be errors within the initial sinusoidal fitting of the data due to
experimental noise. A sensitivity study can be used to understand how errors in this
fitting will impact the resulting temperature profile, in particular, if we consider a
hypothetical problem with known model parameters. In other words we sampled
variations of the parameters in (7) and (8) and determined how they impacted
the ability to identify the conductivity. Specifically, we varied A1;A2;T 1;T 2; �1

and �2 and compared the calculated K to the known value. Using a Latin hypercube
sampling (LHS) approach to assure a uniform distribution of selections with intervals
surrounding the true values, we considered 1,600 values of each parameter. The
bounds used for the LHS sampling are displayed in Table 7 as well as the true
parameter value. Following the sampling, the parameters were grouped and an
analysis of variance (ANOVA) was performed to show how errors in the initial
least-squares fit impact the thermal conductivities from the four analytic methods.

We consider one response for each of the four analytic methods to determine K.
These are found by taking the difference between the true conductivity and the
conductivity found using the perturbed parameter values. Values for each of the
independent parameters were grouped into eight subsets determined by equal sized
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parameter lower bound upper bound

A1 D 5:5974ıC 3ıC 7ıC
A2 D 2:2885ıC 1ıC 5ıC
T 1 D 20ıC 18ıC 22ıC
T 2 D 20ıC 18ıC 22ıC
�1 D 0:776 �1 1
�2 D�0:1880 �1 1

Table 7. True parameter values and LHS bounds.

ranges within the lower and upper bound of the parameter. ANOVA compares
the variance of the objective function within each group to that same variance
between the groups. If this ratio is sufficiently small, then the objective function is
sensitive to changes in that parameter. This test provides a p-value that establishes
a confidence level for sensitivity.

ANOVA results are easily visualized through main effect plots, one developed
for each parameter analyzed. Large changes in dependent variable values within
each plot show the method is sensitive to changes of that independent parameter.
In other words, a flat line means little sensitivity to variation of the parameter value.
The vertical axis shows the mean value of the response for values of the parameter
of that specific group. A p-value is found to numerically measure the sensitivity,
with a p-value close to zero indicating that the parameter is sensitive. The main
effects results of the analysis of variance for the amplitude, phase, arctangent and
logarithmic methods are shown in Figures 6–9.

As seen, all methods are most sensitive to variations of the amplitude param-
eter. Thus, errors in estimating the amplitude result in large changes in thermal
conductivity results from the four analytic methods. It appears that variations of
the other parameters have an impact but are not nearly as significant as variations
within the amplitude.

4.2. Sensitivity analysis of a heterogeneous system. The simulation-based ap-
proach uses an optimization algorithm to determine a temperature profile. This
technique calls for variation with the bottom boundary condition and seven thermal
conductivities. A similar study using ANOVA is conducted to understand the impact
of each of these parameters on the model fit by considering the LSE as the output.
As with the analytic results, a Latin hypercube sampling is used to sample all
parameters. The bounds for the LHS were Œ20; 45� degrees Celsius for the bottom
temperature and Œ10�4; 10�1� for each thermal conductivity.

Parameters are considered to be sensitive if their corresponding p-value is less
than 0.05; p-values are given in Table 8. ANOVA results are displayed visually
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Figure 6. Amplitude method: both A1;A2 result in p � 0.
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Figure 10. Day 7: conductivities at different depths.

using main effects plots shown in Figure 11. The horizontal axis shows the number
of the group, where the intervals above were split into eight equal subintervals. The
vertical axis is the average least-squares value corresponding to each group.

From these results, we can see that several of the conductivities are sensitive. Re-
lated work analyzes the impact of errors in the boundary and initial data on solution
to the inverse problem [Fu and Leventhal 2011]. Here we find that our solutions are
not sensitive to this boundary condition. Often in practice, ANOVA is done in ad-
vance to understand which model parameters should be included in the optimization
and thereby reduce the size of the design space. In this context, the analysis can
be used to weight those sensors more heavily in a subsequent optimization study.
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parameter p-value

depth 0
bot. temp (ıC) 6.22207 �10�1

K1 3.4870 �10�5

K5 1.4413 �10�1

K10 1.2058 �10�1

K15 2.6220 �10�2

K20 1.3701 �10�7

K25 5.2570 �10�1

K30 0

Table 8. ANOVA results.
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Figure 11. Main effects plots for simulation-based approach.

5. Conclusion

In this work, we have considered an inverse problem to determine the thermal
conductivities for a heat transport model using temperature data in the shallow
subsurface. Since it is not known in advance if the soil is homogeneous or hetero-
geneous, analytic and numerical approaches were used. Furthermore, sensitivity
analyses can be paired with optimization and modeling problems to help understand
how choices made during the solution procedure impact the quality of the results.
These ideas provide a protocol for approaching these types of problems.

In this study, not one of the analytics methods for estimating thermal conductivity
fit the temperature profile within the given degree of desired accuracy. Each
parameter is significant in each method with amplitude being the most significant
parameter. Thus small deviations in the amplitude cause large deviations within the
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resulting thermal conductivity. The amplitude and logarithmic methods display the
general trend of temperature values however still not within the desired error. The
numerical approach gave satisfactory results and a significantly smaller error than
the analytic methods, indicating that this data corresponds to heterogeneous soil.
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In treating HIV infection, strict adherence to drug therapy is crucial in maintaining
a low viral load, but the high dosages required for this often have toxic side effects
which make perfect adherence to antiretroviral therapy (ART) unsustainable.
Moreover, even in the presence of drug therapy, ongoing viral replication can lead
to the emergence of drug-resistant virus variances. We introduce a mathematical
model that incorporates two viral strains, wild-type and drug-resistant, to theo-
retically and numerically investigate HIV pathogenesis during ART. A periodic
model of bang-bang type is employed to estimate the drug efficacies. Furthermore,
we numerically investigate the antiviral response and we characterize successful
drugs or drug combination scenarios for both strains of the virus.

1. Introduction

Over the last few decades, the rapid spread of the human immunodeficiency virus
(HIV) and the death toll of acquired immunodeficiency syndrome (AIDS) have
motivated a great deal of scientific and medical research. Treatment of the HIV
infection has traditionally consisted of antiretroviral therapy (ART), a regimen
of pharmaceutical treatments that often produces unwanted physical side effects
and can become costly over long periods of time. Moreover, strict adherence
to drug therapy is crucial in maintaining a low viral load, but the high dosages
required for this often have toxic side effects which make perfect adherence to ART
unsustainable. This in turn leads to the development of resistant strains [Kepler and
Perelson 1998; Kirschner and Webb 1997; Murray and Perelson 2005; Ribeiro et al.
1998]. Since its discovery in 1984, much research has been done and researchers
have increased their understanding of the virus, and consequently drugs have been
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successful in the treatment but not the cure of the disease. In the last decade,
it has become more and more evident that mathematical models are extremely
useful in understanding of various biological processes. They create a powerful
and inexpensive virtual laboratory where one can test and experiment different
competing hypotheses.

When HIV enters the bloodstream, it primarily targets crucial components of the
immune system [Fauci 1993], specifically, CD4+ T-cells or helper T-cells, whose
function is to assist the response to bodily infections by releasing chemicals that
signal other immune system cells, such as CD8+ (killer) T-cells, to kill infected
cells or infectious particles [Bofill et al. 1992; Cohen and Boyle 2004; Fauci 1993;
McMichael Winter 1996; Wilson et al. 2000; NHS 2008]. HIV is capable of
infecting other immune cells, such as macrophages [Perelson and Nelson 1999],
but the primary targets of infection are the CD4+ T-cells [Koup et al. 1994]. Hence,
they play a central role in existing mathematical models [Adams et al. 2005; Burg
et al. 2009; Huang 2008; Perelson et al. 1993; Perelson and Nelson 1999; Rapin
et al. 2006; Rong et al. 2007a; 2007b; Tarfulea et al. 2011; Tarfulea 2011b; 2011a].
However, the most significant and threatening problem that HIV presents is its
ability to continuously mutate in the body and form resistances to otherwise useful
drugs [Shiri et al. 2005; Smith and Wahl 2005; Wahl and Nowak 2000].

Building upon the model introduced in [Tarfulea 2011b], we include two distinct
viral strains (drug-sensitive and drug-resistant) and time-varying antiretroviral
treatment of bang-bang type. This mathematical model is described by a system
of six differential equations and is used to analyze the efficacy of different drug
combinations in tandem with the evolution of the resistant strain in each case. We
use the Floquet multipliers to investigate the stability properties of the infection-
free steady state. We obtain the expected monotonicity property, namely if the
treatment is periodic of bang-bang type and it can clear the infection, then the
infection is cleared more rapidly if the treatment is more efficient or lasts longer.
The multiple viral strains that this new model incorporates brought forth a much
more useful understanding to the conditions faced by the antiretroviral drugs and
the components of the infected immune system. Furthermore, we investigate the
consequences of different scenarios of antiviral therapy, as well as the influence
of different combinations of the major classes of drugs available for the treatment.
We also study their impact on the evolution of the disease and determine a possible
optimal treatment strategy that will lower the total viral load in the body. Thus, our
model could be used to suggest which drugs or combination of drugs are optimal
for a given patient, as well as to investigate the consequences of changing the
treatment frequency or imperfect adherence. The effect of periodic treatment that
includes pharmacokinetics on a multistrain model and the effect of STIs is an
ongoing investigation.
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variable description

T healthy T-cell concentration
Ts drug-sensitive infected T-cell concentration
Tr drug-resistant infected T-cell concentration
Vs drug-sensitive virus concentration
Vr drug-resistant virus concentration
E concentration of CD8+ T-cells

Table 1. Variables used in the differential equation systems.

2. Formulation of the problem

2.1. The mathematical model for the pretreatment case. We now present the
mathematical model for the dynamics of HIV before treatment (see [Tarfulea
2011b]). Building upon it, we will introduce in Section 2.2 the mathematical model
with time-varying drug efficacies of bang-bang type.

A widely adopted mathematical model of HIV infection consists of a system
of differential equations describing the evolution of the concentrations of healthy
CD4+ T-cells, infected CD4+ T-cells, and free viruses in the body (see [Adams
et al. 2005; Perelson et al. 1993; Perelson and Nelson 1999; Rapin et al. 2006;
Rong et al. 2007a; 2007b; Stafford et al. 2000]).

The course of HIV infection varies widely across the infected population, and
this is at least partially explained by individually specific immunological responses.
The primary effector of the cell-mediated immune response is the CD8+ killer
T-cells (CTLs). The CD8+ T-cell kills infected cells bearing a specific antigen. The
activation of the killer T-cells is largely dependent upon the CD4+ helper T-cells,
which direct the immune response. Thus, incorporation of cellular compartments
representing both the helper and effector T-cells more completely represents the
body’s cellular immune system. In [Tarfulea et al. 2011], the authors consider a
model for HIV dynamics which includes the CTLs’ response.

To model the emergence of drug resistance and a possible treatment method,
a new model is required which accounts for the presence of drug-sensitive and
drug-resistant strains of the virus separately, rather than aggregating them. In this
manner, one could determine whether a certain treatment regimen was producing
an increase in the drug-resistant concentration of the virus over time, even if the
population of the drug-sensitive HIV virus was declining. Treatments which cause
the population of the drug-sensitive virus to decline, but allow the population of
the drug-resistant virus to increase over time are postponing the inevitable, as they
do not provide a long-term benefit to an individual infected with HIV. A model
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incorporating two strains of HIV has been utilized in [Rong et al. 2007a] to model
the effects of antiretroviral therapy (ART) on the appearance of drug-resistant strains
of HIV. In [Tarfulea 2011b], the author considers the following model for HIV
dynamics which includes the CTLs’ response:

dT

dt
D �T �T d � ksVsT � kr Vr T;

dTs

dt
D .1�u/ksT Vs � ıTs �m1ETs;

dVs

dt
DNsıTs � cVs;

dTr

dt
D uksT VsC kr Vr T � ıTr �m2ETr ;

dVr

dt
DNrıTr � cVr ;

dE

dt
D �E C cE.TsCTr /� ıEE;

(1)

together with initial data

T .0/DT0; Ts.0/D0; Vs.0/DV0; Tr .0/D0; Vr .0/D0; E.0/DE0; (2)

where T0; V0; E0>0. The variables used in system (1) are described in Table 1 and
the parameters used and their values are described in Table 2. Here u represents the
rate at which drug-sensitive T-cells mutate to become drug-resistant, and it applies
only when the two strains of virus differ by a single point mutation. HIV replicates
at a very high rate in untreated patients. Thus, there is a realistic chance that drug-
resistant variants exist even before the initiation of therapy [Ribeiro et al. 1998;
Rong et al. 2007a]. Moreover, since the wild-type virus dominates the population
before the initiation of therapy (see [Bonhoeffer et al. 2000; Nowak et al. 1997]),
the mutation from drug-resistant to drug-sensitive is neglected. Also, it is assumed
in this model that c, the clearance rate, and ı, the infected T-cell death rate, are the
same for both strains of virus.

System (1) has three possible positive steady states:

(1) The infection-free steady state:

S0 WD

�
T0 D

�T

d
;Ts0 D 0;Vs0 D 0;Tr0 D 0;Vr0 D 0;E0 D

�E

ıE

�
: (3)

(2) The boundary steady state Sb , when only the drug-resistant strain is present:

Sb WD .Tb;Tsb;Vsb;Trb;Vrb;Eb/; (4)
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where

Tsb D 0; Vsb D 0;

Trb D
c

Nrı

�T � dTb

kr Tb

; Vrb D
�T � dTb

kr Tb

; Eb D
�E

ıE
C

cE

ıE

�T � dTb

kr Tb

;

and Tb is the positive solution of the quadratic equation T 2�AbT �Bb D 0,
where

AbD
c

Nrıkr

�
ıCm2

�E

ıE
�m2d

c

Nrıkr

cE

ıE

�
and BbDm2

�
c

Nrıkr

�2
cE

ıE
�T :

parameter description value reference

�T Recruitment rate of uninfected d �T .0/ 1

cells
d Death rate of uninfected cells 0:01 day �1 1, 2

ks Infection rate of T-cells by the 2:4 � 10�5�l day�1 1, 3, 4

wild-type virus
kr Infection rate of T-cells by the 2:4 � 10�5�l day�1 1, 3, 4

drug-resistant virus
ı Death rate of infected cells 0:3 day�1 5

m1 Immune-induced clearance rate 10�2�l day�1 3

for infected Ts cells
m2 Immune-induced clearance rate 10�2�l day�1 3

for infected Tr cells
Ns Virions produced per infected 5000 1

drug-sensitive cell
Nr Virions produced per infected 5000 1

drug-resistant cell
c Clearance rate of free virus 23 day�1 1

�E Immune effector production 10�3�l day�1 3

(source) rate
cE Stimulation of CTL proliferation 0:3 day�1 5

ıE Death rate of immune effectors 0:1 day�1 3, 5

u Mutation rate from sensitive strain 3 � 10�5 1

to resistant strain

Table 2. Parameter definitions and values used in numerical simu-
lations. Key for references: 1 = [Rong et al. 2007a]; 2 = [Mohri
et al. 1998]; 3 = [Adams et al. 2005]; 4 = [Perelson et al. 1993];
5 = [Bonhoeffer et al. 2000].
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(3) The interior steady state Si , when both the wild-type and the resistant strains
coexist:

Si WD .Ti ;Tsi ;Vsi ;Tri ;Vri ;Ei/; (5)

where

Ti D
�T c

dcC ı.ksNsTsi C kr Nr Tri/
; Vsi D

ıNsTsi

c
;

Vri D
ıNr Tri

c
; E D

�E C cE.Tsi CTri/

ıE
;

and Tsi and Tri are the solutions of the system8̂̂̂<̂
ˆ̂:

.1�u/ksNsı�T

dcC ı.ksNsTsC kr Nr Tr /
� ı�

m1.�E C cE.TsCTr //

ıE
D 0;

ı�T .uksNsTsC kr Nr Tr /

dcC ı.ksNsTsC kr Nr Tr /
� ıTr �

m2.�E C cE.TsCTr //Tr

ıE
D 0:

(6)

In the special case that there is no mutation, i.e., uD 0, the interior steady state Si

reduces to another boundary steady state Sw, when only the wild-type strain is
present:

Sw WD .Tw;Tsw;Vsw;Trw;Vrw;Ew/; (7)

where

Trw D 0; Vrw D 0;

Tsw D
c

Nsı

�T � dTw

ksTw
; Vsw D

�T � dTw

ksTw
; Ew D

�E

ıE
C

cE

ıE

�T � dTw

ksTw
;

and Tw is the positive solution of the quadratic equation T 2�AwbT �Bw D 0,
where

AwD
c

Nsıks

�
ıCm1

�E

ıE
�m1d

c

Nsıks

cE

ıE

�
and BwDm1

�
c

Nsıks

�2
cE

ıE
�T :

The other steady states S0 and Sb are the same.
Let

Rs WD
Nsıks�T

cd
�
ıCm1

�E

ıE

� and Rr WD
Nrıkr�T

cd
�
ıCm2

�E

ıE

� (8)

denote the basic reproductive ratios of the wild-type strain and the drug-resistant
strain, respectively, and let � D .ksNs/=.kr Nr /. In [Tarfulea 2011b], it was shown
that the infection-free steady state S0 is locally asymptotically stable if Rr < 1 and
Rs < 1=.1�u/, and it is unstable if Rr >1 or Rs>1=.1�u/. In the case that uD0

in model (1) (i.e., there is no mutation), the infection-free steady state S0 is locally
asymptotically stable if Rr < 1 and Rs < 1, and it is unstable if Rr > 1 or Rs > 1.



A MATHEMATICAL MODEL FOR THE EMERGENCE OF HIV DRUG RESISTANCE 407

2.2. Model with antiretroviral therapy. There are two major classes of antiretro-
viral drugs which are utilized in HIV treatment: the reverse transcriptase inhibitors
(RTI) and the protease inhibitors (PI). Combinations of these are used in a regimen
known as highly active antiretroviral therapy (HAART) [Cohen and Boyle 2004;
Cohen 2005a; 2005b; El-Sadr et al. 2006; Nowak et al. 1997; Sharomi and Gumel
2008] designed to limit the virus’ ability to mutate and develop drug-resistant
strains. Nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside
reverse transcriptase inhibitors (NNRTIs) inhibit reverse transcription enzymes.
Entry inhibitors prevent the virus from attaching to the surface of the lymphocytes.
This class of drugs in our model would have an impact on reducing ks and kr , the
infection rates for the wild-type and the drug-resistant viruses. Protease inhibitors
inhibit the protein enzymes that cut viral proteins to the correct size. PIs go to work
after the process of reverse transcription by inhibiting the activity of protease, an
enzyme needed by the virus for the production of new virions in infected lympho-
cytes [Casiday and Frey 2001], and this would impact Ns and Nr , the number of
virions produced per infected drug-sensitive and drug-resistant cell, respectively.

We study the antiretroviral drug therapy in this system by introducing drug-
efficacy parameters, which are extensively used in numerous models, such as
[Adams et al. 2005; Perelson and Nelson 1999; Rong et al. 2007a; 2007b]. We
consider "s

RT
and "r

RT
to represent the efficacies of RTIs and "s

PI
and "r

PI
to be

the efficacies of PIs, for drug-sensitive and drug-resistant strains. These drugs are
incorporated into model (1) to obtain the following system (the initial condition
used is the values for the infected steady state in the no-treatment case given by (5)
and the parameter values used are from Table 2):

dT

dt
D �T �T d � ks.1� "

s
RT /VsT � kr .1� "

r
RT /Vr T;

dTs

dt
D .1�u/ks.1� "

s
RT /T Vs � ıTs �m1ETs;

dVs

dt
DNs.1� "

s
PI /ıTs � cVs;

dTr

dt
D uks.1� "

s
RT /T VsC kr .1� "

r
RT /Vr T � ıTr �m2ETr ;

dVr

dt
DNr .1� "

r
PI /ıTr � cVr ;

dE

dt
D �E C cE.TsCTr /� ıEE:

(9)

The case of constant drug efficacies has been addressed in several models (see
[Adams et al. 2005; Perelson and Nelson 1999; Rong et al. 2007a; 2007b; Tarfulea
et al. 2011; Tarfulea 2011b]). In this case, "s

RT
, "s

PI
, "r

RT
, and "r

PI
lie in Œ0; 1�. In
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the case that all are zero, i.e., no treatment, we obtain system (1); if all are 1, then we
obtain a complete cure of the disease since dVs=dt < 0 and dVr=dt < 0. Moreover,
we have that "s

RT
>"r

RT
and "s

PI
>"r

PI
since the wild-type virus is more susceptible

to drugs. Therefore we can consider that "r
RT
D ˛"s

RT
or that "r

PI
D ˛"s

PI
, where

0<˛<1 and ˛ represents the HIV mutants’ level of resistance; as ˛ decreases, there
is more resistance to the used drug for the drug-resistant strains. However, in reality,
the drug efficacies are not constant in time; thus the main purpose of this paper is to
investigate the effect of including periodic antiretroviral therapy of bang-bang type.

3. Time-varying drug efficiency

In this section, we include time-varying drug efficacy functions to model various
treatment regimens. Thereafter, we consider the model (9) where "s

RT
.t/, "r

RT
.t/,

"s
PI
.t/, and "r

PI
.t/ are functions of time with range the interval Œ0; 1� and they

represent the time-varying drug efficacies of the RTIs and PIs for drug-sensitive
and drug-resistant strains. When "s

RT
.t/, "r

RT
.t/ or "s

PI
.t/, "r

PI
.t/ are close to

zero, the drug has almost no effect, while if they are near 1, the viral replication
is almost completely inhibited. The shapes of these functions are determined by
the pharmacokinetics that describe what happens to a drug after the moment of
intake and before starting to be active at the infection site [De Leenheer 2009].
It is characterized by a fast rise to the peak value immediately after the drug
intake, followed by a slower decay. Thus, we consider that each of the drug
efficacies considered, "s

RT
.t/, "r

RT
.t/, "s

PI
.t/, and "r

PI
.t/, is periodic, that is

"s
RT
.t/D "s

RT
.tC � s

RT
/ and "s

PI
.t/D "s

PI
.tC � s

PI
/ for all t , where � s

RT
; � s

PI
> 0

are the principal periods for the RTIs and PIs for the sensitive strain. We have
similar relations for the efficiency of the drug-resistant strain. For example, the
period is 1 if medication is taken daily or 0:5 for a twice a day treatment schedule.
Moreover, we assume the efficiency functions to be of the bang-bang type, i.e., at
any time during treatment, the drug is either active or inactive. It is clear that is just
an approximation of the real shape of ".t/ determined by the pharmacokinetics, but
some key properties are to be revealed from this case. These functions are given by

"s
RT .t/D

�
es

RT
; for t 2 Œ0;ps

RT
�;

0; for t 2 .ps
RT
; � s

RT
/;

"s
PI .t/D

�
es

PI
; for t 2 Œ0;ps

PI
�;

0; for t 2 .ps
PI
; � s

PI
/;

(10)

with a similar behavior for "r
RT

and "r
PI

. An example of such functions is illustrated
in Figure 1. Here ps

RT
2 .0; � s

RT
/ is the time duration when the RT drug is active

with efficacy es
RT
2 Œ0; 1�, and ps

PI
and es

PI
are defined similarly. The drug is

assumed to be totally inefficient during the remaining part of the corresponding
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Figure 1. An example of periodic drug efficacies functions of the
bang-bang type, "RT .t/ (solid line) and "PI .t/ (dotted line). Here
RTI drug has the period "RT D 1 (i.e., 24 h), is active for 10 h
(i.e., pRT D 0:42) with efficacy eRT D 0:4; PI drug has the period
"PI D 0:5 (i.e., 12 h), is active for 4 h (i.e., pPI D 0:17) with
efficacy ePI D 0:6.

period. The same relations hold for drug-resistant drug efficacies. Furthermore, we
have that "s

RT
>"r

RT
and "s

PI
>"r

PI
since the wild-type virus is more susceptible to

drugs. Therefore, we can consider that "r
RT
D ˛1"

s
RT

or that "r
PI
D ˛2"

s
PI

, where
0< ˛1; ˛2 < 1 and ˛1, ˛2 represent the HIV mutants’ level of resistance; as ˛1 or
˛2 decreases, there is more resistance to the used drug for the drug-resistant strains.

In order to compare our results with results from related models using constant
efficacies, we define the average drug efficacy for each type of drug used, given by

N"s
RT WD

1

� s
RT

Z �s
RT

0

"s
RT .t/ dt and N"s

PI WD
1

� s
PI

Z �s
PI

0

"s
PI .t/ dt; (11)

and thus,

N"s
RT D

es
RT

ps
RT

� s
RT

and N"s
PI D

es
PI

ps
PI

� s
PI

;

for the sensitive strain, and

N"r
RT WD

1

�r
RT

Z �r
RT

0

"r
RT .t/ dt and N"r

PI WD
1

�r
PI

Z �r
PI

0

; "r
PI .t/ dt; (12)

and thus,

N"r
RT D

er
RT

pr
RT

�r
RT

and N"r
PI D

er
PI

pr
PI

�r
PI

;

for the resistant strain. Moreover, we introduce the overall treatment effects
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"s
D 1� .1� N"s

RT /.1� N"
s
PI / and "r

D 1� .1� N"r
RT /.1� N"

r
PI / (13)

for the wild-type and mutant strains, respectively.
There are two parameters which can vary in the efficacies ".t/ (for both RTIs

and PIs), namely the efficacy of the drug e and the time duration p. In the remain-
ing part of this section, we investigate their effect on the Floquet multipliers of
systems (15) and (16).

We begin by investigating the effect of only one drug in the system at a time. Let
us assume first that the efficiencies "s

RT
.t/ and "r

RT
.t/ are periodic (as described

above) and "s
PI
.t/ D 0 and "r

PI
.t/ D 0, i.e., only RTIs are administered in the

system. Notice that the infection-free steady state

S0 D

�
T0 D

�T

d
;Ts0 D 0;Vs0 D 0;Tr0 D 0;Vr0 D 0;E0 D

�E

ıE

�
is still an equilibrium solution of the model (9), regardless the inclusion of the drug
efficiency. Moreover, in our investigation we use only this steady state since its
stability implies that the treatment can clear the infection. Thus, we linearize the
system (9) about S0 and obtain the linear system

dx

dt
DA.t/x; (14)

where

A.t/D

0BBBBBBB@

�d 0 �as
RT
.t/ 0 �ar

RT
.t/ 0

0 �ı�m1E0 .1�u/as
RT
.t/ 0 0 0

0 Nsı �c 0 0 0

0 0 uas
RT
.t/ �ı�m2E0 ar

RT
.t/ 0

0 0 0 Nrı �c 0

0 cE 0 cE 0 �ıE

1CCCCCCCA
;

with as
RT
.t/Dks.1�"

s
RT
.t//T0 and ar

RT
.t/Dkr .1�"

r
RT
.t//T0. Here x is the six-

dimensional vector function whose components are the perturbations corresponding
to the main variables T , Ts , Vs , Tr , Vr , and E, respectively. The local stability
properties of S0 for system (9) are determined by the Floquet multipliers of (14)
(see [De Leenheer and Smith 2003]) which, given the block-triangular structure
of A.t/, are e�d� , �2, �3, �4, �5, and e�ı

E
� ; where �2 and �3 are the Floquet

multipliers of the planar � -periodic system�
Px2

Px3

�
D

�
�ı�m1E0 .1�u/ks.1� "

s
RT
.t//T0

Nsı �c

��
x2

x3

�
; (15)
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and �4 and �5 are the Floquet multipliers of the planar � -periodic system�
Px4

Px5

�
D

�
�ı�m2E0 .1�u/kr .1� "

r
RT
.t//T0

Nrı �c

��
x4

x5

�
: (16)

The infection-free steady state S0 is locally asymptotically stable for system (9) if
the Floquet multipliers of system (14) are contained in the unit disk of the complex
plane, which is satisfied if j�2j; j�3j; j�4j; j�5j< 1. Unfortunately it is well known
that for general functions ".t/ this condition is difficult to verify. If we consider the
drug efficacies "s

RT
.t/ and "r

RT
.t/ of the bang-bang form given by (10), we get that

the Floquet multipliers �2 and �3 of system (15) are the eigenvalues of the matrix

ˆ.es
RT ;p

s
RT / WD exp

�
.� s

RT �ps
RT /B.0/

�
exp

�
ps

RT B.es
RT /

�
; (17)

where the matrix function B. � / is defined by

B.es
RT / WD

�
�ı�m1E0 .1�u/ks.1� es

RT
/T0

Nsı �c

�
; (18)

for any value of es
RT

. Using the approach in [De Leenheer and Smith 2003], we
obtain that the Floquet multipliers are contained in the interior of the unit disk
of the complex plane if and only if the spectral radius �.ˆ.es

RT
;ps

RT
// of the

matrix ˆ.es
RT
;ps

RT
/ is less than 1. Furthermore, by applying Proposition 2 in

[De Leenheer and Smith 2003] to our system, we get the expected monotonicity
properties: the spectral radius is decreasing in each of its arguments. That is, if the
treatment is periodic of the bang-bang type and it can eradicate the virus, then the
infection is cleared more rapidly when the treatment is more effective or it lasts
longer. These effects are confirmed by the results obtained from the numerical
investigations described in the second part of this section.

We obtain a similar result if we consider the effect of only PIs, in which case

B.es
PI / WD

�
�ı�m1E0 .1�u/ksT0

Ns.1� es
PI
/ı �c

�
;

or if we consider a cocktail of drugs where both inhibitors are present, in which case

B.es
RT ; e

s
PI /D

�
�ı�m1E0 .1�u/ks.1� es

RT
/T0

Ns.1� es
PI
/ı �c

�
:

3.1. Numerical results. In this section, we analyze our results from the numerical
investigations performed. We created MATLAB codes in order to solve the system
numerically which allowed us to test and validate the mathematical mode and to
explore various scenarios. We used ode45 and ode15s, two MATLAB functions
for the numerical solutions for our systems of differential equations (ode45 is based
on an explicit Runge–Kutta (4,5) formula, the Dormand–Prince pair, a one-step
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solver that needs only the solution at the immediately preceding time point, whereas
ode15s is a variable order solver based on the backward differentiation formulas,
Gear’s method, a multistep solver for stiff problems).

Our focus is placed on the following areas of interest: quantity of viral load
and uninfected cell count for individual drug intake where average drug efficacies
(N"s

RT
; N"s

PI
) are fixed and the time duration when the drug is active is varied, quantity

of viral load and uninfected cell count for both classes of drugs taken in conjunction
where drug efficacies are fixed and the time duration when the drug is active is
varied, the effect on viral load and uninfected cell count for both drugs taken in
conjunction where the ratio of their corresponding efficacies are varied over the
same period, the effect on viral load and uninfected cell concentration while strictly
varying the total efficacy of either drug, and the effect on viral load when the level
of resistances (˛1; ˛2) for the resistant-type viruses are varied.

We first consider a treatment scenario with only the reverse transcriptase in-
hibitor (RTI) drug where we fix the average efficacy, N"s

RT
and vary the step-

function parameters, es
RT

and ps
RT

. Note that "s D 1 � .1 � N"s
RT
/.1 � N"s

PI
/,

as defined by (13) (the same relation holds for "r ). We choose "s D 0:51 and
since we are only considering the RTI drug, we choose N"s

PI
D 0:00 and there-

fore N"s
RT
D 0:51. We also note that in the periodic step-function, we have

N"s
RT
D .es

RT
ps

RT
/=� s

RT
. We therefore pick the convenient ordered pair values for

.es
RT
;ps

RT
/ 2 f.0:51; 1:00/; .0:60; 0:85/; .0:85; 0:60/; .1:00; 0:51/g. As intuition

would lead us to expect, we see that the total viral load is lowest at the time when
the drug is active is the largest (i.e., the case for which .es

RT
;ps

RT
/D .0:51; 1:00/).

However, we also see the result in which the uninfected cell concentration has an
inverse relationship to the viral load, due to the resistant strain virus. The wild-type
viral load behaves similarly to the uninfected CD4+ T-cells. More specifically, the
uninfected cell concentration peaks the highest and also converges to the highest
steady state when the period over which the drug is released is the shortest (i.e., the
case for which .es

RT
;ps

RT
/D .1:00; 0:51/) (see Figure 2). This is a result similar

to the case when constant efficiencies "RT ; "PI .t/ are used (see [Rong et al. 2007a;
Tarfulea 2011b]). An analogous conclusion is obtained when investigating the
effects on viral load and uninfected cell concentration when considering a treatment
such that N"s

RT
D 0:00 and N"s

PI
D 0:51, in other words, a treatment using only

protease inhibitors (PIs) and varying the step-function parameters as done for RTIs.
In all the above mentioned cases, we consider ˛1 D ˛2 D 0:2.

We now consider a treatment scenario in which RTIs and PIs are used in conjunc-
tion. Our first investigation begins with setting the efficacies of both drugs to be
equal (i.e., "s

RT
D "s

PI
). Therefore, we again choose "sD0:51 (with ˛1D˛2D0:2),

and therefore it follows from "s D 1� .1� N"s
RT
/.1� N"s

PI
/ that N"s

RT
D N"s

PI
D 0:30.

Thus, the equivalence of the ordered pairs .es
RT
;ps

RT
/ and .es

PI
;ps

PI
/ follows. We
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Figure 2. Simulation over the first 350 days of infection with
N"s
RT
D 0:51 and N"s

PI
D 0:00; thus "s D 0:51 (see text for details).

therefore choose the convenient ordered pair values for .es
RT
;ps

RT
/D .es

PI
;ps

PI
/2

f.0:3; 1:0/; .0:5; 0:6/; .0:8; 0:375/, .1:0; 0:3/g. This simulation yields results which
are opposed that of the results when the two drugs were used individually and are
presented in Figure 3 for the uninfected T-cell and resistant strain virus concentra-
tions. The lowest viral peak with a convergence to the lowest steady state came from
the highest drug efficacy and shortest time release period (i.e., es

RT
D es

PI
D 1:0

and ps
RT
D ps

PI
D 0:3); that is, it is better if the drug is effective longer than if it
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Figure 3. Simulation over the first 350 days of drug treatment
with "s D 0:51 and N"s

RT
D N"s

PI
D 0:3.
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Figure 4. Simulation over the first 750 days of drug treatment,
varying the HIV mutants’ level of resistance. For all but black
dotted line, N"s

RT
D N"s

PI
D 0:71, and for the black dotted line,

N"s
RT
D N"s

PI
D 0:81

has a higher peak. However, as in the case of the individual drug treatment cases,
the uninfected cell concentration had inverse results to the resistant strain viral
concentration and behaves similarly to the wild-type viral concentration.

Our next analysis considers the effects on the viral load and uninfected cell
concentrations while varying the efficacies for both drugs. We continue to consider a
fixed overall treatment effect where "sD0:51. We then examine the average efficacy
values .N"s

RT
; N"s

PI
/ 2 f.0:51; 0:0/; .0:41; 0:17/; .0:3; 0:3/, .0:17; 0:41/g. Here again

˛1D ˛2D 0:2. We considered the results of .N"s
RT

, N"s
PI
/D .0:51; 0:0/ in a previous

section and used these values again for comparison. It is not surprising to see that
this is, in fact, the least efficient scenario since the others involve a drug cocktail
as opposed to this one-drug treatment. It is noted that the best result, having
the lowest viral peak and convergent steady state with the highest uninfected cell
concentration, comes from a drug cocktail in which the drug efficacy ratio (RTI:PI)
is 1:4. Moreover, as we would expect, administering any cocktail of drugs with any
chosen efficacies (without keeping a constant overall efficacy) gives better results
than the individual classes of drugs alone.

Recall that we use resistance rates, ˛1 and ˛2, such that "r
RT
D ˛1"

s
RT

and
"r

PI
D ˛2"

s
PI

, with ˛1; ˛2 2 .0; 1/. We consider the effects on viral load for
varying levels of resistance. We let ˛1; ˛2 2 f0:25; 0:5; 0:75; 1:0g. Note that when
˛1D ˛2D 1:0, the efficacy for the drugs against the mutant virus is equal to that of
the drug-sensitive-type virus. We see the intuitive results that demonstrate that when
˛1; ˛2 get closer to 1, the total viral load for the resistant-type, the mutant virus
decreases. We next consider fixing one of the resistant rates (i.e., the resistant rate
for one of the drugs) and vary the other. We observe the total viral load in the case
where we fix ˛2 D 0:25 and vary ˛1 2 f0:25; 0:5; 0:75; 1:0g. It is noted that, again,
we see the lowest viral load is obtained when ˛1 D 1:0, and as ˛1 becomes closer
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Figure 5. Uninfected T-cell concentration T .t/ under suboptimal treatment.

to 1, the viral load of the resistant-type virus decreases. An analogous observation
is made for fixing ˛1 and varying ˛2. In Figure 4, we consider the efficacies for the
two classes of drugs to be N"s

RT
D N"s

PI
D 0:71, which guarantees that the wild-type

virus is suppressed. We let ps
RT
D ps

PI
D 0:71 and we see that for values for ˛1

and ˛2 lower than 0:3, the drug-resistant strain persists. Moreover, if we increase
the drug efficacies to 0:81, for ˛1 D ˛2 D 0:2, the drug-resistant strain still persists.

One of the critical obstacles to successful HIV drug therapy is the imperfect
adherence to a prescribed drug regimen due to its complexity or severe side effects.
Receiving treatment for HIV is expensive and people can be careless; therefore we
want to look into the effects of missing doses. We investigate numerous efficacy
combinations and RTI/PI individual and/or combined treatments. The results unan-
imously indicate that skipping a dose of either drug at any combination has certain
undesirable effects which included a weaker drop in viral load and lower overall un-
infected cell concentration. In Figure 5, we present the dynamics of uninfected T-cell
concentration when every other dose of RTIs, PIs, or both are missed and compare
with the dynamics of a regular treatment. In Figure 5(a) we consider N"s

RT
D N"s

PI
D

0:51, ps
RT
D ps

PI
D 0:51, and ˛1 D ˛2 D 0:2, whereas in Figure 5(b) we consider

N"s
RT
D N"s

PI
D 0:71, ps

RT
D ps

PI
D 0:71, and ˛1D ˛2D 0:3. In the latter case, the

viral load is eradicated under perfect adherence, but the uninfected T-cell concentra-
tion decreases and both strains of virus persist even when only one drug is missed.

4. Conclusions

We have developed and analyzed a mathematical model that accounts for multiple
viral strains during the course of antiretroviral therapy with periodic antiretroviral
therapy of bang-bang type. There were many different circumstances that we
investigated thoroughly. The first area of interest was determining how the system
behaves when only the presence of one antiretroviral class of drugs is used. This
was done for each of the two classes of interest, namely protease inhibitors and
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reverse transcriptase inhibitors. It was noted, based on the periodic step-function
used for our analysis, that, upon taking only one of the two available drugs, when
the efficacy of either drug was increased and the period over which the drug would
be active, the total viral load decreased. There was an identical scenario for either
drug taken alone.

Certainly, the optimal scenario for drug treatment is by means of a patient taking a
cocktail of both classes of drugs. Therefore, it was of great importance to investigate
the functionality of using both drugs of interest simultaneously. When the two drugs
were taken in conjunction, they had an inverse effect on the infected body. In other
words, when we increased initial efficacy of the drug cocktail and decreased the
period, the total viral load decreased. For any of the scenarios investigated, however,
the total uninfected cell count responded inversely to the response of the resistant
strain viral load. This led us to the conclusion that the drug cocktail was not only
the proper choice, but we also observed that it was most effective given at a 4:1 ratio
(protease inhibitors: reverse transcriptase inhibitors). Furthermore, the examination
of the effects of using different ratios of both drugs to further optimize the efficacy
of the treatment was also of substantial interest. Scenarios for both varying efficacy
and varying the level of resistance to the drug therapy by the drug-resistant-type
virus were examined. As the level of drug efficacy increased, there were noticeable
increases in the uninfected cell count as well as a stronger decrease in the total viral
load. When the level of resistance was increased, we noted an increase in viral load
as we expected. Although seemingly intuitive, we were also sure to investigate the
functionality of the system when varying both drug efficacies, individually and in
tandem, and the results of the evolution of drug resistance.

Given the staggering percentage of infected people that are either unable to
obtain the appropriate drug therapies or simply cannot take all the recommended
doses, we also numerically investigated the effect of imperfect adherence to the
prescribed treatment regimen. That is, we investigated what would happen when
someone is under a drug regimen and particular doses were skipped. The last area
of results we obtained consisted of scenarios where the infected person missed a
certain number of doses for either drug and for both drugs together. Skipping doses
for either drug alone had nearly identical effects; there was significantly less of a
drop in viral load and the uninfected cell count was much lower. The results of
missing doses when the drug cocktail was being administered followed directly
from the individual missed doses as well.

Appendix

The following table contains all of the symbols used throughout the paper (in the
order of appearance).
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symbol description

T healthy T-cell concentration

Ts drug-sensitive infected T-cell concentration

Tr drug-resistant infected T-cell concentration

Vs drug-sensitive virus concentration

Vr drug-resistant virus concentration

E concentration of CD8+ T-cells

�T recruitment rate of uninfected cells

d death rate of uninfected cells

ks infection rate of T-cells by the wild-type virus

kr infection rate of T-cells by the drug-resistant virus

ı death rate of infected cells

m1 immune-induced clearance rate for infected Ts cells

m2 immune-induced clearance rate for infected Tr cells

Ns virions produced per infected drug-sensitive cell

Nr virions produced per infected drug-resistant cell

c clearance rate of free virus

cE stimulation of CTL proliferation

ıE death rate of immune effectors

u mutation rate from sensitive strain to resistant strain

S0 vector .T0;Ts0;Vs0;Vr0;E0/ with the infection-free steady state

Sb vector .Tb;Tsb;Vsb;Vrb;Eb/ with the boundary steady state

Si vector .Ti ;Tsi ;Vsi ;Vri ;Ei/ with the interior steady state

Sw vector .Tw;Tsw;Vsw;Vrw;Ew/ with the wild-type steady state

Rs basic reproductive ratio of the wild-type strain

Rr basic reproductive ratio of the drug-resistant strain

"s
RT

efficacy of RTIs for drug-sensitive strain

"r
RT

efficacy of RTIs for drug-resistant strain

"s
PI

efficacy of PIs for drug-sensitive strain

"r
PI

efficacy of PIs for drug-resistant strain

˛ HIV mutants’ level of resistance

� s
RT

principal period for the RT inhibitors for the sensitive strain

� s
PI

principal period for the P inhibitors for the sensitive strain
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symbol description

ps
RT

time duration when the RT drug for the sensitive strain is active

pr
RT

time duration when the RT drug for the resistant strain is active

ps
PI

time duration when the P drug for the sensitive strain is active

pr
PI

time duration when the P drug for the resistant strain is active

es
RT

efficacy of RT drugs for the sensitive strain

er
RT

efficacy of RT drugs for the resistant strain

es
PI

efficacy of P drugs for the sensitive strain

er
PI

efficacy of P drugs for the resistant strain

˛1 HIV mutants’ level of resistance for the RT drug

˛2 HIV mutants’ level of resistance for the P drug

N"s
RT

average efficacy of RT drugs for sensitive strain

N"r
RT

average efficacy of RT drugs for resistant strain

N"s
PI

average efficacy of P drugs for sensitive strain

N"r
PI

average efficacy of P drugs for resistant strain

"s overall treatment effect on the sensitive strain

"r overall treatment effect on the resistant strain
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An extension of Young’s segregation game
Michael Borchert, Mark Burek, Rick Gillman and Spencer Roach

(Communicated by Kenneth S. Berenhaut)

In Individual strategy and social structure (2001), Young demonstrated that the
stochastically stable configurations of his segregation game are precisely those
that are segregated. This paper extends the work of Young to configurations
involving three types of individuals. We show that the stochastically stable
configurations in this more general setting are again precisely those that are
segregated.

Schelling [1971] investigated self-organizing systems consisting of two groups
of individuals, two of whom could trade locations at each discrete time interval
to improve at least one’s contentment level without diminishing the other’s. He
identified the equilibria of these systems under various conditions. Most of the time,
these equilibria were more segregated in the sense that the individual members
of each of the groups tended to gather in larger clusters rather than be uniformly
mixed. Young [2001] used a Markov chain model to identify the stochastically
stable equilibria of these self-organizing systems with two groups of individuals.

By an equilibrium we mean a state in which no pair of individuals exist who
would prefer to trade positions. These equilibria are stable in sense that once one is
reached, there will be no further change in the system.

However, if we allow for the possibility of error, that is, trades of pairs of
individuals which do not benefit at least one of the two, without harming the other,
it is possible to move from some equilibria to others. Those equilibria which remain
stable in this more general context are called stochastically stable equilibria. They
are precisely the segregated equilibria, those with all of the individuals of a group
gathered into a single cluster.

After seeing this behavior modeled in a classroom activity, a student asked the
faculty author of this paper whether the same phenomena happened if there were
more than two types of individuals. Responding to that question, in [Burek et al.
2009] we showed that there are both segregated (all members of each group living
next to each other in a single cluster) and non-segregated equilibria in such a model,
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consistent with the work of Schelling. In this paper, we will show that the segregated
equilibria are the only stochastically stable equilibria, consistent with the work of
Young.

A real world example of this type of self-organizing behavior was provided in
2004 when Bill Bishop received national attention when he made the following
claim and coined the neologism the big sort: the phenomenon that Americans
have been sorting themselves into increasingly homogeneous political communities
according to city and even neighborhood. He published his argument in [Bishop
2009] using demographical data to justify his claims. Therefore, in recognition
of Bishop’s work, we will refer to our three groups of people as Republicans,
Democrats, and Libertarians.

Terminology

Let R, D, and L represent a individual that is a Republican, Democrat, and Lib-
ertarian, respectively. A configuration is an linear arrangement of individuals
members that contains at least four members from each party,with an explanation
for this restriction being given later. In general, let r , d, and l represent the total
number of individuals in each of the Republican, Democrat, and Libertarian parties,
respectively. We assume that our configurations are circular in the sense that the
first and last individuals are assumed to be neighbors of each other; this allows us
to not worry about end conditions. For instance, in the following configuration, the
leftmost R is considered to be next to the rightmost L:

RDL L L L L L L L L L L R R R R R RDRDL DDDL L L L R R R R R R R R R RL .

We consider the positions of the Republicans, Democrats, and Libertarians to be
ordered in this configuration. Thus, the configuration above is distinct from the one
obtained by shifting each individual nine positions to the right, displayed here:

R R R R R R R R R RL RDL L L L L L L L L L L R R R R R RDRDL DDDL L L L .

To avoid unnecessary repetition, we use exponential notation and define a cluster
of Y m to be a string of m Y ’s in a row, where 2≤ m ≤ q where q denotes the total
number of members in Y ’s party. Thus, the first configuration displayed above can
be somewhat more compactly conveyed as

RDL11 R6 DRDL D3L4 R10L .

While the positions are distinct, the individuals themselves are not distinguished
beyond their party affiliation.

Given any configuration, we need to determine an individual’s contentment level.
Measuring contentment was straightforward in [Young 2001] since Young only
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considered two types of individuals: either you’re next to at least one individual like
yourself (and are content) or you are not (and are therefore not content). Introducing
a third group adds a layer of complexity in the form of bias: which individuals
(aside from those of your own party) do you prefer to be next to, which are you
neutral towards, and which do you prefer not to be next to at all? In [Burek et al.
2009], we describe seven different scenarios with varying levels of bias. In this
paper, our focus is on individuals who have no aversion towards individuals of
either of the other two parties, but do have a preference for neighbors of their own
party.

We can describe this low level of bias as follows, since we do not need to specify
the utility functions for our purposes. Let X, Y, and Z be arbitrary individuals, not
necessarily of distinct parties. Given an individual Y in a configuration, consider
the ordered triple consisting of Y and its immediate neighbors to the left and the
right, X and Z, respectively. Y has the highest contentment if both X and Z are of
the same party as Y. Y has a somewhat lower contentment level if exactly one of
X and Z is of the same party as Y. Finally Y has the lowest contentment level if
neither X nor Z is of the same party as Y. For example, in the configuration

RDL11 R6 DRDL D3L4 R10L ,

the first D individual has the lowest contentment level and the second to last D
has the highest contentment level. More than three levels of contentment would be
possible were we to allow higher levels of bias, as described in [Burek et al. 2009].

Two individuals in a configuration are willing to trade positions if at least one of
the individual’s contentment level increases as a result of this trade, and the other
individual’s contentment level does not decrease as a result of the trade. We call
this a favorable trade.

Notice that when two individuals trade positions, it moves us from the original
configuration s to a new configuration s ′. When we move forward to a new time
period, a pair of individuals are randomly chosen from among those pairs for whom
a favorable trade exists and these two individuals trade positions. Eventually, no
favorable trades remain and the system reaches an equilibrium configuration. Some
of these are segregated equilibrium configurations, in the form

Rr Dd L l or Rr L l Dd .

Segregated equilibrium configurations could start with Democrats or Libertarians
as well. In particular, note that the configuratons

L l Rr Dd and Dd L l Rr
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can be obtained from the first segregated equilibribium configuration above by
shifted positions to the right, but they can not be obtained from the second segre-
gated equilibribium above. Thus there are two fundamental classes of segregated
equilibria, those of the form RDL and those of the form RLD.

Other equilibria are non-segregated. In a non-segregated equilibrium, the mem-
bers of at least one party are separated into two disjoint clusters, each of which
contains at least two members. Some examples (with r = 6, d = 10, and l = 8) are

D8 R3L2 D2L4 R3L2, R3 D3L8 D5 R5, and L2 D10L6 R6.

If there are only three members of a party, then they must be in a single cluster in
every equilibria. Thus if there are only three members of each of the three parties,
there are no non-segregated equilibria. Thus to ensure that we have non-segregated
equilibria, we require that there be at least four individuals in each party.

We denote the set of all equilibrium configurations by E , the set of those equilibria
that are segregated by E S and those equilibria that are non-segregated by E N S .
Thus, E = E S

∪ E N S .
In our discussion so far, we have only allowed favorable trades to occur. To

investigate stochastically stable configurations, we need to allow the possibility
of non-favorable trades to occur as well. We define three types of such trades.
Let a, b, and c denote positive real numbers such that 0 < a < b < c. A type a
perturbation occurs when two individuals trade with one individual’s contentment
level rising and the other’s falling, or when two individuals trade with neither
individual’s contentment level changing. A type b perturbation occurs when two
individuals trade positions such that one individual’s contentment level decreases,
but the other individual’s contentment level remains constant. Finally, a type c
perturbation occurs when two individuals trade positions such that both of the
individuals’ contentment levels go down.

Markov chain model

Both the basic situation and the perturbed situation can be modeled as a Markov
chain. In this section, we describe those models, identify their key properties, their
relationship, and give the key theorem that we will use in our analysis. The reader
interested in more detailed discussion of Markov chains should consult [Ghahramani
2005] or [Norris 1998] for an introduction to the subject, or [Ross 2000] for a more
rigorous treatment.

We model the basic situation as a Markov chain, P , by letting the set of states, S,
be the various configurations, s, of our neighborhoods. For each s, set ps,s′ = 0 for
any state s ′ such that there is no favorable trade which moves s to s ′. For all other
s ′, ps,s′ = k/n, where n is the number of favorable trades in s and k is the number
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of favorable trades which move s to s ′. As favorable trades occur, the system can
be thought to randomly evolve over time, with at most one trade occurring during
each time period.

If we allow the possibility of non-favorable trades as well, we can obtain a second
Markov chain, Pε , in which a type a perturbation occurs with probability εa , where
1>ε>0. A type b perturbation occurs with probability εb, and a type c perturbation
occurs with probability εc. Favorable trades occur with equal probabilities which
sum to 1−

∑
pr(x), where x ranges across all of the non-favorable trades. Thus

Pε has the same state space as P , and

ps,s′ =
∑

pr(y)+
∑

pr(x),

where y ranges across all favorable trades moving s to s ′ and x ranges across all
non-favorable trades doing the same.

We can say the following about P and Pε :

(1) The absorbing states of P are precisely the equilibrium states.

(2) Pε is irreducible.

(3) Pε has a unique stationary distribution, µε .

(4) Pε satisfies limε→0 pεs,s′ = ps,s′ , and there exists a unique r(s, s ′) > 0 such
that whenever pεs,s′ > 0 for some ε > 0,

0< lim
ε→0

pεs,s′
εr(s,s′) <∞.

(5) Pε is regular perturbed.

Briefly, these five items are justified as follows. In any non-equilibrium con-
figuration, there are a finite number of favorable trades; as time advances and
these trades happen, they are eventually depleted resulting in a configuration that
is at equilibrium and is an absorbing state of P . Because all trades (favorable and
non-favorable) have positive probability in Pε , there exists a positive probability
that of moving from any configuration to any other configuration in the future.
Hence Pε is irreducible. Further, since Pε has a finite state space, it has a unique
stationary distribution. The first limit in item four follows from our definition of
pεs,s′ . The second limit follows from our assignments of probabilities to the various
non-favorable trades. Finally, item five follows from items two and four.

In general, r(s, s ′) is called the resistance to moving from state s to state s ′, and
is the minimum, taken over all sequences of trades that begin in state s and end in
state s ′, of the sum of the resistances on the individual trades in the sequence. The
values a, b, and c are the resistance to the corresponding types of non-favorable
trades. A favorable trade has resistance 0.
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We now construct a graph theoretic model to compute the stochastically stable
states of Pε . Recall that the only absorbing states of P are the equilibrium states in
S. Denote these by E = {z1, z2, z3, . . .}. Construct a weighted complete directed
graph whose vertices are the elements of E and whose edges have weights equal to
the resistances r(zi , z j ). A z-tree is a set of |E | − 1 directed edges such that, from
every vertex different from z ∈ E , there is a unique directed path in the tree to z.
The resistance of a z-tree is the sum of the resistances on the edges that compose it.
The stochastic potential of the state z is the minimum resistance over all z-trees.

Figure 1 illustrates one such tree. In this illustration, z is an RLD segregated
equilibria, and each RLD and RDL vertex represents a one position shift from its
parent vertex. The ns vertices represent generic non-segregated equilibria. The
choice of edge weights, a, b, and a+ b, will be explained after Theorem 1.

ns

a

ns

a

ns

a

ns

a

ns

a

ns

a

ns

a

ns

a

ns

a

ns

a

ns

a
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a

RDL
b

RDL
b

RDL
b

RDLRDL
b b+a

RLD
b

RLD
b

RLD
b

RLD
b

RLD
b

z

Figure 1. A z-tree for a RLD segregated equilibrium.
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The stochastically stable states are those states that occur with positive probability
in the long run while the probility of error, ε, is small but non-vanishing. That is,
the state s ∈ E is stochastically stable for the Markov chain Pε if

lim
ε→0

µεs > 0,

where µε is the unique stationary distribution of Pε . Young’s theorem provides a
method for determining these states, which is the goal of this paper.

Young’s theorem. Let Pε be a regular perturbed Markov chain and let µε be the
unique stationary distribution of Pε for each ε > 0. Then the stochastically stable
states are precisely those states that are absorbing states of P having minimum
stochastic potential [Young 1993].

Main result

In this section, we construct z-trees for both segregated and non-segregated equilibria
and demonstrate that the former have minimal stochastic potential. We begin by
proving three lemmas which will develop our argument.

Lemma 1. Given a non-segregated equilibrium, the resistance to moving to another
equilibrium by making a trade which moves an individual from one cluster to another
cluster of like individuals is a.

Proof. Given a non-segregated equilibribium state, suppose that one party, say the
Rs, has at least two clusters. Then at least two of the R clusters have neighbor
clusters of the same type, say L . Otherwise, there are exactly two R clusters, one
with two D clusters as neighbors and the other with two L cluster neighbors. (The
pattern is D− R− D− L − R− L .) In this case, we change our perspective to the
two D clusters, which have a common R cluster as a neighbor.

There are three patterns possible for the two R clusters and their L cluster
neighbors:

L l1−1 L Rr1 . . . L l2 RRr2−1,

L l1−1 L Rr1 . . . Rr2−1 RL l2,

Rr1−1 RL l1 . . . L l2−1 L Rr2 .

In each case, trading the bold faced individuals shifts one individual from one
cluster to another and results in a new equilibrium state. Each of these trades has
resistance a. �

Lemma 2. Given any segregated equilibrium, the minimum resistance to shifting
to another segregated equilibrium is b.
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Proof. Consider the segregated equilibrium

Rr−1 RDd L l−1 L.

We trade the boldfaced individuals, with resistance b, to get

Rr−1 L Dd L l−1 R.

However, this configuration is not an equilibrium. Therefore, we need to make a
favorable trade, which has resistance 0, to return to equilibrium. The two individuals
involved in this trade are indicated in bold:

Rr−1 L Dd−1 DL l−1 R.

Trading these two individuals results in the segregated configuration:

Rr−1 DDd−1 LL l−1 R.

Note that the new configuration is the the original equilibrium configuration shifted
one position to the left.

To obtain a smaller resistance, either one of the individuals trading had an
increase in their contentment level while the second had a decrease, or neither of
the individuals trading had any change in contentment level. However, when we
begin with a segregated equilibrium, both cases imply that any individual who
trades must trade with another individual of the same party, and that results in the
same equilibrium after the trade as before. Thus it is not possible to shift from one
segregated equilibrium to another with a resistance less than b. �

Lemma 3. Given any equilibrium, the minimum resistance to creating a new cluster
is b+ a.

Proof. Without loss of generality, consider an equilibrium containing the sequence

. . . L l1−1 L Dd1−1 DRr1 . . . .

In a trade between the bold L and the bold D, L’s contentment level would drop,
while D’s contentment level stays the same, resulting in a trade with resistance b.
The resulting configuration,

. . . L l1−1 DDd1−1 L Rr1 . . .

is not in equilibrium, so a trade between the second right-most L with the (new)
right-most D, with resistance a, results in an equilibrium with an additional cluster
of consisting of two L’s. This is the smallest resistance possible, since creating
a new cluster requires isolating an individual and consequently lowering their
contentment level, a type b perturbation. To return to an equilibrium state with this
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new cluster, another trade must occur in order to have a second individual join the
first. At best this is a type a perturbation. �

With these three lemmas in hand, we are ready to compute the minimum stochastic
potential for the z-trees. In the proof of Lemma 2, we assumed that the segregated
configuration has the ordering RDL of clusters. The alternative ordering is RLD.
Clearly the Lemma applies to this ordering as well. However, in both Theorem 1
and Theorem 2 below, we do need to treat the two orderings separately,so we let
E S

RDL and E S
RLD denote the two sets of segregated equilibriums, respectively. We

begin with z ∈ E S .

Theorem 1. For each z ∈ E S , its stochastic potential is

a ·|E N S
|+b ·(|E S

RDL |−1)+b ·(|E S
RLD|−1)+(b+a)= a ·|E N S

|+b ·(|E S
|−1)+a.

Proof. We will assume that z is an RLD type of segregated equilibrium. Each
non-segregated equilibrium has an outbound edge to another equilibrium in which
one of the clusters has one fewer individuals. By Lemma 1, this edge has resistance
(weight) a. All but two of the segregated equilibriums have an outbound edge to
another segregated equilibriums, which rotates the positions of the individuals by
one position. By Lemma 2, each of these edges has resistance b. The first exception
to the previous statement is the root equilibrium, z, which has no outbound edge
associated with it. The second exception is the RDL equilibrium at which a new
cluster is generated in order to begin the transition to an RLD equilibrium. By
Lemma 3, this particular equilibrium has an outbound edge that has resistance b+a.
Summing the resistances on the various edges gives the result. �

Figure 1 illustrates the proof for a typical z-tree, when z is a segregated equilib-
rium. The target RLD equilibrium is in the lower right corner, and the transitional
RDL equilibrium has a resistance of b+ a. In this illustration, each segregated
equilibrium is rotated until it reaches z, or until the transitional configuration is
reached. Each non-segregated state progressively moves to states with smaller
and/or fewer clusters, eventually becoming segregated.

Next, we compute the minimum stochastic potential for an arbitrary z-tree where
z is in E N S . Notice that in Theorem 1, we were able to calculate the minimum
stochastic resistance precisely. In the following theorem, we are only able to
determine a lower bound. This is because it is may be required to create many new
clusters, with the creation of each of these clusters increasing the sum given in the
theorem. Fortunately, the result is sufficient for our purposes.

Theorem 2. For each z ∈ E N S , its stochastic potential is at least

a · (|E N S
| − 1)+ b · (|E S

RDL | − 1)+ (b+ a)+ b · (|E S
RLD| − 1)+ (b+ a)

= a · |E N S
| + b · (|E S

| − 1)+ a+ b.
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Figure 2. Minimal z-tree for a non-segregated equilibrium.

Proof. We will assume that z has only four clusters, the minimum possible in a
non-segregated equilibriums. Each non-segregated equilibrium, other than z, has
an outbound edge to another equilibrium with in which one of the clusters has one
fewer individuals. By Lemma 1, this edge has resistance a. All but two of the
segregated equilibriums has an outbound edge to another segregated equilibriums
rotating the positions of the individuals by one position. By Lemma 2, each of these
edges has resistance b. The two exceptions to the previous are the RLD equilibrium
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and the RDL equilibrium at which new clusters are created; by Lemma 3, these two
equilibriums have outbound edges with resistance b+ a. Summing the resistance
on the various edges gives the result. �

Figure 2 illustrates the proof for a z-tree in which z is a non-segregated equilib-
rium. Again, the target non-segregated equilibrium is in the lower right corner, and
the transitional RLD and RDL equilibriums have resistance b+ a.

Since the sum in Theorem 1 is smaller than the sum in Theorem 2, we are able
state our main result.

Theorem 3. In segregation games with three types of individuals and the lowest
level of bias, the stochastically stable equilibriums are precisely those that are
segregated.

Open questions

The model described in this paper assumes that no individuals have a bias against
members of one of the other groups. In [Burek et al. 2009], we outline six other
scenarios describing varying biases that are available among three groups. For
example, would we get the same results in a scenario where Republicans and
Democrats each prefer to live near Libertarians over each other, but Libertarians
hold no such bias? What if Democrats prefer Republicans, Republicans prefer
Libertarians, and Libertarians prefer Republicans? Demonstrating stochastic results
similar to those presented in this paper would extend our model.

Furthermore, it would be interesting to extend the analysis in this paper to a
2-dimensional perspective. Doing so would allow for a more realistic geo-political
interpretation of the results, such as that suggested by Bishop’s work.
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Embedding groups into distributive subsets
of the monoid of binary operations

Gregory Mezera

(Communicated by Kenneth S. Berenhaut)

Let X be a set and Bin(X) the set of all binary operations on X . We say that
S ⊂ Bin(X) is a distributive set of operations if all pairs of elements ∗α, ∗β ∈ S
are right distributive, that is, (a∗α b)∗β c= (a∗β c)∗α (b∗β c) (we allow ∗α =∗β ).

The question of which groups can be realized as distributive sets was asked by
J. Przytycki. The initial guess that embedding into Bin(X) for some X holds for
any G was complicated by an observation that if ∗ ∈ S is idempotent (a ∗ a = a),
then ∗ commutes with every element of S. The first noncommutative subgroup
of Bin(X) (the group S3) was found in October 2011 by Y. Berman.

Here we show that any group can be embedded in Bin(X) for X =G (as a set).
We also discuss minimality of embeddings observing, in particular, that X with
six elements is the smallest set such that Bin(X) contains a nonabelian subgroup.

1. Introduction 433
2. Regular distributive embedding 435
3. General conditions for a distributive embedding 435
4. Future directions; multiterm homology 436
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1. Introduction

Let X be a set and Bin(X) the set of all distributive operations on X . We say that
S ⊂ Bin(X) is a distributive set of operations if all pairs of elements ∗α, ∗β ∈ S are
right distributive, that is, (a ∗α b) ∗β c = (a ∗β c) ∗α (b ∗β c) (we allow ∗α = ∗β). It
was observed in [Przytycki 2011] (see also [Romanowska and Smith 1985]) that
Bin(X) is a monoid with composition ∗1∗2 given by a ∗1 ∗2b = (a ∗1 b) ∗2 b and
the identity ∗0 being the right trivial operation, that is, a ∗0 b = a for any a, b ∈ X .

MSC2010: primary 55N35; secondary 18G60, 57M25.
Keywords: monoid of binary operations, distributive set, shelf, multishelf, distributive homology,

embedding, group.
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The submonoid of Bin(X) of all invertible elements in Bin(X) is a group denoted
by Bininv(X). If ∗ ∈ Bininv(X) then ∗−1 is usually denoted by ∗̄.

We say that a subset S ⊂ Bin(X) is a distributive set if all pairs of elements
∗α, ∗β ∈ S are right distributive, that is, (a ∗α b) ∗β c = (a ∗β c) ∗α (b ∗β c) (we
allow ∗α = ∗β). Additionally, (X; S) is called a multishelf1.

The following important basic lemma was proven in [Przytycki 2011]:

Lemma 1.1. (i) If S is a distributive set and ∗ ∈ S is invertible, then S ∪ {∗̄} is
also a distributive set.

(ii) If S is a distributive set and M(S) is the monoid generated by S, then M(S) is
a distributive monoid.

(iii) If S is a distributive set of invertible operations and G(S) is the group generated
by S, then G(S) is a distributive group.

The question of which groups can be realized as distributive sets was asked
by J. Przytycki. Soon after the definition of a distributive submonoid of Bin(X)
was given in [Przytycki 2011], Michal Jablonowski, a graduate student at Gdańsk
University, noticed that any distributive monoid whose elements are idempotent
operations is commutative.

Proposition 1.2 [Przytycki 2011]. Consider ∗α, ∗β ∈ Bin(X) such that ∗β is idem-
potent (a ∗β a = a) and distributive with respect to ∗α. Then ∗α and ∗β commute.
In particular:

(i) If M is a distributive monoid and ∗β ∈ M is an idempotent operation, then ∗β
is in the center of M.

(ii) A distributive monoid whose elements are idempotent operations is commuta-
tive.

Proof. We have (a ∗α b) ∗β b distrib
= (a ∗β b) ∗α (b ∗β b)

idemp
= (a ∗β b) ∗α b. �

A few months later, Agata Jastrzębska (also a graduate student at Gdańsk Univer-
sity) checked that any distributive group in Bininv(X) for |X | ≤ 5 is commutative.

The first noncommutative subgroup of Bin(X) (the group S3) was found in
October 2011 by Yosef Berman. Soon after, Berman and Carl Hammarsten con-
structed an embedding of a general dihedral group D2·n in Bin(X) where X has 2n
elements. The embedding of Berman, φ : D2·3 → Bin(X), is given as follows:
if X = {0, 1, 2, 3, 4, 5} then the subgroup D2·3 ⊂ Bin(X) is generated by binary

1If (X; ∗) is a magma and ∗ is a right self-distributive operation then (X; ∗) is called a shelf, the
term coined by Alissa Crans [2004].
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operations ∗τ , which generates reflection, and ∗σ , which generates a 3-cycle;

∗τ =



1 1 3 5 5 3
0 0 4 2 2 4
3 3 5 1 1 5
2 2 0 4 4 0
5 5 1 3 3 1
4 4 2 0 0 2


and ∗σ =



2 4 2 4 2 4
5 3 5 3 5 3
4 0 4 0 4 0
1 5 1 5 1 5
0 2 0 2 0 2
3 1 3 1 3 1


,

where i ∗ j is placed in the i-th row and j -th column, and D2·3={τ, σ | τστ =σ
−1
}.

2. Regular distributive embedding

We now show that any group G can be embedded in Bin(X) for some X .

Theorem 2.1 (Regular embedding). Every group G embeds in Bin(G). This embed-
ding (monomorphism), φreg

: G→ Bin(G), sends g to ∗g, where a ∗g b = ab−1gb.

Proof. (i) We check that the set {∗g}g∈G is a distributive set. We have

(a ∗g1 b) ∗g2 c = (ab−1g1b) ∗g2 c = ab−1g1bc−1g2c,
and

(a ∗g2 c) ∗g1 (b ∗g2 c)= (ac−1g2c) ∗g1 (bc−1g2c)= ab−1g1bc−1g2c,

as needed.

(ii) Now we check that the map φreg is a monomorphism. The image of the
identity ∗0 is the identity in Bin(G). Furthermore, a ∗g1g2 b = ab−1g1g2b and
a ∗g1 ∗g2b = (a ∗g1 b) ∗g2 b = ab−1g1bb−1g2b = ab−1g1g2b, as needed. We have
proven that φreg is a homomorphism. To show that φreg is a monomorphism, we
substitute b = 1 in the formula for a ∗g b to get a ∗g 1= ag; so different choices
of g give different binary operations in Bin(G). Notice that φreg(g−1)= ∗̄g. �

We call our embedding regular, analogous to the regular representation of a
group. We do not claim that the regular embedding is minimal, so finding minimal
distributive embeddings is a very interesting problem in itself.

3. General conditions for a distributive embedding

We now discuss a method that can be used to embed groups into subsets of Bininv(X)
satisfying an arbitrary condition. We then use this method when the condition is
right distributivity, which leads us to the regular distributive embedding of G in
Bin(G) and should be a natural tool to look for minimal embeddings. For the
group S3, we know, by Jastrzebska’s calculations, that X consisting of six elements
is the minimal set such that S3 embeds in Bin(X).
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We start from the following basic observation:

Lemma 3.1. There is an isomorphism between Bininv(X) and S|X |
|X | , where |X | is

the cardinality of |X | and S|X | is the group of permutations on set X ( i.e., bijections
of the set X ). The isomorphism α : Bininv(X)→ S|X |X = 5y∈X Sy

X is described as
follows: α(∗)(y) : X → X is the bijection where (α(∗)(y))(x) = x ∗ y. In other
words, α(∗)(y) is the bijection corresponding to the y-coordinate of S|X |X .

Using the map α, we can translate conditions on a set of binary operations
in Bin(X) into a group-theoretic condition on (coordinates of) elements of S|X |X .
With some work, we can use this to find an embedding of a group into Bin(X).
This is possible since the group axioms require that such an embedding must sit
inside Bininv(X). Let us consider distributive, invertible sets S of binary operations
in Bininv(X). These are subsets S⊆ Bininv(X) that satisfy

(x ∗i y) ∗ j z = (x ∗ j z) ∗i (y ∗ j z) for all ∗i , ∗ j ∈ S and x, y, z ∈ X.

Let σi,y = pyα(∗i ), where py : S
|X |
X → SX is projection onto the y-th coordinate.

Then translating the distributivity condition via α,

σ j,z(x ∗i y)= σi,(y∗ j z)(x ∗ j z)

or
σ j,z(σi,y(x))= σi,σ j,z(y)(σ j,z(x)),

which leads to
σi,σ j,z(y) = σ j,zσi,yσ

−1
j,z .

Now the problem of embedding a group into Bininv(X) is reduced to finding
subsets of S|X |

|X | satisfying the condition above that are isomorphic to the group. We
can then use tools of group theory (e.g., representation theory) to solve the problem.
This process can be attempted for subsets of Bininv(X) satisfying any condition and
leads to the embedding defined in the previous section for distributive subsets.

4. Future directions; multiterm homology

Przytycki [2011] defined multiterm homology for any distributive set. This provided
motivation to have many examples of distributive sets. The regular embedding of
a group (Theorem 2.1) provides an interesting family of distributive sets ripe for
the study of their homology (compare with [Crans et al. 2014; Przytycki 2011;
2012; Przytycki and Putyra 2013; Przytycki and Sikora 2014]). As a nontrivial
example, we propose computing n-term distributive homology related to the regular
embedding of the cyclic group Zn . Another problem related to Theorem 2.1 is
determining which monoids are distributive submonoids of Bin(X).
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A key motivation is to use multiterm distributive homology in knot theory.
This possibility arises from the relation of the third Reidemeister move with right
distributivity (and eventually the Yang–Baxter operator) and the important work of
Carter, Kamada, and Saito [2001] and other researchers on applications of quandle
homology to knot theory.
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Persistence: a digit problem
Stephanie Perez and Robert Styer

(Communicated by Kenneth S. Berenhaut)

We examine the persistence of a number, defined as the number of iterations of
the function which multiplies the digits of a number until one reaches a single
digit number. We give numerical evidence supporting Sloane’s 1973 conjecture
that there exists a maximum persistence for every base. In particular, we give
evidence that the maximum persistence in each base 2 through 12 is 1, 3, 3, 6, 5,
8, 6, 7, 11, 13, 7, respectively.

1. Introduction

Neil J. A. Sloane [1973] considered the function that multiplies the digits of a
number and formally conjectured that the number of iterates needed to reach a fixed
point is bounded. In particular, in base 10, he conjectured that one needs at most
11 iterates to reach a single digit. The problem did arise earlier; see [Gottlieb 1969,
Problems 28–28; Beeler et al. 1972].

Definition 1. Let n =
∑r

j=0 d j B j , with 0 ≤ d j < B for each d j , be the base B
expansion of n. We define the digital product function as f (n)=

∏r
j=0 d j .

The persistence of a number n is defined as the minimum number k of iterates
f k(n)= d needed to reach a single digit d .

Theorem 1. If n ≥ B, then n > f (n). If 0≤ n < B, then f (n)= n is a fixed point.
Thus, every n has a finite persistence.

Proof. Let n =
∑r

j=0 d j B j , with 0≤ d j < B for each d j and r > 0. Since r > 0,

n ≥ dr Br > dr

r−1∏
j=0

d j = f (n).

If n < B, then clearly f (n)= n. So, by induction on n one can show that every n
has a finite persistence. �

For the remainder of this section, assume the base B equals 10.

MSC2010: 00A08, 97A20.
Keywords: persistence, digit problem, multiplicative persistence, iterated digit functions.
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persistence least n with given persistence ln ln n

2 25 1.1690
3 39 1.2984
4 77 1.4688
5 679 1.8750
6 6788 2.1774
7 68889 2.4106
8 2677889 2.6947
9 26888999 2.8395

10 3778888999 3.0934
11 277777788888899 3.5043

Table 1. Smallest number with a given persistence.

Example. Let n = 23487. Then

f (23487)= 2 · 3 · 4 · 8 · 7= 1344,

f (1344)= 1 · 3 · 4 · 4= 48,

f (48)= 4 · 8= 32,

and finally, f (32) = 3 · 2 = 6. In other words, f 4(23487) = 6, so 23487 has
persistence 4.

One easily sees that n = 23114871, n = 642227 and n = 78432 also have
persistence 4 since each of these has f (n)= 1344. Thus, adding or removing the
digit 1 does not change the persistence, nor does rearranging the digits or replacing
digits that are products of smaller digits by these smaller digits.

In particular, since 288888899777777 has persistence 11, so do

1288888899777777, 11288888899777777 and 111288888899777777,

etc. Hence, there are an infinite number of integers with persistence 11.
We note some other immediate observations.
Let n = 543210. Then f (n) = 0, so it has persistence 1. More generally, any

number with a 0 digit has persistence 1.
Let n = 54321. Then f (54321)= 120, so f 2(54321)= 0. More generally, in

base 10, any number with a 5 digit, with an even digit, and with no 0 digit, has
persistence 2.

Some preliminary calculations suggest that persistence depends on the size of
the number. We list the smallest number with a given persistence (avoiding the
contentious issue of defining the persistence of single digit numbers) in Table 1.
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Figure 1. The double logarithm of the smallest number with per-
sistence p versus p seems linear.

Table 1 and Figure 1 might suggest that the persistence grows roughly as the
double logarithm of the number; using a linear fit to the log-log of the data, one
might expect to find a number of size about 3 · 1017 with persistence 12. Sloane
[1973] showed, however, that no number less than 1050 has persistence 12; this was
extended by Carmody [2001] to 10233, and Diamond [2010] extended it to 10333,
while we extend it to 101500.

This paper has grown out of the senior research paper of the first author, intrigued
by the mention of the problem in [Guy 2004, Problem F25].

2. Results

This section summarizes some results which give bounds for the persistence in
various bases. We used Maple to calculate these results.

Since a large random number almost always has a 0 digit, we can prove the
following theorem.

Theorem 2. In any base B, the density of positive integers up to N with persistence
greater than 1 approaches zero as N approaches infinity.

Proof. Assume B > 2; the next theorem deals with base B = 2.
Consider all numbers with k digits in base B, that is, all integers N with Bk−1

≤

N < Bk . There are precisely (B−1)k integers in this range without a 0 digit. Thus,
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considering all integers in the range 0 < N < Bk , there are

k∑
j=1

(B− 1) j
=

(B− 1)((B− 1)k
− 1)

B− 2

integers without a 0 digit. Thus, the density of integers with persistence greater
than 1 up to Bk is

(B− 1)((B− 1)k
− 1)

(B− 2)Bk =
B− 1
B− 2

((
1−

1
B

)k

−
1

Bk

)
< 2

(
1−

1
B

)k

.

As k approaches infinity, this last term goes to zero, proving the asymptotic density
goes to zero. �

We now prove the well-known result that every number in base B = 2 has
persistence 1 (some authors define the persistence of a single digit to be 0, so we
only consider numbers with two or more digits).

Theorem 3. In base 2, each number n > 2 has persistence 1.

Proof. Either n has all digits equal to 1, in which case f (n)= 1, or n has at least
one 0 digit, in which case f (n)= 0. �

Base 2 is the only base where we can prove Sloane’s conjecture, but we can
support his conjecture in other bases. In particular, Beeler and Gosper [1972,
Item 57] showed that any number in base 3 with persistence greater than 3 must
have more than 30739014 digits. We extend this to 109 digits.

Theorem 4. In base 3, if n < 3109
, then n has persistence at most 3, and if n < 3109

has persistence 3, then f (n)= 23 or 215.

Proof. As noted above, if n has a digit of 0, then it has persistence 1, and if n has a
digit of 1, then the persistence is unchanged if we remove all 1 digits. Thus, we
may assume n has every digit equal to 2, so f (n)= 2k for some k. One can verify
that the powers of 2 below 87 have persistence 1 except 23 and 215, which have
persistence 2. Beeler and Gosper showed that each power of 2 between 287 and
230739014 contains a 0 in its base 3 expansion, and hence has persistence 1. With
today’s faster computers, we easily extend this to all powers of 2 up to 109. �

Theorem 5. In base 4, if n < 4109
, then n has persistence at most 3. If n < 4109

has
persistence 3, then f (n)= 2a3b, where (a, b)= (0, 3), (1, 3), (1, 5), (0, 6), (0, 10),
or (1, 11).

Proof. We have already noted that we need not consider any n with a digit of 0 or
1. Further, if n in base 4 has the digit 2 at least twice, then f (n) has low-order digit
0, so f ( f (n))= 0. Thus, we may assume n has at most one digit 2 and the rest of
the digits are 3; in other words, f (n)= 2a3b with a ∈ {0, 1}. We now calculate the
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persistence of 3b and of 2 · 3b for all b ≤ 109 and note that none have persistence
greater than 1 except for the listed values. For b > 1000, we do not actually calculate
the persistence; we merely verify that there is a 0 digit in the last 64 digits. �

Theorem 6. In base 5, if n < 510000, then n has persistence at most 6. If n < 510000

has persistence 6, then f (n)= 24032.

Proof. As before, we need not consider any n with a digit of 0 or 1. If n has a digit
of 4, we may replace it by two digits 2. Thus, we may assume n has all digits equal
to 2 or 3, in other words, f (n)= 2a3b for a ≥ 0 and b ≥ 0. We now calculate the
persistence of 2a3b for a and b with da/2e + b ≤ 1000; the factor of 1/2 arises
because each digit 4 is replaced by two digits 2. For large a+ b, we merely verify
that there is a 0 digit in the last 64 digits. The calculations show that each such
2a3b has persistence less than 5 except for 24032, which has persistence 5; hence, n
has persistence at most 6 for all n < 510000. �

Theorem 7. In base 6, if n < 610000, then n has persistence at most 5. If n < 610000

has persistence 5, then f (n) = 2a5b, where (a, b) = (7, 1), (1, 4), (0, 5), (7, 2),
(4, 4), (9, 3), (7, 4), (0, 8), or (17, 2).

Proof. As before, we eliminate digits of 0 or 1, and replace digits of 4 by two
digits 2. If n has a digit of 3 and an even digit, then f ( f (n)) = 0, so we may
assume n either has all digits equal to 2 or 5, or else n has all digits equal to 3
or 5. In other words, f (n)= 2a5b or 3a5b for a ≥ 0 and b ≥ 0. We now calculate
the persistence of 2a5b for a and b with da/2e + b ≤ 10000 (the factor of 1/2
covers the case where each digit 4 is replaced by two digits 2), and also calculate
the persistence of 3a5b where a+ b ≤ 10000. The calculations show that all such
expressions have persistence less than 4 except for the listed values, which have
persistence 4; hence, n has persistence at most 5 for all n < 610000. �

Theorem 8. In base 7, if n < 71000, then n has persistence at most 8. If n < 71000

has persistence 8, then f (n) = 2a3b5c, where (a, b, c) = (9, 3, 12), (9, 17, 4),
(11, 8, 10), (10, 20, 5), (10, 8, 16), (19, 25, 1), (1, 44, 0), (27, 0, 20), (39, 24, 1),
or (11, 39, 3).

Proof. As before, we eliminate digits of 0 or 1, replace digits of 4 by two digits 2,
and now also replace digits 6 by digits 2 and 3. So, we may assume n has all digits
equal to 2, 3 or 5. In other words, f (n)= 2a3b5c for a ≥ 0, b ≥ 0, and c ≥ 0. We
now calculate the persistence of 2a3b5c; since we replaced digits of 4 by 2 · 2 and
digits of 6 by 2 · 3, we must consider a, b, c with

a+ b+ c−min(a, b)−
⌊a−min(a, b)

2

⌋
≤ 1000.
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We calculate the persistence of each such 2a3b5c to find that all such expressions
have persistence less than 6 except for the listed values, which have persistence 6;
hence, n has persistence at most 7 for all n < 71000. �

Theorem 9. In base 8, if n < 81000, then n has persistence at most 6. If n < 81000

has persistence 6, then f (n)= 335472.

Proof. As before, we eliminate digits of 0 or 1, replace digits of 4 by two digits 2,
and now also replace digits 6 by digits 2 and 3. So, we may assume n has all
digits equal to 2, 3, 5 or 7. If there are three or more digits 2, then f ( f (n)) = 0.
Therefore,

f (n)= 2d3a5b7c for a ≥ 0, b ≥ 0, c ≥ 0, and d ∈ {0, 1, 2}.

We consider a, b, c with a+ b+ c ≤ 1000 to guarantee we are considering up to
1000 digits. We calculate the persistence of each such 2d3a5b7c to find that all such
expressions have persistence less than 5 except for 335472, which has persistence 5;
hence, n has persistence at most 6 for all n < 81000. �

Theorem 10. In base 9, if n < 91000, then n has persistence at most 7. If n < 91000

has persistence 7, then f (n)=2a5b7c, where (a,b, c)=(1,1,5), (3, 3, 4), (24, 1, 1),
(4, 6, 4), (11, 5, 3), or (16, 7, 1).

Proof. As before, we eliminate digits of 0 or 1, replace digits of 4 by two digits 2,
replace digits 6 by digits 2 and 3, and now also replace 8 by three digits 2. So, we
may assume n has all digits equal to 2, 3, 5 or 7. If there are two or more digits 3,
then f ( f (n)) = 0, so we may assume f (n) = 2a5b7c or f (n) = 3 · 2a5b7c for
a ≥ 0, b ≥ 0, and c ≥ 0. We now calculate the persistence of 3d2a5b7c for d = 0
or 1; in order to guarantee that we consider all numbers up to 1000 digits, we must
consider a, b, c with da/3e+ b+ c ≤ 1000. We calculate the persistence of each
such 3d2a5b7c to find that all such expressions have persistence less than 6 except
for the listed values (all having d = 0), which have persistence 6; hence, n has
persistence at most 7 for all n < 91000. �

We now deal with base 10. Diamond [2010] calculated the persistence of all
numbers 2a3b7c and 3a5b7c with a ≤ 1000, b ≤ 1000 and c ≤ 1000. We verify his
calculations and extend them to cover all numbers up to 1500 digits.

Theorem 11. In base 10, if n < 101500, then n has persistence at most 11. If
n < 101500 has persistence 11, then f (n)= 2432075 or 2193476.

Proof. As before, we eliminate digits of 0 or 1, replace digits of 4 by two digits 2,
replace digits 6 by digits 2 and 3, replace the digit 8 by three digits 2, and now
also replace 9 by two digits 3. In base 10, if we have both a digit 2 and a digit 5,
then f ( f (n))= 0. So, we may assume f (n)= 2a3b7c or f (n)= 3a5b7c for a ≥ 0,
b ≥ 0, and c ≥ 0. To consider all n with less than 1500 digits, we only need to
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consider f (n)= 2a3b7c with ba/3c+bb/2c+ c ≤ 1500, as well as f (n)= 3a5b7c

with da/2e+ b+ c ≤ 1500. We find that all such expressions have persistence at
most 9, except for the listed exceptions which have persistence 10; hence, n has
persistence at most 11 for all n < 101500. �

Theorem 12. In base 11, if n <11250, then n has persistence at most 13. If n <11250

has persistence 13, then f (n)= 242313520717, 2913375776, or 23233535718.

Proof. As before, we eliminate digits of 0 or 1, replace digits of 4 by two digits 2,
replace digits 6 by digits 2 and 3, replace the digit 8 by three digits 2, and now also
replace 9 by two digits 3. We may assume f (n)= 2a3b5c7d for a, b, c, d ≥ 0. To
consider all n with less than 250 digits, we only need to consider f (n)= 2a3b5c7d

with ba/3c+bb/2c+c+d ≤ 250. We find that all such expressions have persistence
at most 11, except for the listed exceptions which have persistence 12; hence, n
has persistence at most 13 for all n < 11250. �

Theorem 13. In base 12, if n < 12250, then n has persistence at most 7. If n < 12250

has persistence 7, then f (n)= 2558119 or 355176.

Proof. As before, we eliminate digits of 0 or 1, replace digits of 4 by two digits 2,
replace digits 6 by digits 2 and 3, replace the digit 8 by three digits 2, and now
also replace 9 by two digits 3. We may assume f (n)= 2a5b7c11d or 3a5b7c11d

or 6 · 3a5b7c11d for a, b, c, d ≥ 0. To consider all n with less than 250 digits, we
only need to consider f (n) = 2a5b7c11d with ba/3c + b+ c+ d ≤ 250, and for
f (n)= 3a5b7c11d or 6 ·3a5b7c11d , we consider ba/2c+b+ c+d ≤ 250. We find
that all such expressions have persistence at most 5, except for the listed exceptions
which have persistence 6; hence, n has persistence at most 7 for all n < 12250. �

3. Conclusion

These calculations support Sloane’s conjecture that the persistence is bounded for
a given base. This makes sense since when a product of powers like 2a3b7c has
many digits, one expects to find a 0 digit among them. For instance, in base 10, we
saw that 2432075

= 937638166841712 has persistence 10, but

2332075
= 468819083420856, 2431975

= 312546055613904,

2432074
= 133948309548816

all have a digit of 0. In general, almost all such powers will have a persistence of 1.
We used simple Maple programs, so the calculations for each theorem above

took several hours to a few days to run on a laptop.
The first author tried to develop a method to work backwards, in order to answer

questions such as which numbers iterate to the digit 1. We can devise many such
interesting questions. Paul Erdős [Weisstein] asked what would happen if one
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multiplies only the nonzero digits (i.e., ignore the zero digits). Presumably this
Erdős multiplicative persistence is no longer bounded, and the question of which
numbers iterate to the digit 1 becomes more interesting. See [Wagstaff 1981] for
another fascinating variation. We hope this paper inspires others to pursue the many
fascinating problems related to multiplicative persistence.
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Our research concerns how knots behave under crossing changes. In particular,
we investigate a partial ordering of alternating knots that results from perform-
ing crossing changes. A similar ordering was originally introduced by Kouki
Taniyama in the paper “A partial order of knots”. We amend Taniyama’s partial
ordering and present theorems about the structure of our ordering for more
complicated knots. Our approach is largely graph theoretic, as we translate each
knot diagram into one of two planar graphs by checkerboard coloring the plane.
Of particular interest are the class of knots known as pretzel knots, as well as
knots that have only one direct minor in the partial ordering.

1. Introduction

Basic knot theory. A knot K is a smooth embedding of a circle S1 in R3. Some
of our results generalize to links. A link L is a smooth embedding of multiple
disjoint copies of S1 in R3. Knot theorists generally do not want to work with
3-dimensional objects, which is why it is common to use knot diagrams. A knot
diagram D of the knot K is a way of projecting K onto R2. This projection is
one-to-one everywhere except a finite number of points called crossings where it
is two-to-one. At every crossing there is an unbroken line for the overstrand and
a broken line for the understrand. The overstrand corresponds to the arc that was
initially closer to the viewer in R3.

A leading problem in knot theory is that one knot K may have many different
diagrams that don’t look remotely similar. We then need methods to determine
when two knot diagrams represent the same knot.

The required machinery to deal with this problem are the Reidemeister moves,
which are a set of three moves that connect diagrams of the same knot. The
Reidemeister moves are shown in Figure 1. These moves are local, meaning the
knot is unchanged outside of the exhibited region. The fundamental result about
Reidemeister moves is the following:
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Keywords: knots, links, crossing changes.
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447

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2015.8-3
http://dx.doi.org/10.2140/involve.2015.8.447


448 A. MENDOZA, T. SARGENT, J.T. SHRONTZ AND P. DRUBE

R1 R2

R3

Figure 1. Reidemeister moves.

Theorem 1.1 (Reidemeister). Two diagrams D1 and D2 represent the same knot K
if and only if they may be connected by a finite number of Reidemeister moves.

Proof. See [Reidemeister 1927] for a proof of this standard result. �

The crossing number c(K ) of a knot K is the minimum number of crossings
over all diagrams K . A minimal knot diagram is a diagram D where the number
of crossings equals c(K ). The standard way to denote knots takes the form Nn ,
where N denotes the crossing number of the knot and the subscript n is a traditional
ordering (which depends upon an invariant known as the determinant).

Our research concerns how knots behave under crossing changes. A crossing
change is a local operation that flips the role of the overstrand and the understrand
at a single crossing in a knot diagram. The most important thing to note here is
that a crossing change may change the underlying knot. An example of a crossing
change is shown in Figure 2. As with our images for the Reidemeister moves, it is
assumed that the link is unchanged outside of the region shown.

We focus on the class of knots known as prime alternating knots since they
have many nice properties that allow for stronger results. An alternating knot is
a knot with an alternating diagram, which is a knot diagram that alternates between
overstrands and understrands as one travels around the diagram in a fixed direction.
A prime knot is a knot that cannot be drawn as a connect sum of two nontrivial knots
(i.e., it doesn’t look like two or more nontrivial knots that have been strung together).
Figure 3 shows the granny knot, which is a connect sum of two trefoil knots 31.

The following two theorems are important results that make prime alternating
knots especially nice to work with.

Figure 2. Crossing change.
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Figure 3. A nonprime knot.

Figure 4. A nugatory crossing and untwisting that crossing.

Theorem 1.2 (Kauffman, Murasugi, and Thistlethwaite). Let K be a prime alter-
nating knot with diagram D. Then D is a minimal diagram for K if and only if D is
a reduced alternating diagram.

Proof. See [Adams 2004] for a proof of this foundational result. �

The term reduced above means that the diagram contains no nugatory crossings.
A crossing in a diagram D is a nugatory (removable) crossing if removing a
neighborhood of that crossing splits the knot diagram into two separate pieces.
These are the crossings that can obviously be eliminated (via a 180-degree twist) to
lower the crossing number of D without changing the underlying knot. See Figure 4.

Theorem 1.3 (Tait’s flyping conjecture, Menasco & Thistlethwaite). Let D1 and
D2 be two minimal diagrams of the same prime alternating knot K in S2. Then D1

can be transformed into D2 via a series of flypes.

Proof. See [Menasco and Thistlethwaite 1993] for the (surprisingly complex) proof
of this result, which had eluded knot theorists for a century. �

An example of a flype is shown in Figure 5. This operation involves a 180-degree
twist of the portion of the knot denoted by T (known as a tangle), effectively moving
a single half-twist from one side of that tangle to the other side. A flype is usually
a complex combination of Reidemeister moves, but just like the basic Reidemeister
moves, it does not change the underlying knot.

T

T

Figure 5. Flype operation.
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A partial ordering of knots. The starting point for our research was the partial
ordering on knots defined by Kouki Taniyama [1989]. To distinguish Taniyama’s or-
dering from our own, we will henceforth refer to this partial ordering as the T-order:

Definition 1.4. Let K1 and K2 be knots. The T-order defines K1 ≤ K2 if every
diagram of K2 can be transformed into some diagram of K1 via some number of
simultaneous crossing changes.

The number of simultaneous crossing changes required above depends upon the
diagram of K2 chosen, and there may not be a systematic way to determine the
required crossing changes in a given diagram of K2.

We present a modified version of Taniyama’s T-ordering that was also influenced
by the distinct partial ordering of Ernst, Diao, and Stasiak [Diao et al. 2009]. We
will call our ordering the V-order, in honor of Valparaiso University (the site of the
REU where we conducted this research).

Definition 1.5. Let K1 and K2 be prime alternating knots. The V-order defines K1 to
be a V-minor of K2 if there exists a minimal diagram of K2 that can be transformed
into some diagram of K1 via simultaneous crossing changes. We then define
(Kn, Kn−1, . . . , K2, K1) to be a proper sequence of knots if Ki is a V-minor of Ki+1

for all i , and K1 ≤ K2 if there exists a proper sequence containing both K1 and K2,
where K1 appears to the right of K2.

In this partial ordering (as was the case in Taniyama’s original partial ordering),
we do not differentiate between a knot, its reflection, and its reverse.

The reason that we present such a complicated definition involving proper se-
quences is to ensure that the resulting relation is transitive. One can quickly verify
that the V-order defines a partial order of alternating knots, meaning that

(1) K ≤ K for all K ;

(2) if K1 ≤ K2 and K2 ≤ K3, then K1 ≤ K3;

(3) if K1 ≤ K2 and K2 ≤ K1, then K1 = K2.

It is the third condition in the partial ordering definition above that requires us to re-
strict our attention solely to prime alternating knots. There exist nonalternating knots
such that K1 ≤ K2 and K2 ≤ K1, yet K1 6= K2 (see Theorem 2.3 for more details).

We represent the V-order with a Hasse diagram, which is a graphical way to
represent the relationships in the partial ordering. If two knots K1 and K2 are
connected by a series of edges on the Hasse diagram, and if K1 lies below K2 on
the edge, then K1 ≤ K2. We manually verified that the V-order is identical to the
T-order for the first eight nontrivial prime alternating knots (through 71), yielding
the Hasse diagram in Figure 6.

Note that our ordering requires that we check only one minimal diagram of K2

to verify K1 ≤ K2, while Taniyama’s ordering requires that we check all diagrams



A NEW PARTIAL ORDERING OF KNOTS 451

31

41

52 51

61 62 63

71

Figure 6. Partial ordering for the first eight prime knots.

of K2. Also notice that if K1 ≤ K2 in the T-order, then K1 ≤ K2 in the V-order.
The converse is not necessarily true a priori, although we conjecture that it is true
for prime alternating knots (see Conjecture 4.1). The V-order relates to Ernst, Diao,
and Stasiak’s work [Diao et al. 2009] in that their ordering allows for only one
crossing change, while ours allows for multiple simultaneous crossing changes. This
seemingly simple modification actually makes our ordering significantly more com-
plicated, yet also helps our ordering maintain a closer relationship with Taniyama’s
original ordering (which also allows for multiple simultaneous crossing changes).

In future sections, we will be especially interested in direct V-minors:

Definition 1.6. K1 is a direct V-minor of K3 if K1≤ K3 and there does not exist K2

(K2 6= K1, K3) such that K1 ≤ K2 ≤ K3.

Definition 1.7. K1 is a remote V-minor of K3 if K1 ≤ K3 and there exists K2

(K2 6= K1, K3) such that K1 ≤ K2 ≤ K3.

For example, as easily read from our Hasse diagram in Figure 6, the knot 31 is a
remote V-minor of 71 because 31 ≤ 51 ≤ 71. However, 31 is a direct V-minor of 51

since there does not exist a distinct knot K such that 31 ≤ K ≤ 51.

Graph theoretical methods in knot theory. By Theorem 1.1, we know that any
two diagrams of one knot may be connected via a series of Reidemeister moves, but
it is tedious to constantly redraw the diagram every time we perform a Reidemeister
move. To make calculations easier, we convert knot diagrams to a specific type of
signed planar graph that contains all of the same information. The procedure for
converting a knot diagram to a graph is as follows:

(1) Checkboard color the regions of the plane in the complement of the knot
diagram so that around each crossing there are two white regions and two gray
regions. Then mark each crossing by dropping a line segment connecting the
two regions that lie counterclockwise from the overstrand.
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1 2 3

0

0

0
1 2

Figure 7. Checkerboard graphs of 31.

(2) Pick one of the two colors. Place a vertex inside each region of this fixed color.

(3) If two of the chosen regions share a crossing, add an edge between the cor-
responding vertices in the graph. This edge is solid if the marking associated
with that crossing falls within the chosen regions and is dotted if the marking
falls within the regions of the other color.

Since we had two choices in (2) above, we get two distinct graphs for any knot
diagram. These graphs are always signed duals of one another. We illustrate this
entire procedure for the trefoil knot 31 in Figure 7, showing both of the resulting
planar graphs in the second row.

Our next challenge is to determine how the Reidemeister moves for knot diagrams
translate to checkerboard graphs, as we need a reliable way of determining when
two graphs represent the same underlying knot. It is important to note that every
Reidemeister move for knot diagrams actually corresponds to two graph Reidemeis-
ter moves that are duals of one another. We illustrate all of these graph Reidemeister
moves in Figure 8. In this figure, each diagram represents a local piece of the entire
checkerboard graph. E and F represent nodes in the graph that may or may not have
other edges entering them, while the small black vertices are adjacent only to the
edges shown. In the second R2 move, E∪F denotes that the central node is now ad-
jacent to all edges that were formerly incident upon either the E node or the F node.

One more important thing to note is that both graph representations of an alter-
nating diagram only have one type of edge (one of them has all solid edges, while
the signed dual has all dotted edges). This makes alternating diagrams especially
easy to identify from checkerboard graphs: you no longer have to trace along the
entire diagram to see if the knot alternates between overstrands and understrands!

Since our research deals with how knots behave under crossing changes, we
need to determine how a crossing change effects a knot diagram’s associated graph.
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E 0 ← R1→ E ← R1→ E 0

E ← R1∗→ E ← R1∗→ E

E F ← R2→ E F ← R2→ E F

E 0 F ← R2∗→ E ∪ F ← R2∗→ E 0 F

E F

J

0
← R3→

E F

J

E F

J

0
← R3∗→

E F

J

Figure 8. Reidemeister moves for graphs.

Crossing changes switch the roles of the overstrand and understrand at a single
crossing. In either checkerboard graph for the diagram, this changes the marking
on the associated edge and hence flips the type of edge that appears in the graph
(dotted to solid, or solid to dotted).

Finally, we need to know how flypes effect our graphs. Figure 9 shows the graph
representations of flypes. Just as with the Reidemeister moves, a flype has two
different graph representations that are (signed) duals of one another.

Notice that, in the first flype equivalence, we are rearranging edges that separate
the same two regions in our graph. In the second equivalence, we are rearranging
edges that connect the same two vertices.

E 2 F> ←→ E 2 F⊥

E

F

>
←→

F

E

⊥

Figure 9. Graph equivalents of a flype.
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31

41

52 51

61 62 63

7172 74 77 73 75 76

Figure 10. The V-order for prime alternating knots through 77.

2. Our partial ordering

Now we will investigate our V-order. Recall the definition:

Definition 2.1. Let K1 and K2 be prime alternating knots. The V-order defines K1 to
be a V-minor of K2 if there exists a minimal diagram of K2 that can be transformed
into some diagram of K1 via simultaneous crossing changes. We then define
(Kn, Kn−1, . . . , K2, K1) to be a proper sequence of knots if Ki is a V-minor of Ki+1

for all i , and K1 ≤ K2 if there exists a proper sequence containing both K1 and K2,
where K1 appears to the right of K2.

Our first goal was to directly expand the Hasse diagram of Section 1 up through
7-crossing prime alternating knots. If Conjecture 4.1 proves to be true, these results
will translate into a direct extension of Taniyama’s original T-order.

In order to directly determine which knots were V-minors of a particular knot K ,
we exhaustively checked all possible ways to make simultaneous crossing changes
on the graph for a fixed minimal diagram D of K . We checked all of the (com-
binatorially distinct) ways to make one crossing change at a time, and then two
crossing changes at a time, etc., up to half of the crossing number of K . We did
not need to change more than half of the crossings at a time because we do not
distinguish between a knot and its reflection: if changing some set of crossings
yields a diagram of K , then changing the complement of that set gives a diagram
of the reflection of K .

Our updated Hasse diagram is shown in Figure 10. See the Appendix for the
calculations that yielded this Hasse diagram.

Invariants and the V-order. The problem with the direct technique above is that
there are an extremely large number of cases to check for each knot. In order to
quickly eliminate many possible relationships in the V-order, we prove several
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Figure 11. A knot diagram with br(D)= 4.

results about the ordering that involve knot invariants. A knot invariant is a function
i : κ→α from the set of all knots κ to some algebraic structure α. Distinct diagrams
of the same knot must get sent to the same value by the invariant, so if an invariant
gives different values for two diagrams, they cannot represent the same knot.

The knot invariants we work with are crossing number c(K ), bridge index br(K ),
and braid index b(K ). It should be noted that some of our proofs in this section are
similar to those presented in [Endo et al. 2010], where Endo, Itah, and Taniyama
relate an entirely distinct partial ordering of links to common link invariants.

Theorem 2.2. Let K1, K2 be distinct knots with K1 ≤ K2, then c(K1)≤ c(K2).

Proof. Let K1 and K2 be knots, where K1 ≤ K2 and c(K2)= n. Then there exists
a minimal diagram D2 of K2 that can be transformed into a diagram D1 of K1 via
some number of simultaneous crossing changes. Now, D1 has n crossings, and thus
the crossing number of K1 can be at most n. �

The following theorem, which was originally proven by Taniyama [1989], is
more specific to our research since our V-order is restricted to alternating knots.

Theorem 2.3. Let K1, K2 be alternating knots with K1 ≤ K2, then c(K1) < c(K2).

Proof. Let K1 and K2 be alternating knots, where K1 ≤ K2 and c(K2)= n. Then
there exists a minimal diagram D2 of K2 that can be transformed into a diagram D1

of K1 by simultaneously changing some but not all of the crossings in D2. Now,
D1 has n crossings, so by Theorem 1.2, D1 cannot be a minimal diagram of K1.
Thus c(K1) < n. �

The second invariant we work with is the bridge number. The bridge number of
a knot diagram D of K is the number of local maximums in D with respect to the
y-coordinate in R2 (the number of “top points” in the diagram). The bridge index
br(K ) of a knot K is the minimal bridge number over all diagrams of K . Note that,
for every diagram D of K , there is one local minimum for every local maximum,
so the bridge number could have been defined using local minimums.

An example of a knot diagram D with br(D)= 4 is shown in Figure 11. Here
the box represents some (possibly complex) part of the knot diagram that contains
no local maxima or minima.

Theorem 2.4. If K1 ≤ K2, then br(K1)≤ br(K2).
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Figure 12. A knot diagram with b(K )= 3.

Proof. Let K1 and K2 be knots, where K1 ≤ K2 and br(K2)= n. Then there exists
a minimal bridge diagram D2 of K2 that can be transformed into a diagram D1

of K1 via some number of simultaneous crossing changes. Since D1 has n local
maxes, the bridge number of K1 can be at most n. �

The last invariant we work with is the braid index. The braid index b(K ) is the
minimal number of strands over all braid representations of a knot.

An example of a braid representation is shown in Figure 12. As with our figure
for bridge number, the box represents some (possibly complex) part of the knot
diagram that contains no local maxima or minima.

Theorem 2.5. If K1 ≤ K2, then b(K1)≤ b(K2).

Proof. Let K1 and K2 be knots where K1 ≤ K2 and b(K2)= n. Then there exists
a minimal braid diagram D2 of K2 (with n braid strands) that can be transformed
into a diagram D1 of K1 via some number of simultaneous crossing changes. Since
D1 has n braid strands, the braid index of K1 can be at most n. �

Direct V-minors. We now turn our attention to finding direct V-minors. Recall
that K1 is a direct V-minor of K3 if K1 ≤ K3 and there does not exist a distinct K2

such that K1 ≤ K2 ≤ K3. As we are restricting ourselves to prime alternating knots,
we will search for direct minors by finding alternating knots K1 ≤ K3 such that
c(K1)= c(K3)− 1. Theorem 2.3 ensures that all pairs of knots with this property
yield a direct V-minor. Although this strategy won’t find all direct V-minors, it will
locate most of them (as you can tell from our expanded Hasse diagram, the vast
majority of edges connect knots that differ by a crossing number of one).

Our primary tool in applying this strategy is the following theorem, which vastly
limits the number of cases where c(K1)= c(K3)− 1 is possible.

Theorem 2.6. Let K1 and K2 be alternating knots with K1 ≤ K2, and let G2 be
any minimal graph of K2.

(1) In G2, if we switch some but not all of the edges connecting two vertices, then
c(K1)≤ c(K2)− 2.

(2) In G2, if we switch some but not all of the edges separating two regions, then
c(K1)≤ c(K2)− 2.
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Proof. We are given that K1 and K2 are alternating knots with K1 ≤ K2. Let G2 be
an alternating graph of K2. Switch some but not all of the edges connecting two
vertices, so that those two vertices have at least one dotted edge and one solid edge
between them. In general these edges need not be directly adjacent. If they are not
directly adjacent, we can perform the flype below to make them adjacent:

E

F

>
∗ ∼

F

E

⊥∗

After performing this flype we can always perform an R2 move, which will
produce a graph with two edges less than the original G2. Thus, K1 has at most
c(K2)− 2 crossings and c(K1)≤ c(K2)− 2.

The proof for the case of switching some but not all of the edges separating two
regions is similar to above. Now the relevant flype that yields an R2 move takes
the form of the diagram below:

E 2 F G>
∗ ∼ E 2 F G⊥∗ �

When searching for direct V-minors, we restrict our attention to the combinatorial
cases that involve changing all crossings that connect a fixed pair of vertices or
all crossings that separate a fixed pair of regions (or a multiple number of such
cases). Using terminology from the literature, these cases correspond to changing
all crossings in fixed number of twist boxes. These guidelines directly guided the
calculations that we performed in the Appendix.

It should be noted that the conditions from Theorem 2.6, although necessary for
obtaining a direct V-minor with c(K1)= c(K2)− 1, are not sufficient to guarantee
that c(K1)= c(K2)− 1. Below is an example where we follow the conditions of
Theorem 2.6 but still end up with a knot such that c(K1)≤ c(K2)− 2.

Example 2.7. If we change both of the middle edges of the graph of 75, we drop
to the graph of 41, which has c(41)= c(75)− 3.

→ = 41
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3. Pretzel links and our partial ordering

Basic properties. A particularly simple class of links that behave nicely with respect
to our partial ordering are pretzel links. A link is a pretzel link if it has a diagram
that takes the form on the left side of Figure 13. Here the boxes represent twist
boxes full of half-twists in either direction. Since it is sometimes difficult to tell
whether a pretzel link is a one-component knot or a multiple-component link, all of
our theorems in this subsection have been extended to alternating links.

If we take the gray regions from our checkerboard coloring on the left, we see
that a pretzel link always has a graph of the form on the right side of Figure 13. Here
the half-twists in the link diagram translate into parallel edges between adjacent
vertices. We refer to graphs of this type as polygonal graphs. We denote the pretzel
link of Figure 13 by Pv(x1, x2, x3, . . . , xv), where v is the number of twist boxes in
the link diagram (or the number of vertices in the associated polygonal graph) and
xi is an integer corresponding to the number of half-twists in each twist box (or the
number of edges connecting the consecutive vertices vi and vi+1). We define vv to
precede v1. By convention, xi will be negative if all of the edges in the given twist
box are dotted, and positive if all of the edges are solid (if there are solid and dotted
edges between two fixed vertices, we immediately eliminate them with an R2 move).

For example, in Figure 14 we have P3(3, 3, 2)= 85. Notice that P3(3, 3, 2)=
P3(3, 2, 3)= P(2, 3, 3).

Pretzel links and our partial order. The reason that pretzel links are extremely
nice in relation to our partial ordering is that many of them have only one or two
direct V-minors (and almost all knots with only one or two direct V-minors appear
to be pretzel knots; see Section 4). Here we present several theorems characterizing
the role of several classes of pretzel links in our partial ordering.

x1
half-

twists

x2
half-

twists

x3
half-

twists

x1
edges

x2
edges

x3
edges

Figure 13. Pretzel knot diagram and its graph.



A NEW PARTIAL ORDERING OF KNOTS 459

Figure 14. 85 = P3(3, 3, 2).

The simplest class of pretzel links are (p, 2)-torus links. A (p, 2)-torus link is
a link with only a single twist box, where p is the total number of half-twists in
the twist box. They are so named because they fit upon the surface of a torus in R3

and wrap around the torus p times in the meridian direction for every two times
that they wrap around the torus in the longitudinal direction. If p is odd then the
(p, 2)-torus link is a knot; if p is even then the (p, 2)-torus link is a two-component
link. In terms of our pretzel link notation, the (p, 2)-torus link is Pp(1, 1, . . . , 1).
Figure 15 shows the general form for the checkerboard graph of a torus knot.

Theorem 3.1. Every V-minor of the (p, 2)-torus link is a (q, 2)-torus link with
q < p. Furthermore, the (p, 2)-torus link has a single direct V-minor in the
(p− 2, 2)-torus link.

Proof. Consider the graph Pp(1, . . . , 1) of the (p, 2)-torus link. If we change m< p
crossings in the polygonal graph’s sole twist box, there will be a solid edge next
to a dotted edge. This means that we can always perform an R2 move, removing
edges in pairs until the edges are all solid or all dotted. Every time we perform
an R2 move, we lose two edges. The resulting graph will always be of the form
Pp−2k(1, . . . , 1), where k is the minimum between the number of dotted edges and
the number of solid edges that we start with. �

This theorem supports what we already found for the torus knots 31, 51, 71 in our
Hasse diagram: the (p, 2)-torus knots line up in our Hasse diagram and have the
smaller (p, 2)-torus knots below them in a line. Note that many non-(p, 2)-torus
knots may have a (p, 2)-torus knot as their V-minor: our theorem doesn’t work in
the other direction.

. . . . . .

Figure 15. Left: (p, 2)-torus knot checkerboard graph. Right:
twist knot checkerboard graph.
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Another basic class of pretzel links are twist links, which are always one-
component knots. A twist knot is a pretzel link whose checkerboard graph is
of the form shown in Figure 15. Its two polygonal graphs are always of the form
Pc(K )−1(2, 1, 1, . . . , 1) and P3(c(K )− 2, 1, 1). The smallest nontrivial twist knots
are 31= P3(1, 1, 1), 41= P3(3, 1, 1), 51= P3(4, 1, 1), and 61= P3(4, 1, 1). Notice
that 31 is both a twist knot and a (p, 2)-torus knot.

Theorem 3.2. Every V -minor of the twist knot P3(n, 1, 1) is a twist knot P3(m, 1, 1)
with m < n. Furthermore, the twist knot P3(n, 1, 1) has a single direct V -minor in
P3(n− 1, 1, 1).

Proof. Changing m < n crossings in the big twist box always allows for R2
moves, similarly to Theorem 3.1. The result is always a twist knot of the form
P3(n−2k, 1, 1) for some integer k> 0. Changing one but not both of the remaining
two crossings always results in the unknot (technically a twist knot), as an R2 move
on the bottom allows us to completely untwist the knot. Changing both of the
remaining crossings results in the direct V-minor P3(n− 1, 1, 1); see the proof of
Theorem 3.3 for a more general demonstration of this fact. Changing both of the
remaining two crossings and some number of crossings in the big twist box results
in the same knot as changing the complement of these crossings, which falls into
the same case as above. In every case, we are left with a twist knot. �

As with Theorem 3.1, the implication of Theorem 3.2 is easily seen in our Hasse
diagram: the twist knots 31, 41, 51, etc. line up along the left side of the diagram
and only have other twist knots underneath them.

Theorems 3.1 and 3.2 are actually special cases of the theorem below, which
gives a very broad class of pretzel links with only one or two direct V-minors:

Theorem 3.3. Consider the pretzel link L = Pk+2(x, y, 1, 1, 1, . . .), where k > 1.

(1) If x, y 6= 1, then L has two direct V-minors, each of which has crossing number
c(L)− 1. These two V-minors, which are equivalent if x = y, have (possibly
nonpolygonal) graphs of the form

. . .

x−1
k−1

y consecutive edges

and

. . .

y−1
k−1

x consecutive edges

Here the x − 1, y− 1, and k− 1 refer to that number of parallel strands.

(2) If x=1, then L has one direct V-minor of the form P3(k, y−1, 1). Equivalently,
if y = 1, then L has only one direct V-minor of the form P3(k, x − 1, 1).
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Proof. Given L as defined above, the dual graph of Pk+2(x, y, 1, 1, 1, . . .) is
. . .. . .

k

Here we have k parallel strands in the middle, a string of x consecutive strands
of the left, and a string of y consecutive strands on the right. We choose to perform
our possible crossing changes on this dual graph.

From Theorem 2.6, we know that we can only achieve a direct V-minor L ′ with
c(L ′)= c(L)− 1 if we perform crossing changes on entire twist boxes. From the
diagram above, we clearly have three twist boxes: one on the left, one on the right,
and one with the k parallel strands down the middle. We then have three cases to
check, corresponding to changing all of the crossings in each twist box (notice that,
up to reflection, changing all crossings in two twist boxes yields the same knot as
changing all of the crossings in the remaining twist box).

First we change all crossings on the left side, giving
. . .. . .

k

After adding a free solid edge on the left side (corresponding to an R1 move), a
series of R3 moves reduces the graph to

. . .

x−1
k

Notice that this graph has c(L)+ 1 edges. After performing an R2 move in the
middle, we are left with the following graph with c(L)− 1 edges, corresponding to
the first direct V-minor from the theorem statement:

. . .

x−1
k−1
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Changing all of the crossings on the right side of the original graph is equivalent
to the above, and results in the second direct V-minor from the theorem statement.

Lastly, we consider changing all crossings in the middle twist box. This is equiv-
alent (up to reflection) to changing all of the crossings on the left and on the right,
which allows us to perform the procedure above two consecutive times to arrive at

y−1x−1
k−2

This graph has c(L)−2 edges and is actually a direct V-minor of the two c(L)−1
crossing knots derived above. Hence it is a remote V-minor of our original link.
Thus our link has only the two direct V-minors stated in the theorem.

Part (2) of the theorem is a special case of part (1). When x = 1, the string of
consecutive edges in the right graph from the theorem statement is a single edge
that adds to the twist box in the middle (which now has k parallel edges instead
of k− 1 parallel edges). The argument for y = 1 is similar. �

4. Future work

Our work revealed several questions that we hope to address in future papers. The
biggest open question that lay behind much of our research was what we referred
to as the minimal conjecture.

Conjecture 4.1 (The minimal conjecture). Let K2 be a prime alternating knot (link)
and let K1 be any knot (link). If there exists a minimal diagram of K2 that can
be transformed into a diagram of K1 via some number of simultaneous crossing
changes, then every diagram of K2 can be transformed into K1 via some number of
simultaneous crossing changes.

As noted earlier in the paper, if Conjecture 4.1 is true, it implies that the V-order
and T-order are equivalent for prime alternating knots. This means that our work
would be a direct refinement of Taniyama’s original methods. Unfortunately, this
conjecture seems to resist all direct methods of proof that we attempted.

In Section 3, we produced many knots with only one direct V-minor. For knots
with low crossing number, the only knots we found that had only one direct V-minor
were pretzel knots. This begs the following conjecture.

Conjecture 4.2. Pretzel knots are the only prime alternating knots with one direct
V-minor.

Below are a few additional general avenues of research that we may address in
future research.
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∼

∼

Figure 16. Top: 85 ≥ 31#31. Bottom: 816 ≥ 31#31.

Future Topic 4.3. All (p, 2)-torus knots K lack direct V-minors K ′ with c(K ′)=
c(K )−1. Most other knots seem to have at least one V-minor with c(K ′)= c(K )−1,
but there are still examples of non-(p, 2)-torus knots that fail in this regard. The
knots 85 and 816 are non-(p, 2)-torus knots K that have no direct V-minors K ′

with c(K ′) = c(K ) − 1. Is there something special about these knots that we
can generalize? Notice that these problematic eight-crossing knots are also the
eight-crossing alternating knots with nonprime V-minors; see Figure 16.

Is it possible to expand our work to nonprime or nonalternating links? At the
very least, is it possible to fully categorize which prime alternating knots have
nonprime or nonalternating knots directly beneath them in our ordering?

Future Topic 4.4. In relation to this final topic, we already have one result about
the placement of nonalternating knots within the V-order:

Theorem 4.5. Let L1 be a nonalternating link with c(L1) = n. Then there exists
an alternating link L2, where c(L2)= n, such that L1 ≤ L2.

Proof. If L1 is a nonalternating link with c(L1)= n, the minimal graph for L1 will
have both dotted and solid edges with n edges total. If we change all the dotted
edges to solid, we now have a graph of a link L2 with all solid edges. Since this
projection is reduced alternating, Theorem 1.2 implies that this graph of L2 is
minimal. So we have a minimal graph of L2 with crossing number n. We also can
see that L1 ≤ L2 since we are able to transform a minimal diagram of L2 into L1

via crossing changes. �

Appendix: Expansion of the Hasse diagram

Here we exhibit the calculations that yielded our expansion of the Hasse diagram in
Section 2. For each edge in the diagram, which corresponds to K1 ≤ K2, we show
a minimal diagram of K2 with the crossing changes needed to produce the direct
V-minor K1.
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K2 K1

31 ∼ 01

41 ∼ 31

51 ∼ 31

52 ∼ 41

61 ∼ 52

62 ∼ 51

62 ∼ 52

63 ∼ 51

63 ∼ 52
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K2 K1

71 ∼ 51

72 ∼ 61

73 ∼ 62

74 ∼ 61

75 ∼ 62

75 ∼ 63

76 ∼ 61

76 ∼ 62

76 ∼ 63
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K2 K1

77 ∼ 61

77 ∼ 62
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Two-parameter taxicab trigonometric functions
Kelly Delp and Michael Filipski

(Communicated by Frank Morgan)

In this paper, we review some of the fundamental properties of the `1, or taxicab,
metric on R2. We define and give explicit formulas for two-parameter sine and
cosine functions for this metric space. We also determine the maximum of these
functions, which is greater than 1.

1. Introduction

The `1 metric on R2, the so-called taxicab metric, is often one of the first non-
Euclidean metrics a mathematics student encounters. For any points p = (p1, p2)

and q = (q1, q2) in R2, the metric is given by the formula

dT (p, q)= |p1− q1| + |p2− q2|.

The `1 metric is just one metric in a class of metrics defined on R2 known as
Minkowski metrics; see [Álvarez Paiva and Thompson 2005] for an introduction to
these metric spaces. Let � be a closed, bounded convex set in R2 which contains
and is symmetric about the origin. The set � defines a norm on R2, where � is the
unit disk. Given a norm ‖ · ‖, one can define a metric on R2 by d(p, q)= ‖p− q‖.
Examples of Minkowski metrics include the `p metrics, the `∞ or max metric, and
metrics with a unit disk that is a regular 2n-gon.

Length minimizing paths in the taxicab plane are not necessarily unique, so we use
the vector space properties of R2 and define lines to be the sets of points of the form
L = {tv+b | t ∈ R} for some fixed v and b. We can similarly define line segments,
triangles, rays, and angles (pairs of rays sharing an initial point). We define the
length of a line segment AB to be the distance between the endpoints, dT (A, B).

Given a metric d on a set X , a circle C of radius r is the set of all points p ∈ X
equidistant from a given point called the center. A circle in the taxicab metric is
a square with diagonals parallel to the x- and y-axes. In Euclidean space there is
an intrinsic notion of angle measure, radian measure, which is determined by the

MSC2010: 51F99, 52A21.
Keywords: taxicab trigonometry, Minkowski geometry.

467

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2015.8-3
http://dx.doi.org/10.2140/involve.2015.8.467


468 KELLY DELP AND MICHAEL FILIPSKI

x

2− x

x

Figure 1. Euclidean right angles have taxicab angle measure of 2.

length of a particular circle arc. We can similarly define an intrinsic angle measure
in the taxicab plane, called t-radians.

Definition 1. Let C be a circle with radius r and center P . Given an angle with
vertex P , let s be the length of the subtended arc. The t-radian measure, θ , of a
taxicab angle is given by

θ =
s
r
.

It is this notion of angle measure which was used in these previous works [Akça
and Kaya 1997; Brisbin and Artola 1985; Thompson and Dray 2000] on taxicab
trigonometry. Another well-studied angle measure in a Minkowski metric uses the
area of the sector of the circle, rather than arc length, to define the angle measure.
(Due to a theorem of Haar, any area measure µ is proportional to Lebesgue measure;
see [Álvarez Paiva and Thompson 2004] for a discussion of areas in normed spaces.)
By Theorem 1 in [Düvelmeyer 2005], these two notions are equivalent (up to scale)
because the taxicab circle is an example of an equiframed curve. See [Düvelmeyer
2005] for the definition of equiframed curve.

Note that an `1 circle has 8 t-radians, which means in this metric, 4 is the analogue
of π . Some of the properties from Euclidean geometry have analogous statements
which are true in the taxicab plane. We will use the following propositions.

Proposition 2 [Thompson and Dray 2000, Theorem 4.2]. The angle sum of a
taxicab triangle is 4 t-radians.

We define a taxicab right angle to be an angle with measure 2 t-radians, which,
as in Euclidean geometry, is an angle which has measure equal to its supplement.

Proposition 3 [Thompson and Dray 2000, Lemma 2.5]. A Euclidean right angle
has taxicab angle measure of 2 t-radians, and the converse is also true.
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α

β

Figure 2. An `1 circle with two right-angled triangles.

Figure 1 gives a sketch of a proof of Proposition 3.
Proposition 3 implies that the vectors x and y form a right angle in the taxicab

plane if and only if they are orthogonal in the Euclidean sense. The study of
different notions of orthogonality in Minkowski spaces is an active area of research.
Two important orthogonality types in Minkowski spaces are Birkhoff orthogonality,
(x⊥ y if and only if ‖x−αy‖≥‖x‖ for all α) and James (or isosceles) orthogonality
(x⊥ y if and only if ‖x+y‖= ‖x−y‖). In the taxicab plane, Birkhoff orthogonality
is not symmetric and James orthogonality is not invariant under scalar multiplication,
which implies neither notion is equivalent to the definition of right angle that we
use above; see the recent survey [Alonso et al. 2012] for an explanation of these
facts and extensive discussion of orthogonality in normed linear spaces.

Not all angles in the taxicab geometry behave as nicely as right angles. In
Figure 2, the Euclidean angles α and β of the two triangles depicted are not equal,
but the taxicab angle measure of both is 1

2 .
A taxicab right triangle is in standard position if the base of the triangle is parallel

to the x-axis (see α-triangle in Figure 2). For triangles in standard position, we
can define the taxicab sine and cosine functions as we do in Euclidean geometry
with the cos θ and sin θ equal to the x- and y-coordinates on the unit circle. Indeed,
the piecewise linear formulas for these functions are given in [Thompson and Dray
2000; Akça and Kaya 1997] and with slightly different formulas in [Brisbin and
Artola 1985]. However, if we define sine and cosine as ratios of sides of right
triangles, considering only triangles in standard position will not give all possible
values. To illustrate this, we refer again to Figure 2.

Both triangles are right triangles with hypotenuse (the side opposite the 2 t-
radian angle) of length 1. Also, since α and β both have angle measure 1

2 , the other
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nonright angle is 4− 2− 1
2 =

3
2 . In the α-triangle, we compute the cosine of α

by taking the ratio of the lengths of the adjacent side and the hypotenuse, which
is 3

4 . However, looking at the β-triangle, we see the vertex of the right angle falls
outside of the unit circle, which implies that the length of the side adjacent to β,
and therefore the cosine of β, is greater than 1.

A natural question arises: what is the maximum value of the cosine of an angle
in the taxicab plane? In this paper, we define and give explicit formulas for two-
parameter sine and cosine functions, describing the possible side ratios of right
triangles in the taxicab plane. Using these formulas, we show the maximum value
to be 1/2+ 1/

√
2, which is greater than 1. Thus we obtain a quantitative measure

of a difference between the Euclidean and taxicab plane.
We would like to thank the referee for pointing out many references on the

geometry of Minkowski metric spaces, including [Thompson 1996]. In Chapter 8
of this text, Thompson defines two-parameter sine and cosine functions for general
Minkowski spaces. For Thompson’s function, the Minkowski cosine of two vectors
is zero if and only if the vectors x1 and x2 are Birkhoff orthogonal. This property
does not hold for our definition of cosine, so our functions are not a special case of
those defined by Thompson, even up to scale. Using the sine function, Thompson
defines an α which measures how far the Minkowski space is from Euclidean space,
leaving us with a question: is this α related to the value we obtain for the maximum
of our taxicab sine function?

2. A two-parameter sine and cosine function

Definition 4. Given two metric spaces (X, d1) and (Y, d2), a bijection f : X→ Y
is an isometry if for any two points p, q ∈ X ,

d1(p, q)= d2( f (p), f (q)).

Given a metric space X , the set of all isometries φ : X→ X forms a group, and
the set of isometries that fix a point forms a subgroup of this group. An important
subgroup is the set of isometries which fix the origin, which, by the Mazur–Ulam
theorem (see [Thompson 1996, Chapter 3]), are linear. Using this fact and the fact
that isometries map circles to circles with the same radius, one can see that the
group of isometries that fix the origin of (R2, dT ) is the group of symmetries of a
square, also called the dihedral group D4. This includes the set of rotations (by 0◦,
90◦, 180◦, and 270◦) and reflections across the x-axis, y-axis and the lines passing
through the origin with slope ±1. The full group of isometries is the semidirect
product D4oR2, which is proved in [Schattschneider 1984]. This group is generated
by translations and isometries that fix the origin.

Two triangles T1, T2 in the taxicab plane are congruent if there is a taxicab
isometry φ such that φ(T1)= T2. Note that due to the rigidity of the isometry group,
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L⊥

(p1, p2)

Q L

θ φ(r1, r2)

Figure 3. Defining sine and cosine.

there is no taxicab isometry taking the α-triangle in Figure 2 to the β-triangle,
so there is no angle-side-angle theorem in taxicab geometry. We will define the
taxicab sine and cosine functions to have two angle parameters; one parameter is
the usual θ -angle parameter measured from a fixed axis, and the other φ-parameter
will denote the “direction” of the triangle in the plane (see Figure 3).

Before giving the definition, we describe a notion of orthogonal projection in
the taxicab plane. Let L be a line and P be a point. If P is on L , the orthogonal
projection of P onto L is P . If P is not on L , the orthogonal projection is a unique
point R on L for which the line segment OPR makes a Euclidean right angle with L;
Proposition 3 implies that this point R is also the unique point on L which makes a
taxicab right angle. The following definition, which is convenient for later proofs,
may seem somewhat unnatural; we refer the reader to Propositions 6 and 7 which
justify that this definition gives the desired “signed ratio” of side lengths.

Definition 5. Let L be the line through the origin O which makes reference angle φ
with the x-axis, where 0≤ φ < 2, and let P = (p1, p2) be a point on the unit circle
so that OP makes angle θ with L . Let R = (r1, r2) be the orthogonal projection
of P onto L . We define the taxicab cosine and sine of angle θ at reference angle φ as

tcosφ θ = r1+ r2, tsinφ θ = (r1− p1)+ (p2− r2).

Given a right triangle T with hypotenuse of length 1, there is a taxicab isometry
which maps T to a triangle of the form 4 PRO given in Definition 5, so T is
congruent to 4PRO .
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Let L⊥ be the perpendicular to L which also passes through the origin. The lines
L and L⊥ divide the plane into four quadrants, which we number I, II, III, IV in
the usual way.

Proposition 6. The value of tcosφ θ is positive for θ in L-L⊥ quadrants I and IV ,
and negative for θ in quadrants II and III. Similarly tsinφ θ is positive for θ in
quadrants I and II, and negative for θ in quadrants III and IV.

Proof. Let P = (p1, p2) and R = (r1, r2) be as given in Definition 5. When θ is in
quadrants I and IV, as defined by L and L⊥, the coordinate r1 is positive and r2 is
nonnegative (when φ = 0, the line L is the x-axis and r2 = 0). Therefore tcosφ θ ,
which is the sum of these coordinates, is positive. Similarly, when θ is in quadrants II
and III, r1 is negative and r2 is nonpositive; hence tcosφ θ is negative.

Recall that tsinφ θ = (r1− p1)+ (p2− r2). For a fixed φ, the coordinates of P
and R are continuous real-valued functions of θ , and therefore the functions r1− p1

and p2−r2 are also continuous functions. When 0<φ<2, each of these functions is
zero if and only if θ =4n for some integer n. This follows from the fact that the slope
of L is positive, which implies that the line through P and R has negative slope; so
p1= r1 or p2= r2 if and only if P= R. Therefore the sign of each of these functions,
r1− p1 and p2− r2, is constant for θ in quadrants I and II. Picking a specific angle
such as θ = 2 allows us to verify that both are positive, and therefore tsinφ θ is
positive. Choosing an angle in the range 4<θ <8 shows that both of these functions
are negative, and therefore tsinφ θ is also negative when θ is in quadrants III and IV.

When φ = 0, we have that r2 = 0 and r1 = p1; then tsinφ θ = p2, and the
result follows. �

Proposition 7. In the right triangle made by P , R and the origin O , |tcosφ θ | gives
the length of the side adjacent to θ , and |tsinφ θ | gives the length of the opposite side.

Proof. Fix an angle 0 ≤ φ < 2. The length of the adjacent side is the distance
from R to the origin, which is |r1| + |r2|. When θ is in quadrants I and IV (defined
by L and L⊥), both r1 and r2 are nonnegative, so

|r1| + |r2| = r1+ r2 = |tcosφ θ |.

When θ lies in quadrants II and III, both r1 and r2 are nonpositive, so

|r1| + |r2| = −r1− r2 =−(r1+ r2)= |tcosφ θ |.

The length of the side opposite of θ in triangle OPR is given by the distance
between P and R, which is |p1 − r1| + |p2 − r2|. Arguing as in Proposition 6,
when θ is in quadrants I and II, we have

|p1− r1| + |p2− r2| = (r1− p1)+ (p2− r2)= |tsinφ θ |,
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and when θ is in quadrants III and IV,

|p1− r1| + |p2− r2| = −(r1− p1)− (p2− r2)

=−
(
(r1− p1)+ (p2− r2)

)
= |tsinφ θ |. �

Proposition 8. The following identities hold.

tsinφ(θ − 4)=− tsinφ θ and tcosφ(θ − 4)=− tcosφ θ.

Proof. Let P and R be the points given in Definition 5 corresponding to θ , and P ′ and
R′ the points corresponding to θ−4. By Proposition 3, taxicab angles of measure 2
are Euclidean right angles, which means P and P ′ are antipodal points on the unit
circle and P ′=−P . The map (x, y)→ (−x,−y) is an isometry of the taxicab plane
which maps P to P ′. Angles are defined by the metric, and therefore isometries
preserve angle measure. It follows from the definition of R that R′=−R. Therefore,

tcosφ(θ − 4)=−r1− r2 =−(r1+ r2)=− tcosφ θ

and
tsinφ(θ − 4)= (−r1+ p1)+ (−p2+ r2)

=−
[
(r1− p1)+ (p2− r2)

]
=− tsinφ θ. �

3. Explicit formulas for sine and cosine functions

Theorem 9. Let φ be a taxicab reference angle such that 0≤ φ < 2 and let θ be a
taxicab angle measured relative to φ. Let

α =
1

φ2− 2φ+ 2
,

which is well-defined for all φ since φ2
− 2φ+ 2> 0. The sine and cosine of θ with

reference angle φ are given by

tsinφ θ =


α θ if −φ ≤ θ ≤ 2−φ,
1+α(θ − 2)(φ− 1) if 2−φ ≤ θ ≤ 4−φ,
α(4− θ) if 4−φ ≤ θ ≤ 6−φ,
−1+α(6− θ)(φ− 1) if 6−φ ≤ θ ≤ 8−φ,

and

tcosφ θ =


1+α θ(φ− 1) if −φ ≤ θ ≤ 2−φ,
α(2− θ) if 2−φ ≤ θ ≤ 4−φ,
−1+α(4− θ)(φ− 1) if 4−φ ≤ θ ≤ 6−φ,
α(θ − 6) if 6−φ ≤ θ ≤ 8−φ.
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Lemma 10. Let L be a line through the origin that makes angle φ with the x-axis,
where 0≤ φ < 2. The point of intersection between L and the unit taxicab circle is

Q =
(

2−φ
2

,
φ

2

)
.

Proof. Let Q = (q1, q2). Since Q lies on the unit circle and 0 ≤ φ < 2, both
coordinates are positive and

q1+ q2 = 1. (1)

Since the radius of the unit circle is 1, the definition of angle implies that φ is the
distance between Q and (1, 0). This distance is given by

|q1− 1| + |q2− 0| = 1− q1+ q2 = φ. (2)

We solve the system of linear equations consisting of (1) and (2) for q2 by adding
the two equations to get

q2 =
φ

2
;

substituting q2 into (1) gives us q1 = 1−φ/2, which is the desired result. �

3.1. Proof of Theorem 9 for −φ ≤ θ ≤ 2−φ. Let 0≤ φ < 2 and −φ ≤ θ ≤ 2−φ.
We will determine the coordinates of P and R, given in Definition 5, as functions
of φ and θ . Lemma 10 implies that the φ-axis (line L in Figure 3) intersects the
circle at

Q =
(

2−φ
2

,
φ

2

)
.

Since the φ-axis passes through the origin, we find that the equation is

L(x)=
φ

2−φ
x . (3)

Next, we determine the coordinates of P , the point of intersection between
the circle and the (θ+φ)-ray. Applying Lemma 10 again with angle θ+φ gives
coordinates

P =
(

2−φ− θ
2

,
φ+ θ

2

)
.

Proposition 3 implies that Euclidean right angles are taxicab right angles. There-
fore, to find the point R we determine the equation of the line perpendicular (in
the usual Euclidean sense) to the φ-axis, L P , through point P . Since the φ-axis
has slope φ/(2−φ), L P has slope (φ− 2)/φ. Since we know the coordinates of
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P = (p1, p2) and the slope, we can determine the equation for L P , which is

L P(x)=
(
φ− 2
φ

)
(x − p1)+ p2

=
(φ− 2)x

φ
+
(φ− 2)(θ +φ− 2)+φ(θ +φ)

2φ
. (4)

The point R is the intersection between the φ-axis and L P . Setting equations (3)
and (4) equal to each other and solving for the x-coordinate of R yields

r1 =
2−φ

2
+
(2−φ)(φθ − θ)
2(φ2− 2φ+ 2)

.

Plugging r1 into L (or L p) gives the y-coordinate of R,

r2 =
φ

2
+

φ2θ −φθ

2(φ2− 2φ+ 2)
.

Thus, the coordinates of R are

R =
(

2−φ
2
+
(2−φ)(φθ − θ)
2(φ2− 2φ+ 2)

,
φ

2
+

φ2θ −φθ

2(φ2− 2φ+ 2)

)
.

The result now follows by using the coordinates of R and P to compute tsinφ θ and
tcosφ θ by the formulas given in Definition 5. �

3.2. Proof for 2 − φ ≤ θ ≤ 4 − φ. We again find the coordinates of P and R to
compute tsinφ θ and tcosφ θ . When 2 < θ + φ < 4, the point P is in the second
quadrant (as defined by the x- and y-axes). Let θ1 be the portion of θ measured
from the y-axis, so θ1 = φ+ θ − 2.

Let f : R2
→ R2 be the map defined by (x, y) 7→ (y,−x). This map is an

order 4 isometry of the `1 metric. Note that f (0, 1)= (1, 0) and f (P) is in the first
quadrant. Since angle measure is defined by the metric, angle measure is preserved
by isometries. We can therefore apply Lemma 10 to f (P) to obtain the coordinates

f (P)=
(

2− θ1

2
,
θ1

2

)
.

To obtain the coordinates for P we apply the inverse map:

P = f −1
(

2− θ1

2
,
θ1

2

)
=

(
−
θ1

2
,

2− θ1

2

)
=

(
2−φ− θ

2
,

4−φ− θ
2

)
.

To finish the proof for this interval, we use the same procedure as in the proof
for the first interval; that is, we find the equation of the line perpendicular to the
φ-axis through P to determine the coordinates of the point R. The line through P
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perpendicular to L(x) is

L P(x)=
(
φ− 2
φ

)
(x − p1)+ p2

=
(φ− 2)x

φ
+
(φ− 2)(θ +φ− 2)+φ(4− θ −φ)

2φ
. (5)

To find r1, we set equations (3) and (5) equal to one another and solve for x ,
which gives

r1 =
(φ− 2)(θ − 2)
2(φ2− 2φ+ 2)

.

Plugging r1 into L(x) (Equation (3)) gives

r2 =
−φ(θ − 2)

2(φ2− 2φ+ 2)
.

The sine and cosine functions can now be computed from the formulas given in
Definition 5. �

3.3. Proof for 4 − φ ≤ θ ≤ 8 − φ. We will use the symmetry of the functions
to establish the formulas for the third and fourth intervals. Let θ be in the given
interval, and θ∗ = θ −4. Then −φ ≤ θ∗ ≤ 4−φ. We have determined formulas for
tsinφ(θ∗) and tcosφ(θ∗) in this interval, so applying Proposition 8 gives formulas
for angle θ in the remaining two intervals. �

It should be noted that our formulas are a generalization of those formulas in
[Thompson and Dray 2000; Akça and Kaya 1997]; if φ = 0, then θ is in standard
position and we obtain identical formulas.

4. Properties of the functions

4.1. Periodic extensions and graphs. In Definition 5, the generalized sine and
cosine functions were defined for all real numbers θ and for values of φ such that
0≤ φ < 2. It is evident from the definition that the θ -period of these functions is 8,
so for any integer k,

tcosφ(θ + 8k)= tcosφ θ and tsinφ(θ + 8k)= tsinφ θ.

There is a natural φ-extension of these functions; since rotation by right angles
gives isometries of the `1 metric, we extend the φ-domain of the generalized sine
and cosine functions to be φ-periodic with period 2. Therefore, for any integer s,

tcosφ+2s θ = tcosφ θ and tsinφ+2s θ = tsinφ θ.

It should be noted that the formulas for tsinφ θ and tcosφ θ given by P and R from
Definition 5 are only valid for values of φ in the first quadrant. Since Theorem 9
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Figure 4. Graph of the generalized sine function.

gives explicit formulas for entire φ and θ periods, we may use this theorem and the
two periodic properties stated above to give values for tsinφ θ and tcosφ θ for any
(φ, θ) ∈ R×R. Figure 4 contains a graph of tsinφ θ for two periods of φ and two
periods of θ .

Table 1 shows a family of cross-sections. Referring to the formulas in Theorem 9,
we see that for a fixed φ these functions are piecewise linear. We invite the interested
reader to verify that these functions are constant when θ = 2n for some integer n.

Recall that in the Euclidean metric, sin(θ +π/2)= cos θ . The cross-sections for
the sine and cosine functions when φ is fixed suggest a similar identity.

Proposition 11. tsinφ(θ + 2)= tcosφ θ .

Proof. While this identity follows from the symmetry of the space, Theorem 9 gives
explicit formulas for tsinφ θ and tcosφ θ , so we need only check the formulas to
verify this identity. Assume that 0 ≤ φ < 2 and −φ ≤ θ ≤ 2− φ, which implies
2−φ ≤ θ + 2≤ 4−φ. For angles in the interval [2−φ, 4−φ],

tsinφ θ = 1+α(θ − 2)(φ− 1).

Therefore,

tsinφ(θ + 2)= 1+α((θ + 2)− 2)(φ− 1)= 1+α θ(φ− 1),

which is equal to tcosφ θ when −φ ≤ θ ≤ 2−φ. The other intervals can be verified
similarly. �

4.2. Maximum and minimum values.

Theorem 12. The maximum value of tsinφ θ and tcosφ θ is 1/2+ 1/
√

2; the mini-
mum value is −(1/2+ 1/

√
2).



478 KELLY DELP AND MICHAEL FILIPSKI

tsinφ θ tcosφ θ tsinφ θ tcosφ θ

φ = 0 θ = 0

φ = .5 θ = 1.5

φ = .85 θ = 3

φ = 1 θ = 4.5

φ = 1.15 θ = 6

φ = 1.5 θ = 7.5

Domain: −φ ≤ θ ≤ 16−φ Domain: 0≤ φ ≤ 2

Table 1. Cross sections.

Proof. By Proposition 11, the maximum of the sine function is equal to the maximum
of the cosine function. Also, by Proposition 8, the minimum of the sine function
is equal to the negative of the maximum. Therefore it is sufficient to verify the
maximum of the sine function.

The sine function has a θ -period of 8 and a φ-period of 2. However, the maximum
of the sine function must occur when sine is positive, and hence θ must be in the
interval [0, 4] by Proposition 6. It is therefore sufficient to find the maximum of
tsinφ θ on the region defined by 0 ≤ φ ≤ 2 and 0 ≤ θ ≤ 4. We will use standard
techniques from multivariable calculus to maximize this function.

As tsinφ θ is piecewise defined, we will consider the intervals

[0, 2−φ], [2−φ, 4−φ], and [4−φ, 4].

Recall that

α =
1

φ2− 2φ+ 2
=

1
(φ− 1)2+ 1

,
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which is positive for all φ. When θ is in the interval [0, 2−φ], we have tsinφ θ =αθ ,
and θ in [4−φ, 4] implies tsinφ θ = α(4− θ). The partial derivatives with respect
to θ of these functions are α and −α; therefore, tsinφ θ is increasing with respect
to θ on [0, 2− φ] and decreasing in θ on [4− φ, 4]. This implies the absolute
maximum of tsinφ θ occurs when θ is in the middle interval.

When 2−φ ≤ θ ≤ 4−φ,

tsinφ θ = 1+
(θ − 2)(φ− 1)
φ2− 2φ+ 2

.

The partial derivatives are

∂

∂φ

[
1+

(θ − 2)(φ− 1)
φ2− 2φ+ 2

]
=
(2φ−φ2)(θ − 2)
(φ2− 2φ+ 2)2

,

∂

∂θ

[
1+

(θ − 2)(φ− 1)
φ2− 2φ+ 2

]
=

φ− 1
φ2− 2φ+ 2

.

These are both zero only when (φ, θ) = (1, 2). In this case, tsin1(2) = 1. We
now check the boundary conditions.

When φ= 0, we have 2≤ θ ≤ 4 and tsinφ θ = 2+(−θ/2), which has a maximum
of 1. Note that tsinφ θ has the same maximum when φ= 2 because of the φ-periodic
property previously stated.

When θ = 2−φ, we have

g(φ)= tsinφ(2−φ)= 1−
(φ− 1)φ
φ2− 2φ+ 2

.

The derivative of this function is

g′(φ)=
φ2
− 4φ+ 2

(φ2− 2φ+ 2)2
.

This function is zero when φ = 2±
√

2. Only one of these values, φ = 2−
√

2,
is in the region under consideration. For this value of φ, we have θ =

√
2 and we

see the value of the sine function is

tsin2−
√

2

√
2= 1/2+ 1/

√
2.

When θ = 4−φ, we have

h(φ)= tsinφ(4−φ)= 1−
(φ− 2)(φ− 1)
φ2− 2φ+ 2

.

The derivative of this function is

h′(φ)=
2−φ2

(φ2− 2φ+ 2)2
.
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For values of φ in the interval [0, 2], this derivative is zero when φ =
√

2. Then
θ = 4−

√
2, and

tsin√2

(
4−
√

2
)
=

1
2
+

1
√

2
.

We can therefore conclude for values in the region 0 ≤ φ ≤ 2 and 0 ≤ θ ≤ 4,
the function tsinφ θ achieves its absolute maximum, 1/2+ 1/

√
2, in two locations:(

2−
√

2,
√

2
)

and
(√

2, 4−
√

2
)
. �

Corollary 13. The hypotenuse of a right triangle in taxicab space is not always the
longest side of the triangle.
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3F2-hypergeometric functions
and supersingular elliptic curves

Sarah Pitman
(Communicated by Ken Ono)

In recent work, Monks described the supersingular locus of families of elliptic
curves in terms of 2 F1-hypergeometric functions. We lift his work to the level of
3 F2-hypergeometric functions by means of classical transformation laws and a
theorem of Clausen.

1. Introduction and statement of results

Dating back to the works of Gauss, hypergeometric functions play an important
role in mathematics. More recently, these complex functions and their analogs have
been studied in terms of the complex periods of elliptic curves. The purpose of
this paper is to further develop these sorts of connections. We begin by setting the
notation and defining the hypergeometric functions which will be used throughout.
If n is a nonnegative integer, we recall the Pochhammer symbol (γ )n , defined by

(γ )n :=

{
1 if n = 0,
γ (γ + 1)(γ + 2) · · · (γ + n− 1) if n ≥ 1.

The classical hypergeometric function in parameters α1, . . . , αh, β1, . . . , β j ∈ C is
defined by

h Fcl
j

(
α1 α2 · · · αh

β1 · · · β j

∣∣∣∣ x
)
:=

∞∑
n=0

(α1)n(α2)n(α3)n · · · (αh)n

(β1)n(β2)n · · · (β j )n
·

xn

n!
.

We are interested in the hypergeometric functions

2 Fcl
1

(
a b

c

∣∣∣∣ x
)
:=

∞∑
n=0

(a)n(b)n
(c)n

·
xn

n!
(1-1)

and

3 Fcl
2

(
a b d

c e

∣∣∣∣ x
)
:=

∞∑
n=0

(a)n(b)n(d)n
(c)n(e)n

·
xn

n!
, (1-2)
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and their truncations modulo primes p. For any odd prime p, we define these
truncations by

2 F tr
1

(
a b

c

∣∣∣∣ x
)

p
≡

(p−1)/2∑
n=0

(a)n(b)n
(c)n

·
xn

n!
(mod p) (1-3)

and

3 F tr
2

(
a b d

c e

∣∣∣∣ x
)

p
≡

(p−1)/2∑
n=0

(a)n(b)n(d)n
(c)n(e)n

·
xn

n!
(mod p). (1-4)

Monks [2012] studied elliptic curves and their relation to 2 F tr
1 -hypergeometric

functions and proved that these polynomials give the supersingular loci of certain
families of elliptic curves. Here we lift his work from 2 F tr

1 - to 3 F tr
2 -hypergeometric

functions and establish a similar result for these hypergeometric functions with
additional parameters.

Remark. We note that above, tr denotes the truncation of a hypergeometric series
after x (p−1)/2, but in [Monks 2012], tr implies truncation after x p−1. We will see
that the relevant polynomials agree when reduced modulo p.

Let p be an odd prime and let F be a field of characteristic p. An elliptic curve
E/F is said to be supersingular if it has no p-torsion over F. In other words, there
is no element of order p in the group E(F). This condition is dependent only on the
j -invariant of E . There are only finitely many isomorphism classes of supersingular
elliptic curves in Fp, which Kaneko and Zagier [1998] determined using the theory
of modular forms.

Here we consider supersingular elliptic curves in certain families. A well-known
subfamily of elliptic curves is the Legendre family, which is denoted by

E1/2(λ) : y2
= x(x − 1)(x − λ)

for λ 6= 0, 1. These curves can be studied by means of the supersingular locus

Sp,1/2(λ) :=
∏
λ0∈Fp

supersingular E1/2(λ0)

(λ− λ0).

These polynomials have coefficients in Fp.
El-Guindy and Ono [2013] studied the family of elliptic curves defined by

E1/4(λ) : y2
= (x − 1)(x2

+ λ). (1-5)

We also consider the following families of elliptic curves:

E1/3(λ) : y2
+ λyx + λ2 y = x3,

E1/12(λ) : y2
= 4x3

− 27λx − 27λ.
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For i ∈
{1

4 ,
1
3 ,

1
12

}
and all primes p ≥ 5, we let

Sp,i (λ) :=
∏
λ0∈Fp

supersingular Ei(λ0)

(λ− λ0). (1-6)

Monks [2012] studied these families with respect to hypergeometric functions, and
he showed that their supersingular loci are given by certain 2 F1-hypergeometric
functions reduced modulo p. We extend these results of Monks, El-Guindy, and
Ono to prove the following theorem. Assume the notation above.

Theorem 1.1. The following are true:

(1) If p ≥ 5 is prime, then

Sp,1/4(x)2 ≡ (x + 1)(p−1)/2
· 3 F tr

2

(1
2

1
2

1
2

1 1

∣∣∣∣ x
x + 1

)
p
(mod p).

(2) If p ≥ 5 is prime, then

Sp,1/3(x)2 ≡ x2·bp/3c
· 3 F tr

2

(1
3

2
3

1
2

1 1

∣∣∣∣ 108x − 2916
x2

)
p
(mod p).

(3) If p ≥ 5 is prime, then

Sp,1/12(x)2 ≡ (c−1
p )

2
· xbp/6c · 3 F tr

2

( 1
6

5
6

1
2

1 1

∣∣∣∣ 1−
1
x

)
p
(mod p).

Here

cp =

(
6
⌊ p

12

⌋
+ dp⌊ p

12

⌋ )
and dp = 0, 2, 2, 4 for p ≡ 1, 5, 7, 11 (mod 12) respectively.

2. Nuts and bolts

Statement of Clausen’s theorem and transformation laws. Our main tools for
establishing these congruences are a theorem of Clausen and two classical 2 Fcl

1
transformation laws. We make use of Clausen’s theorem [Bailey 1935] which gives
the following equality of hypergeometric polynomials:

3 Fcl
2

(
2α 2β α+β

2α+ 2β α+β + 1
2

∣∣∣∣ x
)
= 2 Fcl

1

(
α β

α+β + 1
2

∣∣∣∣ x
)2

. (2-1)

We also use two transformation laws in our proof so that we can apply (2-1) to
the hypergeometric functions. The first, given in [Bailey 1935], states that

2 Fcl
1

(
a b

c

∣∣∣∣ x
)
= (1− x)−a

· 2 Fcl
1

(
a c− b

c

∣∣∣∣ x
x − 1

)
. (2-2)
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The second, from Vidūnas [2009], gives that

2 Fcl
1

(
a b

a+b+1
2

∣∣∣∣ x
)
= 2 Fcl

1

(a
2

b
2

a+b+1
2

∣∣∣∣ 4x(1− x)
)
. (2-3)

Elementary reduction modulo p. By definition (1-4), we have that

3 F tr
2

(1
3

2
3

1
2

1 1

∣∣∣∣ 108x−2916
x2

)
p
≡

(p−1)/2∑
n=0

( 1
3

)
n

(2
3

)
n

( 1
2

)
n

(n!)3
·
(108x−2916)n

x2n (mod p).

For n > bp/3c, any p will appear in the numerator of the expansion for
( 1

3

)
n ,
( 2

3

)
n ,

or
( 1

2

)
n , so all of these terms will be congruent to 0 modulo p and will vanish. Thus

we can simplify to

3 F tr
2

(1
3

2
3

1
2

1 1

∣∣∣∣ 108x−2916
x2

)
p
≡

bp/3c∑
n=0

( 1
3

)
n

( 2
3

)
n

( 1
2

)
n

(n!)3
·
(108x−2916)n

x2n (mod p).

(2-4)
Similarly by (1-4) we have that

3 F tr
2

(1
6

5
6

1
2

1 1

∣∣∣∣ 1−
1
x

)
p
≡

(p−1)/2∑
n=0

( 1
6

)
n

( 5
6

)
n

( 1
2

)
n

(n!)3
·

(
1−

1
x

)n

(mod p).

For any n > bp/6c, p≡ 1, 5 (mod 6) will appear in the numerator of the expansion
of
( 1

6

)
n

( 5
6

)
n

(1
2

)
n causing all of these sequential terms to be congruent to 0 modulo p

and vanish, which gives

3 F tr
2

(1
6

5
6

1
2

1 1

∣∣∣∣ 1−
1
x

)
p
≡

bp/6c∑
n=0

( 1
6

)
n

( 5
6

)
n

(1
2

)
n

(n!)3
·

(
1−

1
x

)n

(mod p). (2-5)

Work of Monks. The proof of Theorem 1.1 relies on recent work of El-Guindy
and Ono and Monks.

Theorem 2.1 [Monks 2012, pp. 2–3]. The following are true:

(1) If p ≥ 5 is prime,

Sp,1/4(x)≡ 2 F tr
1

(1
4

3
4
1

∣∣∣∣ −x
)

p
(mod p). (2-6)

(2) If p ≥ 5 is prime,

Sp,1/3(x)≡ xbp/3c · 2 F tr
1

( 1
3

2
3
1

∣∣∣∣ 27
x

)
p
(mod p). (2-7)
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(3) For p ≡ 1, 5 (mod 12) and prime,

Sp,1/12(x)≡ c−1
p · x

bp/12c
· 2 F tr

1

( 1
12

5
12
1

∣∣∣∣ 1−
1
x

)
p
(mod p). (2-8)

(4) For p ≡ 7, 11 (mod 12) and prime,

Sp,1/12(x)≡ c−1
p · x

bp/12c
· 2 F tr

1

( 7
12

11
12
1

∣∣∣∣ 1−
1
x

)
p
(mod p), (2-9)

where

cp =

(
6
⌊ p

12

⌋
+ dp⌊ p

12

⌋ )
and dp = 0, 2, 2, 4 for p ≡ 1, 5, 7, 11 (mod 12) respectively.

Remark. We note that (2-6) is a direct result of El-Guindy and Ono [2013] and is
therefore not technically part of Monks’ theorem in [2012].

Squaring these supersingular loci in terms of the 2 F tr
1 -hypergeometric functions,

we obtain congruent 3 F tr
2 -hypergeometric representations in Theorem 1.1.

3. Proof of Theorem 1.1

To prove Theorem 1.1, we show the first part using the results of El-Guindy and
Ono. Then we calculate the equivalent statements for the remaining cases. We use
classical 2 Fcl

1 transformation laws to obtain the necessary forms to use Clausen’s
theorem, given in (2-1), and lift the 2 F tr

1 -hypergeometric functions of Monks to
equivalent 3 F tr

2 representations. First we require the following descriptions of

2 F tr
1 -hypergeometric functions:

Lemma 3.1. The following are true:

(1) If p ≥ 5 is an odd prime, then

2 F tr
1

(1
4

3
4
1

∣∣∣∣ −x
)2

p
≡ (x + 1)(p−1)/2

· 3 F tr
2

(1
2

1
2

1
2

1 1

∣∣∣∣ x
x + 1

)
p
(mod p).

(2) If p ≥ 5 is an odd prime, then

2 F tr
1

(1
3

2
3
1

∣∣∣∣ 27
x

)2

p
≡ 3 F tr

2

(1
3

2
3

1
2

1 1

∣∣∣∣ 108x − 2916
x2

)
p
(mod p).

(3) For p ≡ 1, 5 (mod 12),

2 F tr
1

( 1
12

5
12
1

∣∣∣∣ 1−
1
x

)2

p
≡ 3 F tr

2

(1
6

5
6

1
2

1 1

∣∣∣∣ 1−
1
x

)
p
(mod p).
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(4) For p ≡ 7, 11 (mod 12),

2 F tr
1

( 7
12

11
12
1

∣∣∣∣ 1−
1
x

)2

p
≡ x · 3 F tr

2

( 1
6

5
6

1
2

1 1

∣∣∣∣ 1−
1
x

)
p
(mod p).

Proof. For brevity, we give the proof of (2). The remaining cases follow in a similar
way. Applying the transformation law for 2 F1-hypergeometric functions given by
(2-3) with a = 1

3 , b = 2
3 , and x = 27/x , we see that

2 Fcl
1

(1
3

2
3
1

∣∣∣∣ 27
x

)
= 2 Fcl

1

(1
6

1
3
1

∣∣∣∣ 108x − 2916
x2

)
.

We then square both sides of this equation and apply Clausen’s theorem in (2-1) to
the right-hand expression with α = 1

6 , β = 1
3 , and x = (108x − 2916)/x2 to obtain

2 Fcl
1

( 1
3

2
3
1

∣∣∣∣ 27
x

)2

= 2 Fcl
1

(1
6

1
3
1

∣∣∣∣ 108x − 2916
x2

)2

= 3 Fcl
2

(1
3

2
3

1
2

1 1

∣∣∣∣ 108x − 2916
x2

)
. (3-1)

By definition (1-1), when we expand the infinite hypergeometric series on the
left-hand side of this equation, we obtain

2 Fcl
1

( 1
3

2
3
1

∣∣∣∣ 27
x

)2

=

( ∞∑
N=0

( 1
3

)
N

(2
3

)
N

(N !)2
·

(
27
x

)N )2

,

and when we expand the right hand side by definition (1-2) we get

3 Fcl
2

(1
3

2
3

1
2

1 1

∣∣∣∣ 108x − 2916
x2

)
=

∞∑
N=0

( 1
3

)
N

(2
3

)
N

( 1
2

)
N

(N !)3
·

(
108x − 2916

x2

)N

.

By (3-1), we have that these two infinite series expansions are equal and(
∞∑

N=0

(1
3

)
N

( 2
3

)
N

(N !)2
·

(
27
x

)N
)2

=

∞∑
N=0

( 1
3

)
N

( 2
3

)
N

( 1
2

)
N

(N !)3
·

(
108x − 2916

x2

)N

. (3-2)

This means that in both series expansions, the coefficients for x−N , given by a(N )
and b(N ) respectively, are equal. More precisely, by squaring we have

a(N )=
N∑

n=0

( 1
3

)
n

( 2
3

)
n

(n!)2
·

(1
3

)
N−n

( 2
3

)
N−n

((N − n)!)2
· 27N ,
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and by the binomial theorem,

b(N )=
N∑

n=dN/2e

( 1
3

)
n

(2
3

)
n

( 1
2

)
n

(n!)3
·

( n
2n−N

)
(108)2n−N (−2916)N−n.

We note that for b(N ), only n with dN/2e ≤ n ≤ N will actually contribute to each
coefficient value. When we truncate these series in (3-2) at N = p−1 (i.e., truncate
at x1−p), all of the coefficients will still be equal. The truncation of the series can
be explicitly expressed by

p−1∑
N=0

N∑
n=0

( 1
3

)
n

(2
3

)
n

(n!)2
·

( 1
3

)
N−n

( 2
3

)
N−n

((N − n)!)2
· 27N

· x−N

=

p−1∑
N=0

N∑
n=dN/2e

( 1
3

)
n

(2
3

)
n

( 1
2

)
n

(n!)3
·

( n
2n−N

)
(108)2n−N (−2916)N−n

· x−N . (3-3)

We observe that since N , and consequently n, will never exceed p− 1, all of these
coefficients are p-integral since p does not appear in any of the denominators.
Therefore we can take both sides of (3-3) modulo p. In fact, we know that a lot of
terms will vanish modulo p because p will appear as a factor in the numerators of
the coefficient expansions of these series given by a(N ) and b(N ), making them
congruent to 0. More specifically, this is the case for N with (p−1)/2< N ≤ p−1
and n ≥ (p− 1)/2. We can write these simplified congruences as

p−1∑
N=0

N∑
n=0

( 1
3

)
n

(2
3

)
n

(n!)2
·

( 1
3

)
N−n

( 2
3

)
N−n

((N − n)!)2
·

(
27
x

)N

≡

(
(p−1)/2∑

N=0

( 1
3

)
N

( 2
3

)
N

(N !)2
·

(
27
x

)N
)2

(mod p)
(3-4)

and

p−1∑
N=0

N∑
n=dN/2e

(1
3

)
n

( 2
3

)
n

( 1
2

)
n

(n!)3
·

( n
2n−N

)
(108)2n−N (−2916)N−n

· x−N

≡

(p−1)/2∑
N=0

( 1
3

)
N

( 2
3

)
N

( 1
2

)
N

(N !)3
·

(
108x − 2916

x2

)N

(mod p). (3-5)

Finally, we see that the right-hand sides of (3-4) and (3-5) are congruent mod-
ulo p to the definitions of the truncated forms of the squares of the 2 F1- and
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3 F2-hypergeometric functions, respectively, given by:

2 F tr
1

(1
3

2
3
1

∣∣∣∣ 27
x

)2

p
≡

(
(p−1)/2∑

N=0

( 1
3

)
N

( 2
3

)
N

(N !)2
·

(
27
x

)N
)2

(mod p)

and

3 F tr
2

(1
3

2
3

1
2

1 1

∣∣∣∣ 108x − 2916
x2

)
p

≡

(p−1)/2∑
N=0

(1
3

)
N

( 2
3

)
N

(1
2

)
N

(N !)3
·

(
108x − 2916

x2

)N

(mod p).

It follows that

2 F tr
1

(1
3

2
3
1

∣∣∣∣ 27
x

)2

p
≡ 3 F tr

2

(1
3

2
3

1
2

1 1

∣∣∣∣ 108x − 2916
x2

)
p
(mod p),

which completes the proof. �

Proof of Theorem 1.1. For the proof of (1), we begin with Lemma 3.1(1) which
gives

(x + 1)(p−1)/2
· 3 F tr

2

(1
2

1
2

1
2

1 1

∣∣∣∣ x
x + 1

)
p
≡ 2 F tr

1

(1
4

3
4
1

∣∣∣∣ −x
)2

p
(mod p).

Substituting the left-hand side of the above congruence into the square of (2-6), we
obtain the congruence for the square of the supersingular locus Sp,(1/4)(x)2 for the
family of elliptic curves given by E1/4(λ).

The remaining cases use the congruences of the supersingular loci given by
Monks. We begin by squaring the 2 F tr

1 -hypergeometric functions in (2-7)–(2-9).
Squaring (2-7), we obtain

Sp,1/3(x)2 ≡ x2·bp/3c
· 2 F tr

1

(1
3

2
3
1

∣∣∣∣ 27
x

)2

p
(mod p).

Then using the congruence in Lemma 3.1(2), we have

Sp,1/3(x)2 ≡ x2·bp/3c
· 3 F tr

2

(1
3

2
3

1
2

1 1

∣∣∣∣ 108x − 2916
x2

)
p
(mod p),

completing the proof of (2).
In the third case, after squaring (2-8), we obtain

Sp,1/12(x)2 ≡ (c−1
p )

2
· x2·bp/12c

· 2 F tr
1

( 1
12

5
12
1

∣∣∣∣ 1−
1
x

)2

p
(mod p).
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Then we use our congruence given in Lemma 3.1(3) and substitute the 3 F2-
hypergeometric function to give

Sp,1/12(x)2 ≡ (c−1
p )

2
· xbp/6c · 3 F tr

2

( 1
6

5
6

1
2

1 1

∣∣∣∣ 1−
1
x

)
p
(mod p).

We see in (3) and (4) of Lemma 3.1, for p ≡ 1, 5 (mod 6), the squared 2 F tr
1 -

hypergeometric functions are congruent apart from the x in (4). We combine these
cases and alter the exponent of x to satisfy both, which then gives our result.

4. Examples

Example. Here we consider E1/12(x) when p= 13. By Monks’ theorem, we know
that there is just one supersingular elliptic curve for E1/12(x). It turns out that
E1/12(3) is that supersingular elliptic curve. To see this, we note that E1/12(3)
over F13 has 13 points including the point at infinity. By Monks, this implies that

S13,1/12(x)≡ (x − 3)≡ (x + 10) (mod 13).

We square this to obtain

S13,1/12(x)2 ≡ (x + 10)2 ≡ (x2
+ 20x + 100)≡ x2

+ 7x + 9 (mod 13).

Using Theorem 1.1(3), we calculate

(c−1
13 )

2
· xb13/6c

· 3 F tr
2

(1
6

5
6

1
2

1 1

∣∣∣∣ 1−
1
x

)
13
(mod 13),

which gives (c−1
13 )

2
≡

1
10 (mod 13) and xb13/6c

= x2. Substituting these values into
our expression gives

1
10
· x2
·

(
10+

5
x
+

12
x2

)
≡ x2
+

1
2

x +
6
5
≡ x2
+ 7x + 9 (mod 13).

This polynomial can be factored modulo 13 as

x2
+ 7x + 9≡ (x + 10)2 (mod 13),

which is what we found after directly squaring S13,1/12(x).

Example. We consider E1/12(x) when p = 59. By Monks’ theorem, we know
that there are four supersingular elliptic curves for E1/12(x). Those supersingular
elliptic curves are found to be E1/12(32), E1/12(35), E1/12(24) and E1/12(22). To
see this, we note that E1/12(x) for x = 32, 35, 24 and 22 over F59 have 59 points
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including the point at infinity. By Monks, this implies that

S59,1/12(x)≡ (x − 32)(x − 35)(x − 24)(x − 22)

≡ (x + 27)(x + 24)(x + 35)(x + 37) (mod 59).

After squaring this directly, we obtain

S59,1/12(x)2 ≡ (x + 27)2(x + 24)2(x + 35)2(x + 37)2 (mod 59). (4-1)

Next using Theorem 1.1(3) we calculate

(c−1
59 )

2
· xb59/6c

· 3 F tr
2

(1
6

5
6

1
2

1 1

∣∣∣∣ 1−
1
x

)
59
(mod 59).

For p = 59, we have (c−1
59 )

2
= 15 and xb59/6c

= x9, so we obtain

15 · x9
·

(
4
x
+

40
x2 +

3
x3 +

16
x4 +

38
x5 +

56
x6 +

16
x7 +

28
x8 +

36
x9

)
≡ x8
+ 10x7

+ 45x6
+ 4x5

+ 39x4
+ 14x3

+ 4x2
+ 7x + 9 (mod 59).

This polynomial of degree 8 can be factored as

(x + 27)2(x + 24)2(x + 35)2(x + 37)2 (mod 59),

which is congruent modulo 59 to S59,1/12(x)2 as given in (4-1).
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A contribution to the connections between
Fibonacci numbers and matrix theory

Miriam Farber and Abraham Berman

(Communicated by Robert J. Plemmons)

We present a lovely connection between the Fibonacci numbers and the sums of
inverses of .0; 1/-triangular matrices, namely, a number S is the sum of the entries
of the inverse of an n�n .0; 1/-triangular matrix (for n� 3) if and only if S is an
integer between 2�Fn�1 and 2CFn�1. Corollaries include Fibonacci identities
and a Fibonacci-type result on determinants of a special family of .1; 2/-matrices.

1. Introduction

One of the ways to motivate students’ interest in linear algebra is to present inter-
esting connections between matrices and the Fibonacci numbers

F1 D F2 D 1; Fn D Fn�1CFn�2; n� 3:

For example, one can prove that F2
n �Fn�1FnC1 D .�1/nC1 by using induction

and the fact that

det
�

Fn Fn�1

FnC1 Fn

�
D det

�
Fn Fn�1

FnC1�Fn Fn�Fn�1

�
D det

�
Fn Fn�1

Fn�1 Fn�2

�
D� det

�
Fn�1 Fn

Fn�2 Fn�1

�
:

Similarly, one can determine the exact value of the n-th Fibonacci number, by
calculating the eigenvalues and the eigenvectors of

�
1
1

1
0

�
and using the equation 

Fn

Fn�1

!
D

 
1 1

1 0

! 
Fn�1

Fn�2

!
D � � � D

 
1 1

1 0

!n�2  
1

1

!
:
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As another example of connections between Fibonacci numbers and matrix theory,
consider lower triangular matrices of the form0BBBBBBBB@

1 0 � � � � � � � � � 0

�1 1 0 � � � � � � 0

�1 �1 1 0 � � � 0

0 �1 �1 1
: : :

:::
:::

: : :
: : :

: : :
: : :

:::

0 � � � 0 �1 �1 1

1CCCCCCCCA
:

The inverses of these matrices are of the form0BBBBBBBBBB@

1 0 � � � � � � � � � � � � 0

1 1 0 � � � � � � � � � 0

2 1 1 0 � � � � � � 0

3 2 1 1 0
: : :

:::

5 3 2 1
: : :

: : :
:::

:::
: : :

: : :
: : :

: : :
: : :

:::
::: � � � 5 3 2 1 1

1CCCCCCCCCCA
;

which, due to their remarkable structure, are known as Fibonacci matrices. Various
properties of these matrices and their generalizations have been studied [Lee et al.
2002; Lee and Kim 2003; Wang and Wang 2008].

Fibonacci numbers are also widely used in algorithms in computer science [Atkins
and Geist 1987; Knuth 1997], such as algorithms for finding extrema, merging files,
searching in trees, etc. We provide here an example of their use in the searching of
ordered arrays, described in [Atkins and Geist 1987]. Suppose that we have a sorted
array with Fn�1 elements for some natural number n (we can always pad the array
with dummy elements in order to achieve such number of elements); for example,
let AD .0; 1; 2; 3; 5; 6; 9; 11; 15; 18; 20; 23/ be an array with F7�1D 12 elements.
We would like to check whether 15 is in A. First compare 15 with the F7�1-th
entry. Since 11< 15, we can eliminate all the entries to the left of the F7�1-th entry
(including the F7�1-th entry), and we are left with the array B D .15; 18; 20; 23/

which contains F5 � 1 D 4 elements. We now compare the F5�1-th entry in B

with 15, and since 20> 15, we eliminate 20 and 23, and we are left with the array
C D .15; 18/ that has F4� 1 entries. Finally, we compare the F4�1-th entry of C

to 15, and since 18> 15, we are left with 15 and have a match. The full algorithm
is described in [Atkins and Geist 1987]. Another interesting connection between
Fibonacci numbers and matrices is given in [Li 1993], where it is shown that the
maximal determinant of an n� n .0; 1/-Hessenberg matrix is Fn.
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Let S.X / denote the sum of the entries of a matrix X . Huang, Tam and Wu
[Huang et al. 2013] show, among other results, that a number S is equal to S.A�1/

for an adjacency matrix (a symmetric .0; 1/-matrix with trace zero) A if and only if
S is rational. More generally, they ask what can be said about the sum of the entries
of the inverse of a .0; 1/-matrix. We consider the class of triangular matrices and
show that a number S is equal to S.A�1/ for a triangular .0; 1/-matrix A if and
only if S is an integer. This follows from our main result which shows that for n� 3,
a number S is equal to S.A�1/ for an n�n triangular .0; 1/-matrix A if and only if

2�Fn�1 � S � 2CFn�1:

We use the following definitions and notation. Let e denote a vector of ones (so
S.A/D eT Ae) and An the set of n� n invertible .0; 1/-upper triangular matrices.
We will say that a matrix A2An, where n� 3, is maximizing if S.A�1/D 2CFn�1

and minimizing if S.A�1/D 2�Fn�1, and refer to maximizing and minimizing
matrices as extremal matrices. For a set of vectors V � Rn, a vector v 2 V is
absolutely dominant if for every u 2 V , jvi j � jui j, where i D 1; 2; : : : ; n.

We will use the following well-known properties of Fibonacci numbers (see, for
example, [Vorobiev 2002]):

Lemma 1.1. (i) 1C
Pn

kD1 Fk D FnC2;

(ii) 1C
Pn

kD1 F2k D F2nC1;

(iii)
Pn

kD1 F2k�1 D F2n.

The main result of the paper is proved in Section 2. In Section 3, we describe a
construction of extremal matrices with a beautiful Fibonacci pattern in their inverses,
and use it to obtain several Fibonacci identities. We conclude with a Fibonacci-type
result on determinants of .1; 2/-matrices in spirit of the result in [Li 1993].

2. The main result

Theorem 2.1. Let n � 3. Then S D S.A�1/ for some A 2 An if and only if S is
an integer between 2�Fn�1 and 2CFn�1; that is, 2�Fn�1 � S � 2CFn�1.

Proof. Obviously, S.A�1/ must be an integer since A�1 D adj.A/=det.A/ and
det.A/D 1. The main part of the proof consists of showing

(a) maxA2An
S.A�1/D 2CFn�1,

(b) minA2An
S.A�1/D 2�Fn�1, and

(c) for every integer S between 2�Fn�1 and 2CFn�1, there exists A 2An such
that S.A�1/D S .

To show (a) and (b) we prove the following lemma.
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Lemma 2.2. Let V D feT A�1 jA 2Ang. For the purposes of this lemma only, we
will let F0 D�1 (note that this is not a Fibonacci number). Then v D .vi/, where
vi D .�1/iFi�1, is an absolutely dominant vector of V .

Proof. For nD1, we have V Df.1/g; for nD2, we have V Df.1 1/; .1 0/g; and for
nD 3, we have V D f.1 1 1/; .1 0 1/; .1 1 0/; .1 0 0/; .1 1 �1/g. Therefore
the statement holds for n D 1; 2; 3. To prove the lemma for n � 4, we will use
induction. Suppose the lemma is true for k < n.

We will now show that the vector v, defined in the lemma, is an absolutely
dominant vector of the set V DfeT A�1 jA2Ang. Let A2An. Then A is of the form0@C ˛ ˇ

0 1 x

0 0 1

1A ;
where C 2An�2, ˛; ˇ 2

˚
0; 1

	n�2, and x 2
˚
0; 1

	
. Therefore,

A�1
D

0BBB@
C�1 �C�1

�
˛ ˇ

� �1 �x

0 1

�
0

�
1 �x

0 1

�
1CCCAD

0B@C�1 �C�1
�
˛ ˇ�x˛

�
0

�
1 �x

0 1

� 1CA :
We will use the following notation:

eT C�1
D
�
c1 c2 � � � cn�2

�
; ˛ D

�
˛1 ˛2 � � � ˛n�2

�T
;

ˇ D
�
ˇ1 ˇ2 � � � ˇn�2

�T
:

So

eT A�1
D

�
c1 c2 : : : cn�2 1�

Pn�2
iD1 ˛ici 1�x�

Pn�2
iD1 ci.ˇi �x˛i/

�
:

Consider the n-th entry of eT A�1. Since c1 D 1, n� 4, and �1� ˇi �x˛i � 1

for all 1� i � n� 2, it is easy to see that

�

n�2X
iD1

jci j � 1�x�

n�2X
iD1

ci.ˇi �x˛i/�

n�2X
iD1

jci j

for all possible x; ˛i ; ˇi 2 f0; 1g, where 1� i � n� 2. Since ˇi �˛i 2 f�1; 0; 1g,
it is possible to achieve equality in each inequality by taking

x D 1 and sign.ˇi �˛i/D sign.ci/; 1� i � n� 2 (1)

in the first, and

x D 1 and sign.ˇi �˛i/D� sign.ci/; 1� i � n� 2: (2)
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in the second. Now, since
ˇ̌
�
Pn�2

iD1 jci j
ˇ̌
D
ˇ̌Pn�2

iD1 jci j
ˇ̌
, we get that if A 2 An is

a matrix for which eT A�1 is an absolutely dominant vector, its n-th entry must be
equal to either

�

n�2X
iD1

jci j (3)

or
n�2X
iD1

jci j: (4)

Note that the maximal value of (3) is obtained by taking C such that eT C�1 is an ab-
solutely dominant vector of the set V DfeT A�1 jA2An�2g (and all the absolutely
dominant vectors will give the same value). The same is true of the minimal value
of (4). By the inductive hypothesis and using Lemma 1.1, the maximal value of (4) is

n�2X
iD1

jci j D 1C

n�3X
iD1

Fi D Fn�1

(and this value may be achieved by choosing an appropriate C ). Similarly, the
minimal value of (3) is �Fn�1. Let us now consider the .n�1/-th entry of eT A�1.
By the inductive hypothesis, its absolute value is bounded from above by Fn�2.
By taking C 2An�2 such that eT C�1 is an absolutely dominant vector, choosing
˛; ˇ such that either (1) or (2) is satisfied and using Lemma 1.1 and the inductive
hypothesis, we get that the .n�1/-th entry of eT A�1 is equal to either

1�

n�2X
iD1

˛ici D 1�

bn�3
2
cX

kD1

c2kC1 D 1C

bn�3
2
cX

kD1

F2k D F2bn�3
2
cC1; (5)

or

1�

n�2X
iD1

˛ici D 1� c1�

bn�2
2
cX

kD1

c2k D�

bn�2
2
cX

kD1

F2k�1 D�F2bn�2
2
c
: (6)

Note that if n is odd then expression (5) is equal to Fn�2, and if n is even then
expression (6) is equal to�Fn�2. In sum, using the inductive hypothesis, we showed
that the largest possible absolute value of the n-th entry of eT A�1 (such that A2An)
is Fn�1. In this case, we showed that it is possible to choose ˛ such that the absolute
value of the .n�1/-th entry of eT A�1 is Fn�2, the largest possible absolute value
due to the inductive hypothesis. Therefore, we showed that the vector v, defined
in the lemma, is an absolutely dominant vector for V D feT A�1 jA 2Ang. �
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We are now ready to prove (a) and (b). We represent A 2An in the same form
as in Lemma 2.2, and

eT A�1e D eT

0B@C�1 �C�1
�
˛ ˇ�x˛

�
0

�
1 �x

0 1

� 1CA e

D 2�xC eT C�1e� eT C�1
�
ˇC .1�x/˛

�
D 2�xC eT C�1.e�˛�ˇCx˛/:

Let uD e�˛�ˇCx˛. Note that if x D 1 then u 2 f0; 1gn�2, and if x D 0 then
u 2 f�1; 0; 1gn�2. In addition, note that

max
˚
2�xC eT C�1u j x D 0; ˛; ˇ 2 f0; 1gn�2

	
�max

˚
2�xC eT C�1u j x D 1; ˛; ˇ 2 f0; 1gn�2

	
: (7)

Now, since C 2 An�2, the first entry of eT C�1 is 1. If x D 0, then in order to
minimize the value of eT C�1u, we have to take the first entries of ˛ and ˇ to be 1.
On the other hand, if x D 1, then in order to minimize the value of eT C�1u, we
have to take the first entries of ˇ to be 1. The difference between these two cases
is 1, and therefore

min
˚
2�xC eT C�1u j x D 0; ˛; ˇ 2 f0; 1gn�2

	
�min

˚
2�xC eT C�1u j x D 1; ˛; ˇ 2 f0; 1gn�2

	
: (8)

Since we are only interested in the minimal and the maximal values of eT A�1e, we
may assume, by (7) and (8), that xD0. Therefore, eT A�1eD2CeT C�1.e�˛�ˇ/.
Using the notation of Lemma 2.2, we get

min
˚
2C eT C�1.e�˛�ˇ/ j ˛; ˇ 2 f0; 1gn�2

	
D 2�

n�2X
iD1

jci j (9)

and

max
˚
2C eT C�1.e�˛�ˇ/ j ˛; ˇ 2 f0; 1gn�2

	
D 2C

n�2X
iD1

jci j: (10)

Therefore, the minimal and the maximal values of eT A�1e are achieved by taking C

such that eT C�1 is an absolutely dominant vector of feT A�1 jA 2An�2g. Hence,
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by Lemmas 2.2 and 1.1,

max
A2An

S.A�1/Dmax
˚
2C eT C�1.e�˛�ˇ/ j ˛; ˇ 2 f0; 1gn�2;C 2An�2

	
D 3C

n�3X
iD1

Fi D 2CFn�1;

and similarly,

min
A2An

S.A�1/D 1�

n�3X
iD1

Fi D 2�Fn�1:

It is well known that every natural number is the sum of distinct Fibonacci
numbers. For the proof of (c), we need a slightly stronger observation.

Lemma 2.3. Let M be a natural number, and let n be an integer for which Fn�1 �

M < Fn. Then M can be represented as a sum of distinct Fibonacci elements from
the set fF1;F2; : : : ;Fn�2g.

Proof. For M D 1, the statement is true. Proceeding by induction, assume that it is
true for all integers less than M . Let n be an integer for which Fn�1 �M < Fn.
Since M < Fn, we get that M < Fn�2 C Fn�1, and hence M �Fn�2 < Fn�1.
Therefore, there exists k with n� 1 � k > 0 such that Fk�1 �M �Fn�2 < Fk ,
and hence by the inductive hypothesis, M �Fn�2 can be represented as a sum of
distinct Fibonacci elements from the set fF1;F2; : : : ;Fk�2g. Since n� 1� k, we
have n� 3 � k � 2, and so M can be represented as a sum of distinct Fibonacci
elements from the set fF1;F2; : : : ;Fn�2g. �

We conclude the proof of Theorem 2.1 by proving (c). Let S D 2CT , where
�Fn�1 � T � Fn�1. The cases T D Fn�1 and T D �Fn�1 were proved in
(a) and (b). For T D 0, let A be a triangular Toeplitz matrix with first row
.1 0 1 0 0 : : : 0/. Then S.A�1/D 2. Similarly, it is easy to prove the claim for
any S between 1 and n. For the other integers in Œ2�Fn�1; 2CFn�1� (and also for
1; 2; : : : ; n), let us consider the expression in (10). It is easy to see that in fact by
choosing appropriate ˛ and ˇ (and C such that eT C�1 is an absolutely dominant
vector), eT C�1.e�˛�ˇ/ can achieve any value of the form

˛1C

n�2X
iD2

˛iFi�1;

where ˛i 2 f0; 1g for all 1 � i � n � 2. Note that by Lemma 2.3, there exists
appropriate set f˛ig

n�2
iD1

such that

T D

n�2X
iD2

˛iFi�1 .we may choose ˛1 D 0/:
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Hence, for this choice of C , ˛ and ˇ, we get A such that S D T C 2D eT A�1e.
We obtain a similar result for the case S D 2�T , where 0� T �Fn�1, by looking
at expression (9), and this completes the proof. �

As an analogy to the result on rational numbers of [Huang et al. 2013] mentioned
in the introduction, we now have the following corollary.

Corollary 2.4. A number S is equal to S.A�1/ for a .0; 1/-triangular matrix A if
and only if S is an integer.

Define Gn to be the set of n�n matrices of the form ICB, where B is an n�n

upper triangular nilpotent matrix with entries from the interval Œ0; 1�. Then, using
the fact that for an invertible matrix A, A�1D adj.A/=det.A/, and that for A 2Gn,
det.A/D 1, we have A�1 D adj.A/ for A 2 Gn. Thus, since S.A�1/ is linear in
each one of the entries in such a matrix A, we conclude the following:

Corollary 2.5. max
A2Gn

S.A�1/D 2CFn�1 and min
A2Gn

S.A�1/D 2�Fn�1:

Remark 2.6. For a general n�n invertible .0; 1/-matrix A (which is not necessarily
triangular), the question regarding the minimal or the maximal value that S.A�1/

may obtain is still open. For n D 3; 4; 5; 6, the extremal values are exactly the
same as in the triangular case. However, for n D 7, there exist n � n invertible
.0; 1/-matrices M and N (which are presented below) such that S.M�1/D �7

and S.N�1/D 11, whereas in the triangular case, the minimal and the maximal
values are �6 and 10, respectively.

M D

0BBBBBBBBB@

1 0 1 0 1 0 0

0 1 1 0 1 0 0

0 0 1 1 1 1 1

0 0 0 1 1 0 0

0 0 0 0 1 1 1

0 0 1 0 0 1 0

0 0 1 0 0 0 1

1CCCCCCCCCA
; N D

0BBBBBBBBB@

1 0 1 0 1 1 1

0 1 1 0 1 1 1

0 0 1 1 0 0 1

0 0 0 1 1 1 1

0 0 0 0 1 0 0

0 0 0 0 0 1 0

1 1 0 0 0 0 1

1CCCCCCCCCA
:

For larger values of n, the difference between the general and the triangular case
gets bigger.

3. Extremal matrices

Recall that an invertible triangular n� n .0; 1/-matrix A is extremal if

eT A�1e D 2˙Fn�1:
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The matrices I3 and I4 are maximizing matrices. The matrices0@1 1 1

0 1 0

0 0 1

1A and

0BB@
1 0 1 1

0 1 1 1

0 0 1 0

0 0 0 1

1CCA
are minimizing matrices.

Following the proof of Theorem 2.1, we can construct extremal matrices for
n � 5 that have a beautiful Fibonacci pattern in their inverses. For l D 2; 3,
partition the off-diagonal entries of an upper triangular n� n matrix into n� l sets,
S0;S1; : : : ;Sn�l�1. The set Sn�l�1 consists of the entries in the first two rows of
the last l columns. For i D 1; 2; : : : ; n� l � 2, the set Si consists of the entries
immediately to the left or immediately below the entries in SiC1, and S0 consists of
all the remaining entries which are above the main diagonal (two if l D 2 and four
if l D 3). For example, in the case that nD 9, Figure 1 (left) presents the partition
in the case l D 2, and Figure 1 (right) presents the partition in the case l D 3.

Let A be an invertible .0; 1/-upper triangular matrix, where the entries in Si are
taken modulo 2. It follows from the proof of Theorem 2.1 that A�1 is an n� n

upper triangular matrix where the diagonal entries are 1, the entries in S0 are 0,
and the entries in Si for i � 1 are .�1/iFi . For example, when nD 9, l D 2,

AD

0BBBBBBBBBBBBBBB@

1 0 1 0 1 0 1 0 0

0 1 1 0 1 0 1 0 0

0 0 1 1 0 1 0 1 1

0 0 0 1 1 0 1 0 0

0 0 0 0 1 1 0 1 1

0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCCA
; A�1

D

0BBBBBBBBBBBBBBB@

1 0 �1 1 �2 3 �5 8 8

0 1 �1 1 �2 3 �5 8 8

0 0 1 �1 1 �2 3 �5 �5

0 0 0 1 �1 1 �2 3 3

0 0 0 0 1 �1 1 �2 �2

0 0 0 0 0 1 �1 1 1

0 0 0 0 0 0 1 �1 �1

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCCA
I

and when nD 9, l D 3,

AD

0BBBBBBBBBBBBBBB@

1 0 1 0 1 0 1 1 1

0 1 1 0 1 0 1 1 1

0 0 1 1 0 1 0 0 0

0 0 0 1 1 0 1 1 1

0 0 0 0 1 1 0 0 0

0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCCA
; A�1

D

0BBBBBBBBBBBBBBB@

1 0 �1 1 �2 3 �5 �5 �5

0 1 �1 1 �2 3 �5 �5 �5

0 0 1 �1 1 �2 3 3 3

0 0 0 1 �1 1 �2 �2 �2

0 0 0 0 1 �1 1 1 1

0 0 0 0 0 1 �1 �1 �1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCCA
:
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Figure 1. The partition in the cases l D 2 (left) and l D 3 (right).

In general, if nC l is even, eT A�1e D 2�Fn�1, and hence A is a minimizing
extremal matrix (this also includes the case n D 4). If nC l is odd, eT A�1e D

2CFn�1, and hence A is a maximizing extremal matrix. Using these equalities,
we obtain the following Fibonacci identities:

Corollary 3.1.
Pn�4

iD1.n� i/.�1/iFiC4.�1/n�3Fn�3D .�1/n�1Fn�1� .n�2/.

Corollary 3.2.
Pn�5

iD1.n� i/.�1/iFi C 6.�1/n�4Fn�4 D .�1/nFn�1� .n� 2/.

4. Determinants of .1; 2/-matrices

In [Huang et al. 2013], the following remark, which follows from Cramer’s rule
and the multilinearity of the determinant, was presented:

Remark 4.1. For any nonsingular matrix A,

S.A�1/D
det.ACJ /� det.A/

det.A/
;

where J is the matrix whose entries are all 1.

Recall that it was proved in [Li 1993] that the maximal determinant of an n� n

Hessenberg (0,1)-matrix is Fn. Using our main result and Remark 4.1, we obtain
another family of matrices whose determinants are strongly related to the Fibonacci
sequence.

Let Wn be the family of n� n matrices such that for any A 2Wn,

Aij D

8<:
1 if j > i;

2 if j D i;

1 or 2 if j < i:

From Remark 4.1 and Theorem 2.1, we obtain the following corollary:

Corollary 4.2. Let n� 3. Then S D det.A/ for some A 2Wn if and only if S is an
integer that satisfies 3�Fn�1 � S � 3CFn�1.
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Stick numbers in the simple hexagonal lattice
Ryan Bailey, Hans Chaumont, Melanie Dennis, Jennifer McLoud-Mann,

Elise McMahon, Sara Melvin and Geoffrey Schuette

(Communicated by Colin Adams)

In the simple hexagonal lattice, bridge number is used to establish a lower bound
on stick numbers of knots. This result aids in giving a new proof that the minimal
stick number is 11. In addition, the authors establish upper bounds for the
stick number of a composite knot. Constructions for (p, p+1)-torus knots and
some 3-bridge knots are given requiring one more stick than the lower bound
guarantees.

1. Introduction

Most results concerning lattice knots have focused on knots in the simple cubic
lattice, sc or Z3. Various lower and upper bounds for stick number in the cubic
lattice have been given in [Adams et al. 2012; Janse van Rensburg and Promislow
1999; Hong et al. 2013]. Minimal stick numbers for the 31 and 41 knots are 12 and
14 [Huh and Oh 2005]; see Figure 1. The stick number for a (p, p+1)-torus knot
is 6p for p ≥ 2 [Adams et al. 2012]. Work has also been done for the minimum
stick number of the composition of two knots [Adams et al. 1997; 2012]. Relatively
little is known about analogous results in the simple hexagonal lattice. Mann,
McLoud-Mann and Milan [Mann et al. 2012] show that the minimum number of
sticks to create a nontrivial knot is 11.

In this paper, we will answer some questions regarding the simple hexagonal
lattice. In Section 3, we establish a lower bound on the stick number in terms on
the bridge number. In Section 4, we give the idea of a new proof of the result in
[Mann et al. 2012]. In Section 5, we give an upper bound for the stick number
of a composite knot. In Section 6, we catalog results about the stick number of
(p, p+1)-torus knots, some 3-bridge knots, and particular composite knots.

MSC2010: 57M50.
Keywords: lattice knots, stick number, composition, bridge number.
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Figure 1. Minimal stick 31 (left) and 41 (right) knots in the simple
cubic lattice.

2. Some preliminaries

We will adopt notation for the simple hexagonal lattice from [Mann et al. 2012],
which we include here for completeness. The simple hexagonal lattice is defined to
be the set of all integral combinations of vectors

x = 〈1, 0, 0〉, y =
〈 1

2 ,
√

3
2 , 0

〉
, w = 〈0, 0, 1〉;

that is,
sh=

{
a〈1, 0, 0〉+ b

〈 1
2 ,
√

3
2 , 0

〉
+ c〈0, 0, 1〉 | a, b, c ∈ Z

}
.

Further, let X =−x , Y =−y, W =−w, z =
〈
−

1
2 ,
√

3
2 , 0

〉
, and Z =−z so that

we can describe a polygon by a string of vectors. In Figure 2, the polygon may be
written as x5zw2 X3W 3 Z2w2 y3 X3W Y 2.

A maximal segment in a polygon P which is parallel to x = 〈1, 0, 0〉 will be
called an x-stick. Similarly, define y-, z-, and w-sticks to be maximal segments in P
which are parallel to

〈 1
2 ,
√

3
2 , 0

〉
,
〈
−

1
2 ,
√

3
2 , 0

〉
, and 〈0, 0, 1〉, respectively. A closed

nonintersecting polygon formed from x-, y-, z-, and w-sticks is called an sh lattice
knot. The number of x-, y-, z-, and w-sticks in a polygon P will be denoted |P|x ,
|P|y , |P|z , and |P|w, respectively, and the total number of sticks used will be |P|.

Figure 2. A trefoil knot in the simple hexagonal lattice.
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The stick number of a knot type K in the lattice, denoted s[K ], is the minimum
number of sticks required to form a polygon of type K . In Figure 2, |P|x = 3,
|P|y = 2, |P|z = 2, |P|w = 4, and |P| = 11. Further, observe that s[31] ≤ 11.

3. Lower bound for stick numbers

Janse van Rensburg and Promislow [1999] established the lower bound for the stick
number of a knot in the simple cubic lattice with three directions x = 〈1, 0, 0〉,
y=〈0, 1, 0〉, and z=〈0, 0, 1〉; it was 6b[K ] where b[K ] is the bridge number of the
knot K (the minimum number of local maxima of any projection of a knot onto any
single vector). The proof guaranteed 2b[K ] sticks in each of the three directions.
Indeed, maximums in the up-down direction, or z-direction, will occur in xy-planes
and each maximum will have two z-sticks at the ends of the arc containing the max-
imum in the xy-plane. We give a similar result here for the simple hexagonal lattice.

Theorem 1 (lower bound for stick numbers). For any knot K in the simple hexago-
nal lattice, s[K ] ≥ 5b[K ].

Proof. A maximum in the w-direction, occurring in an xy-plane, will have two
w-sticks at the ends of the arc containing the maximum in the xy-plane. Note that
using a z-stick at the end of the arc would keep you in the same xy-plane. Since
there are at least b[K ] maxima, we have |P|w ≥ 2b[K ].

A maxima occurring in an xw-plane will have two sticks at the ends of the arc
containing the maximum in the xw-plane — these sticks can be y- or z-sticks. Since
there are at least b[K ] maxima, we have |P|y + |P|z ≥ 2b[K ]. One also consid-
ers maxima occurring in yw-planes and zw-planes to get two more inequalities
summarized below:

|P|w ≥ 2b[K ], (1)

|P|y + |P|z ≥ 2b[K ], (2)

|P|x + |P|z ≥ 2b[K ], (3)

|P|x + |P|y ≥ 2b[K ]. (4)

Summing inequalities (2)–(4) and dividing by 2 yields |P|x + |P|y + |P|z ≥ 3b[K ].
Then adding inequality (1) gives |P| = |P|x + |P|y + |P|z + |P|w ≥ 5b[K ]. �

At this point, we can say that the stick number of any nontrivial knot in the
simple hexagonal lattice is at least 10. However, in [Mann et al. 2012], it was shown
to be 11. In the next section we show that any polygon constructed with ten sticks
in the simple hexagonal lattice is the trivial polygon. Before we proceed, we point
out what must happen if |P| = 5b[K ].

Corollary 2. If |P| = 5b[K ], then |P|x = |P|y = |P|z = 1
2 |P|w = b[K ].
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P4 P5

P1 P2

P6 P3

Figure 3. Three crossing projections of ten stick sh knots.

Proof. Suppose |P|x 6=b[K ], |P|y 6=b[K ], |P|z 6=b[K ], or |P|w 6=2b[K ]. If |P|w>
2b[K ] is combined with |P|x + |P|y + |P|z ≥ 3b[K ], the argument above yields
|P|> 5b[K ]. For the remainder of the argument we may assume |P|w = 2b[K ].

If |P|x < b[K ], then |P|x = b[K ] − n for some n > 0. Inequalities (3) and (4)
imply that |P|y ≥ b[K ]+ n and |P|z ≥ b[K ]+ n. Thus |P| ≥ 5b[K ]+ n > 5b[K ].
Following a similar argument, if |P|y < b[K ] or |P|z < b[K ], then |P| > 5b[K ].
Hence for the remainder of the argument we may assume |P|x ≥ b[K ], |P|y ≥ b[K ]
and |P|z ≥ b[K ]. Observe that since one of these inequalities is strict from our
original assumption, it must happen that |P|> 5b[K ]. �

4. Stick number of the lattice

As mentioned in the previous section, the stick number of any nontrivial knot in the
simple hexagonal lattice is at least 10. The work in this section will show that a sim-
ple hexagonal knot constructed with ten sticks (necessarily using two x-sticks, two
y-sticks, two z-sticks, and four w-sticks from Corollary 2) is the trivial knot. This,
along with the eleven-stick trefoil in Figure 2, will establish the following result.

Theorem 3 (minimum stick number in the simple hexagonal lattice). In the simple
hexagonal lattice, the stick number of any nontrivial knot is at least 11.

Given a ten-stick knot K using two x-sticks, two y-sticks, two z-sticks, and four
w-sticks, consider the projection of K onto the xy-plane. If the projection contains
two line segments laying on top of one another or multiple crossings at one point,
then do a slight perturbation of the knot before projecting. If the projection contains
less than three crossings, then the knot is trivial. There are only a few possibilities for
projections containing three crossings; see Figure 3 for representative projections.

The first two projections are the trivial knot. For the last projection, it must have
alternating crossings to be a nontrivial knot. However, it cannot have alternating
crossings in the hexagonal lattice. Indeed, label the endpoints of the projection P1,
P2, P3, P4, P5, and P6 as in Figure 3. Without loss of generality, suppose that P1 P2

on level i crosses over P3 P4 on level j ; that is, i > j . Alternating crossings gives
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P

Q

PQ

Figure 4. Connecting sh lattice points P and Q with two sticks.

that P3 P4 on level j crosses over P5 P6 on level k and P5 P6 crosses over P1 P2. This
gives i > j > k > i .

5. Upper bound for stick composition

In order to compose sh knots we must identify places on the knots to compose
them; these will be called configurations. To achieve the highest reduction of
sticks and edges in the composition of sh lattice knots, we will compose knots with
configurations in planes parallel to the xy-plane. In particular, we will compose
with configurations in the top xy-plane or the bottom xy-plane of a knot.

Suppose K is a minimal stick conformation in the sh lattice — that is, it can’t be
constructed with fewer sticks. If K contains more than one connected component
in the top xy-plane, then the vertical sticks for one connected component can be
lengthened in order to push that connected component to a higher xy-plane without
increasing the number of sticks used to create K . Thus one may assume that the
top xy-plane (and similarly the bottom xy-plane) contains only one connected
component. The two endpoints P and Q of the connected component can either be
connected via one stick or two sticks since there are no other components to avoid
when creating a path. To see this, consider the angles between the vector

−→
PQ and the

vectors ±〈1, 0, 0〉,±
〈 1

2 ,
√

3
2 , 0

〉
,±
〈
−

1
2 ,
√

3
2 , 0

〉
. If one of the angles is zero, then P

and Q are connected with one stick. If not, then we construct a parallelogram with
P and Q on opposite corners using the two vectors which yield the smallest two
angles from above. Note that PQ forms the major axis of the parallelogram. In this
situation P and Q can be connected via two sticks. An example is given in Figure 4.

Thus after possibly rotating the knot around the z-axis, we have two possible
configurations occurring in the top or bottom xy-plane as shown in Figure 5.

Theorem 4. Given knots K and L in the simple hexagonal lattice,

s[K #L] ≤ s[K ] + s[L] − 3.

Proof. Let K and L be two knots in minimal stick conformations in the simple
hexagonal lattice. We will compose K along a configuration in the bottom xy-plane
and L along a configuration in the top xy-plane. Finally, when expressing K and L
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Configuration A Configuration B

Figure 5. Configurations in sh.

as strings we will choose convenient starting places and orientations to allow for
easier composition.

Case 1. Suppose K and L both have type A configurations. Then the bottom and
top configurations of K and L , respectively, can be viewed as in Figure 6. Let
K = sxn and L = Xm t , where the strings s and t represent what remains of K
and L after the type A configurations are removed. Note that s will begin with a w
and end with a W , whereas t will begin with a W and end with a w. Assuming
that n 6=m, we scale K by m and scale L by n. We have K = s̃xnm and L = Xnm t̃ ,
where s̃ represents s scaled by m and t̃ represents t scaled by n. (In the case that
n = m, s̃ = s and t̃ = t .) We may now compose K and L , and write K #L = s̃ t̃ . At
first glance it may seem that we have removed only two sticks (from the xs and Xs).
However, we have removed two more sticks. The end of s̃ and the beginning of t̃
have combined into one stick instead of two. Similarly the end of t̃ and beginning
of s̃ have combined into one stick. Thus we have a reduction of four sticks for this
case. That is, s[K #L] ≤ s[K ] + s[L] − 4.

Case 2. Suppose K has a type A configuration and L has a type B configuration.
Then the bottom and top configurations of K and L , respectively, can be viewed as
in Figure 7. Let K = sxn and L = Xm tY p, where strings s and t represent what

K L

Figure 6. K and L with type A configurations: bottom and top, respectively.

K L
Figure 7. K with type A configuration and L with type B config-
uration: bottom and top, respectively.



STICK NUMBERS IN THE SIMPLE HEXAGONAL LATTICE 509

K L

Figure 8. K and L with type B configurations: bottom and top, respectively.

remains of K and L after the type A and B configurations are removed. Note that s
will begin with a w and end with a W , whereas t will begin with a W and end with
a w. Assuming that n 6=m, we scale K by m and scale L by n. We have K = s̃xnm

and L = Xnm t̃Y np, where s̃ represents s scaled by m and t̃ represents t scaled by n.
(In the case that n = m, s̃ = s and t̃ = t .) We may now compose K and L , and
write K #L = s̃ t̃Y np. Thus we have a reduction of three sticks for this case — the
first for the xs, the second for the Xs and the third for putting end of s̃ together
with beginning of t̃ . Therefore s[K #L] ≤ s[K ] + s[L] − 3.

Case 3. Suppose K and L both have type B configurations. Then the bottom and
top configurations of K and L , respectively, can be viewed as in Figure 8. Let
K = ymsxn and L = X ptY q , where the strings s and t represent what remains of K
and L after the type B configurations are removed. Note that s will begin with a w
and end with a W , whereas t will begin with a W and end with a w. Assuming that
n 6= p, we scale K by p and scale L by n to obtain K = ymp s̃xnp and L = Xnp t̃Y nq ,
with s̃ being s scaled by p, and t̃ being t scaled by n. We may now compose K
and L , and write

K #L =


ymp−nq s̃ t̃ if mp > nq,
s̃ t̃Y nq−mp if mp < nq,
s̃ t̃ if mp = nq.

Thus we have a reduction of at least three sticks for mp 6= nq and a reduction of at
least six sticks for mp = nq . In other words,

s[K #L] ≤
{

s[K ] + s[L] − 3 if mp 6= nq,
s[K ] + s[L] − 6 if mp = nq.

Thus we have a minimum reduction of three sticks over all cases. Hence,

s[K #L] ≤ s[K ] + s[L] − 3. �

6. Knot constructions

Adams, Chu, Crawford, Jensen, Siegel and Zhang [Adams et al. 2012] use con-
structions combined with the lower bound on stick number to establish that the
stick number of the 3-bridge knots 820, 821, and 946 are 18 in the simple cubic
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Figure 9. 16-stick hexagonal 820 knot (left) and 821 knot (right).

lattice. In a similar manner, one considers these knots in the simple hexagonal
lattice. Figures 9 and 10 show these knots built with 16 sticks. Inspection of these
knot constructions does not yield any obvious one stick reductions. Using the
constructions and Theorem 1, one gets the following theorem.

Theorem 5. In the simple hexagonal lattice, knots 820, 821, and 946 have stick
number either 15 or 16.

Another use of knot construction combined with using the lower bound for stick
number can been seen with (p, p+1)-torus knots.

Theorem 6 (stick number for (p, p+1)-torus knots). For a (p, p+1)-torus knot K,
5p ≤ s[K ] ≤ 5p+ 1.

Figure 10. 16-stick hexagonal 946 knot.
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Proof. Consider a (p, p+1)-torus knot K which can be constructed in the simple
hexagonal lattice in the following way:

Yw p X3+p(p−1)/2 y pW x3+α
p−2∏
i=0

(Y 3−i+αw2i+2z2−i+αW 2i+3x3−i+α),

where α = (p− 2)(p− 1)/2 and an exponent on a letter refers to the edge length
of the stick. Notice there are 5p+ 1 sticks used in this construction. In [Schubert
1954], it is shown that b[K ] = p. Using Theorem 1, we have s[K ] ≥ 5p. Therefore,
s[K ] = 5p or s[K ] = 5p+ 1. �

Corollary 7. For a (p, p+1)-torus knot K, 10p− 5≤ s[K #K ] ≤ 10p− 4.

Proof. Using two configurations of type B, one sees from Theorem 4 that

s[K #K ] ≤ 2(5p+ 1)− 6= 10p− 4.

On the other hand, [Schubert 1954] says

b[K #K ] = 2b[K ] − 1= 2p− 1,

and Theorem 1 yields

s[K #K ] ≥ 5b[K ] ≥ 10p− 5. �

7. Further work

With all the constructions in the previous section where it is not obvious how to re-
duce the stick number, it leads one to conjecture that the stick number of a knot is one
more than five times its bridge number. It would be nice to prove this improved lower
bound or find an example to demonstrate why the standing lower bound is sharp.

Conjecture. For any knot K in the simple hexagonal lattice, s[K ] ≥ 5b[K ] + 1.

One could try to extend the results to other lattices such as the face-centered
cubic lattice and the body-centered cubic lattice. Preliminary investigations of
lower bounds for minimal stick number are not great; following similar inequality
arguments for these two lattices yields lower bounds of 7 and 8 respectively for
2-bridge knots but has been conjectured to be 9 and 12 via knot constructions [Mann
et al. 2012]. A cursory inspection of upper bounds for stick numbers of composite
knots suggests that one cannot do better than being subadditive. That is, the stick
number of a composite knot is less than or equal to the sum of the stick numbers.
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On the number of pairwise touching simplices
Bas Lemmens and Christopher Parsons

(Communicated by Kenneth S. Berenhaut)

In this note, it is shown that the maximum number of pairwise touching translates
of an n-simplex is at least n+3 for n= 7, and for all n ≥ 5 such that n≡ 1 mod 4.
The current best known lower bound for general n is n+ 2. For n = 2k

− 1 and
k ≥ 2, we will also present an alternative construction to give n + 2 touching
simplices using Hadamard matrices.

1. Introduction

A classic problem in discrete geometry is to determine for a given convex body K
in Rn the maximum number of pairwise touching translates of K . This number is
called the touching number of K and is denoted by t (K ). It is well known that for
any convex body K in Rn ,

t (K )≤ 2n,

and equality holds if, and only if, K is a parallelotope; see [Danzer and Grünbaum
1962; Petty 1971; Soltan 1975]. On the other hand, it is unknown if for each convex
body K in Rn the inequality t (K ) ≥ n+ 1 holds when n ≥ 4; see [Bezdek 2010,
Section 2.3].

This paper concerns the touching number of n-dimensional simplices, 1n . This
number was studied by Koolen, Laurent and Schrijver [Koolen et al. 2000]. They
showed, among other things, that t (1n) ≥ n + 2 for all n ≥ 3 and t (13) = 5,
see Figure 1. Lemmens [2007] gave examples that showed that t (14) ≥ 7 and
t (15)≥ 9.

The main goal of this short note is to present a construction that gives the
following small improvement of the lower bound for t (1n).

Theorem 1.1. For n = 7 and n ≡ 1 mod 4, with n ≥ 5, we have that

t (1n)≥ n+ 3.

MSC2010: primary 52C17; secondary 05B40, 46B20.
Keywords: touching number, simplices, equilateral sets, `1-norm.
Parsons is grateful for the support from School of Mathematics, Statistics and Actuarial Science at the
University of Kent and from the HE STEM project “Communicating Mathematical Sciences” .
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Figure 1. Five pairwise touching tetrahedra.

The problem of determining t (1n) is known to be equivalent to finding the
maximum size of `1-norm equilateral sets in a hyperplane [Koolen et al. 2000;
Lemmens 2007]. We will discuss the equivalence between these two problems in
the next section.

2. Equilateral sets

A convex body K in Rn which is centrally symmetric, i.e., x ∈ K if and only
if −x ∈ K , is the unit ball of a norm ‖·‖K on Rn . Indeed, for x ∈Rn , we can define
the norm by

‖x‖K = inf{λ > 0 : x ∈ λK }.

A set S in a normed space (Rn, ‖ · ‖) is called an equilateral set if there exists a
constant δ > 0 such that

‖s− t‖ = δ for all s 6= t in S.

The maximum size of an equilateral set in (Rn, ‖ · ‖) is the equilateral dimension
of (Rn, ‖ · ‖) and is denoted by e(Rn, ‖ · ‖). Note that the constant δ > 0 does not
play a role, as we can always scale the equilateral set. Clearly, if K is a centrally
symmetric body in Rn , then S = {s1, . . . , sp} is an equilateral set in (Rn, ‖ · ‖K )

with pairwise distance 2 if, and only if, the set of unit balls with centers s1, . . . , sp

is a configuration of p pairwise touching translates of K .
The equilateral dimension has been studied for many normed spaces; see, for

example, [Alon and Pudlák 2003; Swanepoel 2004a; Swanepoel 2004b]. Particular
attention has been given to so-called `p-norms which are defined as follows. For
1≤ p<∞, the `p-norm on Rn is given by ‖x‖p =

(∑
i |xi |

p
)1/p. For the `1-norm,
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n = 5 n = 6 n = 8

(4, 0, 1, 1, 2) (4, 0, 1, 1, 1, 1) (0, 4, 2, 2, 0, 4, 2, 2)
(0, 4, 1, 1, 2) (0, 4, 1, 1, 1, 1) (4, 0, 2, 2, 4, 0, 2, 2)
(1, 1, 4, 0, 2) (1, 1, 4, 0, 1, 1) (2, 2, 0, 4, 2, 2, 0, 4)
(1, 1, 0, 4, 2) (1, 1, 0, 4, 1, 1) (2, 2, 4, 0, 2, 2, 4, 0)
(2, 2, 0, 0, 4) (1, 1, 1, 1, 4, 0) (8, 2, 1, 1, 0, 2, 1, 1)
(0, 0, 2, 2, 4) (1, 1, 1, 1, 0, 4) (4, 4, 4, 4, 0, 0, 0, 0)
(2, 2, 2, 2, 0) (2, 2, 2, 2, 0, 0) (4, 4, 0, 0, 4, 4, 0, 0)

(2, 2, 0, 0, 2, 2) (4, 4, 0, 0, 0, 0, 4, 4)
(0, 0, 2, 2, 2, 2) (4, 0, 4, 0, 0, 4, 0, 4)

(4, 0, 0, 4, 0, 4, 4, 0)

Table 1. Equilateral sets.

it has been conjectured by Kusner that e(Rn, ‖ ·‖1)= 2n [Guy 1983], but at present
this has only been confirmed for 1≤ n ≤ 4; see [Bandelt et al. 1998; Koolen et al.
2000]. Obviously, 2n is a lower bound for e(Rn, ‖ · ‖1), as the set of standard basis
vectors and their opposites form an equilateral set. The best known upper bound
is Cn log n, where C > 0 is a constant, which was obtained using probabilistic
methods by Alon and Pudlák [2003].

Finding the touching number for the n-dimensional simplex turns out to be
equivalent to determining the maximum size of an `1-norm equilateral set contained
in a hyperplane. More precisely, if h(n) is the maximum size of an `1-norm
equilateral set in Hα =

{
x ∈ Rn

:
∑

i xi = α
}

for some α ∈ R, then

t (1n)= h(n+ 1) for all n ≥ 1; (2-1)

see [Koolen et al. 2000; Lemmens 2007]. For example, the `1-norm equilateral set

S = {(2, 0, 1, 1), (0, 2, 1, 1), (1, 1, 2, 0), (1, 1, 0, 2), (2, 2, 0, 0)} (2-2)

in the hyperplane H4⊆R4 corresponds to the configuration of five pairwise touching
translates of a tetrahedron depicted in Figure 1. The examples of equilateral sets in
Table 1 were found with the aid of a computer. In particular, we see that t (17)≥ 10,
which settles the n = 7 case in Theorem 1.1.

It is interesting to note that in these examples all the nonzero coordinates are
powers of 2. We have looked into those type of examples in more detail, which
let to the construction in Proposition 4.1. At present, however, we have no clear
understanding of why these coordinate values generate large examples.

Before we prove Theorem 1.1, we mention that the inequalities

h(n)≤ e(Rn, ‖ · ‖1)≤ h(2n− 1)
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are known to hold for all n ≥ 1 [Koolen et al. 2000; Lemmens 2007]. Thus,
e(Rn, ‖ · ‖1) grows linearly in n if, and only if, h(n) does.

3. Proof of Theorem 1.1

For each n ≡ 2 mod 4 with n ≥ 6, we shall construct an `1-norm equilateral set in
Hα =

{
x ∈ Rn

:
∑

i xi = α
}

of size n+ 2, where α = (n− 2)2/2. The result then
follows from Equation (2-1). So let n ≡ 2 mod 4 with n ≥ 6. Define

v1
= (b, 0, a, a, . . . , a, a),

v2
= (0, b, a, a, . . . , a, a),

v3
= (a, a, b, 0, . . . , a, a),

v4
= (a, a, 0, b, . . . , a, a),
...

vn−1
= (a, a, a, a, . . . , b, 0),

vn
= (a, a, a, a, . . . , 0, b),

in Rn , where a = (n− 4)/2 and b = n− 2. Furthermore let

vn+1
= (

k︷ ︸︸ ︷
y, y, . . . , y,

n−k︷ ︸︸ ︷
z, z, . . . , z ) and vn+2

= (

n−k︷ ︸︸ ︷
z, z, . . . , z,

k︷ ︸︸ ︷
y, y, . . . , y )

in Rn . We now show that if we take

k = n−2
2
, y = n−6

2
, and z = n−2

2
,

then V = {v1, . . . , vn+2
} is an `1-norm equilateral set in Hα , where α = (n−2)2/2

and the distance is 2(n− 2).
To verify this we note first that b≥ z≥a≥ y≥ 0. For i = 1, . . . , n, the coefficient

sum of vi is given by

b+ (n− 2)a = n− 2+ (n−2)(n−4)
2

=
(n−2)2

2
.

Similarly the coefficient sum for the vectors vn+1 and vn+2 is equal to

(n− k)z+ ky = (n+2)(n−2)
4

+
(n−2)(n−6)

4
=
(n−2)2

2
.

Let 1≤ i 6= j ≤ n. For i = 2k− 1 and j = 2k, the distance between vi and v j is
given by

‖vi
− v j
‖1 = |b− 0| + |0− b| = 2(n− 2),
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and for all other i 6= j ,

‖vi
− v j
‖1 = |b− a| + |0− a| + |a− b| + |a− 0| = 2(b− a)+ 2a = 2(n− 2).

Also

‖vn+1
− vn+2

‖1 = k|z− y| + k|y− z| = (n− 2)
(n−2

2
−

n−6
2

)
= 2(n− 2).

Finally the distance between any of the first n vectors and the last two is calculated
as in either the case of v1 and vn+1,

‖v1
− vn+1

‖1 = |b− y| + |0− y| + (k− 2)|a− y| + (n− k)|a− z|

= n− 2+ n−6
2
+

n+2
2

= 2(n− 2),

or, as in the case of v1 and vn+2,

‖v1
− vn+2

‖1 = |b− z| + |0− z| + (n− k− 2)|a− z| + k|a− y|

= n− 2+ n−2
2
+

n−2
2

= 2(n− 2).

Thus, V is an `1-norm equilateral set in Hα of size n+ 2. Table 2 shows examples
in dimensions n = 6, 10 and 14.

4. Hadamard matrices

In this section, we will give an alternative construction that shows that t (1n)≥ n+2
for all n = 2k

−1 with k ≥ 2 using `1-norm equilateral sets and Hadamard matrices.
Recall that an n × n matrix H = [hi j ] with entries hi j ∈ {−1, 1} for all i and j
is called a Hadamard matrix if H H T

= nI . There exists a simple well-known
construction of Hadamard matrices of size 2k . Define H1 = [1] and

H2k+1 =

[
H2k H2k

H2k −H2k

]
for all k ≥ 1. So,

H2 =

[
1 1
1 −1

]
, H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 , · · · .
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n = 6 n = 10 n = 14

(4, 0, 1, 1, 1, 1) (8, 0, 3, 3, 3, 3, 3, 3, 3, 3) (12, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5)
(0, 4, 1, 1, 1, 1) (0, 8, 3, 3, 3, 3, 3, 3, 3, 3) (0, 12, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5)
(1, 1, 4, 0, 1, 1) (3, 3, 8, 0, 3, 3, 3, 3, 3, 3) (5, 5, 12, 0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5)
(1, 1, 0, 4, 1, 1) (3, 3, 0, 8, 3, 3, 3, 3, 3, 3) (5, 5, 0, 12, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5)
(1, 1, 1, 1, 4, 0) (3, 3, 3, 3, 8, 0, 3, 3, 3, 3) (5, 5, 5, 5, 12, 0, 5, 5, 5, 5, 5, 5, 5, 5)
(1, 1, 1, 1, 0, 4) (3, 3, 3, 3, 0, 8, 3, 3, 3, 3) (5, 5, 5, 5, 0, 12, 5, 5, 5, 5, 5, 5, 5, 5)
(2, 2, 2, 2, 0, 0) (3, 3, 3, 3, 3, 3, 8, 0, 3, 3) (5, 5, 5, 5, 5, 5, 12, 0, 5, 5, 5, 5, 5, 5)
(0, 0, 2, 2, 2, 2) (3, 3, 3, 3, 3, 3, 0, 8, 3, 3) (5, 5, 5, 5, 5, 5, 0, 12, 5, 5, 5, 5, 5, 5)

(3, 3, 3, 3, 3, 3, 3, 3, 8, 0) (5, 5, 5, 5, 5, 5, 5, 5, 12, 0, 5, 5, 5, 5)
(3, 3, 3, 3, 3, 3, 3, 3, 0, 8) (5, 5, 5, 5, 5, 5, 5, 5, 0, 12, 5, 5, 5, 5)
(4, 4, 4, 4, 4, 4, 2, 2, 2, 2) (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 12, 0, 5, 5)
(2, 2, 2, 2, 4, 4, 4, 4, 4, 4) (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0, 12, 5, 5)

(5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 12, 0)
(5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0, 12)
(6, 6, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 4)
(4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6)

Table 2. Equilateral sets of size n+ 2.

Now suppose k ≥ 2. Let v1, . . . , v2k
∈ R2k

denote the rows of the Hadamard
matrix H2k , and define the set

Vk = {v
3
} ∪ {vi

: i = 5, . . . , 2k
}.

Furthermore, let Wk = {w
1, w2, w3, w4

} ∈ R2k
be given by

w1
= (1,−1, 0, 0, 1,−1, 0, 0, . . . , 1,−1, 0, 0),

w2
= (−1, 1, 0, 0,−1, 1, 0, 0, . . . ,−1, 1, 0, 0),

w3
= (0, 0, 1,−1, 0, 0, 1,−1, . . . , 0, 0, 1,−1),

w4
= (0, 0,−1, 1, 0, 0,−1, 1, . . . , 0, 0,−1, 1).

Proposition 4.1. For each k ≥ 2, the set Vk ∪Wk is an `1-norm equilateral set of
size 2k

+ 1 in H0 =
{

x ∈ R2k
:
∑

i xi = 0
}
.

Proof. Let k ≥ 2. It is easy to show that each u ∈ Vk ∪Wk lies in H0. Also note
that any two distinct points vi and v j in Vk satisfy

‖vi
− v j
‖1 = 2k,

as the rows in H2k differ in exactly 2k−1 places. The reader can check that

‖wi
−w j
‖1 = 2k for all 1≤ i 6= j ≤ 4.
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So, it remains to show that

‖vi
−w j
‖1 = 2k for all vi

∈ Vk and w j
∈Wk . (4-1)

We use induction on k. Note that if k = 2, we have that

V2∪W2={(1, 1,−1,−1), (1,−1, 0, 0), (−1, 1, 0, 0), (0, 0, 1,−1), (0, 0,−1, 1)},

which is an `1-norm equilateral set with distance 4. Now suppose that (4-1) holds
for k. Denote the points in Vk+1 by v̄i and the points in Wk+1 by w̄ j . Note that
for j = 1, . . . , 4, we have w̄ j

= (w j , w j ), where w j
∈ Wk . Also observe that

for i = 3, 5 . . . , 2k , we have v̄i
= (vi , vi ), and for i = 2k

+ 1, . . . , 2k+1, we have
v̄i
= (vi−2k

,−vi−2k
), where vi

∈ Vk .
So, for i = 3, 5, . . . , 2k and j = 1, . . . , 4, we have that

‖v̄i
− w̄ j
‖1 =

2k+1∑
l=1

|v̄i
l − w̄

j
l | = 2

2k∑
l=1

|vi
l −w

j
l | = 2 · 2k

= 2k+1

by the induction hypothesis. Also for i = 2k
+ 1, . . . , 2k+1 and j = 1, . . . , 4, we

have that

‖v̄i
− w̄ j
‖1 =

2k∑
l=1

(
|vi−2k

l −w
j
l | + |v

i−2k

l +w
j
l |
)
=

2k∑
l=1

(1−w j
l + 1+w j

l )= 2k+1,

as vi
l ∈ {−1, 1} and −1≤ w j

l ≤ 1 for all l. �

The reader should note that the equilateral set Vk ∪Wk can be seen as a general-
ization of the equilateral set S in (2-2), as V2 ∪W2 = S− (1, 1, 1, 1). Furthermore,
the example in Table 1 with n = 8 is also of this type, if one ignores the point
(8, 2, 1, 1, 0, 2, 1, 1).
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The zipper foldings of the diamond
Erin W. Chambers, Di Fang, Kyle A. Sykes,

Cynthia M. Traub and Philip Trettenero
(Communicated by Kenneth S. Berenhaut)

In this paper, we classify and compute the convex foldings of a particular rhombus
that are obtained via a zipper folding along the boundary of the shape. In the
process, we explore computational aspects of this problem; in particular, we
outline several useful techniques for computing both the edge set of the final
polyhedron and its three-dimensional coordinates. We partition the set of possible
zipper starting points into subintervals representing equivalence classes induced
by these edge sets. In addition, we explore nonconvex foldings of this shape which
are obtained by using a zipper starting point outside of the interval corresponding
to a set of edges where the polygon folds to a convex polyhedron; surprisingly,
this results in multiple families of nonconvex and easily computable polyhedra.

1. Introduction

A folding of a polygon is a gluing together of the points on the perimeter to form
a polyhedron. A theorem of Alexandrov [1958] shows that as long as the sum
of the angles at every glued point is no more than 2π , every folding of a convex
polygon leads to unique convex polyhedron (in which a doubly covered polygon is
considered a flat polyhedron). If a folding meets the requirements for Alexandrov’s
theorem then we are given the existence of a convex polyhedron corresponding to
the folding. A more recent constructive proof by Bobenko and Izmestiev [2008]
allows for the explicit construction of a polyhedron by solving a certain differential
equation. An implementation of the constructive algorithm has been coded by
Stefan Sechelmann1. Given any input triangulation of the polygon with gluing
instructions, the implementation will output the final polyhedron. However, this
particular implementation does not return the corresponding triangulation on the
polygon. The algorithm runs in pseudopolynomial time since the algorithm must
take the initial triangulation and flip it to a geodesic triangulation, which is not, in
general, a polynomial time operation [Kane et al. 2009].

MSC2010: 68U05.
Keywords: computational geometry, folding algorithms, combinatorial geometry.

1www3.math.tu-berlin.de/geometrie/ps/software.shtml#AlexandrovPolyhedron
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We seek a more combinatorial approach to computing this information. Given
a set of gluing rules corresponding to a zipper folding, we outline an approach
for computing the crease patterns (i.e., characterize and predict the combinatorial
structure of edges and faces) as well as the exact location of the vertices.

Related work. Work has been done towards determining all the combinatorially
different convex polyhedra obtained via foldings, primarily for regular convex
polygons as well as a few other shapes such as the Latin cross [Lubiw and O’Rourke
1996; Alexander et al. 2003; Akiyama and Nakamura 2003; 2004; 2005]. In each
work, the authors must determine the set of line segments in the polygon which
become edges in the final polyhedron; we refer to these edges as the crease pattern
for the shape. Note that the crease pattern may not contain all boundary edges of
the original polygon; see the left picture in Figure 6 for an example of when the
polyhedral edges cross the boundary of the original polygon.

In [Alexander et al. 2003] (and later in [Demaine and O’Rourke 2007]), all
(combinatorially distinct) convex polyhedra that are foldable from a square are
determined using a combinatorial structure called gluing trees. Crease patterns
and reconstructions of the folded polyhedra are also given, making the study of
foldings of the square complete. In [Akiyama and Nakamura 2003; 2004; 2005],
the focus is on determining all foldings of regular n-gons, without focusing on
reconstructing the actual polyhedron. There is also related work which examines
when the Platonic solids can be unzipped to a polygonal net and rezipped into a
doubly covered flat polygon [O’Rourke 2010]; another paper considers finding
different tetrahedra which unzip to a common polygonal net [O’Rourke 2011]. A
complete analysis of polyhedra that are zipper foldable from the 1×2 rectangle is
given in [Schwent 2013], utilizing the techniques outlined here.

As previously mentioned, our primary goal here is to seek a simpler combinatorial
approach to verify correct crease patterns in a restricted type of folding. To that end,
we consider a restricted class of foldings using the perimeter-halving method, where
the perimeter of the polygon is identified starting from a specified point gluing
together points equidistant from the starting point (as measured along the perimeter),
which zips up the boundary of the polygon into a polyhedron. We will use the
term zipper foldings, which was first introduced in Demaine et al. [2010]; a related
special case is the class of pita polyhedra which arise from zipper folding regular
polygons [Demaine and O’Rourke 2007]. As far as the actual resulting polyhedra,
surprisingly little is known even about this simple class of foldings aside from the
previously mentioned papers which (like ours) consider a particular shape and exam-
ine it in detail [Akiyama and Nakamura 2003; 2004; 2005; Alexander et al. 2003].

Predicting creases. As was observed by Alexandrov and noted in [Alexander et al.
2003], there are a finite number of possible crease patterns. However, in our
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A′B ′

C ′ D′

(0,0)

(0,0.5)

(
√

3/2,0)

Figure 1. The crease pattern at ε = 1
4 , which has a 3-regular

adjacency graph.

experience, verifying or discounting a crease pattern is surprisingly difficult in more
complex polygons since checking a crease pattern either involves seeing if a paper
model will fold (highly prone to error) or attempting to compute the folding in a
program such as Mathematica (which can lead to numerical issues). As a result,
most prior combinatorial work on computing zipper foldings was done using ad hoc
methods.

We describe now points on the polygon which will be of interest as we con-
struct the corresponding polyhedron via zipper folding. Our initial polygon is the
equilateral rhombus (or diamond) centered on the origin with unit edge length and
interior angles 60◦ and 120◦. Label the vertices A, B,C, D; see Figure 1 for an
example of the labeling. Let the starting point of our zipping S be a point on edge
AB located at (

√
3ε/2, (1− ε)/2), and refer to the location of S by this ε. Note

that 0≤ ε ≤ 1, and the location of S is distance ε from point A along edge AB. The
point E on edge CD is the reflection of S through the origin, which is where the
zipper ends. For any such folding, we will use A′, B ′,C ′, D′ to denote the points
on the boundary of the polygon which glue to A, B,C, D, respectively.

As previously mentioned, for polygonal foldings in general, it is known that if the
requirements for Alexandrov’s theorem are satisfied then there exists a valid folding.
Here, we present several computational reconstruction techniques which may be
of interest in this area. We also develop several methods to prove that a particular
crease pattern is valid as the starting point moves along a continuous interval on
the boundary; previous papers seem to have relied on numerical approximation to
verify validity, which will reach its limit as the polygon becomes more complex.
We also classify all the zipper foldings resulting from the diamond outlined above.

Theorem 1. There are 21 combinatorially distinct convex polyhedra resulting from
zipper foldings of a diamond. There are 7 polyhedra which have nontriangular
faces and 4 flat polyhedra, all of which occur at isolated points where the crease
pattern changes.
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ε=0

ε=1

ε≈.13396

ε≈.1909

ε=1/3

ε≈.428

ε=1/2

ε≈.5729

ε=3/4

ε≈.88416

ε≈.94041

ε=0

ε≈0.13396

ε≈0.1909

ε= 1
3

ε≈0.428

ε= 1
2

ε≈0.5729

ε= 3
4

ε≈0.88416

ε≈0.94041

ε=1

Figure 2. All the crease patterns for the zipper foldings of the
diamond as the start point S varies by distance ε from point A
along edge AB. Images are taken from sample values between
each transition point, marked with solid dots. Dashed lines indicate
that a crease extends over an edge. The polyhedra shown between
transition points correspond to the respective crease patterns. The
symmetry of our input shape allows us to study all zipper foldings
by varying the location of S along one edge; moving S to another
edge will give a combinatorially equivalent folding.
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The polyhedra shown in Figure 2 represent the 10 polyhedra with triangular
faces, and the solid dots represent the 11 isolated polyhedra noted above. The
polyhedra with triangular faces form octahedra. Together, these represent all the
zipper foldings of the diamond.

2. Computing the foldings

In our foldings, all polyhedra will have at most 6 vertices, resulting from gluing
each of A, B, C , and D to some other point on the perimeter, as well as the
vertices S and E . We are often interested in the actual adjacencies in the final
folded polyhedron; this network of edges forms an adjacency graph, often called
the graph of the polyhedron, on the (at most) 6 vertices. We refer to this adjacency
graph as the crease pattern.

Our techniques for computing these foldings break down into several relevant
categories. The first (and simplest) are the flat foldings when the entire polygon
folds into a doubly covered polygon. For example, when ε = 0, the vertices B
and D zip together and the result is a flat doubly covered regular triangle; flat
foldings also occur when ε = 0.5, 0.75, and 1.

The remaining cases in our computation are handled based on whether the graph
of the polyhedron is 4-regular or not; if not, in our shape, as well as in the 1×2
rectangle studied in [Schwent 2013], the graph will always consist of vertices of
degrees 3, 4, and 5. When degree-3 vertices exist, as discussed in Section 2.1,
computing the crease pattern is much simpler since it is not difficult to verify
that the underlying structure of the polyhedron can be decomposed into several
tetrahedra. The more complex 4-regular case requires additional techniques to
calculate exactly; we detail these techniques in Section 2.2. In addition, further
complexity arises when the boundary edges of the initial polygon do not become
edges in the final polyhedron; see, for example, the crease patterns in Figure 2
which are nearest to ε = 1. These patterns, which occur much more often in this
shape than previous related work, required an extra set of tools to calculate correct
crease patterns and 3-D realizations. In Section 2.3, we examine these tools which
require zipper folding a related nonconvex polygon to yield the same polyhedron.

In Figure 3, we show the creases with marked points for the places where the
crease pattern undergoes a combinatorial change, which we call a transition. Note
that (as in previous work) at most of these transitions, two triangles become coplanar
to form a quadrilateral (indicated as a dotted line) and then the opposite quadrilateral
diagonal appears in the polyhedron. All other transitions occur when the polyhedron
folds to a flat doubly covered polygon.

2.1. Degree-3 vertices in the pattern. Crease patterns with at least one degree-3
vertex are substantially easier to realize in R3, computationally speaking. In this
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Figure 3. All the crease patterns at each transition point (which
are marked by black dots). Dashed lines indicate that a crease
extends over an edge. Dotted lines indicate interior diagonals of a
quadrilateral face that are realized as polyhedral edges on either
side of the transition point.
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Figure 4. Left: The graph of the polyhedron for ε = 1
4 . Middle:

The two outer tetrahedra of the polyhedron joined along the com-
mon edge BD. Right: The final polyhedron decomposed into three
tetrahedra.

shape, this results from the fact that when we have such a graph with our setup, we
can decompose the final polyhedron into three tetrahedra (two outer tetrahedra and
the inner tetrahedron). In Figure 4, we show the adjacency graph of the polyhedron
generated when ε = 1

4 , the reconstruction of the two outer tetrahedra, and the
final polyhedron decomposed into three tetrahedra, where the inner tetrahedron is
composed of two triangles from the outer tetrahedra which meet on an edge, plus a
single additional edge.

For values of ε in intervals with a degree-3 vertex in the crease pattern, we wrote
code to find exact coordinates for the three-dimensional polyhedron that results.
Reconstructing a tetrahedron using adjacencies and edge lengths is not difficult
to do, so the general approach we used was to reconstruct the inside tetrahedron
shown in Figure 4, and then reconstruct the outer tetrahedra. We next illustrate this
process via an example.

Consider the crease pattern at ε = 1
4 . This crease pattern contains the edges SE

and BD. In its initial configuration, we note that points B and D are both adjacent
to SE as well as to each other. We can leave edge SE fixed in the z= 0 plane. Rotate
points B ′ and D′ by θ about edge SE into the positive z-direction. We solve for the
value of θ which positions points B ′ and D′ at the correct final distance |B ′D| = 2ε
from each other; this establishes a central tetrahedron within our final polygon.
Vertex A is adjacent to B ′, D′, S, and hence can be located by solving a system of
three distance equations. Similarly, C is adjacent to B ′, D′, E . The resulting figure
is convex and has edge lengths that match those from the polygonal net.

To extend from a specific value of ε to the entire interval containing ε, we note
that the ability to construct the central tetrahedron BDSE for S corresponding to a
specific 0.1909< ε < 1

3 can be verified via an intermediate value theorem argument.
Simply measure the distance between B and D when the dihedral angle at SE is 0
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A
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D
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S
A′

B ′

C ′

D′9

θ

9

Figure 5. A crease pattern whose adjacency graph is 4-regular to
illustrate the reconstruction process.

and again when it is π . If the desired length of BD is between these two values,
then folding over SE by some angle 0≤ θ ≤ π will attain the correct length for BD.
Then, checking the angle criterion given in Lemma 2 (see the Appendix) confirms
that locations for points A and C can be found that realize all desired distances. It
remains only to verify that the resulting polyhedron is convex. Since for ε-values
in this interval, the orthogonal projection of A onto the plane containing triangle
BDS is interior to triangle BDS, the final polyhedron will be convex.

2.2. 4-regular graph of the polyhedron. In folding patterns where all vertices are
degree-4, realization of the vertices in R3 is not as simple as the degree-3 case. In
[Demaine and O’Rourke 2007], the authors describe a method for constructing
an octahedron by splitting it into two smaller hexahedra which share an edge that
is an internal diagonal of the octahedron. They vary the length of this edge until
the dihedral angles of the faces incident to the edge match. We utilize a different
method that also reduces a partial polyhedron to one parameter of change. We
illustrate this for ε in the interval 0.13396< ε < 0.1909; the crease pattern for this
range is shown in Figure 5.

We consider the following flex over edge SE . Fold triangles SEA′ and SEC ′

upward from the z = 0 plane, each by angle θ , leaving edge SE fixed in the plane.
Each choice of θ results in a fixed measure of 6 A′SC ′ and 6 A′EC ′. The two
remaining triangular faces SB ′C ′ and ASB ′ which are incident to S (or respectively
E) are uniquely configurable into a shell comprised of faces of the final convex
polyhedron. That is, of the two locations in R3 for point Bθ that give correct distances
for segments AB, BC , BS, only one is extendable into a convex polyhedron. We
similarly find a location for Dθ . (The subscripts here serve as a reminder that the
locations of Bθ and Dθ depend on the initial flex by angle θ .) Note that this convex
shell contains six of the eight faces of the final polyhedron; the two missing faces
must share a common edge. We then vary θ to realize the correct length for this
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Figure 6. The crease patterns for ε = 7
8 (left) and the range just

below 1 (right) rearranged to a nonconvex polygon.

missing common edge; if no such θ exists, then we can reject this crease pattern.
Moreover, we can also reject the pattern if the final folding results in a nonconvex
polyhedron; else, it must realize a convex folding of the initial crease pattern.

2.3. Creases over the boundary of the polygon. While the particular approach
varies slightly, this process from the previous section can be repeated for any
4-regular graph of the polyhedron. However, some complications arise when the
crease pattern is more complex. For example, consider the crease pattern when
the source of the zipper S is near B. In this case, many of the edges in the final
polyhedron actually cross an edge of the initial polygon since not all of the polygon’s
edges are edges of the final polyhedron. (This also occurs at several other positions;
see Figure 2.) Computationally speaking, these patterns are more difficult because a
single crease is split into different segments inside the polygon. In order to compute
these foldings, we altered the original polygon to be nonconvex and verified the
crease pattern in this related polygon.

One example occurs when the zipper point reaches near point B in our shape
for the crease patterns above ε = 0.75; see Figure 6 for the pattern at ε = 7

8 . Here,
the creases cross over the edges AB ′ (and by symmetry also BA′) as well as C ′D
(and DC ′). Using the original gluing information, we reconstructed an equivalent
nonconvex polygon which folded to an identical polyhedron and allowed for easier
computation, given the symmetry and reduction in the number of creases.

This set of crossings becomes even more drastic as the zipper point nears B,
which is a vertex of high curvature. The crossing edges do not change, but the
rearranged figure becomes more complex due to extra crossings, and the nonconvex
polygon in turn becomes more complex. See Figure 6 for the final rearranged figure
just below ε = 1.

A very different example occurs for the crease pattern at ε = 1
10 ; here, instead

of keeping the shape close to the original diamond, we more drastically rearrange
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Figure 7. A crease pattern for a convex polyhedron when ε = 1
10 .

The initial net is diamond ABCD. The shaded faces are shown
rearranged to match the algorithmic approach to reconstruction.

to take advantage of symmetry when computing the folding. This crease pattern
contains the edges SE and BD. However, in its initial configuration, we note that
points A′ and C ′ are both adjacent to SE , but A and C are not adjacent to each other
in the final polyhedron. We use the gluing instructions to rearrange the triangular
faces so that they are as in Figure 7. Now vertices S and E are both incident to
edge BD, so we can fold this polygon symmetrically, leaving edge BD fixed in the
z=0 plane and proceed exactly as outlined in the ε= 1

4 case described in Section 2.1.
For nets where the vertices incident to the crease through (0, 0) are adjacent,

this rearranging of the net is not always needed. We do take advantage of this
rearrangement technique whenever a three-dimensional edge of our final polyhedron
intersects a two-dimensional boundary edge of our initial polygon. Since the gluing
instructions are preserved, this is merely a bookkeeping tool that allows for easier
computations.

3. Nonconvex polyhedra

One interesting result of our investigation of this pattern is a natural classification of
some types of nonconvex foldings, which to the best of our knowledge have not been
a focus of investigation in related work on zipper foldings. It is known, of course,
that convex shapes will fold to nonconvex polyhedra, and work has been done on
counting the number of foldings of a shape; see, for example, [Demaine et al. 2000].
In addition, recent work has focused on unfolding a polyhedron to a convex shape
and then refolding it to a different (convex) polyhedron [Demaine et al. 2012]; in
contrast, our results consider zipper folding a convex planar shape to one or more
nonconvex polyhedra, which seems to be an interesting variant of refold rigidity.

The main point of interest is how easy these nonconvex foldings are to find
computationally speaking. These foldings result from pushing a particular crease
pattern past the point where two faces become coplanar and a flip in the crease
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Figure 8. Left: A nonconvex folding when the zipper source is at
ε = .36. Right: A nonconvex folding when ε = 1

6 ; here, the folding
results in a flat flap, indicating that this crease pattern will not fold
to a polyhedron at all when pushed lower than 1

6 .

pattern occurs. In our experiments, the primary method to establish the validity of
a crease pattern is by finding a solution in R3 to a system of quadratic equations
defining pairwise distances, then checking the convexity of the resulting polyhedron.
These nonconvex foldings appeared when the code for computing a solution ran
successfully but failed the convexity check.

For an example of these, consider Figure 8. In the example shown on the left,
we consider when the zipper point is at ε = 0.36. However, instead of using the
correct crease pattern shown in Figure 2, we are instead using the crease pattern
for the interval below ε = 1

3 . Similarly, on the right side of Figure 8, we have a
nonconvex folding when ε = 1

6 , but the crease pattern used is the one that is valid
for the interval above ε ≈ 0.1909. In this second picture, we have actually pushed
the nonconvex folding as far is it will extend, since using this crease pattern for any
lower value of ε will result in an invalid folding (where the polygon self-intersects).

These calculations lead us to conjecture that any valid crease pattern over an
interval will fold to a nonconvex polyhedron for some value of ε close to the interval
of convexity. This conjecture is certainly true in our shape (except for near flat
foldings), and it seems likely to hold for other shapes since convexity does not
impact the existence of a solution.

4. Future directions

We have focused here on zipper foldings of this particular shape. In much of the
previous work in this area, all the foldings of a convex shape have been determined
using techniques such as gluing trees. Using those techniques to calculate all the
convex foldings of this diamond remains an area to address.

Another interesting question is to determine the relationship between the zipper
foldings we discuss here with the zipper foldings of the square, as they appear
similar [Alexander et al. 2003; Demaine and O’Rourke 2007]. A link between the
diamond and square zipper foldings might give a list of constraints for when two
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Figure 9. Corresponding figure for Lemma 2.

similar figures have similar foldings. Related lines of questioning could be asked
about rhombi in general. For instance, if the edge lengths are similarly defined, are
the values of ε where transitions occur similar?

The nonconvex foldings described in Section 3 are also perhaps worth further
investigation in other shapes. It would also be interesting to examine when these
nonconvex foldings cease to be valid, and to try to discover how many valid
(nonconvex) crease patterns might be present at a particular zipper point.

Appendix: Realizing tetrahedra

In our discussion of calculating the folding where there is a degree-3 vertex in the
graph of the polyhedron, we need a characterization of when a set of vertices and
edges can be realized in R3 as a tetrahedron. We then use this to help us discover
the entire range along which the tetrahedron is present in the final folding. We
summarize this tool in the following lemma:

Lemma 2. A net of four triangles as shown in Figure 9 will fold to a tetrahedron if

(1) lengths of corresponding sides are equal (|AF | = |EF |, |AB| = |BC |, and
|CD| = |DE |);

(2) at each vertex, the angle of the base is less than the sum of the other two
incident face angles.

Proof. It is clear that the first condition is necessary since, within the tetrahedron,
points A,C, E will all be identified and thus corresponding edge lengths must be
the same. To verify the second condition, we show that, without loss of generality,
all points incident to F can be realized in three dimensions. Assume 6 BFD ≤
6 AFB+ 6 DFE . If this condition were not met, then no position of point A rotated
over segment BF will coincide with any position of point E rotated over DF .
When the angle criterion is satisfied, let X be a point in R3 where points A and E
coincide after rotations over BF and DF respectively. We know by condition (1)
that |XB|= |AB|= |CB| and |XD|= |ED|= |CD|, so triangle4BCD will fold into
position over edge BD with C identified with point X to complete the tetrahedron. �
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On distance labelings of amalgamations
and injective labelings of general graphs
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(Communicated by Jerrold Griggs)

An L(2, 1)-labeling of a graph G is a function assigning a nonnegative integer
to each vertex such that adjacent vertices are labeled with integers differing by
at least 2 and vertices at distance two are labeled with integers differing by at
least 1. The minimum span across all L(2, 1)-labelings of G is denoted λ(G).
An L ′(2, 1)-labeling of G and the number λ′(G) are defined analogously, with
the additional restriction that the labelings must be injective. We determine
λ(H) when H is a join-page amalgamation of graphs, which is defined as fol-
lows: given p ≥ 2, H is obtained from the pairwise disjoint union of graphs
H0, H1, . . . , Hp by adding all the edges between a vertex in H0 and a vertex
in Hi for i = 1, 2, . . . , p. Motivated by these join-page amalgamations and the
partial relationships between λ(G) and λ′(G) for general graphs G provided by
Chang and Kuo, we go on to show that λ′(G)=max{nG −1, λ(G)}, where nG is
the number of vertices in G.

1. Introduction

In a well-studied model of the classic channel assignment problem introduced
in [Hale 1980], each vertex of a graph G represents a transmitter in a communica-
tions network, and edges connect vertices corresponding to transmitters operating
in close proximity which must receive sufficiently different frequencies to avoid
interference. In a simplified instance of the problem, a frequency assignment is
represented by an L(2, 1)-labeling of G, which is a function f from the vertex
set to the nonnegative integers such that | f (x)− f (y)| ≥ 2 if vertices x and y are
adjacent and | f (x)− f (y)| ≥ 1 if x and y are at distance two. L(2, 1)-labelings and
their variations have been studied extensively since their introduction in [Griggs
and Yeh 1992] (see the surveys [Calamoneri 2011; Griggs and Král 2009; Yeh
2006]) and continue to generate a rich literature to this date (see a sample of the
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most recent works in [Calamoneri 2013; Franks 2015; Karst et al. 2015; Li and
Zhou 2013; Lin and Dai 2015; Lu and Zhou 2013; Shao and Solis-Oba 2013]).

An L(2, 1)-labeling of a graph G that uses labels in the set {0, 1, . . . , k} will
be called a k-L(2, 1)-labeling. The minimum k so that G has a k-L(2, 1)-labeling
is called the λ-number of G, denoted by λ(G). Griggs and Yeh [1992] con-
jectured that λ(G) ≤ 12(G), where 1(G) denotes the maximum degree of G.
This conjecture holds for 1(G) ≥ 1069 [Havet et al. 2012], but it remains open
even when 1(G) = 3. The best general upper bound yet established is λ(G) ≤
12(G) + 1(G) − 2 [Gonçalves 2008]. Recently, it has been proven that this
conjecture also holds for small enough graphs, namely, graphs with at most
(b1(G)/2c+ 1)(12(G)−1(G)+ 1)− 1 vertices [Franks 2015]. As the general
problem of determining λ(G) is NP-hard [Georges et al. 1994], a significant body of
literature has focused on finding bounds or exact λ-numbers for particular classes of
graphs. In particular, [Adams et al. 2013] focused on the amalgamations of graphs.

Definition 1.1. Let H1, H2, . . . , Hp be p≥2 graphs each containing a fixed induced
subgraph isomorphic to a graph H0. The amalgamation of H1, H2, . . . , Hp along H0

is the simple graph H = Amalg(H0; H1, H2, . . . , Hp) obtained by identifying
H1, H2, . . . , Hp at the vertices in the fixed subgraphs isomorphic to H0 in each
H1, H2, . . . , Hp respectively. H0 is referred to as the spine and Hk as the k-th page
of the amalgamation for k = 1, 2, . . . , p. (We refer the reader to [Adams et al.
2013] for some concrete examples.)

In [Adams et al. 2013], upper bounds for the λ-number of the amalgamation of
graphs along a given graph were established by determining the exact λ-number of
amalgamations of complete graphs along a complete graph. They also provided the
exact λ-numbers of amalgamations of rectangular grids along a path, or more specif-
ically, of the Cartesian products of a path and a star with spokes of arbitrary lengths.
This focus on the Cartesian products motivated us to investigate amalgamations of
the join of graphs.

Definition 1.2. Let G1 and G2 be two disjoint graphs. The union G1 ∪G2 is the
graph with vertex (resp., edge) set equal to the union of the vertex (resp., edge)
sets of G1 and G2. The join G1+G2 is obtained from G1 ∪G2 by adding an edge
between each vertex in G1 and each vertex in G2.

Definition 1.3. Let G0, G1, and G2 be pairwise disjoint graphs. The graph G =
Amalg(G0;G0 + G1,G0 + G2) is called a join-page amalgamation of G1, G2

along G0. Note that G is isomorphic to G0+ (G1 ∪G2).

Definitions 1.2 and 1.3 can be extended for more than two graphs G1, G2. The
λ-numbers of the union and join of graphs are well known as stated in the next
two results.
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Result 1.4 [Chang and Kuo 1996, Lemma 3.1]. For any two graphs G and H ,
λ(G ∪ H)=max{λ(G), λ(H)}.

Result 1.5 [Georges et al. 1994, Corollary 4.6]. For any two graphs G and H with
nG and nH vertices respectively,

λ(G+ H)=max{nG − 1, λ(G)}+max{nH − 1, λ(H)}+ 2.

In Section 2, we provide the exact λ-number for all join-page amalgamations.
Motivated by a connection between this λ-number and the minimum span over
injective L(2, 1)-labelings, Section 3 revisits these labelings for general graphs
which were first introduced in [Chang and Kuo 1996]. More specifically, we
establish a new exact relationship between the λ-number of a graph and the minimum
span over all injective L(2, 1)-labelings of this graph.

2. The λ-number of join-page amalgamations

Theorem 2.1. Let G = Amalg(G0;G0 +G1,G0 +G2, . . . ,G0 +G p) be a join-
page amalgamation, where Gi is a graph with ni ≥ 1 vertices for i = 0, 1, . . . , p≥ 2
so that n1 ≥ n j for j = 2, 3, . . . , p, and let n = n1+ n2+ · · ·+ n p. Then,

λ(G)=max{n0− 1, λ(G0)}+max{n− 1, λ(G1)}+ 2.

Proof. Since G is isomorphic to G0+(G1∪G2∪· · ·∪G p), using Results 1.4 and 1.5,

λ(G)= λ(G0+ (G1 ∪G2 ∪ · · · ∪G p))

=max{n0− 1, λ(G0)}+max{n− 1, λ(G1 ∪G2 ∪ · · · ∪G p)}+ 2

=max{n0− 1, λ(G0)}+max{n− 1, λ(G1), λ(G2), . . . , λ(G p)}+ 2.

For i = 2, 3, . . . , p, we have λ(Gi )≤ λ(Kni )= 2ni − 2≤ n1+ ni − 2< n− 1,
where Kni denotes the complete graph with ni vertices, and therefore

max{n− 1, λ(G1), λ(G2), . . . , λ(G p)} =max{n− 1, λ(G1)},

and the desired result follows. �

It is worth noting that Theorem 2.1 implies that λ(G) depends on the number of
vertices in G2,G3, . . . ,G p but not on their particular λ-numbers.

The following corollary is equivalent to Theorem 2.3 in [Adams et al. 2013] but
with an alternative and more compact proof.

Corollary 2.2. Let G = Amalg(K0; K0+ K1, K0+ K2, . . . , K0+ K p) be a join-
page amalgamation, where Ki is the complete graph with ni ≥ 1 vertices for
i = 0, 1, . . . , p ≥ 2 so that n1≥n j for j=2, 3, . . . , p, and let n=n1+n2+· · ·+n p.
Then λ(G)= 2n0+max{n− 1, 2n1− 2}.
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Proof. By Theorem 2.1,

λ(G)=max{n0− 1, λ(K0)}+max{n− 1, λ(K1)}+ 2

=max{n0− 1, 2n0− 2}+max{n− 1, 2n1− 2}+ 2

= 2n0− 2+max{n− 1, 2n1− 2}+ 2

= 2n0+max{n− 1, 2n1− 2}. �

3. A connection between join-page amalgamation and injective
L(2, 1)-labelings

When examining the L(2, 1)-labelings of a join-page amalgamation of the form
G = Amalg(G0;G0+G1,G0+G2, . . . ,G0+G p), as described in Theorem 2.1
in Section 2, we noticed that we could extend an injective L(2, 1)-labeling of G0

of minimum span over all its injective labelings to a λ(G)-L(2, 1)-labeling of the
entire G. We suspected that this was not a coincidence, which led us to revisit the
following variation of L(2, 1)-labelings introduced in [Chang and Kuo 1996].

Definition 3.1. An L ′(2, 1)-labeling of a graph G is an injective L(2, 1)-labeling
of G. The definitions of k-L ′(2, 1)-labeling, λ′-number and λ′(G) are analogous
to those of k-L(2, 1)-labeling, λ-number, and λ(G) when restricted to injective
labelings.

The following basic properties were previously known.

Result 3.2 [Chang and Kuo 1996, Lemmas 2.1, 2.2, 2.3]. For any graph G with
nG vertices,

(i) λ′(H)≤ λ′(G) for any subgraph H of G;

(ii) λ(G)≤ λ′(G) with equality if G has diameter at most two; and

(iii) c(G) = λ′(Gc)− nG + 2, where c(G) is the path covering number of G, i.e.,
the smallest number of vertex-disjoint paths needed to cover all the vertices of
the graph G, and Gc is the complement of G.

In Theorem 3.4, we will strengthen Result 3.2(ii) by providing a surprisingly
simple exact relationship between λ(G) and λ′(G) for any graph G. We will be
using the following auxiliary result in the proof of Theorem 3.4.

Result 3.3 [Georges et al. 1994, Theorem 1.1]. For any graph G on nG vertices,

(i) λ(G)≤ nG − 1 if and only if c(Gc)= 1; and

(ii) λ(G)= nG + c(Gc)− 2 if and only if c(Gc)≥ 2.

Theorem 3.4. For any graph G with nG vertices,

λ′(G)=max{nG − 1, λ(G)}.
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Proof. Suppose λ(G) ≤ nG − 1. By Result 3.3(i), c(Gc) = 1, and Result 3.2(iii)
implies 1= c(Gc)= λ′(G)− nG + 2. Therefore,

λ′(G)= nG − 1=max{nG − 1, λ(G)}.

Assume, on the other hand, that λ(G) > nG − 1. Item (i) in Result 3.3 implies
c(Gc)≥ 2, and item (ii) implies λ(G)= nG + c(Gc)− 2, or equivalently, c(Gc)=

λ(G)− nG + 2. Finally, Result 3.2(iii) implies

λ′(G)= c(Gc)+ nG − 2

= (λ(G)− nG + 2)+ nG − 2= λ(G)=max{nG − 1, λ(G)}. �

In view of Theorem 3.4, the general problem of determining the λ′-number
of graphs is as complex as determining their λ-numbers, which, as mentioned
previously, is known to be an NP-hard problem. Furthermore, the exact λ′-numbers
of families of graphs, such as the ones derived in [Chang and Kuo 1996] using
more involved techniques (e.g., paths, cycles, union and join of two graphs), can be
readily obtained using Theorem 3.4 and the vast list of known exact λ-numbers in
the L(2, 1)-labeling literature.

If G =Amalg(G0;G0+G1,G0+G2, . . . ,G0+G p) and we apply Theorem 3.4
to G0 in Theorem 2.1, we obtain a relationship between λ(G) and λ′(G0), confirm-
ing the connection between injective L(2, 1)-labelings of G0 and L(2, 1)-labelings
of G we mentioned in the first paragraph of this section. The following corollary
provides this relationship.

Corollary 3.5. Let G = Amalg(G0;G0+G1,G0+G2, . . . ,G0+G p) be a join-
page amalgamation, where Gi is a graph with ni vertices for i = 0, 1, . . . , p ≥ 2
so that n1 ≥ n j for j = 2, 3, . . . , p, and let n = n1+ n2+ · · ·+ n p. Then λ(G)=
λ′(G0)+max{n− 1, λ(G1)}+ 2.

Acknowledgements

The authors would like to thank Sarah Spence Adams for handling administrative
requirements regarding student research credits. Denise Sakai Troxell would like to
thank Babson College for its support through the Babson Research Scholar award.

References

[Adams et al. 2013] S. S. Adams, N. Howell, N. Karst, D. S. Troxell, and J. Zhu, “On the L(2, 1)-
labelings of amalgamations of graphs”, Discrete Appl. Math. 161:7-8 (2013), 881–888. MR 3030574
Zbl 1263.05086

[Calamoneri 2011] T. Calamoneri, “The L(h,k)-labelling problem: An updated survey and annotated
bibliography”, Comput. J. 54:8 (2011), 1344–1371.

http://dx.doi.org/10.1016/j.dam.2012.11.007
http://dx.doi.org/10.1016/j.dam.2012.11.007
http://msp.org/idx/mr/3030574
http://msp.org/idx/zbl/1263.05086
http://dx.doi.org/10.1093/comjnl/bxr037
http://dx.doi.org/10.1093/comjnl/bxr037


540 N. KARST, J. OEHRLEIN, D. TROXELL AND J. ZHU

[Calamoneri 2013] T. Calamoneri, “Optimal L(δ1, δ2, 1)-labeling of eight-regular grids”, Inform.
Process. Lett. 113:10-11 (2013), 361–364. MR 3037462 Zbl 06329871

[Chang and Kuo 1996] G. J. Chang and D. Kuo, “The L(2, 1)-labeling problem on graphs”, SIAM J.
Discrete Math. 9:2 (1996), 309–316. MR 97b:05132 Zbl 0860.05064

[Franks 2015] C. Franks, “The delta square conjecture holds for graphs of small order”, Involve: J.
Math. 9:2 (2015), to be supplied by the publisher.

[Georges et al. 1994] J. P. Georges, D. W. Mauro, and M. A. Whittlesey, “Relating path coverings
to vertex labellings with a condition at distance two”, Discrete Math. 135:1-3 (1994), 103–111.
MR 96b:05150 Zbl 0811.05058

[Gonçalves 2008] D. Gonçalves, “On the L(p, 1)-labelling of graphs”, Discrete Math. 308:8 (2008),
1405–1414. MR 2008k:05185 Zbl 1135.05065

[Griggs and Král 2009] J. R. Griggs and D. Král, “Graph labellings with variable weights, a survey”,
Discrete Appl. Math. 157:12 (2009), 2646–2658. MR 2010m:05275 Zbl 1211.05145

[Griggs and Yeh 1992] J. R. Griggs and R. K. Yeh, “Labelling graphs with a condition at distance 2”,
SIAM J. Discrete Math. 5:4 (1992), 586–595. MR 93h:05141 Zbl 0767.05080

[Hale 1980] W. K. Hale, “Frequency assignment: Theory and applications”, Proc. IEEE 68:12 (1980),
1497–1514.

[Havet et al. 2012] F. Havet, B. Reed, and J.-S. Sereni, “Griggs and Yeh’s conjecture and L(p, 1)-
labelings”, SIAM J. Discrete Math. 26:1 (2012), 145–168. MR 2902638 Zbl 1245.05110

[Karst et al. 2015] N. Karst, J. Oehrlein, D. S. Troxell, and J. Zhu, “L(d ,1)-labelings of the edge-path-
replacement by factorization of graphs”, J. Comb. Opt. 30:1 (2015), 34–41. MR 3352872

[Li and Zhou 2013] X. Li and S. Zhou, “Labeling outerplanar graphs with maximum degree three”,
Discrete Appl. Math. 161:1-2 (2013), 200–211. MR 2973362 Zbl 06109944

[Lin and Dai 2015] W. Lin and B. Dai, “On (s, t)-relaxed L(2, 1)-labelings of the triangular lattice”,
J. Comb. Optim. 29:3 (2015), 655–669. MR 3316710 Zbl 06435135

[Lu and Zhou 2013] C. Lu and Q. Zhou, “Path covering number and L(2, 1)-labeling number of
graphs”, Discrete Appl. Math. 161:13-14 (2013), 2062–2074. MR 3057011 Zbl 1286.05150

[Shao and Solis-Oba 2013] Z. Shao and R. Solis-Oba, “L(2, 1)-labelings on the modular product of
two graphs”, Theoret. Comput. Sci. 487 (2013), 74–81. MR 3049272 Zbl 1283.05246

[Yeh 2006] R. K. Yeh, “A survey on labeling graphs with a condition at distance two”, Discrete Math.
306:12 (2006), 1217–1231. MR 2007g:05167 Zbl 1094.05047

Received: 2014-02-03 Revised: 2014-05-24 Accepted: 2014-05-31

nkarst@babson.edu Mathematics and Sciences Division, Babson College,
Babson Park, MA 02457, United States

jessica.oehrlein@students.olin.edu Franklin W. Olin College of Engineering, Olin Way,
Needham, MA 02492, United States

troxell@babson.edu Mathematics and Sciences Division, Babson College,
Babson Park, MA 02457, United States

jjzhu@stanford.edu Department of Electrical Engineering, Stanford University,
Stanford, CA 94305, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1016/j.ipl.2013.03.003
http://msp.org/idx/mr/3037462
http://msp.org/idx/zbl/06329871
http://dx.doi.org/10.1137/S0895480193245339
http://msp.org/idx/mr/97b:05132
http://msp.org/idx/zbl/0860.05064
http://dx.doi.org/10.1016/0012-365X(93)E0098-O
http://dx.doi.org/10.1016/0012-365X(93)E0098-O
http://msp.org/idx/mr/96b:05150
http://msp.org/idx/zbl/0811.05058
http://dx.doi.org/10.1016/j.disc.2007.07.075
http://msp.org/idx/mr/2008k:05185
http://msp.org/idx/zbl/1135.05065
http://dx.doi.org/10.1016/j.dam.2008.08.024
http://msp.org/idx/mr/2010m:05275
http://msp.org/idx/zbl/1211.05145
http://dx.doi.org/10.1137/0405048
http://msp.org/idx/mr/93h:05141
http://msp.org/idx/zbl/0767.05080
http://dx.doi.org/10.1109/PROC.1980.11899
http://dx.doi.org/10.1137/090763998
http://dx.doi.org/10.1137/090763998
http://msp.org/idx/mr/2902638
http://msp.org/idx/zbl/1245.05110
http://dx.doi.org/10.1007/s10878-013-9632-x
http://dx.doi.org/10.1007/s10878-013-9632-x
http://msp.org/idx/mr/3352872
http://dx.doi.org/10.1016/j.dam.2012.08.018
http://msp.org/idx/mr/2973362
http://msp.org/idx/zbl/06109944
http://dx.doi.org/10.1007/s10878-013-9615-y
http://msp.org/idx/mr/3316710
http://msp.org/idx/zbl/06435135
http://dx.doi.org/10.1016/j.dam.2013.02.020
http://dx.doi.org/10.1016/j.dam.2013.02.020
http://msp.org/idx/mr/3057011
http://msp.org/idx/zbl/1286.05150
http://dx.doi.org/10.1016/j.tcs.2013.02.002
http://dx.doi.org/10.1016/j.tcs.2013.02.002
http://msp.org/idx/mr/3049272
http://msp.org/idx/zbl/1283.05246
http://dx.doi.org/10.1016/j.disc.2005.11.029
http://msp.org/idx/mr/2007g:05167
http://msp.org/idx/zbl/1094.05047
mailto:nkarst@babson.edu
mailto:jessica.oehrlein@students.olin.edu
mailto:troxell@babson.edu
mailto:jjzhu@stanford.edu
http://msp.org


Guidelines for Authors

Authors may submit manuscripts in PDF format on-line at the Submission page at
the Involve website.

Originality. Submission of a manuscript acknowledges that the manuscript is orig-
inal and and is not, in whole or in part, published or under consideration for pub-
lication elsewhere. It is understood also that the manuscript will not be submitted
elsewhere while under consideration for publication in this journal.

Language. Articles in Involve are usually in English, but articles written in other
languages are welcome.

Required items. A brief abstract of about 150 words or less must be included.
It should be self-contained and not make any reference to the bibliography. If the
article is not in English, two versions of the abstract must be included, one in the
language of the article and one in English. Also required are keywords and sub-
ject classifications for the article, and, for each author, postal address, affiliation (if
appropriate), and email address.

Format. Authors are encouraged to use LATEX but submissions in other varieties
of TEX, and exceptionally in other formats, are acceptable. Initial uploads should
be in PDF format; after the refereeing process we will ask you to submit all source
material.

References. Bibliographical references should be complete, including article titles
and page ranges. All references in the bibliography should be cited in the text. The
use of BibTEX is preferred but not required. Tags will be converted to the house
format, however, for submission you may use the format of your choice. Links will
be provided to all literature with known web locations and authors are encouraged
to provide their own links in addition to those supplied in the editorial process.

Figures. Figures must be of publication quality. After acceptance, you will need
to submit the original source files in vector graphics format for all diagrams in your
manuscript: vector EPS or vector PDF files are the most useful.

Most drawing and graphing packages (Mathematica, Adobe Illustrator, Corel Draw,
MATLAB, etc.) allow the user to save files in one of these formats. Make sure that
what you are saving is vector graphics and not a bitmap. If you need help, please
write to graphics@msp.org with details about how your graphics were generated.

White space. Forced line breaks or page breaks should not be inserted in the
document. There is no point in your trying to optimize line and page breaks in
the original manuscript. The manuscript will be reformatted to use the journal’s
preferred fonts and layout.

Proofs. Page proofs will be made available to authors (or to the designated corre-
sponding author) at a Web site in PDF format. Failure to acknowledge the receipt of
proofs or to return corrections within the requested deadline may cause publication
to be postponed.

http://msp.org/involve
mailto:graphics@msp.org


inv lve
a journal of mathematics

involve
2015 vol. 8 no. 3

361Colorability and determinants of T (m, n, r, s) twisted torus knots for n ≡ ±1 (mod m)

MATT DELONG, MATTHEW RUSSELL AND JONATHAN SCHROCK

385Parameter identification and sensitivity analysis to a thermal diffusivity inverse
problem

BRIAN LEVENTHAL, XIAOJING FU, KATHLEEN FOWLER AND OWEN
ESLINGER

401A mathematical model for the emergence of HIV drug resistance during periodic
bang-bang type antiretroviral treatment

NICOLETA TARFULEA AND PAUL READ

421An extension of Young’s segregation game
MICHAEL BORCHERT, MARK BUREK, RICK GILLMAN AND SPENCER ROACH

433Embedding groups into distributive subsets of the monoid of binary operations
GREGORY MEZERA

439Persistence: a digit problem
STEPHANIE PEREZ AND ROBERT STYER

447A new partial ordering of knots
ARAZELLE MENDOZA, TARA SARGENT, JOHN TRAVIS SHRONTZ AND PAUL
DRUBE

467Two-parameter taxicab trigonometric functions
KELLY DELP AND MICHAEL FILIPSKI

4813 F2-hypergeometric functions and supersingular elliptic curves
SARAH PITMAN

491A contribution to the connections between Fibonacci numbers and matrix theory
MIRIAM FARBER AND ABRAHAM BERMAN

503Stick numbers in the simple hexagonal lattice
RYAN BAILEY, HANS CHAUMONT, MELANIE DENNIS, JENNIFER
MCLOUD-MANN, ELISE MCMAHON, SARA MELVIN AND GEOFFREY
SCHUETTE

513On the number of pairwise touching simplices
BAS LEMMENS AND CHRISTOPHER PARSONS

521The zipper foldings of the diamond
ERIN W. CHAMBERS, DI FANG, KYLE A. SYKES, CYNTHIA M. TRAUB AND
PHILIP TRETTENERO

535On distance labelings of amalgamations and injective labelings of general graphs
NATHANIEL KARST, JESSICA OEHRLEIN, DENISE SAKAI TROXELL AND
JUNJIE ZHU

involve
2015

vol.8,
no.3


	 vol. 8, no. 3, 2015
	Masthead and Copyright
	Matt DeLong and Matthew Russell and Jonathan Schrock
	1. Introduction
	2. Background
	2A. Torus knots and twisted torus knots
	2B. Colorability and determinants

	3. Methods
	3A. Computer experimentation
	3B. Definitions and notation
	3C. Determinants
	3D. Forms of matrices
	3E. Properties of coloring matrices

	4. Results
	4A. T(m,mq+1,r,s) family with m even
	4B. T(m,mq-1,r,s) family with m even
	4C. T(m,2mq+1,r,s) family with m odd
	4D. T(m,2mq-1,r,s) family with m odd
	4E. T(m,(2q+1)m+1,r,s) and T(m,(2q+1)m-1,r,s) families with m odd
	4F. Counting p-colorings

	5. Conclusion
	Acknowledgements
	References

	Brian Leventhal and Xiaojing Fu and Kathleen Fowler and Owen Eslinger
	1. Introduction
	2. Analytic approaches
	3. Simulation-based approach
	4. Sensitivity analysis
	4.1. Sensitivity analysis of analytic methods
	4.2. Sensitivity analysis of a heterogeneous system

	5. Conclusion
	References

	Nicoleta Tarfulea and Paul Read
	1. Introduction
	2. Formulation of the problem
	2.1. The mathematical model for the pretreatment case
	2.2. Model with antiretroviral therapy

	3. Time-varying drug efficiency
	3.1. Numerical results

	4. Conclusions
	Appendix
	References

	Michael Borchert and Mark Burek and Rick Gillman and Spencer Roach
	Terminology
	Markov chain model
	Main result
	Open questions
	References

	Gregory Mezera
	1. Introduction
	2. Regular distributive embedding
	3. General conditions for a distributive embedding
	4. Future directions; multiterm homology
	Acknowledgements
	References

	Stephanie Perez and Robert Styer
	1. Introduction
	2. Results
	3. Conclusion
	References

	Arazelle Mendoza and Tara Sargent and John Travis Shrontz and Paul Drube
	1. Introduction
	2. Our partial ordering
	3. Pretzel links and our partial ordering
	4. Future work
	Appendix: Expansion of the Hasse diagram
	References

	Kelly Delp and Michael Filipski
	1. Introduction
	2. A two-parameter sine and cosine function
	3. Explicit formulas for sine and cosine functions
	3.1. Proof of 0=theorem.151=Theorem 9 for -2-
	3.2. Proof for 2-4-
	3.3. Proof for 4-8-

	4. Properties of the functions
	4.1. Periodic extensions and graphs
	4.2. Maximum and minimum values

	References

	Sarah Pitman
	1. Introduction and statement of results
	2. Nuts and bolts
	3. Proof of 0=theorem.91=Theorem 1.1
	4. Examples
	References

	Miriam Farber and Abraham Berman
	1. Introduction
	2. The main result
	3. Extremal matrices
	4. Determinants of (1,2)-matrices
	References

	Ryan Bailey and Hans Chaumont and Melanie Dennis and Jennifer McLoud-Mann and Elise McMahon and Sara Melvin and Geoffrey Schuette
	1. Introduction
	2. Some preliminaries
	3. Lower bound for stick numbers
	4. Stick number of the lattice
	5. Upper bound for stick composition
	6. Knot constructions
	7. Further work
	Acknowledgements
	References

	Bas Lemmens and Christopher Parsons
	1. Introduction
	2. Equilateral sets
	3. Proof of 0=theorem.31=1.1
	4. Hadamard matrices
	References

	Erin W. Chambers and Di Fang and Kyle A. Sykes and Cynthia M. Traub and Philip Trettenero
	1. Introduction
	2. Computing the foldings
	2.1. Degree-3 vertices in the pattern
	2.2. 4-regular graph of the polyhedron
	2.3. Creases over the boundary of the polygon

	3. Nonconvex polyhedra
	4. Future directions
	Appendix: Realizing tetrahedra
	Acknowledgements
	References

	Nathaniel Karst and Jessica Oehrlein and Denise Sakai Troxell and Junjie Zhu
	1. Introduction
	2. The  -number of join-page amalgamations
	3. A connection between join-page amalgamation and injective L(2,1)-labelings
	Acknowledgements
	References

	Guidelines for Authors
	Table of Contents

