Cylindrical liquid bridges
Lamont Colter and Ray Treinen

Cylindrical liquid bridges

Lamont Colter and Ray Treinen

(Communicated by Frank Morgan)

We consider a cylindrical liquid bridge under capillary effects, spanning two horizontal plates and further bounded by a pair of parallel vertical planes. We explicitly formulate the volume-constrained problem and describe a numerical procedure for approximating the solution. Finally, a problem of finding the minimum spanning volume is considered.

1. Introduction

We consider a fluid trapped between two horizontal plates P_{0}, P_{h}, and further bounded by two parallel vertical planes Π_{0}, Π_{d}. Define the distance between P_{0} and P_{h} to be h, and that between Π_{0} and Π_{d} to be d. We orient a coordinate system (x, y, z) so that P_{0} is given by $z \equiv 0$ and P_{h} is given by $z \equiv h$, while Π_{0} is given by $y \equiv 0$ and Π_{d} is given by $y \equiv d$. We assume that the fluid is connected and any wetted portions of the plates are simply connected. The fluid then has a free interface Λ bounding a volume in the x-direction, and we denote the enclosed volume by \mathcal{V}. For an example, see Figure 1 , where we have not drawn Π_{0} or Π_{d}.

We consider dominant energies due to surface tension, wetting energy and gravitational potential energy. This gives the energy functional

$$
\begin{equation*}
\mathcal{E}[\Lambda]=\sigma \mathcal{A}[\Lambda]-\sigma \beta \mathcal{W}[\Lambda]+\int_{\mathcal{V}} \rho g z d z \tag{1}
\end{equation*}
$$

where σ is the (constant) surface tension, β is the wetting coefficient, taken to be constant on each plate, ρ is the uniform fluid density, and g is the gravitational constant. Further, \mathcal{A} is the area functional for the free-surface, and \mathcal{W} is the area functional for the wetted portions of P_{0}, P_{h}, Π_{0} and Π_{d}.

It is well known that the first variation for this functional implies

$$
\begin{equation*}
2 H=\kappa u-\lambda, \tag{2}
\end{equation*}
$$

MSC2010: primary 35Q35; secondary 76A02.
Keywords: capillarity, liquid bridges, numerical ODE.

Figure 1. A cylindrical bridge.
where H is the mean curvature of Λ, u is the height of the interface, the capillary constant is $\kappa=\rho g / \sigma$, and we have included a Lagrange multiplier λ. It may also be derived that $\beta=\cos \gamma$ for a contact angle γ measured within the fluid. The standard reference is a manuscript by Finn [1986]. In what follows we do not assume that the interface is a graph over a base domain, though we do restrict our attention to the physical case where the interface is embedded. See Theorem 2.1 for details on how we interpret (2).

We make the assumption that $\beta=0$ on Π_{0} and Π_{d}. This implies a contact angle of $\pi / 2$ along the intersection of Λ with those planes. As we shall see in Section 2, this also implies that the free-surface is generated by curves in the plane Π_{0} and is extended as a right cylinder. See Figure 2 for an example of the generating curves, where $\delta / 2$ denotes the value of the horizontal displacement of the fluid interface on P_{0}. On the plates P_{0} and P_{h}, we allow the constant β to differ at heights 0 and h and to be any number in $[-1,1]$. This corresponds to contact angles along the intersection of Λ with those plates, which we will denote by γ_{0} and γ_{h} respectively.

In Section 3, we derive a formula for the enclosed volume in terms of the solution to a version of the differential equation (2) when the fluid remains connected. Then we give an algorithm for computing the interface Λ with a volume constraint in

Figure 2. A liquid bridge.

Section 4. We use this algorithm to give a numerical approximation of Λ for different parameters $h, \gamma_{0}, \gamma_{h}$, and volume \mathcal{V}. Next, in Section 5, we present a collection of examples. Finally, we explore the minimum spanning volume for $\left(\gamma_{0}, \gamma_{h}\right) \in[0, \pi / 2] \times[0, \pi / 2]$ in Section 6.

As far as we have been able to determine, this is the first exploration of liquid bridges of this type. Three dimensional liquid bridge problems have been studied by Athanassenas [1992]; Concus, Finn and McCuan [Concus et al. 2001]; Finn and Vogel [1992]; and Vogel [1982; 1987; 1989; 2005; 2006; 2013]. In recent work there is a trend to study the lower dimensional versions of certain related fluid mechanics problems. We point to papers by Bhatnagar and Finn [2006], as well as by McCuan and Treinen [2013; \geq 2015], and Wente [2006] for examples of this approach. In particular, we mention a paper by McCuan [2013] as a model for the present approach.

2. Symmetries

There are two types of symmetries in the fluid configurations. The first is the cylindrical symmetry that allows us to restrict our attention to the generating curves in the Π_{0} plane. The second is a reflective symmetry about the plane $x=0$.

An Alexandrov moving plane argument has been successful in establishing symmetry properties for similar fluid configurations. See Wente [1980], Treinen [2012], and McCuan [2013]. The following is a direct consequence of first using those methods with a moving plane parallel to Π_{0}, then a second argument using those methods with a moving plane parallel to $x=0$ can be used to show symmetry about $x=0$. The details are left to the interested reader.

Theorem 2.1. The interface Λ is right-cylindrically symmetric with generating curves restricted to the plane Π_{0}. The generating curves satisfy

$$
\begin{align*}
\frac{d x}{d s} & =\cos \psi \tag{3}\\
\frac{d u}{d s} & =\sin \psi \tag{4}\\
\frac{d \psi}{d s} & =\kappa u-\lambda \tag{5}
\end{align*}
$$

and it suffices to compute one generating curve where $x \geq 0$.
Note that then the distance d is not important to our consideration, and hence we can view our problem in this reduced dimensional setting, or as extending infinitely in a horizontal direction. With this perspective, we normalize so that $d=1$ so that we are considering volume per unit distance in the y-direction. The solution may be extended infinitely in both y-directions and be seen as an infinitely long liquid bridge between two horizontal plates generated by the curves in Π_{0}. The
solution may also interpreted as a lower dimensional problem, where the interfaces are reduced to curves in the plane Π_{0}, spanning a volume that is more properly seen as an area in Π_{0}. This last interpretation is the easiest way to visualize the results of our computations, and so is our default for figures, even while we continue to use the terminology of volume and area, and we use them in the sense of per unit distance d.

3. Computing the fluid volume

Consider solutions to (3)-(5) with the boundary conditions

$$
\begin{array}{ll}
\sin \psi(0)=\cos \gamma_{0} & \text { at } s=0, \text { where } u(0)=0 \\
\sin \psi(\ell)=\cos \gamma_{h} & \text { at } s=\ell, \text { where } u(\ell)=h \tag{7}
\end{array}
$$

Solutions to this two-point boundary value problem will determine a value of $x(0)$, which we denote by $\delta / 2$. We will later use this as a parameter in the process of constructing approximate solutions, but it is immediately useful in determining a volume formula as follows.

Theorem 3.1. The volume enclosed by the upper plate, lower plate, and the fluid-air interface given by area per unit distance in the y-direction satisfies

$$
\begin{equation*}
\mathcal{V}=(h-\lambda)\left(x(\ell)-\frac{\delta}{2}\right)+\sin \gamma_{0}-\sin \gamma_{h}, \tag{8}
\end{equation*}
$$

where the solutions x, u, and ψ are parametrized by arc length s, with $s=0$ at height $u=0$ and $s=\ell$ at height $u=h$.

Proof. We find the volume of the enclosed fluid by computing the right half of the volume. The geometric idea is to start with a rectangle with height h and width $\delta / 2$, and then add to it the additional volume outside this region. The first configuration is illustrated in Figure 3. This configuration contains a vertical point given by (\bar{x}, \bar{u}), and this partitions the volume outside of the rectangle into two regions. The lower

Figure 3. The configuration used in the volume computation, with only the portion $x>0$ shown. Here $x=\bar{x}$ and $u=\bar{u}$, and the plate heights are 0 and h.

Figure 4. Two volume configurations. Here $x=\bar{x}$ and $u=\bar{u}$, and plate heights are 0 and h.
region is bounded by $\delta / 2$ on the left, $u=\bar{u}$ above, and the fluid interface on the right. The upper region is bounded by $x=x(\ell)$ on the left, $u=\bar{u}$ below, and the fluid interface on the right. Added to this upper region is a second, smaller, rectangle of height $h-\bar{u}$ and width $x(\ell)-\delta / 2$. So, we calculate using equations (3)-(5) and integration by parts as follows:

$$
\begin{align*}
\mathcal{V} & =\int_{\delta / 2}^{\bar{x}}(\bar{u}-u) d x+\int_{x(\ell)}^{\bar{x}}(u-\bar{u}) d x+\left(x(\ell)-\frac{\delta}{2}\right)(h-\bar{u}) \tag{9}\\
& =\bar{u}\left(\bar{x}-\frac{\delta}{2}+x(\ell)-\bar{x}\right)+\left(x(\ell)-\frac{\delta}{2}\right)(h-\bar{u})+\int_{x(\ell)}^{\bar{x}} u d x-\int_{\delta / 2}^{\bar{x}} u d x \tag{10}\\
& =h\left(x(\ell)-\frac{\delta}{2}\right)+\bar{u}(0)+\int_{x(\ell)}^{\bar{x}} u d x-\int_{\delta / 2}^{\bar{x}} u d x \tag{11}\\
& =h\left(x(\ell)-\frac{\delta}{2}\right)+\int_{x(\ell)}^{\bar{x}}\left(\frac{d \psi}{d s}+\lambda\right) d x-\int_{\delta / 2}^{\bar{x}}\left(\frac{d \psi}{d s}+\lambda\right) d x \tag{12}\\
& =(h-\lambda)\left(x(\ell)-\frac{\delta}{2}\right)+\int_{x(\ell)}^{\bar{x}} \frac{d \psi}{d s} d x-\int_{\delta / 2}^{\bar{x}} \frac{d \psi}{d s} d x \tag{13}\\
& =(h-\lambda)\left(x(\ell)-\frac{\delta}{2}\right)+\int_{\gamma_{h}-\pi}^{\pi / 2} \cos \psi d \psi-\int_{-\gamma_{0}}^{\pi / 2} \cos \psi d \psi \tag{14}\\
& =(h-\lambda)\left(x(\ell)-\frac{\delta}{2}\right)+\sin \gamma_{0}-\sin \gamma_{h} . \tag{15}
\end{align*}
$$

There are multiple possible configurations; however, it suffices to adapt the above calculation to these remaining cases:

- $x(s)<\delta / 2$ for $0<s<\ell$ and $x(\ell)<\delta / 2$. See Figure 4 (left).
- $x(s)<\delta / 2$ for some initial $s>0$, and then $x(s)$ increases and $x(\ell)>\delta / 2$. See Figure 4 (right).

Figure 5. Two remaining volume configurations. Here $x=\bar{x}$ and $u=\bar{u}$, and plate heights are 0 and h.

- $x(s)>\delta / 2$ for some initial $s>0$, and then $x(s)$ decreases and $x(\ell)<\delta / 2$. See Figure 5 (left).
- There is no vertical point on the interface profile curve. There are many such configurations; see Figure 5 (right) for a typical example. The volume computation is straightforward in these cases, only requiring use of (3)-(5).

4. Numerical solver

We use a shooting method to solve the two-point boundary value problem of (3)-(5) with boundary conditions (6) and (7). We implement this by nesting two algorithms, namely an inner implementation of an adaptive Runge-Kutta-Felberg method and an outer implementation of a multidimensional root finder.

Values for the initial and terminal contact angles γ_{0}, γ_{h}, volume \mathcal{V}, and height h are prescribed for the desired solution. The lower conditions for the boundary value problem are

$$
\begin{align*}
r(0) & =\frac{\delta}{2} \tag{16}\\
u(0) & =0 \tag{17}\\
\psi(0) & =\gamma_{0} \tag{18}
\end{align*}
$$

where the tangent to the curve forms the contact angle γ_{0} with the lower plate, and the upper boundary conditions are

$$
\begin{align*}
u(\ell) & =h, \tag{19}\\
\psi(\ell) & =-\gamma_{h}, \tag{20}
\end{align*}
$$

where the ending arc length ℓ is chosen to terminate at height h with the tangent to the curve forming the angle γ_{h} with the upper parallel plate.

Figure 6. A liquid bridge with contact angle $\pi / 2$ on the upper plate.

Again, the boundary value problem is solved using a shooting method based on an adaptive ODE solver. The solver uses the adaptive Runge-Kutta-Felberg method for 4th and 5th order, implemented by Matlab as ODE45. The absolute and relative tolerances were both set to $1 e-8$. To begin to solve the problem, reasonable guesses are given for the free parameters: the distance between the generating curves δ, the ending arc length ℓ, and the Lagrange multiplier λ. These values are used to generate candidates satisfying the ODE. Then the solutions to (3)-(5) with these values of the free parameters are used to evaluate the equations

$$
\begin{align*}
\mathcal{V}-V(\ell) & =0, \tag{21}\\
h-u(\ell) & =0, \tag{22}\\
\gamma_{h}-\psi(\ell) & =0, \tag{23}
\end{align*}
$$

which are not, in general, solved. The parameters δ, ℓ, and λ are adjusted in the multidimensional root finder implemented in Matlab as FSOLVE, which defaults to a trust region method. The tolerances for this portion of the algorithm were set to $1 e-6$. We recompute the solutions to (3)-(5) with new values of the parameters δ, ℓ, and λ at each step, until (21)-(23) are satisfied to the prescribed tolerance.

5. Examples

We present some examples of note generated with the algorithm described in the previous section. In Figure 2 we saw a typical example of a configuration where $\gamma_{0}, \gamma_{h} \in\left[0, \frac{\pi}{2}\right]$. Figure 6 shows a configuration where $\gamma_{h}=\pi / 2$, and Figure 7 shows a configuration where both $\gamma_{0}, \gamma_{h}>\pi / 2$. If the volume does not span the gap between P_{0} and P_{h}, then it will rest on the plate P_{0} as a sessile drop. We see in Figure 8 a configuration where $\left(\gamma_{0}, \gamma_{h}\right)=(2.57,1.05)$, which appears to be close to the maximum height h before the liquid bridge pinches off of the upper plate P_{h} and becomes a sessile drop.

Figure 7. A liquid bridge with both γ_{0} and γ_{h} larger than $\pi / 2$.

Figure 8. A liquid bridge that is visually similar to a sessile drop.

6. Minimum spanning volume

Consider configurations where the contact angles γ_{0} and γ_{h} are both less than $\pi / 2$. The phenomenon explored is the minimum volume which admits a solution spanning the two plates P_{0} and P_{h}. In Figure 9 we see that for angles $\left(\gamma_{0}, \gamma_{h}\right)=(0.99,0)$ and a particular volume, we have a point on the interior of the fluid interface on the right that touches a corresponding point on the interior of the fluid interface on the left.

Figure 9. A liquid bridge with interfaces touching on the interior.

Figure 10. The minimum spanning volume over a grid of 50×50 samples in the $\left(\gamma_{0}, \gamma_{h}\right)$-space.

This is clearly nonphysical and represents an absolute minimum spanning volume. It is apparent that this contact between the left and right interfaces occurs on either P_{0} or P_{h} if either $\gamma_{0}>\pi / 2$ or $\gamma_{h}>\pi / 2$. Therefore, we restrict our attention to the region $0 \leq \gamma_{0} \leq \pi / 2$ and $0 \leq \gamma_{h} \leq \pi / 2$. We seek a minimum volume where $x(s)=0$ for some $s \in[0, \ell]$.

Observe the crucial fact of the system (3)-(5) that

$$
\frac{d \psi}{d s}=\kappa u-\lambda
$$

is independent of x, and so the x solution may be translated by a constant. We are able to use this to some degree to adjust the volume spanned. If the left and right interfaces are rigidly moved apart in the x-direction, then the spanned volume increases while still solving the boundary value problem, and conversely, if they are rigidly moved together, they will eventually touch. At this point there exists an arc length s such that $x(s)=0$ for both the left and right portions of the configuration. We are able to use this idea in conjunction with our previous solver to obtain the minimum spanning volume at a fixed height h for a given pair of contact angles $\left(\gamma_{0}, \gamma_{h}\right)$.

We use the following algorithm to run over a grid of 50×50 samples in the (γ_{0}, γ_{h})-space. We solve the constrained boundary value problem similar to the method in Section 4, however, we replace the condition

$$
\mathcal{V}-V(\ell)=0
$$

with

$$
\begin{equation*}
x(s)=0 \quad \text { for some } s \in[0, \ell] \tag{24}
\end{equation*}
$$

The results are collected in Figure 10. Here it is worth noting that the examples from Figure 11 are generated from interesting points on the minimum spanning volume

Figure 11. Left: The minimum spanning volume. Here $\left(\gamma_{0}, \gamma_{h}\right) \approx$ $\left(\frac{\pi}{2}, 1.35\right)$. Right: A very small spanning volume, but not the minimum spanning volume. Here $\left(\gamma_{0}, \gamma_{h}\right)=\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$.
surface. The minimum spanning volume on the left is actually the minimum volume of all the contact angle pairs, and perhaps surprisingly, it is not the $(\pi / 2, \pi / 2)$ case (which is pictured on the right).

References

[Athanassenas 1992] M. Athanassenas, "A free boundary problem for capillary surfaces", Manuscripta Math. 76:1 (1992), 5-19. MR 93g:35144 Zbl 0768.49025
[Bhatnagar and Finn 2006] R. Bhatnagar and R. Finn, "Equilibrium configurations of an infinite cylinder in an unbounded fluid", Phys. Fluids 18:4 (2006), 047103. MR 2007f:76032 Zbl 1185.76469
[Concus et al. 2001] P. Concus, R. Finn, and J. McCuan, "Liquid bridges, edge blobs, and Scherk-type capillary surfaces", Indiana Univ. Math. J. 50:1 (2001), 411-441. MR 2002g:76023 Zbl 0996.76014
[Finn 1986] R. Finn, Equilibrium capillary surfaces, Grundlehren der Mathematischen Wissenschaften 284, Springer, New York, 1986. MR 88f:49001 Zbl 0583.35002
[Finn and Vogel 1992] R. Finn and T. I. Vogel, "On the volume infimum for liquid bridges", Z. Anal. Anwendungen 11:1 (1992), 3-23. MR 95d:76021 Zbl 0760.76015
[McCuan 2013] J. McCuan, "Extremities of stability for pendant drops", pp. 157-173 in Geometric analysis, mathematical relativity, and nonlinear partial differential equations, edited by M. Ghomi et al., Contemp. Math. 599, Amer. Math. Soc., Providence, RI, 2013. MR 3202478 Zbl 1276.00026
[McCuan and Treinen 2013] J. McCuan and R. Treinen, "Capillarity and Archimedes' principle of flotation", Pacific J. Math. 265:1 (2013), 123-150. MR 3095116 Zbl 06218270
[McCuan and Treinen ≥ 2015] J. McCuan and R. Treinen, "On floating equilibria in a finite container". To appear.
[Treinen 2012] R. Treinen, "On the symmetry of solutions to some floating drop problems", SIAM J. Math. Anal. 44:6 (2012), 3834-3847. MR 3023432 Zbl 06138483
[Vogel 1982] T. I. Vogel, "Symmetric unbounded liquid bridges", Pacific J. Math. 103:1 (1982), 205-241. MR 84f:53007 Zbl 0504.76025
[Vogel 1987] T. I. Vogel, "Stability of a liquid drop trapped between two parallel planes", SIAM J. Appl. Math. 47:3 (1987), 516-525. MR 88e:53010 Zbl 0627.53004
[Vogel 1989] T. I. Vogel, "Stability of a liquid drop trapped between two parallel planes, II: General contact angles", SIAM J. Appl. Math. 49:4 (1989), 1009-1028. MR 90k:53013 Zbl 0691.53007
[Vogel 2005] T. I. Vogel, "Comments on radially symmetric liquid bridges with inflected profiles", Discrete Contin. Dyn. Syst. suppl. (2005), 862-867. MR 2006h:76048 Zbl 1158.53307
[Vogel 2006] T. I. Vogel, "Convex, rotationally symmetric liquid bridges between spheres", Pacific J. Math. 224:2 (2006), 367-377. MR 2007f:76033 Zbl 1118.53006
[Vogel 2013] T. I. Vogel, "Liquid bridges between balls: The small volume instability", J. Math. Fluid Mech. 15:2 (2013), 397-413. MR 3061769 Zbl 1267.76016
[Wente 1980] H. C. Wente, "The symmetry of sessile and pendent drops", Pacific J. Math. 88:2 (1980), 387-397. MR 83j:49042a Zbl 0473.76086
[Wente 2006] H. C. Wente, "New exotic containers", Pacific J. Math. 224:2 (2006), 379-398. MR 2007f:76034 Zbl 1118.53007

Received: 2014-07-19 Accepted: 2014-07-28
Icolter08@gmail.com Department of Mathematics, Texas State University, 601 University Drive San Marcos, TX 78666, United States
rt30@txstate.edu
Department of Mathematics, Texas State University, 601 University Drive, San Marcos, TX 78666, United States

involve
 msp.org/involve

MANAGING EDITOR
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone@latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@ mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@ math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@ pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@ wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US $\$ 140 /$ year for the electronic version, and $\$ 190 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
E- mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2015 Mathematical Sciences Publishers
The Δ^{2} conjecture holds for graphs of small order 541
Cole Franks
Linear symplectomorphisms as R-Lagrangian subspaces 551Chris Hellmann, Brennan Langenbach and MichaelVanValkenburgh
Maximization of the size of monic orthogonal polynomials on the unit circle 571corresponding to the measures in the Steklov class
John Hoffman, McKinley Meyer, Mariya Sardarli and Alex Sherman
A type of multiple integral with log-gamma function 593
Duokui Yan, Rongchang Liu and Geng-Zhe Chang
Knight's tours on boards with odd dimensions 615Baoyue Bi, Steve Butler, Stephanie DeGraaf and ElizabethDoebel
Differentiation with respect to parameters of solutions of nonlocal boundary 629 value problems for difference equations
Johnny Henderson and Xuewei Jiang
Outer billiards and tilings of the hyperbolic plane637
Filiz Dogru, Emily M. Fischer and Cristian Mihai Munteanu
Sophie Germain primes and involutions of \mathbb{Z}_{n}^{\times} 653
Karenna Genzlinger and Keir Lockridge
On symplectic capacities of toric domains 665Michael Landry, Matthew McMillan and EmmanuelTsukerman
When the catenary degree agrees with the tame degree in numerical 677 semigroups of embedding dimension three
Pedro A. García-Sánchez and Caterina Viola
Cylindrical liquid bridges 695
Lamont Colter and Ray Treinen
Some projective distance inequalities for simplices in complex projective space 707
Mark Fincher, Heather Olney and William Cherry

1944-4176(2015)8:4;1-3

