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We prove inequalities relating the absolute value of the determinant of n + 1
linearly independent unit vectors in Cn+1 and the projective distances from the ver-
tices to the hyperplanes containing the opposite faces of the simplices in complex
projective n-space whose vertices or faces are determined by the given vectors.

A basis of unit vectors in Cn+1 determines the vertices (or the faces) of a simplex
in n-dimensional complex projective space. For reasons originally motivated by an
inequality in complex function theory proven by Cherry and Eremenko [2011], we
investigated the relationship between the determinant of the vectors forming the
basis and the projective distances from each vertex of the simplex to the hyperplane
containing the face of the opposite side. We show that if dmin denotes the minimum
of these projective distances and if D denotes the determinant of the basis vectors,
then dn

min ≤ |D| ≤ dmin.
Let e0, . . . , en be a basis for Cn+1. Given two vectors a= a0e0+· · ·+anen and

b= b0e0+ · · ·+ bnen in Cn+1, we use a · b to denote the standard dot product,

a · b= a0b0+ · · ·+ anbn,

rather than the Hermitian inner product more typically used with complex vector
spaces. Thus, in our notation,

|a|2 = a · ā,

where the bar denotes complex conjugation, as usual.
For k = 1, . . . , n+1, we let 3kCn+1 denote the k-th exterior power of the vector

space Cn+1, and we recall that

e0∧e1∧· · ·∧ek−1, . . . , ei1∧ei2∧· · ·∧eik , . . . , en+1−k∧en+2−k∧· · ·∧en,
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where 0≤ i1 < i2 < · · ·< ik ≤ n form a basis for 3kCn+1. By declaring this basis
to be orthonormal in 3kCn+1, the norm and dot product on Cn+1 extend to a norm
and inner product on 3kCn+1. For a detailed introduction to exterior algebras and
wedge products, see [Bowen and Wang 1976].

Proposition 1. Let 1≤ k ≤ n+ 1 be an integer, and let v1, . . . , vk and w1, . . . ,wk

be vectors in Cn+1. Then,

(v1 ∧ · · · ∧ vk) · (w1 ∧ · · · ∧wk)= det(vi ·w j )1≤i, j≤k .

Remark. The matrix of dot products on the right is called a Gramian matrix.

Proof. This is Exercise 39.3 in [Bowen and Wang 1976]. �

Corollary 2. Let v1, . . . , vk be k vectors in Cn+1. Then,

|v1 ∧ · · · ∧ vk |
2
= det(vi · v̄ j )1≤i, j≤k .

Corollary 3. Let v1, . . . , vk be k vectors in Cn+1. Then,

|v1 ∧ · · · ∧ vk | ≤ |v1| · · · |vk |.

Equality holds if and only if one of the vectors is the zero vector or if vi · v̄ j = 0 for
all i 6= j .

Proof. If any of the vectors v j are the zero vector, then the inequality is obvious.
So, assume that none of the v j are zero. Let

u j =
v j

|v j |

be unit vectors in the directions of the v j . Then, clearly,

|v1 ∧ · · · ∧ vk | =
∣∣|v1|u1 ∧ · · · ∧ |vk |uk

∣∣= |v1| · · · |vk ||u1 ∧ · · · ∧ uk |.

Thus, it suffices to show that |u1 ∧ · · · ∧ uk | ≤ 1. To this end, by Corollary 2,

|u1 ∧ · · · ∧ uk |
2
= det(ui · ū j ). (1)

The matrix (ui · ū j ) is a k × k Hermitian matrix with nonnegative eigenvalues
λ1, . . . , λk . Thus, by the geometric-arithmetic mean inequality,

det(ui · ū j )= λ1 · · · λk ≤

(
λ1+ · · ·+ λk

k

)k

= 1,

where the equality on the right follows from the fact that

λ1+ · · ·+ λk = Trace(ui · ū j )= k,

since ui · ūi = 1.
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Equality holds in the arithmetic-geometric mean inequality if and only if all
the eigenvalues are equal, and hence all equal to one. This is the case if and only
if (ui · ū j ) is the k × k identity matrix, which happens if and only if vi · v̄ j = 0
for all i 6= j . �

We will be most interested in the n-th exterior power of Cn+1, where

e1 ∧ · · · ∧ en, . . . , e0 ∧ · · · ∧ e j−1 ∧ e j+1 ∧ · · · ∧ en, . . . , e0 ∧ · · · ∧ en−1

form a basis of 3nCn+1. Let L denote the isometric isomorphism from 3nCn+1

to Cn+1 defined on the basis vectors as follows:

L(e1 ∧ · · · ∧ en)= e0,

...

L(e0 ∧ · · · ∧ e j−1 ∧ e j+1 ∧ · · · ∧ en)= (−1) j e j ,

...

L(e0 ∧ · · · ∧ en−1)= (−1)nen.

Observe that if n = 2 and a and b are vectors in C3, then L(a∧ b)= a× b, where
the product on the right is the ordinary cross product in C3.

We will use L(b1 ∧ · · · ∧ bn) as a generalized cross product.

Proposition 4. Let a, b1, . . . , bn be n+ 1 vectors in Cn+1. Then,

det(a, b1, . . . , bn)= a · L(b1 ∧ · · · ∧ bn).

Proof. If we compute the determinant of the (n+1)×(n+1) matrix whose rows are
a, b1, . . . , bn , then the expression on the right is nothing other than the computation
of the determinant by expansion of minors along the first row. �

Corollary 5. The vector L(b1 ∧ · · · ∧ bn) is orthogonal to each of the b j .

We define an equivalence relation on Cn+1
\ {0} by declaring that two nonzero

vectors v and w in Cn+1 are equivalent if there exists a nonzero complex scalar c
such that v = cw. The set of all such equivalence classes is denoted by CPn

and is called the complex projective space of dimension n. A point in CPn is
an equivalence class of vectors in Cn+1 and by the definition of the equivalence
relation, we can always represent a point in CPn by a unit vector in Cn+1. The set
of equivalence classes associated with the vectors in a k+ 1 dimensional subspace
of Cn+1 is a k-dimensional subspace of CPn . When k = n− 1, such a subspace
is called a hyperplane in CPn . We say that n + 1 points in CPn are in general
position if they are not all contained in any one hyperplane. This is equivalent to
the vectors representing the points being linearly independent in Cn+1. Similarly,
we say that n+ 1 hyperplanes in CPn are in general position if there is no point in
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CPn contained in all the hyperplanes. Note that a nonzero vector v in Cn+1 can
be thought of as representing a hyperplane where the points in the hyperplane are
represented by the vectors x in Cn+1 such that v · x = 0.

If v and w are two unit vectors in Cn+1 representing points in CPn , then the
Fubini–Study distance between the two points is defined to be |v∧w|. Now let u
and v be unit vectors in Cn+1. We think of u as representing a point in CPn and v

as representing a hyperplane in CPn . Then, the Fubini–Study distance from the
point represented by u to the hyperplane represented by v is defined by

distance from the point u to the hyperplane v

=min{distance from u to x : v · x = 0 and |x| = 1}

=min{|u∧ x| : v · x = 0 and |x| = 1}.

Second perhaps only to hyperbolic geometry, projective geometry, which arose
out of the study of perspective in classical painting, is among the most ubiquitous
of the non-Euclidean geometries encountered in modern mathematics. See, for
instance, [Richter-Gebert 2011] for a recent accessible introduction.

Our first result is a convenient formula for the distance from a vertex of a
projective simplex to the hyperplane determined by the opposite face in the simplex.

Proposition 6. Let a, b1, . . . , bn be n+1 linearly independent unit vectors in Cn+1

representing n + 1 points in general position in CPn . Then, the Fubini–Study
distance d from the point a to the hyperplane in CPn spanned by b1, . . . , bn is
given by

d =
| det(a, b1, . . . , bn)|

|b1 ∧ · · · ∧ bn|
.

Proof. Without loss of generality, by making an orthogonal change of coordinates,
we may choose our standard basis vectors e0, . . . , en in Cn+1 so that e0 · b j = 0 for
j = 1, . . . , n. Let u be a unit vector in the span of {b1, . . . , bn}. Then,

u = u1e1+ · · ·+ unen, with |u1|
2
+ · · ·+ |un|

2
= 1.

Let a = a0e0+ · · ·+ anen . Then, the Fubini–Study distance from the point in CPn

represented by a to the point in CPn represented by u is given by |a∧u|. Note that

a∧ u = a0u1e0 ∧ e1+ · · ·+ a0une0 ∧ en +
∑

1≤i< j≤n

(ai u j − a j ui )ei ∧ e j . (2)

Hence,

|a∧ u|2 ≥ |a0u1|
2
+ · · ·+ |a0un|

2
= |a0|

2(|u1|
2
+ · · ·+ |un|

2)= |a0|
2. (3)

Now,
det(a, b1, . . . , bn)= a · L(b1 ∧ · · · ∧ bn)
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by Proposition 4. Of course, L(b1∧· · ·∧bn) is orthogonal to each of the b j . By our
choice of basis, e0 is also orthogonal to each of the b j . Since the b j form a set of n
linearly independent vectors in an (n+1)-dimensional vector space, there is only
one direction simultaneously orthogonal to all of the b j . Thus, L(b1 ∧ · · · ∧ bn) is
in the span of e0, and so

|a · L(b1 ∧ · · · ∧ bn)| = |a0| · |L(b1 ∧ · · · ∧ bn)|.

Thus, observing that

|L(b1 ∧ · · · ∧ bn)| = |b1 ∧ · · · ∧ bn|,

we see from (3) that

|a∧ u| ≥ |a0| =
|a0| · |L(b1 ∧ · · · ∧ bn)|

|b1 ∧ · · · ∧ bn|

=
|a · L(b1 ∧ · · · ∧ bn)|

|b1 ∧ · · · ∧ bn|

=
| det(a, b1, . . . , bn)|

|b1 ∧ · · · ∧ bn|
.

To complete the proof, we need to show that equality is obtained for some choice
of u. There are two cases. If a is the direction of e0, then equality holds for any
choice of u since a1 = · · · = an = 0. Otherwise, if we choose

u j =
a j√

|a1|2+ · · ·+ |an|
2

for j = 1, . . . , n,

we see that the terms in the sum on the far right of (2) are all zero, and so equality
holds in (3). �

Corollary 7. Let a, b1, . . . , bn and d be as in Proposition 6. Then,

d ≥ | det(a, b1, . . . , bn)|.

Equality holds if and only if bi · b̄ j = 0 for all i 6= j .

Example 8. When n = 3, let 0< s ≤ 1 and consider the projective triangle with
vertices represented by the unit vectors

a =

(√
1− s2

2
,

√
1− s2

2
, s

)
, b1 = (1, 0, 0), and b2 = (0, 1, 0).

Then, |b1∧b2| = 1, and so d = det(a, b1, b2)= s, and equality holds in Corollary 7.
We remark that geometrically, these triangles are isosceles with projective side
lengths

1,

√
1+ s2

2
,

√
1+ s2

2
.
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Proof of Corollary 7. By Corollary 3, we have

|b1 ∧ · · · ∧ bn| ≤ 1.

Hence, by the formula for d in Proposition 6,

d =
| det(a, b1, . . . , bn)|

|b1 ∧ · · · ∧ bn|
≥ | det(a, b1, . . . , bn)|.

Equality holds if and only if equality holds in Corollary 3. �

Proposition 9. Let v1, . . . , vn−1 be n−1 linearly independent vectors in Cn+1 and
let w1, . . . ,wn be n linearly independent vectors in Cn+1. If we let

a = L(w1 ∧ · · · ∧wn) and b= L(v1 ∧ · · · ∧ vn−1 ∧ a),

then

b= (−1)n det


w1 . . . wn

v1 ·w1 . . . v1 ·wn
...

...
...

vn−1 ·w1 . . . vn−1 ·wn

 .
Remark. Note that the matrix specified in the proposition has vector entries in
its first row, and hence its determinant results in a vector. This proposition is a
generalization of Lagrange’s formula for the vector triple product in R3. The proof
of this proposition was inspired by a discussion Cherry had with Charles Conley,
and we thank him for his interest. We suspect that Proposition 9 is reasonably
well-known, but we were unable to find a reference to it in the literature.

Proof. Let

b̃= det


w1 . . . wn

v1 ·w1 . . . v1 ·wn
...

...
...

vn−1 ·w1 . . . vn−1 ·wn

 .
We want to show that b = (−1)n b̃, and for this, it suffices to show that for all z
in Cn+1, we have z · b= (−1)n z · b̃. Clearly,

z · b̃= det


z ·w1 . . . z ·wn

v1 ·w1 . . . v1 ·wn
...

...
...

vn−1 ·w1 . . . vn−1 ·wn

 .
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On the other hand, by Proposition 4,

z · b= det(z, v1, . . . , vn−1, a)

= (−1)n det(a, z, v1, . . . , vn−1)

= (−1)n a · L(z∧ v1 ∧ · · · ∧ vn−1)

= (−1)n L(w1 ∧ · · · ∧wn) · L(z∧ v1 ∧ · · · ∧ vn−1)

= (−1)n(w1 ∧ · · · ∧wn) · (z∧ v1 ∧ · · · ∧ vn−1) (since L is an isometry)

= (−1)n(z∧ v1 ∧ · · · ∧ vn−1) · (w1 ∧ · · · ∧wn)

= (−1)n det


z ·w1 . . . z ·wn

v1 ·w1 . . . v1 ·wn
...

...
...

vn−1 ·w1 . . . vn−1 ·wn

 (by Proposition 1). �

Proposition 10. Let a, u1, . . . , un be n+ 1 linearly independent vectors in Cn+1.
For j = 1, . . . , n, let

v j = L(a∧ u1 ∧ · · · ∧ u j−1 ∧ u j+1 ∧ · · · ∧ un).

Then, L(v1 ∧ · · · ∧ vn)=±Dn−1a, where D = det(a, u1, . . . , un).

Remark. The unspecified sign depends only on n and can be explicitly determined
from the proof. Since the sign will not matter for our purpose, we did not bother to
record it here.

Proof. By Proposition 9, we get that

L(v1 ∧ · · · ∧ vn)= (−1)n det


a u1 . . . un−1

v1 · a v1 · u1 . . . v1 · un−1
...

...
...

...

vn−1 · a vn−1 · u1 . . . vn−1 · un−1

 .
If i 6= j , then

vi · u j = L(a∧ · · · ∧ ui−1 ∧ ui+1 ∧ · · · ∧ un) · u j = 0

since u j appears in the wedge product defining vi , and hence vi is orthogonal to u j .
Similarly, vi · a = 0. Moreover,

v j · u j = L(a∧ · · · ∧ u j−1 ∧ u j+1 ∧ · · · ∧ un) · u j = (−1) j D
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by Proposition 4. Hence,

L(v1 ∧ · · · ∧ vn)= (−1)n det


a u1 u2 . . . un−1

0 −D 0 . . . 0
0 0 D . . . 0
...

...
...

...
...

0 0 0 . . . (−1)n−1 D

=±Dn−1a. �

Theorem 11. Let u0, . . . , un be n + 1 linearly independent unit vectors in Cn+1

representing n + 1 points in general position in CPn , which we think of as the
vertices of a projective simplex. For each j from 0 to n, let d j denote the Fubini–
Study distance from the point represented by u j to the hyperplane containing the
opposite face of the simplex. Let dmin denote the minimum of the d j . Then,

dn
min ≤ | det(u0, . . . , un)|.

For equality to hold, at least n of the n+ 1 projective distances d j must equal dmin.

Proof. Let D = det(u0, . . . , un). Note that D 6= 0 by the linear independence
(general position) hypothesis. Without loss of generality, assume that dmin = dn .
Then, dn

min ≤ d1d2 · · · dn , and equality holds if and only if all of these distances are
equal. By Proposition 6,

d j =
|D|

|u0 ∧ · · · ∧ u j−1 ∧ u j+1 ∧ · · · ∧ un|
.

Thus,

dn
min ≤

|D|n∏n
j=1 |u0 ∧ · · · ∧ u j−1 ∧ u j+1 ∧ · · · ∧ un|

.

For j from 1 to n, let

v j = L(u0 ∧ · · · ∧ u j−1 ∧ u j+1 ∧ · · · ∧ un),

and we now consider L(v1 ∧ · · · ∧ vn). By Proposition 10,

L(v1 ∧ · · · ∧ vn)=±Dn−1u0.

Hence,

|L(v1 ∧ · · · ∧ vn)| = |D|n−1

since |u0| = 1. We also know that

|L(v1 ∧ · · · ∧ vn)| = |v1 ∧ · · · ∧ vn| ≤ |v1| · · · |vn|
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by Corollary 3. Moreover, the inequality is strict unless vi ·v̄ j = 0 for all i 6= j . Thus,
n∏

j=1

|u0 ∧ · · · ∧ u j−1 ∧ u j+1 ∧ un| =

n∏
j=1

|L(u0 ∧ · · · ∧ u j−1 ∧ u j+1 ∧ un)|

=

n∏
j=1

|v j |

≥ |L(v1 ∧ · · · ∧ vn)| = |D|n−1.

Hence,

dn
min ≤

|D|n∏n
j=1 |u0 ∧ · · · ∧ u j−1 ∧ u j+1 ∧ · · · ∧ un|

≤
|D|n

|D|n−1 = |D|,

as required, with strict inequality unless d1=· · ·= dn and vi ·v̄ j = 0 for all i 6= j . �

Remark. Equality of the n distances is not sufficient for equality to hold in
Theorem 11, but the proof of Theorem 11 suggests the following conjecture.

Conjecture 12. With notation as in Theorem 11, fix 0 < D ≤ 1 and consider all
configurations of u0, . . . , un such that D = | det(u0, . . . , un)|. Among all such
configurations, the configuration with the largest dmin will be a regular simplex.

Remark. When D< 1, equality will not hold in Theorem 11 for the regular simplex
with determinant D.

We now observe that if we like, we could just as easily work with vectors defining
the faces of the simplices, rather than the vertices.

Proposition 13. Let a, b1, . . . , bn be n+1 linearly independent unit vectors in Cn+1.
We think of the vectors as the coefficients of linear forms defining hyperplanes
in CPn . By linear independence, the hyperplanes are in general position and thus
determine a simplex. Let d denote the distance from the hyperplane determined
by a to the vertex of the simplex where the hyperplanes determined by b1, . . . , bn

intersect. Then,

d =
| det(a, b1, . . . , bn)|

|b1 ∧ · · · ∧ bn|
.

Remark. Observe that the distance formula here is identical to that in Proposition 6.
Thus, Theorem 11 and Corollary 7 immediately translate to the following corollary.

Corollary 14. Let u0, . . . , un be n+ 1 linearly independent unit vectors in Cn+1

representing n + 1 linear forms defining n + 1 hyperplanes in general position
in CPn , which we think of as the faces of a projective simplex. For each j from 0
to n, let d j denote the Fubini–Study distance from the hyperplane represented by u j

to the opposite vertex of the simplex. Let dmin denote the minimum of the d j . Then,

dn
min ≤ | det(u0, . . . , un)| ≤ dmin.
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|D| = d2
min

|D| = dmin

dmin

|D|

Figure 1. |D| versus dmin in the case of dimension n = 2.

Remark. Figure 1 illustrates the inequalities constraining the absolute value of the
determinant and the minimum distance in the case when n = 2, i.e., for the case of
projective triangles in the projective plane. The points marked as circles along the
line |D| = dmin illustrate isosceles triangles, as in Example 8. The points marked
as squares just above the curve |D| = d2

min are from equilateral triangles. The other
points are triangles with randomly generated vertices.

Proof of Proposition 13. Let

u =
L(b1 ∧ · · · ∧ bn)

|b1 ∧ · · · ∧ bn|
,

which is the unit vector representing the vertex of the simplex where the hyperplanes
determined by b1, . . . , bn intersect. For j = 1, . . . , n, let

v j = L(a∧ b1 ∧ · · · ∧ b j−1 ∧ b j+1 ∧ · · · ∧ bn).

Then, the vectors v j , which are not necessarily unit vectors, represent the n other
vertices of the simplex. By Proposition 6 and Proposition 4,

d =

∣∣∣det
(

u, v1
|v1|
, . . . , vn

|vn |

)∣∣∣∣∣∣ v1
|v1|
∧ · · · ∧

vn
|vn |

∣∣∣ =
|u · L(v1 ∧ · · · ∧ vn)|

|v1 ∧ · · · ∧ vn|
.
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By Proposition 10, L(v1 ∧ · · · ∧ vn) = ±Dn−1a, where D = det(a, b1, . . . , bn).
Thus,

d =
|u · L(v1 ∧ · · · ∧ vn)|

|v1 ∧ · · · ∧ vn|

=
|D|n−1

|u · a|
|D|n−1 (since a is a unit vector)

=
|L(b1 ∧ · · · ∧ bn) · a|
|b1 ∧ · · · ∧ bn|

(by the definition of u)

=
| det(a, b1, . . . , bn)|

|b1 ∧ · · · ∧ bn|
(by Proposition 4). �

We conclude by explaining some of the initial motivation coming from complex
function theory for this investigation. Let D denote the unit disc in the complex
plane. J. Dufresnoy [1944] studied complex analytic mappings f from D to CPn

such that the image of f omits at least 2n + 1 hyperplanes in general position
in CPn , where here general position means that the linear forms defining any n+ 1
of the hyperplanes will be linearly independent. As in [Cherry and Eremenko 2011],
we let f # denote the Fubini–Study derivative of f , which measures how much
the mapping f distorts length, where length in D is measured with respect to the
standard Euclidean metric and length in CPn is measured with respect to the Fubini–
Study metric. A consequence of Dufresnoy’s work is that f #(0) is bounded above
by a constant depending only on the dimension n and the set of omitted hyperplanes,
but Dufresnoy remarked in his 1944 paper that the constant depends on the omitted
hyperplanes in a “completely unknown” way. By making a portion (see [Eremenko
1999]) of the potential-theoretic method of Eremenko and Sodin [1991] effective,
Cherry and Eremenko [2011] were able to give an explicit and effective estimate
on how the constant depends on the omitted hyperplanes. Cherry and Eremenko’s
bound was expressed in terms of the singular values of the (n+1)×(n+1)matrices
formed by the coefficients of the normalized linear forms defining n+1 of the omitted
hyperplanes. Let P be a point in CPn where n of the 2n+ 1 omitted hyperplanes
intersect, and let Q be a point where a different n of the 2n+1 omitted hyperplanes
intersect. Then, the projective line connecting P with Q will intersect the 2n+ 1
omitted hyperplanes in only three points: it will intersect n of the hyperplanes at P ,
another n at Q and the last one at some third point R. Such a line is called a diagonal
line for the hyperplane configuration. In the event that the hyperplane configuration
is such that for some diagonal line, two of the three points P , Q, and R are very close
together, it is not hard to see that one can find a complex analytic map f from D into
the diagonal line omitting the three points such that f #(0) is very large. One is then
led to ask if this is the only way one can get a very large value of f #(0). One would
thus like to know how this minimum distance among the pairs of points in {P, Q, R}
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compares to the singular values appearing in Cherry and Eremenko’s bound. Rather
than look initially at collections of 2n+ 1 hyperplanes in CPn , we began with the
easier situation of n+ 1 hyperplanes in CPn and did some numerical experiments
comparing the singular values of the matrices formed by the coefficients of the
defining forms of the hyperplanes and the projective distances from the hyperplanes
to the opposite vertices of the simplex whose faces are contained in the given
hyperplanes. These opposite vertices would be the points determining the diagonal
lines in bigger configurations of hyperplanes. Although Cherry and Eremenko’s
bound is expressed only in terms of some of the singular values, we realized that we
could obtain prettier results for the determinant, whose absolute value is of course
the square root of the product of all the singular values. We therefore decided to
write this note focusing on the pure projective geometry of the simplices and leave
the possible application to complex function theory to another time.
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