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The 12 conjecture holds for graphs of small order
Cole Franks

(Communicated by Ronald Gould)

An L(2, 1)-labeling of a simple graph G is a function f : V (G) → Z such
that if xy ∈ E(G), then | f (x) − f (y)| ≥ 2, and if the distance between x
and y is two, then | f (x)− f (y)| ≥ 1. L(2, 1)-labelings are motivated by radio
channel assignment problems. Denote by λ2,1(G) the smallest integer such that
there exists an L(2, 1)-labeling of G using the integers {0, . . . , λ2,1(G)}. We
prove that λ2,1(G)≤12, where 1=1(G), if the order of G is no greater than
(b1/2c+1)(12

−1+1)−1. This shows that for graphs no larger than the given
order, the 1992 “12 conjecture” of Griggs and Yeh holds. In fact, we prove more
generally that if L ≥12

+ 1, 1≥ 1, and

|V (G)| ≤ (L −1)
(⌊ L−1

21

⌋
+ 1

)
− 1,

then λ2,1(G) ≤ L − 1. In addition, we exhibit an infinite family of graphs with
λ2,1(G)=12

−1+ 1.

1. Introduction

The channel assignment problem is the determination of assignments of channels
(integers) to stations in such a way that those stations close enough to interfere
receive distant enough channels. Hale [1980] formulated the problem in terms of
T -colorings, which are integer colorings in which adjacent vertices’ colors cannot
differ by a member of a set of integers T with {0} ⊂ T . Roberts [1988] proposed
a generalization in which closer transmitters would be required to have channels
that differed by more than those of the slightly more distant transmitters, adding a
condition for nonadjacent vertices as well. The L(2, 1)-labeling problem was first
studied by Griggs and Yeh [1992] in response to Roberts’ proposal. An L(2, 1)-
labeling of a graph G is an integer labeling of G in which two vertices at distance
one from each other must have labels differing by at least 2, and those at distance
two must differ by at least 1. Denote by λ2,1(G) the smallest number such that there
exists an L(2, 1)-labeling of G with the difference λ2,1(G) between the highest and

MSC2010: 97K30.
Keywords: L(2,1)-labeling, graph labeling, channel assignment.
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542 COLE FRANKS

lowest label. If there is no possibility for confusion, λ2,1(G) is sometimes written
λ2,1. The L(2, 1)-labeling problem has been studied extensively with the central
goal of finding bounds on λ2,1. Griggs and Yeh bounded the λ2,1 number for cycles,
paths, trees, and the n-cube. They also proved the bound λ2,1 ≤1(G)2+ 21(G),
where 1(G) is the maximum degree over the set of degrees of vertices in V (G). In
this paper, we will write 1 when the meaning is clear from context. Chang and Kuo
[1996] improved the bound to12

+1, and by modifying their algorithm, Gonçalves
[2007] reduced the bound to12

+1−2. Bounds on the λ2,1 number have been found
for many subclasses of graphs, such as Sakai’s bound [1991] of (1+ 3)2/4 for
chordal graphs — graphs containing no induced cycle of length four. All examples
tested have corroborated the conjecture Griggs and Yeh made in their 1992 paper:

12 conjecture. If 1(G)≥ 2, then λ2,1 ≤1
2.

However, the conjecture remains unproven, and it is difficult to test the bound for
graphs of any significant size. The largest step towards the proof of the conjecture
was made by Havet, Reed, and Sereni [2012] who proved that the conjecture
holds for all graphs with 1 larger than some 10, but 10 ≈ 1069. Consequently,
λ2,1(G) ≤ 12

+ C for some absolute constant C . The upper bound set by the
conjecture, if proven, would be tight — the Moore graphs are known to satisfy
λ2,1 =1

2 [Griggs and Yeh 1992].

2. Preliminaries

The proof of Theorem 3 involves a classic result of Pósa about the existence of
Hamilton cycles and paths in graphs of high degree (see [Kronk 1969]). In this
respect, our argument has a similar flavor to the proof in [Griggs and Yeh 1992]
that λ2,1 ≤ 1

2 for graphs of order less than 12
+ 1. In addition, we will use the

powerful result of Szemerédi and Hajnal [1970] on equitable colorings.

Theorem (Pósa). Let G have n ≥ 3 vertices. If for every k, 1≤ k ≤ (n− 1)/2 and
|{v : d(v)≤ k}|< k, then G is Hamiltonian.

Corollary 1. Let G have n ≥ 2 vertices. If for every k, 0 ≤ k ≤ (n − 2)/2 and
|{v : d(v)≤ k}| ≤ k, then G has a Hamilton path.

Proof. The corollary follows easily by adding a dominating vertex to G and
observing that by Pósa’s theorem the new graph is Hamiltonian. �

Theorem (Szemerédi, Hajnal). If 1(G)≤ r , then G can be equitably colored with
r + 1 colors; that is, the sizes of the color classes differ by at most one.

See also [Kierstead et al. 2010; Kierstead and Kostochka 2008].
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3. Main result

The following lemma is the key ingredient in the proof of the main result. The
lemma requires a concept which we will call the square color graph. Let G be a
graph. Let C0, . . . ,Cl−1 be the color classes of a proper coloring C of G2 with l
colors, where G2 is the graph with V (G2)= V (G) and E(G2)= {xy|d(x, y)≤ 2}.
The square color graph of C , denoted G, is the graph with

V (G)={C0, . . . ,Cl−1} and E(G)=
{
Ci C j

∣∣G[Ci∪C j ] contains an edge of G
}
.

Here G[Ci ∪C j ] denotes the induced subgraph formed by the vertices in Ci ∪C j .

Lemma 2. Let G be a graph, and let C be a proper coloring of G2 with l colors.
If the complement Gc of the square color graph of C has a Hamilton path, then
λ2,1(G)≤ l − 1.

Proof. By assumption, Gc has a Hamiltonian path P = {p0, p1, . . . , pl−1}. Recall
that the vertices of P are color classes partitioning G. Let f : V (G)→Z be defined
as f : v 7→ i , where i is the unique index such that v ∈ pi . We now check that f is
an L(2, 1)-labeling of G. If d(x, y)= 2, then x and y are given two different labels
because C is a coloring of G2. If d(x, y)= 1, then x and y are in two distinct color
classes pi and p j such that pi p j ∈ E(G). Then pi p j /∈ E(Gc), so i 6= j±1 because
otherwise pi p j ∈ E(P). Therefore | f (x)− f (y)| ≥ 2, and f is an L(2, 1)-labeling
for G. �

Theorem 3. Let G be a graph with 1 = 1(G) ≥ 1, and let L be an integer with
L ≥12

+ 1. Then λ2,1(G)≤ L − 1 if

|V (G)| ≤ (L −1)
(⌊

L−1
21

⌋
+ 1

)
− 1.

Before the proof of Theorem 3, we will discuss two corollaries that have impli-
cations for the 12 conjecture.

Corollary 4. Let G be a graph of with 1=1(G)≥ 1. Then λ2,1(G)≤12 if

|V (G)| ≤
(⌊
1

2

⌋
+ 1

)
(12
−1+ 1)− 1.

Proof. Using Theorem 3 with L =12
+ 1 gives the desired result. �

Corollary 4 significantly expands the known orders of graphs that satisfy the
12 conjecture; it does so more dramatically as 1(G) increases. For 1(G) = 3,
|V (G)| ≤ 13 suffices as opposed to the previously known |V (G)| ≤ 10 [Griggs and
Yeh 1992]. For1(G)=4, we have |V (G)|≤38 as opposed to |V (G)|≤17 [loc. cit.].
If G is the Hoffman–Singleton graph, then 1(G) = 7, |V (G)| = 50 = 12

+ 1,
and, in fact, λ2,1(G) = 49 = 12 [loc. cit.]. It might seem productive to look
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among minor variations of the Hoffman–Singleton graph for counterexamples to
the 12 conjecture, but Corollary 4 suggests otherwise — the conjecture holds if
1(G) = 7 and |V (G)| ≤ 169. The bounds on |V (G)| established in Corollary 4
grow quickly with 1, as they are cubic in 1 rather than quadratic as in [loc. cit.].

For some |V (G)|, we can also use Theorem 3 to find upper bounds on λ2,1(G)
that are stronger than the best known bound of Gonçalves [loc. cit.]. The bound on
|V (G)| in the following corollary is larger than the bound in Theorem 3.

Corollary 5. Let G be a graph with1=1(G)≥ 3. Then λ2,1(G) <12
+1−2 if

|V (G)| ≤
(⌊
1

2

⌋
+ 1

)
(12
− 2)− 1.

Proof. Apply Theorem 3 with L =12
+1− 2. This gives

|V (G)| ≤
(⌊
1

2
+

1
2
−

3
21

⌋
+ 1

)
(12
− 2)− 1.

Since we have assumed 1≥ 3, we have 0≤ 1/2− 3/(21) < 1/2, so⌊
1

2
+

1
2
−

3
21

⌋
=

⌊
1

2

⌋
. �

We now proceed to the proof of Theorem 3.

Proof. Let L be as in Theorem 3. We will show that for any integers q, r with
q ≥ 0, 0≤ r ≤ L − 1, and

Lq + r ≤ M = (L −1)
(⌊

L−1
21

⌋
+ 1

)
− 1,

if |V (G)| = Lq + r and 1(G) = 1, then G has an L(2, 1)-labeling with span
at most L − 1. This is sufficient to prove Theorem 3, as for any integer n, there
exist unique integers q ≥ 0 and r ∈ {0, . . . , L − 1} with Lq + r = n. Suppose
|V (G)| = Lq+ r . Recall that L ≥12

+ 1≥1(G2)+ 1. By the Szemerédi–Hajnal
theorem, G2 has an equitable coloring C with L color classes. For convenience,
we will use all L color classes even if several are empty. This means L − r classes
have q vertices and r classes have q + 1 vertices. Our goal is to prove that the
complement of the square color graph of C , or Gc, has a Hamiltonian path. Note
that dG(V )≤1|V | for all V ∈ V (G). Write the degree of V in Gc as dc(V ).

If q ≤ b(L − 1)/21c− 1, then

1(q + 1)≤1
⌊L − 1

21

⌋
≤

⌊L − 1
2

⌋
,

so that δ(Gc)≥ L−1−b(L−1)/2c ≥ (L−1)/2, and the conditions of Corollary 1
are satisfied. Therefore Gc has a Hamiltonian path.
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Otherwise, q = b(L − 1)/21c and

r ≤ L − 1−1
(⌊

L−1
21

⌋
+ 1

)
≤ L − 1

because otherwise Lq + r > M .
Now suppose k is an integer with 0 ≤ k ≤ (L − 2)/2 as in Corollary 1. If

dc(V )≤ k, then

L−2
2
≥ L − 1− dG(V )≥ L − 1−1|V |,

so that |V | ≥ (1/1)(L − 1− (L − 2)/2) = (L − 1)/21+ 1/21 > q. Therefore
|V | = q+ 1, so we know there are at most r vertices with dc(V )≤ k. For any such
vertex V ,

dc(V )≥ L − 1− (q + 1)1= L − 1−1
(⌊

L−1
21

⌋
+ 1

)
≥ r ≥ 0.

Now the conditions of Corollary 1 are satisfied, so Gc still has a Hamiltonian
path. From Lemma 2, Gc having a Hamiltonian path implies that λ2,1G ≤ L−1. As

Lq + L − 1−1
(⌊

L−1
21

⌋
+ 1

)
= (L −1)

(⌊
L−1
21

⌋
+ 1

)
− 1= M,

this argument works for any |V (G)| ≤ M . �

Corollary 6. Let G be a graph of order n with 1 = 1(G) ≥ 1, and let L be an
integer with L ≥12

+ 1. If

n ≤ (L −1)
(⌊

L−1
21

⌋
+ 1

)
− 1,

then there is an L(2, 1)-labeling of G with a span at most L− 1 that is equitable. If
n ≥ L , the labeling is no-hole.

Proof. The proof follows immediately from the proof of Theorem 3. �

The next corollary concerns algorithms involved in finding these labelings. In
general, determining if λ2,1(G) ≤ k for positive integers k ≥ 4 is NP-complete
[Fiala et al. 2001].

Corollary 7. Let G be a graph of order n with1=1(G)≥1 and L≥12
+1. There

is an algorithm with polynomial running time in n to compute an L(2, 1)-labeling
of G with span at most L − 1 for all n and L such that

n ≤ (L −1)
(⌊

L−1
21

⌋
+ 1

)
− 1.
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Proof. If L ≥ 2n + 1, the appropriate labeling can be obtained by labeling the
vertices 0, 2, . . . , 2n in any order [Griggs and Yeh 1992]. This can clearly be
done in polynomial time. Otherwise, in [Kierstead et al. 2010] there is shown to
be an algorithm, polynomial in n, to equitably color G2 with L colors. Degree
sequences satisfying the conditions of Pósa’s theorem also satisfy those of Chvátal’s
theorem [Bondy and Chvátal 1976], and the paper’s authors exhibit an algorithm,
polynomial in p, to find Hamilton cycles in graphs of order p which satisfy the
conditions of Chvátal’s theorem. From the proofs of Lemma 2 and Corollary 1, we
see that to find the labeling, it is enough find a Hamilton cycle in a certain graph,
namely Gc with a dominating vertex added, of order L + 1≤ 2n+ 2 that satisfies
the conditions of Pósa’s theorem. From [Bondy and Chvátal 1976], we can do this
with an algorithm that is polynomial in L + 1, which must also be polynomial in n.
These two algorithms in succession yield the desired algorithm. �

4. Comments on diameter-2 graphs

It was previously known that diameter-2 graphs satisfy the 12 conjecture, and for
other than a few exceptional graphs, 12

− 1 suffices to label diameter-2 graphs
[Griggs and Yeh 1992]. In this section, we knock this bound down by one, showing
that 12

− 2 suffices to label all but a finite handful of diameter-2 graphs.

Theorem 8 [Griggs and Yeh 1992]. The12 conjecture holds for diameter-2 graphs.
In addition, λ2,1 ≤1

2
− 1 for diameter-2 graphs with 1≥ 2 except for C3, C4, and

the Moore graphs. For these exceptional graphs, λ2,1 =1
2.

The proof of these facts rely on Brooks’ theorem and several results from Griggs
and Yeh:

Theorem 9 (Brooks [Lovász 1975]). If G is an odd cycle or a complete graph,
χ(G)≤1+ 1; otherwise, χ(G)≤1.

Lemma 10 [Griggs and Yeh 1992]. λ2,1(G)≤ |V (G)| +χ(G)− 2.

Lemma 11 [Griggs and Yeh 1992]. There exists an injective L(2, 1)-labeling
of a graph G with span |V (G)| − 1 if and only if the complement of G has a
Hamilton path.

Theorem 12 [Griggs and Yeh 1992]. Let Cn be a cycle on n vertices. Then
λ2,1(Cn)= 4.

We now proceed to prove Theorem 8.

Proof. If 1= 2, one can verify the theorem readily using Theorem 12. Suppose
1≥ 3. We now split into cases.

In the first case, suppose 1≥ (|V (G)|)/2. Lemma 10 implies

λ2,1(G)≤ 21+χ(G)− 2.
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If G is a complete graph, then clearly λ2,1(G) = 21(G). As 1 ≥ 3, G is not an
odd cycle. Otherwise, 21+χ(G)− 2≤ 31− 2 by Brooks’ theorem. Note that in
both cases, 1(G)≥ 3 implies that λ2,1(G)≤12

− 2.
In the second case, suppose 1≤ (|V (G)|−1)/2. Then δ(Gc)≥ (|V (G)|−1)/2.

Also, we have assumed G has 1 ≥ 3, so |V (G)| ≥ 7. By Corollary 1, Gc has
a Hamilton path. By Lemma 11, there is an L(2, 1)-labeling of G with span
|V (G)| − 1. As the Moore graphs are the only diameter-2 graphs with |V (G)| =
12
+ 1, Theorem 8 holds. �

In fact, we can do better by the following result:

Theorem 13 [Erdős et al. 1980]. Except C4, there is no diameter-2 graph of or-
der 12.

This and the proof of Theorem 8 imply the following theorem.

Theorem 14. With the exception of C3, C4, C5, and the Moore graphs, any diameter-
2 graph with 1(G)≥ 2 has λ2,1(G)≤12

− 2.

We also have some comments on a special family of diameter-2 graphs that have
large λ2,1 number. In order to do this, we must define the points of the Galois plane,
denoted PG2(n). Let F be a finite field of order n. Let P = F3

\{(0, 0, 0)}. Define
an equivalence relation ≡ on P by (x1, x2, x3) ≡ (y1, y2, y3)⇐⇒ (x1, x2, x3) =

(cy1, cy2, cy3) for some c ∈ F . The points of PG2(n) are the equivalence classes.

Definition 15. The polarity graph of PG2(n), denoted H , is the graph with the
points of PG2(n) as vertices and with two vertices (x1, x2, x3) and (y1, y2, y3)

adjacent if and only if y1x1+ y2x2+ y3x3 = 0.

By the properties of PG2(n), we know that the diameter of H is two, 1(H)=
n+ 1, and its order is n2

+ n+ 1=12
−1+ 1 [Kárteszi 1976]. This implies that

λ2,1(H)≥12
−1. In fact, Yeh showed that λ2,1(H)=12

−1 [Griggs and Yeh
1992]. This is an infinite family of graphs, as finite fields exist for n = pk with p
prime.

However, we can improve this by one. This construction follows that of Erdős,
Fajtlowicz and Hoffman [Erdős et al. 1980]. A vertex (x, y, z) in H has degree n if
and only if the norm x2

+y2
+z2 is equal to 0. Suppose F has characteristic 2 and the

order of F is n. If (a, b, c) is in H then it is adjacent to the point (b+c, a+c, a+b),
which has norm equal to 0 and is also in H . In other words, every vertex in H
is adjacent to a vertex of degree n. We proceed to find the number of points of
degree n in H . Since F has characteristic 2, f (x) = x2 is injective and hence
surjective on F . This means we can choose x2 and y2 freely as long as one of them
is nonzero, and then z2 is determined. We must also eliminate proportional pairs,
so in total this leaves (n2

− 1)/(n− 1)= n+ 1 vertices of degree n.
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Now we can make an (n+1)-regular, diameter-2 graph H̃(n) by adding a vertex
that is adjacent to all vertices of degree n. This graph is of order n2

+ n + 2 =
12
−1+ 2.

Theorem 16. The graph H̃(n) has λ2,1(H̃)=12
−1+ 1.

Proof. Because H̃ has diameter 2, λ2,1(H̃) ≥ 12
−1+ 1. As 1 ≥ 3, we have

1 ≤ (12
−1+ 1)/2 = (|V (H)| − 1)/2. By the proof of Theorem 8, λ2,1(H̃) ≤

|V (G)| − 1=12
−1+ 1. �

Since H̃(n) exists for all n = 2k , this is an infinite family of graphs.
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Linear symplectomorphisms
as R-Lagrangian subspaces

Chris Hellmann, Brennan Langenbach and Michael VanValkenburgh

(Communicated by Ravi Vakil)

The graph of a real linear symplectomorphism is an R-Lagrangian subspace of
a complex symplectic vector space. The restriction of the complex symplectic
form is thus purely imaginary and may be expressed in terms of the generating
function of the transformation. We provide explicit formulas; moreover, as an
application, we give an explicit general formula for the metaplectic representation
of the real symplectic group.

1. Introduction

1.1. Overview. As part of our symplectic upbringing, our ancestors impressed
upon us the Symplectic Creed:

Everything is a Lagrangian submanifold [Weinstein 1981].

Obviously false if taken literally, rather than a “creed” it might be called the
Maslow–Weinstein hammer, or, in French, la déformation professionnelle symplec-
tique, saying that “if all you have is a [symplectic form], everything looks like a
[Lagrangian submanifold],” or, in other words, to a symplectic geometer, everything
should be expressed in terms of Lagrangian submanifolds. In this paper we consider
a vector space endowed with two symplectic forms, namely the real and imaginary
parts ReωC and ImωC of a complex symplectic form ωC, and begin with the simple
observation that

Not every Lagrangian submanifold [with respect to ReωC] is a Lagrangian
submanifold [with respect to ImωC].

We study its implications for the classification of real linear symplectomorphisms
H, as the graph of H is essentially by definition a Lagrangian subspace with respect
to ReωC; we ask, with some abuse of language:
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Open problem. Is every 2n×2n skew-symmetric matrix of the form ImωC
|graphH

for some H?

We believe that an answer would shed some light on the structure of linear
symplectomorphisms. While our primary reason for writing this article is to
precisely formulate the above open problem, which we do in Section 1.2, our
primary technical result is to rewrite it in terms of generating functions; after all, if
one guiding principle is the Symplectic Creed, another is that “symplectic topology
is the geometry of generating functions” [Viterbo 1992]. Or, to go further back,
while Sir William Rowan Hamilton first conceived of generating functions (or as
he called them, characteristic functions) as mathematical tools in his symplectic
formulation of optics, he later found, in his symplectic formulation of classical
mechanics, that the generating function for a physical system is the least action
function, in a sense that we will not make precise [Abraham and Marsden 1978;
Hamilton 1834]; this gives a striking connection with the calculus of variations.
Moreover, in Fresnel optics and quantum mechanics, the generating function is
used as the phase function of an oscillatory integral operator; the integral operator
is said to “quantize” the corresponding symplectomorphism [Grigis and Sjöstrand
1994; Guillemin and Sternberg 1984]. (Loosely speaking, when differentiating
the integral, one finds that the phase function must satisfy the Hamilton–Jacobi
equation.) This topic will be touched upon in Section 3. For us, the generating
function corresponding to the linear symplectomorphism H is the scalar-valued
function 8 in our main theorem:

Theorem 1. For each H∈Sp(2n,R) there exists a quadratic form8 :Cn
z×R2n

θ →R

such that

graphC H=
{(

z,−2∂8
∂z
(z, θ)

)
:
∂8

∂θ
(z, θ)= 0

}
,

and the restriction of ωC to graphC H is given by

ωC

((
z,−2∂8

∂z
(z, θ)

)
,
(
w,−2∂8

∂z
(w, η)

))
= 2

n∑
j=1

2n∑
`=1

∂28

∂z j∂θ`
(z jη`−w jθ`)+ 2

n∑
j,m=1

∂28

∂z j∂zm
(z jwm −w j zm). (1)

Moreover, our construction provides an explicit general formula for 8.

Our notation will be explained in the following subsection, along with the necessary
background and a restatement of the open problem. We prove the theorem in
Section 2, and in Section 3 we show how our construction seems to adequately
answer a question of Folland [1989] regarding the metaplectic representation. We
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conclude with a broad indication of future work. In the Appendix we give addi-
tional linear-algebraic background and some new elementary results relevant to our
problem, and also give an additional restatement of our open problem.

1.2. Background and restatement of the problem. In a real symplectic vector
space there is already a natural complex structure; the model example is R2n with
the 2n × 2n matrix J =

( 0 −I
I 0

)
, where of course J 2

= −I . What we mean by
“complex symplectic linear algebra” is something else; we instead consider C2n

with the above matrix J , that is, we consider

ωC
=

n∑
j=1

dζ j ∧ dz j on Cn
z ×Cn

ζ

(a nondegenerate alternating bilinear form over C). The basic formalism of complex
symplectic linear algebra is not new; indeed, complex symplectic structures naturally
appear in the theory of differential equations and have been studied through that lens
(see, for example, [Schapira 1981] and [Sjöstrand 1982], or [Everitt and Markus
2004] for another perspective). The point of view of this paper is that elementary
linear-algebraic aspects remain unexplored in the complex case and may help us
better understand the real case.

A symplectic vector space over a field1 K is by definition a pair (V, ω), where
V is a finite-dimensional vector space over K and ω is a nondegenerate alternating
bilinear form on V . The basic example is Rn

x × Rn
ξ with the symplectic form

ω =
∑n

j=1 dξ j ∧ dx j :

ω((x, ξ), (x ′, ξ ′))=
n∑

j=1

(ξ j x ′j − x jξ
′

j ). (2)

In fact, this is essentially the only example: for a general symplectic vector space
(V, ω) over a field K one can find a basis {e1, . . . , en, f1, . . . , fn} for V such that

ω(e j , ek)= 0, ω( f j , fk)= 0, ω( f j , ek)= δ jk for all j, k.

Such a basis is called a symplectic basis, and ω is of the form (2) in these coordinates.
(In particular, a symplectic vector space is necessarily even-dimensional.) Note
that ω vanishes on the span of the e j , and it vanishes on the span of the f j ; such
a subspace is called a Lagrangian subspace: a maximal subspace on which ω
vanishes. (A Lagrangian subspace of V is necessarily of dimension n.)

The symplectic formalism is fundamental in Hamiltonian mechanics: the sym-
plectic form provides an isomorphism between tangent space and cotangent space,

1Duistermaat’s book [1996] on Fourier integral operators contains a brief treatment of symplectic
vector spaces over a general field.
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mapping the Hamiltonian vector field of a function f to the differential of f :

d f = ω( · , H f ).

A linear symplectomorphism T on (V, ω) is a linear isomorphism on V such
that T ∗ω = ω, that is,

ω(Tv, Tv′)= ω(v, v′) for all v, v′ ∈ V .

This is equivalent to the property that a symplectic basis is mapped to a symplectic
basis.

We now let (V, ω) be a real symplectic vector space. Then

(V × V, ω⊕−ω)

is a real symplectic vector space. We write ω0 = ω⊕−ω so that, by definition,

ω0((v,w), (v
′, w′))= ω(v, v′)−ω(w,w′).

The following classical result (see [Tao 2012] for a broad perspective) justifies this
choice of the symplectic form:

A map H : V → V is a linear symplectomorphism if and only if its graph
{(v,H(v)) : v ∈ V } is a Lagrangian subspace of (V × V, ω0).

For a basic example, let

H : Rn
x ×Rn

ξ → Rn
y ×Rn

η, (x, ξ) 7→ (y, η),

be a linear symplectomorphism. Then graphH is a Lagrangian subspace for

ωR
=

n∑
j=1

dξ j ∧ dx j − dη j ∧ dy j .

The point of view of this paper is to consider graphH as an R-linear subspace of
a complex symplectic vector space. After all, with z j = x j + iy j and ζ j = ξ j + iη j ,
we have the complex symplectic form

ωC
=

n∑
j=1

dζ j ∧ dz j on Cn
z ×Cn

ζ ,

which induces the two real symplectic forms

ReωC
=

n∑
j=1

dξ j ∧ dx j − dη j ∧ dy j , ImωC
=

n∑
j=1

dξ j ∧ dy j + dη j ∧ dx j

on R2n
x,ξ×R2n

y,η. We then say that an R-linear 2n-dimensional subspace of R2n
x,ξ×R2n

y,η
is an R-Lagrangian subspace if it is Lagrangian with respect to ReωC, and an
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I-Lagrangian subspace if it is Lagrangian with respect to ImωC. Thus the graph of
H :R2n

x,ξ→R2n
y,η may be considered as an R-Lagrangian subspace of (Cn

z ×Cn
ζ , ω

C).
Writing a symplectic matrix H ∈ Sp(2n,R) as H=

(
A B
C D

)
, we have

graphH= {((x, ξ), (Ax + Bξ,Cx + Dξ)) : (x, ξ) ∈ R2n
};

or, in terms of (z, ζ ), we have

graphC H= {(x + i(Ax + Bξ), ξ + i(Cx + Dξ)) : (x, ξ) ∈ R2n
}.

Thus
ωC
|graphC H = i ImωC

|graphH

is given by

ωC
(
(x+ i(Ax+ Bξ), ξ+ i(Cx+Dξ)), (x ′+ i(Ax ′+ Bξ ′), ξ ′+ i(Cx ′+Dξ ′))

)
= i

(
xT ξ T

) (CT
−C −AT

− D
A+ DT B− BT

)(
x ′

ξ ′

)
.

The symplectic form ReωC vanishes, but the symplectic form ImωC might not
vanish; that is, graphC H is R-Lagrangian but not necessarily I-Lagrangian.

We have thus defined a map from the group of symplectic matrices to the space
of skew-symmetric matrices

X : Sp(2n,R)→ so(2n,R),

(
A B
C D

)
7→

(
CT
−C −AT

− D
A+ DT B− BT

)
.

We can thus restate our open problem:

Open problem. Is the map X : Sp(2n,R)→ so(2n,R) a surjection?

While we do not solve this problem, the main result of the paper is Theorem 1;
we can explicitly construct a generating function 8 for H and thus give an alternate
characterization of ωC

|graphC H and hence of X.

2. In terms of generating functions: the proof of the theorem

Generating functions (in the sense of symplectic geometry) were discovered by
Sir William Rowan Hamilton in his extensive work on optics. In modern language
(and in the linear case), light rays are specified by the following data: R2

x is a plane
of initial positions perpendicular to the optical axis of the system, ξ ∈ R2 are the
initial “directions” (multiplied by the index of refraction), R2

y is a plane of terminal
positions, and η∈R2 are the terminal directions. The spaces R4

x,ξ and R4
y,η are given

the standard symplectic structures. Taken piece by piece, the optical system consists
of a sequence of reflections and refractions for each light ray, the laws of which
were long known; Hamilton’s discovery was that, taken as a whole, the optical
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system is determined by a single function, the generating function, or, as Hamilton
called it, the characteristic function, of the optical system. The transformation from
initial conditions to terminal conditions is a symplectomorphism expressible in
terms of a single scalar-valued function, “by which means optics acquires, as it
seems to me, an uniformity and simplicity in which it has been hitherto deficient”
[Hamilton 1828, Section IV, Paragraph 20].2

The optical framework gives an intuitive reason why, in the symplectic matrix
H =

(
A B
C D

)
, the rank of B plays a special role in characterizing H and thus its

generating function. Again, H maps the initial (position, direction)-pair (x, ξ) to
the terminal (position, direction)-pair(

y
η

)
=

(
Ax + Bξ
Cx + Dξ

)
.

The case B = 0 corresponds to perfect focusing: all the rays from a given position x
arrive at the same position y, resulting in a perfect image. And the case det B 6= 0
corresponds to no such focusing: two rays with initial position x but different initial
directions must arrive at different positions y. (See [Guillemin and Sternberg 1984]
for an exposition of symplectic techniques in optics.)

2.1. When B is invertible. We recall that

graphC H=
{(

x + i(Ax + Bξ), ξ + i(Cx + Dξ)
)
: (x, ξ) ∈ R2n},

taken over the reals, is an R-Lagrangian subspace of (Cn
z ×Cn

ζ , ω
C), and we note

that

π : graphC H→ Cn, (z, ζ ) 7→ z,

is an R-linear transformation whose kernel is given by (x, ξ) ∈ {0}× ker B. Thus
it is an R-linear isomorphism if and only if B is invertible. In this case, the general
theory of symplectic geometry gives the existence of a real C∞ function 8 defined
on graphC H such that

graphC H=
{(

z,−2∂8
∂z
(z)
)
: z ∈ Cn

}
.

2There are different types of generating functions in symplectic geometry, and, as Arnold writes,
“[the apparatus of generating functions] is unfortunately noninvariant and it uses, in an essential
way, the coordinate structure in phase space” [Arnold 1978, Section 47]. For our purposes, we may
take the term “generating function” to broadly mean a scalar-valued function which generates a
symplectomorphism (or, more generally, a Lagrangian submanifold) in the same sense that a potential
function generates a conservative vector field. Our generating functions are denoted by the symbol 8
below.
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Hence if det B 6= 0, then

graphC H=
{(

x + i(Ax + Bξ), ξ + i(Cx + Dξ)
)
: (x, ξ) ∈ R2n}

=
{(

z,−2(∂8/∂z)(z)
)
: z ∈ Cn}

=
{(

p+ iq, B−1(q − Ap)+ i(Cp+ DB−1(q − Ap))
)
: p+ iq ∈ Cn},

where we write z = p+ iq, so that

8(p, q)= 1
2 pT B−1 Ap− pT B−1q + 1

2qT DB−1q. (3)

This function appears in [Folland 1989, Equation (4.54)] and in [Guillemin and
Sternberg 1984, Section 11]. (Note that B−1 A and DB−1 are symmetric since H
is symplectic.) Substituting p = x and q = Ax + Bξ , we arrive at the following
expression, with the obvious abuse of notation:

8(x, ξ)= 1
2 xT AT Cx + xT CT Bξ + 1

2ξ
T BT Dξ. (4)

Or, writing 8 with respect to z and z, we have

8(z)= 1
8 zT (B−1 A+ 2i B−1

− DB−1)z

+
1
4 zT (B−1 A− i(BT )−1

+ i B−1
+ DB−1)z

+
1
8 zT (B−1 A− 2i B−1

− DB−1)z.

Thus (
∂28

∂z j∂zk

)
=

1
4(B
−1 A− i B−1

+ i(BT )−1
+ DB−1).

We can directly compute ωC restricted to graphC H in terms of z and z:

ωC

((
z,−2∂8

∂z
(z)
)
,
(

z′,−2∂8
∂z
(z′)

))
= 4i Im

(∑
j,k

z j

(
∂28

∂z j∂zk

)
z′k

)

= 2
∑
j,k

∂28

∂z j∂zk
(z j z′k − z′j zk).

If we substitute
z = x + i(Ax + Bξ),

z′ = x ′+ i(Ax ′+ Bξ ′),

then after a lengthy mechanical calculation we recover the expression

ωC

((
z,−2∂8

∂z
(z)
)
,
(

z′,−2∂8
∂z
(z′)

))
= 2

∑
j,k

∂28

∂z j∂zk
(z j z′k − z′j zk)= i

(
xT ξ T

)
X(H)

(
x ′

ξ ′

)
.
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2.2. When B is not invertible. When B is not invertible, we seek

8=8(z, θ) ∈ C∞(Cn
×RN )

such that

graphC H=
{(

z,−2
∂8

∂z
(z, θ)

)
:
∂8

∂θ
(z, θ)= 0

}
. (5)

We follow the general method outlined by Guillemin and Sternberg [1977].
Let

W = graphC H, X = {(z, 0); z ∈ Cn
}, Y = {(0, ζ ); ζ ∈ Cn

}.

Since W is an R-Lagrangian subspace, we know that W ∩ Y and PW ⊂ X are
orthogonal with respect to ReωC, where P is the projection onto X along Y . Indeed,

W ∩Y = {(0, ξ+ i Dξ) : ξ ∈ ker B}, PW = {(x+ i(Ax+ Bξ), 0) : (x, ξ) ∈R2n
},

and we can check directly that, with ξ ∈ ker B,

ωC((0, ξ + i Dξ), (x ′+ i(Ax ′+ Bξ ′), 0))= i
[
ξ T (A+ DT )x ′+ ξ T Bξ ′

]
.

Since graphC H is not a C-linear subspace but an R-linear subspace, for now we
prefer to write

W ∩ Y = {(0, ξ ; 0, Dξ) : ξ ∈ ker B},

PW = {(x, 0; Ax + Bξ, 0) : (x, ξ) ∈ R2n
}.

We note that PW ⊕ (W ∩Y ) has real dimension 2n, hence is a Lagrangian subspace
of (R4n,ReωC).

We seek to write graphH as the graph of a function from PW ⊕ (W ∩ Y ) to
a complementary Lagrangian subspace; as a first step, we choose a convenient
symplectic basis. We let {b1, . . . , bk} be an orthonormal basis for ker B and extend
to an orthonormal basis {b1, . . . , bn} for Rn , so that

{(0, b j ; 0, Db j ) : j = 1, . . . , k}

is a basis for W ∩ Y , and

{(0, 0; Bb j , 0) : j = k+ 1, . . . , n} ∪ {(b j , 0; Ab j , 0) : j = 1, . . . , n}

is a basis for PW . We then extend to the following symplectic basis for (R4n,ReωC):

{(0, 0; Ab j , 0) : j = 1, . . . , k} ↔ {(0, b j ; 0, Db j ) : j = 1, . . . , k},

{(0, 0; Bb j , 0) : j = k+ 1, . . . , n} ↔ {(0, ATβ j ; 0, β j ) : j = k+ 1, . . . , n},

{(b j , 0; Ab j , 0) : j = 1, . . . , n} ↔ {(0,−b j ; 0, 0) : j = 1, . . . , n},

(6)
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where the {β j }
n
j=k+1 satisfy{

ATβ j ∈ (ker B)⊥ = Im BT ,

bJ · BTβ j = δJ j for all J ∈ {k+ 1, . . . , n}.
(7)

One advantage of using the particular symplectic basis (6) is that the vectors on the
left are all “horizontal,” and the vectors on the right are all “vertical”. (The arrows
signify the symplectically dual pairs.)

The following proposition implies the existence of {β j }
n
j=k+1.

Proposition 2. The set {Ab1, . . . , Abk, Bbk+1, . . . , Bbn} is a basis for Rn .

Proof. Suppose
k∑

j=1

α j Ab j +

n∑
j=k+1

α j Bb j = 0.

We take the dot product with DbJ , J ∈ {1, . . . , k}, to get α1 = · · · = αk = 0, and
the rest are zero by the linear independence of {Bbk+1, . . . , Bbn}. �

Thus for J ∈ {k+ 1, . . . , n} we can take βJ to be the unique vector orthogonal
to the set

{Ab1, . . . , Abk, Bbk+1, . . . , B̂bJ , . . . , Bbn}

(where the wide hat denotes omission) and satisfying

βJ · BbJ = 1.

We will now describe graphH in terms of the above symplectic coordinate system:
we write a general linear combination of the 4n vectors and find necessary and
sufficient conditions on the coefficients to make the vector in graphH. Explicitly,
we write the general vector in R4n as

k∑
j=1

t ′j (0, 0; Ab j , 0)+
n∑

j=k+1

t ′′j (0, 0; Bb j , 0)+
n∑

j=1

t ′′n+ j (b j , 0; Ab j , 0)

+

k∑
j=1

θ ′j (0, b j ; 0, Db j )+

n∑
j=k+1

θ ′′j (0, ATβ j ; 0, β j )+

n∑
j=1

θ ′′n+ j (0,−b j ; 0, 0) (8)

(the primes are not necessary but are useful for bookkeeping), and we will describe
graphH as (t ′, θ ′′) as a function of (t ′′, θ ′).

We have the following necessary and sufficient conditions for the vector (8) to
be in graphH:



560 CHRIS HELLMANN, BRENNAN LANGENBACH AND MICHAEL VANVALKENBURGH

k∑
j=1

t ′j Ab j −

n∑
j=k+1

θ ′′j ABTβ j +

n∑
j=k+1

θ ′′n+ j Bb j

=−

n∑
j=k+1

t ′′j Bb j −

n∑
j=k+1

θ ′′j C BTβ j +

n∑
j=1

θ ′′n+ j Db j =

n∑
j=1

t ′′n+ j Cb j .

In matrix form, this says:

| | | | | |

Ab1 · · · Abk (−ABTβk+1) · · · (−ABTβn) Bb1 · · · Bbn

| | | | | |

| | | |

0n,k (−C BTβk+1) · · · (−C BTβn) Db1 · · · Dbn

| | | |





t ′

θ ′′



=



| |

(−Bbk+1) · · · (−Bbn) 0n,n

| |

| |

0n,n−k Cb1 · · · Cbn

| |



t ′′


. (9)

We would now like to invert the matrix on the left to get (t ′, θ ′′) as a function of
(t ′′, θ ′). Once we do that, we are close to our goal of expressing graphH in terms
of a generating function 8.

Letting 5 denote the orthogonal projection onto ker B, we find that the inverse
of the matrix on the left side of (9) is

——— Db1 ———
... 0k,n

——— Dbk ———

——— D(5CT B− I )bk+1 ——— ——— Bbk+1 ———
...

...

——— D(5CT B− I )bn ——— ——— Bbn ———

——— (D5AT
− I )Cb1 ——— ——— Ab1 ———
...

...

——— (D5AT
− I )Cbn ——— ——— Abn ———



.
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Thus, defining the functions

f ′′i (t
′′)=

n∑
j=k+1

[Bbi · Db j ]t ′′j +
n∑

j=1

[Bbi ·Cb j ]t ′′n+ j for i = k+ 1, . . . , n,

f ′′n+i (t
′′)=

n∑
j=k+1

[Cbi · Bb j ]t ′′j +
n∑

j=1

[Abi ·Cb j ]t ′′n+ j for i = 1, . . . , n,

we see that (9) is equivalent to the conditions t ′ = 0, θ ′′ = f ′′(t ′′). Noting that

∂ f ′′i
∂t ′′j
=
∂ f ′′j
∂t ′′i

for all i, j ∈ k+ 1, . . . , n,

and defining

F(t ′′)=
1
2

n∑
i=k+1

n∑
j=k+1

t ′′i [Bbi · Db j ]t ′′j

+

n∑
i=k+1

n∑
j=1

t ′′i [Bbi ·Cb j ]t ′′n+ j +
1
2

n∑
i=1

n∑
j=1

t ′′n+i [Abi ·Cb j ]t ′′n+ j ,

we conclude that the vector is in graphH if and only if

t ′ = 0,
∂F
∂t ′′

(t ′′)= θ ′′.

We now define

ϕ(t ′, t ′′; θ ′, θ ′′)= θ ′ · t ′+ F(t ′′)+ (θ ′′− f ′′(t ′′))2.

Then in (t ′, t ′′; θ ′, θ ′′)-coordinates, graphH is given as{(
t ′, t ′′;

∂ϕ

∂t ′
,
∂ϕ

∂t ′′

)
:
∂ϕ

∂θ ′
= 0,

∂ϕ

∂θ ′′
= 0

}
.

Or, written in terms of the standard basis, graphH is the set of values of

k∑
j=1

t ′j (0, 0; Ab j , 0)+
n∑

j=k+1

t ′′j (0, 0; Bb j , 0)+
n∑

j=1

t ′′n+ j (b j , 0; Ab j , 0)

+

k∑
j=1

∂ϕ

∂t ′j
(t, θ)(0, b j ; 0, Db j )+

n∑
j=k+1

∂ϕ

∂t ′′j
(t, θ)(0, ATβ j ; 0, β j )

+

n∑
j=1

∂ϕ

∂t ′′n+ j
(t, θ)(0,−b j ; 0, 0) (10)

subject to the condition that ∂ϕ
∂θ
(t, θ)= 0.
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We return to complex coordinates, in the standard basis; for that purpose we
write the “horizontal” parts of (10) as

z :=
k∑

j=1

i t ′j Ab j +

n∑
j=k+1

i t ′′j Bb j +

n∑
j=1

t ′′n+ j (I + i A)b j .

That is,

Re z =
n∑

j=1

t ′′n+ j b j ,

Im z =
k∑

j=1

t ′j Ab j +

n∑
j=k+1

t ′′j Bb j +

n∑
j=1

t ′′n+ j Ab j .

With the same notation as before, the inverse transformation is given by

t ′j =−b j ·Re z+ Db j · Im z for j ∈ {1, . . . , k},

t ′′j =−ATβ j ·Re z+β j · Im z for j ∈ {k+ 1, . . . , n},

t ′′n+ j = b j ·Re z for j ∈ {1, . . . , n}.

(11)

We write the “vertical” part of (10) as:

Re ζ =
k∑

j=1

∂ϕ

∂t ′j
(t, θ)b j +

n∑
j=k+1

∂ϕ

∂t ′′j
(t, θ)ATβ j −

n∑
j=1

∂ϕ

∂t ′′n+ j
(t, θ)b j ,

Im ζ =

k∑
j=1

∂ϕ

∂t ′j
(t, θ)Db j +

n∑
j=k+1

∂ϕ

∂t ′′j
(t, θ)β j .

(12)

Using t = t (z) to denote the transformation (11), we define

8(z, θ) := ϕ(t (z), θ),

so that (12) says

ζ =−2
∂8

∂z
(z, θ).

In summary, we now have the following expression for graphC H:

graphC H=
{(

z,−2
∂8

∂z
(z, θ)

)
:
∂8

∂θ
(z, θ)= 0

}
, (13)

where the θ ∈ R2n are considered as auxiliary parameters, as in (5).
As for ωC

|graphC H, we use the expression

∂8

∂z
(z, θ)=

∂28

∂z∂θ
· θ +

∂28

∂z2 · z+
∂28

∂z∂z
· z
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to compute

ωC

((
z,−2∂8

∂z
(z, θ)

)
,
(
w,−2∂8

∂z
(w, η)

))
= 2z · ∂8

∂z
(w, η)− 2w · ∂8

∂z
(z, θ)

= 2
n∑

j=1

2n∑
`=1

∂28

∂z j∂θ`
(z jη`−w jθ`)+2

n∑
j,m=1

∂28

∂z j∂zm
(z jwm−w j zm), (14)

where the variables are related by the conditions

∂8

∂θ
(z, θ)= 0 and

∂8

∂θ
(w, η)= 0.

Of course, from Section 1, we know that (14) is equal to

i
(
xT ξ T

)
X(H)

(
x ′

ξ ′

)
, (15)

where

z = x + i(Ax + Bξ),

−2
∂8

∂z
(z, θ)= ξ + i(Cx + Dξ),

w = x ′+ i(Ax ′+ Bξ ′),

−2
∂8

∂z
(w, η)= ξ ′+ i(Cx ′+ Dξ ′).

This completes the proof of the theorem.

We leave it as an illustrative exercise for the reader to compute 8 and its deriva-
tives in the special cases when B = 0 and when B is invertible (to be compared
with the generating function (3) in Section 2.1).

3. Application: the metaplectic representation

In the previous section, we showed how to associate to a linear symplectomorphism
H a (real-valued) generating function 8. For the purposes of Fresnel optics and
quantum mechanics one then associates to the generating function 8 an oscillatory
integral operator

µ(H) : S(Rn)→ S ′(Rn), u 7→ a h−3n/2
∫∫

ei8(x+iy,θ)/hu(x) dx dθ. (16)

The map µ :H→ µ(H) is called the metaplectic representation of the symplectic
group, and µ(H) is said to be the “quantization” of the classical object H. As
defined, the operator µ(H) maps Schwartz functions to tempered distributions, but
in fact it extends to a bounded operator on L2(Rn); we choose a so that µ(H) is
unitary on L2(Rn), and here h > 0 is a small parameter. These are the operators
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of “Fresnel optics,” a relatively simple model theory for optics which accounts for
interference and diffraction, describing the propagation of light of wavelength h
[Guillemin and Sternberg 1984]. For the analytic details we refer the reader to a
text in semiclassical analysis [Dimassi and Sjöstrand 1999]; here we only show that
the standard conditions are indeed satisfied.

The above (real-valued) generating function 8, for an arbitrary H ∈ Sp(2n,R),
has the property that the 1-forms d(∂8/∂θ1), . . . , d(∂8/∂θ2n) are linearly indepen-
dent. Equivalently, with the notation from the previous section, the matrix

∂28

∂(Re z)∂θ ′
∂28

∂(Re z)∂θ ′′

∂28

∂(Im z)∂θ ′
∂28

∂(Im z)∂θ ′′

∂28

∂θ ′2
∂28

∂θ ′∂θ ′′

∂28

∂θ ′′∂θ ′
∂28

∂θ ′′2


=



| |

(−b1) · · · (−bk) ∗

| |

| |

Db1 · · · Dbk ∗

| |

0k,k 0k,(2n−k)

0(2n−k),k 2I(2n−k),(2n−k)


has linearly independent columns. (The asterisks denote irrelevant components.)
This condition says that quadratic form 8 = 8(z, θ) is a nondegenerate phase
function in the sense of semiclassical analysis [Dimassi and Sjöstrand 1999].

Folland writes: “it seems to be a fact of life that there is no simple description of
the operator µ(A) that is valid for all A ∈ Sp” [Folland 1989, p. 193]; however, we
believe that (16), combined with our construction of 8 in the proof of Theorem 1,
is such a description.

4. Conclusion

The open problem and results presented in this paper were motivated by the basic
question of the relationship between real and complex symplectic linear algebra.
Our approach to this question was to consider a real symplectomorphism as a
Lagrangian submanifold with regard to the real part of a complex symplectic form.
We believe the resulting problem of the nature of the restriction of the imaginary
part of the complex symplectic form to this submanifold (formally, X(H) for a
symplectomorphism H) is relevant to the structure of the real symplectic group.
(We direct the reader to the Appendix for a list of properties of X and reformulations
of our open problem which lend credence to this belief.) Accordingly, we view the
main result of this paper as primarily a means for further investigation of the open
problem of the image of X. In addition to solving our open problem, we believe
that, in line with our generating function formulation, it would be interesting to
have a “complexified” theory of the calculus of variations. At present we only have
trivial extensions of the real theory.
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Appendix

A. Elementary properties of X. We first note some standard facts about symplectic
matrices that are used throughout the paper; for further information, see, for example,
[Cannas da Silva 2001] or [Folland 1989]. We write

J =
(

0 −I
I 0

)
for the matrix representing the standard symplectic form.

Proposition 3 [Folland 1989]. Let H ∈ GL(2n,R). The following are equivalent:

(1) H ∈ Sp(2n,R).

(2) HTJH= J .

(3) H−1
= JHTJ −1

=

(
DT
−BT

−CT AT

)
.

(4) HT
∈ Sp(2n,R).

(5) AT D−CT B = I , AT C = CT A and BT D = DT B.

(6) ADT
− BCT

= I , ABT
= B AT and C DT

= DCT .

While X may be extended to all of M2n(R),

X : M2n(R)→ so(2n,R), M 7→ J M +MTJ , (1)

for purposes of our open problem the resulting linearity of X does not seem to help
when X is restricted to Sp(2n,R).

The following proposition presents some of the most interesting elementary
linear algebraic properties of X, which follow immediately from the definition.

Proposition 4. Let X : M2n(R)→ so(2n,R) be defined as above. Then:

(1) ker(X)= sp(2n,R), the symplectic Lie algebra.

(2) For any H ∈ Sp(2n,R), X(H)= J (H+H−1).
In particular, for U ∈ U (n) =

{( A −B
B A

)
∈ Sp(2n,R)

}
we have U−1

= UT ,
so X(U)= J (U +UT ).

(3) For any H ∈ Sp(2n,R), X(H) is invertible (equivalently, ImωC
|graphH is

nondegenerate) if and only if −1 is not a member of the spectrum of H2.

(4) For H,R ∈ Sp(2n,R), we have HTX(R)H= X(H−1RH).

We now take some examples.
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Examples of symplectic matrices and their images under X.

(1)
(

A 0
0 (AT )−1

)
7→

(
0 −AT

− (AT )−1

A+ A−1 0

)
.

In particular, (
I 0
0 I

)
7→

(
0 −2I

2I 0

)
= 2J .

(2) For B = BT , (
I B
0 I

)
7→

(
0 −2I

2I 0

)
.

(3) For C = CT , (
I 0
C I

)
7→

(
0 −2I

2I 0

)
.

(4) J =
(

0 −I
I 0

)
7→

(
0 0
0 0

)
.

(5) For t ∈ R,(
(cos t)I (−sin t)I
(sin t)I (cos t)I

)
7→

(
0 −2(cos t)I

2(cos t)I 0

)
.

(6) For any H ∈ Sp(2n,R), we have X(H)= X(H−1).

Thus in Examples (2) and (3), graphC H is an RI -subspace (R-Lagrangian and
I-symplectic). And in Example (4), graphC H is a C-Lagrangian subspace (R-
Lagrangian and I-Lagrangian).

The exact nature of the image of X is an open question. The following is a partial
result

Proposition 5. For each k ∈ {0, 1, . . . , n}, there exists Hk ∈ Sp(2n,R) such that
rank(X(Hk)) = 2k. Moreover, for any H ∈ Sp(2n,R), we have kerX(H) =
ker(H2

+ I ).

Proof. We fix k ∈ {0, 1, . . . , n} and write

(x, ξ)= (x ′, x ′′, ξ ′, ξ ′′), x ′, ξ ′ ∈ Rk, x ′′, ξ ′′ ∈ Rn−k .

Let

Hk(x ′, x ′′, ξ ′, ξ ′′)= (x ′,−ξ ′′, ξ ′, x ′′).
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The matrix representation of Hk is
Ik 0k

0n−k −In−k

0k Ik

In−k 0n−k

 ∈ Sp(2n,R).

Then

X(Hk)=


−2Ik

0n−k

2Ik

0n−k

 ,
so that

rank(X(Hk))= 2k.

The last statement of the proposition follows from (1). �

B. Restatement of the problem. It is sometimes convenient to work with the ex-
tension of X to all of M2n(R):

X(M)= J M +MTJ .

Then X :M(2n,R)→ so(2n,R) is a linear epimorphism with kernel sp(2n,R), the
symplectic Lie algebra (see, for example, [Folland 1989, Proposition 4.2]). Thus
the map X|Sp(2n,R) is surjective if and only if every element of the quotient space
M(2n,R)/sp(2n,R) contains a symplectic matrix. So our question is:

Question. Can every M∈M(2n,R) be written as M=H+A for some H∈Sp(2n,R)

and some A ∈ sp(2n,R)?

Proposition 6. Every M ∈M(2n,R)/sp(2n,R) has a unique representative of the
form (

0 S2

S3 D

)
,

where S2 and S3 are skew-symmetric.

Proof. Existence: let

M =
(

M1 M2

M3 M4

)
∈M(2n,R).

Since
(
α β
γ δ

)
∈ sp(2n,R) if and only if δ=−αT , β = βT , γ = γ T , we may replace

M by

M̃ = M −
(

M1
1
2(M2+MT

2 )
1
2(M3+MT

3 ) −MT
1

)
=

(
0 1

2(M2−MT
2 )

1
2(M3−MT

3 ) M4+MT
1

)
.
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Uniqueness: suppose(
0 S2

S3 D

)
=

(
0 S ′2
S ′3 D′

)
∈M(2n,R)/sp(2n,R),

with the S j and S ′j skew-symmetric. Thus(
0 S2−S ′2

S3−S ′3 D−D′

)
=

(
α β

γ −αT

)
∈ sp(2n,R).

This shows that S j −S ′j is symmetric and skew-symmetric, hence zero, and it is
clear that D = D′. �

Thinking geometrically, we are to find the projection of Sp(2n,R) onto{(
0 S2

S3 D

)
: S2,S3 skew-symmetric

}
along sp(2n,R). That is, let H=

(
A B
C D

)
∈ Sp(2n,R). Then

π(H)=
(

0 1
2(B− BT )

1
2(C −CT ) AT

+ D

)
.

Is every (
0 S2

S3 D

)
of this form?

For a possible simplification, the map

Y : Sp(2n,R)→ so(2n,R), H 7→ X(−JH)=H−HT ,

has the same image as X : Sp(2n,R)→ so(2n,R) and may be easier to understand.
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Maximization of the size of
monic orthogonal polynomials on the unit circle

corresponding to the measures in the Steklov class
John Hoffman, McKinley Meyer, Mariya Sardarli and Alex Sherman

(Communicated by Sever S. Dragomir)

We investigate the size of monic, orthogonal polynomials defined on the unit
circle corresponding to a finite positive measure. We find an upper bound for the
L1 growth of these polynomials. Then we show, by example, that this upper
bound can be achieved. Throughout these proofs, we use a method developed by
Rahmanov to compute the polynomials in question. Finally, we find an explicit
formula for a subsequence of the Verblunsky coefficients of the polynomials.

1. Introduction

Let V DC.TIC/, where TDfz 2C W jzj D 1g. We define an inner product on V by

hf;gid� D

Z
T

f .z/g.z/ d�;

where d� is of the form

d�D p.�/ d� C

nX
jD1

mj ı.� � �j /;

where p.�/ is a continuous function, ı is the Dirac delta function, and the mj are
masses placed at the �j satisfying mj � 0. We will confine our analysis to measures
in the restricted Steklov class of order ı, denoted Sı, which consists of measures
with the properties

p.�/ > ı; mj� 0; h1; 1id� D 2: (1-1)
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This inner product gives a norm k � k defined as

kf .z/kd� D
q
hf; f id�:

Given a measure d� 2 Sı , there exists a unique set of monic orthogonal polyno-
mials f�n.zI d�/g [Simon 2005]. We will adopt the convention that �n.zI d�/ is the
polynomial of degree n in this set. When there is no ambiguity about what measure
is being used, we will simply write these polynomials as �n.z/. Corresponding to
the set f�n.zI d�/g is the set f'n.z/g of orthonormal polynomials, defined by

'n.z/D
�n.z/

k�n.z/k
:

These polynomials form an orthonormal set. Uniqueness of this set follows the
from uniqueness of f�n.z/g.1

A conjecture of Steklov stated that the sequence

Mn;ı D sup
d�2Sı

max
z2T
j'n.zI d�/j

is bounded in n. This was disproven by Rahmanov [1979]. In particular, Rahmanov
proved the existence of a probability measure d�D �.�/ d� C

Pn
jD1 mj ı.� � �j /

such that
j'n.1; d�/j � C ln.n/CB

for some constants B, C . The hard part in making such estimates is that, in general,
there are few tools available to compute 'n.z/ other than the Gram–Schmidt process.
To establish his result, Rahmanov found a formula for computing the �n.zI d�/,
where d�Dd�C

Pn
kD0 mj ı.���j / in terms of �n.zI d�/, meaning that d� differs

from d� only in its masses. This formula uses the Christoffel–Darboux kernel

Kn.z; �/D

nX
jD0

'j .z/'j .�/: (1-2)

The roots of the Christoffel–Darboux kernel are those �j satisfying

Kn.�j ; �i/

�
D 0 for i ¤ j ;

¤ 0 for i D j:
(1-3)

Rahmanov’s formula, in light of these definitions, is

�n.zI d�/D �n.zI d�/�

nX
jD1

mj�n.�j I d�/

1Cmj Kn�1.�j ; �j /
Kn�1.z; �j /: (1-4)

1Originally, the last condition given for the Steklov class is stated as h1; 1id� D 1. This is a minor
modification though, because 'n.z/=

p
2 is in the Steklov class S

ı=
p

2
, given the original definition.
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We now outline our results. In Theorem 2.3, we use Rahmanov’s method
for computing �n.�/ for the measure d� D d�=2� C

Pbn=4c
jD1

mj ı.� � �j /, with
�j D .2�j � �/=n, mj D 4=n and show that the corresponding polynomials
�n.zI d�/ are uniformly bounded above by 8=.5�2/ log.bn=4c� 1/CC , where C

is a constant. Our next main result is Theorem 4.1, where we construct a family of
measures d�n such that �n.1I d�n/ > 1=� log nCc, c a bounded constant. Finally,
in Theorem 5.1, we show that, given the measure d�Dd�=2�C

Pn
jD1 mj ı.���j /,

with �j D 2�j=n��0, the subsequence f˛nk�1g
1
kD1

of the Verblunsky coefficients
j̨ .d�/ satisfies

˛nk�1 D eink�0

nX
jD1

mj

1Cmj nk
:

The reader may notice that all of our results are stated in terms of �n.z/, while
Steklov’s conjecture is stated in terms of 'n.z/. We will end this introduction with
a lemma, proven by Rahmanov [1979], that shows why bounds on �n.z/ imply
bounds on 'n.z/, and thus why it is sufficient to evaluate f�n.z/g.

Lemma 1.1. Given a measure d� 2 Sı, ı > 0, there exists a constant C such that

1

C
k�n.z; d�/k � k'n.z; d�/k � Ck�n.z; d�/k

for all n� 0.

Proof. Since

j'n.z/j D
j�n.z/j

k�n.z/kd�
;

it suffices to find constant upper and lower bounds on k�n.z/kd�.
To find an upper bound, we first claim that �n.z/ minimizes the integralZ

T

jP .z/j2 d�;

where P .z/ is any monic polynomial of degree n. Let q.z/ be an arbitrary poly-
nomial of degree less than n. Then, since �n.z/ is orthogonal to all polynomials
of degree less than n under the measure d� and the inner product of a polynomial
with itself is nonnegative, we have

h�n.z/C q.z/; �n.z/C q.z/id�

D h�n.z/; �n.z/id�Ch�n.z/; q.z/id�Chq.z/; �n.z/id�Chq.z/; q.z/id�

D h�n.z/; �n.z/id�Chq.z/; q.z/id�

� h�n.z/; �n.z/id�:
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Hence �n.z/ minimizes the integral
R

T
jP .z/j2 d�. In particular this gives us

k�n.z/k
2
d� D

Z 2�

0

j�n.z/j
2 d��

Z 2�

0

jzn
j
2 d�D

Z 2�

0

1 d�D 2: (1-5)

We can derive a lower bound using the fact that d� 2 Sı and, in particular,
that d� satisfies (1-1), which gives

k�n.z/k
2
d� D

1

2�

Z 2�

0

j�n.e
i� /j2p.�/ d� C

lX
jD1

mj j�n.e
i�j /j2

�
ı

2�

Z 2�

0

j�n.e
i� /j2 d�:

Let the coefficient of the zk term of �n.z/ be ak . In particular, an D 1. Using that
the integral of eik� over the unit circle is 0 for a nonzero integer k, we get

Z 2�

0

j�n.e
i� /j2 d� D

Z 2�

0

nX
kD0

a2
k d� �

Z 2�

0

a2
n d� D 2�:

Hence, k�n.z/k
2
d�
� ı.

Combining this with the upper bound on k�n.z/k
2
d�

from (1-5) gives

ı � k�n.z/k
2
d� � 2;

and as a result
j�n.z/j
p

2
� j'n.z/j �

j�n.z/j
p
ı
: �

2. Review of Rahmanov’s result

We begin by reviewing Rahmanov’s argument [1979] to show that the growth of
the monic polynomials under Rahmanov’s scheme is bounded below by c log n,
where c is a constant. Before doing that, though, we need to prove two lemmas that
simplify our future calculations.

We now characterize the roots of the Christoffel–Darboux kernel (which we
defined on page 2) for a certain measure:

Lemma 2.1. For d�D d�=2� , the roots of the Christoffel–Darboux kernel are the
n-th roots of unity times a constant of modulus one.
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Proof. Recall the definition of the Christoffel–Darboux kernel and its roots from
(1-2) and (1-3). For our d�, 'j D zj , so assuming �j is of modulus one for all j ,

Kn�1.�i ; �j /D

n�1X
jD0

�
j
i =�

j
j

D
�n

i =�
n
j � 1

�i=�j � 1
(since this is a geometric series)

D
�n

i � �
n
j

.�i � �j /�
n�1
j

: (2-1)

Therefore, by (2-1), �j D e2i�j=n �0, where 1 � j � n and �0 is an arbitrary
point on the unit circle, and so �j is an n-th root of unity times a constant. �
Lemma 2.2. We need only assess �n.zI d�/ at z D 1, since

sup
�2Sı

max
z2T
j�n.zI d�/j D sup

�2Sı

j�n.1I d�/j:

Proof. Let

d�1 D p.�/ d� C

mX
jD1

mj ı.� � �j /;

where d�1 2 Sı. Then d�2 2 Sı, where

d�2 D p.� � ��/ d� C

mX
jD1

mj ı.� � �
�
� �j /; �� 2 Œ0; 2�/:

In particular, �n.e
i� I d�1/D �n.e

i.�C��/I d�2/.
Hence,

max
z2T
j�n.zI d�1/j Dmax

z2T
j�n.zI d�2/j;

sup
�2Sı

max
z2T
j�n.zI d�/j D sup

�2Sı

j�n.1I d�/j:

Henceforth, we will only look at �n.zI d�/ evaluated at z D 1. �

Theorem 2.3. Under a finite measure d�D d�C
Pbn=4c

jD1
mj ı.� � �j /, the monic

polynomials are not uniformly bounded from above; specifically, there exists a d�

such that the maximums are greater than or equal to 8=.5�2/ log.bn=4c� 1/.

Remark 2.4. This is Rahmanov’s result [1979], whose proof we have included for
the reader’s convenience.

Proof. First, we will deal generally with some d� without specifying the added
masses.
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In light of Lemma 2.1, let �j D .2�j ��/=n for 1 � j � bn=4c. Then, using
Rahmanov’s formula in (1-4), we have

�n.zI d�/D �n.zI d�/�

bn=4cX
jD1

mj �n.�j I d�/

1Cmj Kn�1.�j ; �j /
Kn�1.z; �j /; (2-2)

which, by noting that Kn�1.�j ; �j /D
Pn�1

jD1 1D n and substituting z and �j into
(2-2), becomes

�n.zI d�/D zn
�

bn=4cX
jD1

mj�
n
j

1Cmj n

�zn� 1

ze�i�j � 1

D zn
C

bn=4cX
jD1

mj

1Cmj n

znC 1

1� ze�i�j
:

Now we want to find a lower bound for j�nj:

max
z2T
j�n.zI d�/j �max

z2T

ˇ̌̌̌
Im
�

zn
C

bn=4cX
jD1

mj

1Cmj n

znC 1

1� ze�i�j

�ˇ̌̌̌
:

We take z D 1, in line with Lemma 2.2, to get

max
z2T
j�n.zI d�/j �

ˇ̌̌̌
Im
�

1C 2

bn=4cX
jD1

mj

1Cmj n

1

1� e�i�j

�ˇ̌̌̌

D

ˇ̌̌̌
Im
�

1� 2

bn=4cX
jD1

mj

1Cmj n

ei�j � 1

j1� e�i�j j2

�ˇ̌̌̌
:

Note that 0< �j < �=2, j1� e�i�j j � �j , and

Im.ei�j � 1/D sin �j �
2�j

�
for � 2

�
0;
�

2

�
;

which givesˇ̌̌̌
Im
�

1� 2

bn=4cX
jD1

mj

1Cmj n

ei�j � 1

j1� e�i�j j2

�ˇ̌̌̌
� 2

bn=4cX
jD1

mj

1Cmj n

2

��j
: (2-3)

Now, we specify the masses of d� to get a precise bound. Let mj D 4=n for
all j . This simplifies (2-3) to

max
z2T
j�n.zI d�/j �

16

5�n

bn=4cX
jD1

1

.2j � 1/�
n

�
8

5�2

bn=4cX
jD1

1

j
:
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Note that log aD
aR
1

1=x dx �
a�1P
jD1

1=j since 1=x is decreasing.

Therefore,

max
z2T
j�n.zI d�/j �

8

5�2
log
�j

n

4

k
� 1

�
: (2-4)

Since 4=.5�2/ log.bn=4c� 1/ is strictly increasing in n, maxz2T j�n.z; d�/j is not
uniformly bounded from above. �

3. Finding a general upper bound

In this section, we find a general upper bound for the growth of the monic orthogonal
polynomials under a d� which differs from d�=2� only in the discrete portion. We
prove the following theorem by making a sequence of overestimates of j�n.1; d�/j.

Theorem 3.1. Let d� be a measure such that

d�D
1

2�
d� C

nX
jD1

mj ı.� � �j /;

where mj � 0, �j D 2�j=nC �0 for 1� j � n, and �0 2 Œ0; 2�/.
Then

j�n.1; d�/j �
1
�

log nCC;

where C is a constant uniformly bounded in n.

Remark 3.2. Note the generalized offset �0 in the theorem. In Section 2, we used
the specific offset of �0 D��=n, but here, we find a general upper bound under
any offset.

We prove the theorem using two lemmas. The first, Lemma 3.3, finds an overes-
timate for j�n.1; d�/j using Rahmanov’s formula [1979] . The second, Lemma 3.4,
makes another overestimate using Taylor series.

Lemma 3.3. Let d� be a measure such that

d�D
1

2�
d� C

nX
jD1

mj ı.� � �j /;

where mj � 0 and �j D 2�j=nC �0; 1� j � n.
Then

j�n.1/j D

8̂<̂
:
j1�ein�0 j

2

ˇ̌̌ nP
jD1

mj
1Cmjn

sin �j
1�cos �j

ˇ̌̌
C cn if �0 ¤ 0;

cn if �0 D 0;

where jcnj< 2 for all n.
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Proof. We first consider the case where �0 D 0. If �0 D 0, then Kn�1.1; e
i�j /D 0

for 1� j < n and Kn�1.1; e
i�n/D n. From Rahmanov’s formula (1-4),

j�n.1/j D

ˇ̌̌̌
1�

mn

1Cmnn
n

ˇ̌̌̌
< 1:

Therefore, �n.1/ is not increasing in n for �0D 0. Henceforth, we restrict ourselves
to working with �0 ¤ 0.

From Rahmanov’s formula in (1-4) and applying Lemma 2.1, we derive

�n.1/D 1�

nX
jD1

mj

1Cmj n
ein�j

ein�j � 1

ei�j � 1
:

Then, using algebra, we find that

�n.1/D 1C

nX
jD1

mj

1Cmj n

1� ein�j

1� ei�j

D 1C
1� ein�0

2

nX
jD1

mj

1Cmj n

�
1� i

sin �j
1� cos �j

�
;

(3-1)

which implies by the triangle inequality thatˇ̌̌̌
�n.1/�

1� ein�0

2
i

nX
jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌
� 1C

j1� ein�0 j

2

ˇ̌̌̌ nX
jD1

mj

1Cmj n

ˇ̌̌̌
:

Note that

j1� ein�0 j � 2 and 0�
mj

1Cmj n
�

1

n
; so

j1� ein�0 j

2

ˇ̌̌̌ nX
jD1

mj

1Cmj n

ˇ̌̌̌
� 1:

Hence, ˇ̌̌̌
�n.1/�

1� ein�0

2
i

nX
jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌
� 2: �

Thus, it is sufficient to consider the growth of

j1� ein�0 j

2

ˇ̌̌̌ nX
jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌
: (3-2)

We want to eliminate the magnitude around the sum in (3-2).
Since mj � 0, and sin �j=.1 � cos �j / is positive on .0; �/ and negative on

.�; 2�/, we have
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jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌

�max
�ˇ̌̌̌ X
�j2.0;�/

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌
;

ˇ̌̌̌ X
�j2.�;2�/

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌�
:

Now, if we alter d� so that the masses are instead located at �j� D �2�j=n� �0,
essentially reflecting the discrete portion of the measure over the real axis, we see
that (3-2) does not change.

Hence, since we are looking to find an upper bound of (3-1) that is independent
of mj and �0, we can assume without loss of generality that we are only looking at
�j 2 .0; �/, and thus take

j1� ein�0 j

2

ˇ̌̌̌ nX
jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌
�
j1� ein�0 j

2

X
�j2.0;�/

mj

1Cmj n

sin �j
1� cos �j

:

Since replacing �0 with �0C 2�=n and then shifting the index of the mj does not
affect the value of (3-2), assume �0 2 .�2�=n; 0/. Having made these simplifica-
tions, we can now move on to the main lemma, which finds an upper bound as
described in the theorem.

Lemma 3.4.

j1� ein�0 j

2

X
�j2.0;�/

sin �j
1� cos �j

� n
�
1C

1

�
C

1

�
log
j

n

2

k�
;

where �j D 2�j=nC �0; �0 2 .�2�=n; 0/.

Proof. We separate the first term from the sum, since that term contributes the most
to the magnitude. Recall that �1 D 2�=nC �0. Thus,

j1� ein�0 j

2

X
�j2.0;�/

sin �j
1� cos �j

�
j1� ein�0 j

2

sin �1

1� cos �1

C

X
�j2.2�=n;�/

sin �j
1� cos �j

since j1� ein�0 j � 2. We now bound these two terms of the sum separately.
We claim that

j1� ein�0 j

2

sin �1

1� cos �1

� n

for �0 2 .�2�=n; 0/. Recall �1 D �0C 2�=n, so hence j1� ein�0 j D j1� ein�1 j.
Denote �1 by t , where t 2 .0; 2�=n/. We do the calculation
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j1� eint j

2

sin t

1� cos t

D

p
.1� cos nt/2C .sin nt/2

2

sin t

2
�
sin t

2

�2 D
p

2� 2 cos nt

2

sin t

2
�
sin t

2

�2 :
Because sin.nt=2/ is nonnegative for t 2 .0; 2�=n/, we have

sin
nt

2

sin t

2
�
sin t

2

�2 D sin nt
2

�
2 sin t

2
cos t

2

�
2
�
sin t

2

�2 D
sin nt

2
cos t

2

sin t
2

;

sin.nt=2/=sin.t=2/ is nonnegative for t 2 .0; 2�=n/ and cos t=2 is bounded above
by 1. Hence, the expression is bounded above by sin.nt=2/=sin.t=2/. It remains to
show this is bounded above by n.

This is clearly true for nD 1. Let n> 1. Recall that nt 2 .0; 2�/. Consider an
.nC 1/-gon inscribed in a unit circle in which n of the sides of the polygon form
a central angle of t . The last side of the polygon forms a central angle of nt (this
angle may be reflexive.) Recall that the length of a chord of a unit circle which
forms a central angle of t is 2 sin.t=2/. Similarly the length of the chord which
forms a central angle of nt is 2 sin.nt=2/. As the polygon is not degenerate, the
sum of the lengths of the n equal side lengths is greater than the length of the
remaining side length. Namely 2n sin.t=2/� 2 sin.nt=2/ as desired.

We now handle the second term. To boundX
�j2.2�=n;�/

sin �j
1� cos �j

;

note that sin �j=.1� cos �j / is decreasing on .0; 2�/, so

X
�j2.2�=n;�/

sin �j
1� cos �j

�

bn=2cX
jD1

sin
�

2�
n

j
�

1� cos
�

2�
n

j
� :

Recall from the Taylor expansion that we can approximate sin x=.1� cos x/

near 0 by 2=x. In fact, since

lim
x!0

sin x

1� cos x
�

2

x
D 0

and for x 2 .0; ��, we have

d

dx

�
sin x

1� cos x
�

2

x

�
< 0;

we arrive at the inequality

sin x

1� cos x
�

2

x
for x 2 .0; ��:
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Therefore,
bn=2cX
jD1

sin
�

2�
n

j
�

1� cos
�

2�
n

j
� � bn=2cX

jD1

2
2�
n

j
D

n

�

bn=2cX
jD1

1

j
:

Recall that log aD
aR
1

1=x dx �
aP

jD2

1=j since 1=x is decreasing, so that

n

�

bn=2cX
jD1

1

j
D

n

�
C

n

�

bn=2cX
jD2

1

j
�

n

�
C

n

�
log
j

n

2

k
;

and thus

j1� ein�0 j

2

X
�j2.0;�/

sin �j
1� cos �j

� n
�
1C

1

�
C

1

�
log
j

n

2

k�
: �

Returning to the statement of the theorem,

j�n.1/j � 2C
j1� ein�0 j

2

ˇ̌̌̌ nX
jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌

� 2C
j1� ein�0 j

2

ˇ̌̌̌ nX
jD1

1

n

sin �j
1� cos �j

ˇ̌̌̌
� 3C

1

�
C

1

�
log
j

n

2

k
:

Since logbn=2c is equal to log n plus some uniformly bounded term, we can
conclude that

j�n.1/j �
1
�

log nCC;

where C is constant in n, which completes the proof of the theorem.

Remark 3.5. Note that here we used that

mj

1Cmj n
�

1

n
:

If we were to use the Rahmanov scheme of distributing masses and set all mj D 1=n

then
mj

1Cmj n
D

1

2n
;

and the monic orthogonal polynomials given by the Rahmanov type of measure
would have growth bounded from above by 1=2� log nC b, where b is a bounded
constant.
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4. Proving the lower bound

In this section, we construct a measure that achieves the upper bound of 1=� log n

plus a bounded term, as described in Theorem 3.1. We accomplish this primarily
by applying the technique of Lagrange multipliers to find an optimal measure.

Theorem 4.1. For all n 2 N, there exists a measure

d�D
1

2�
d� C

nX
jD1

mj ı.� � �j /;

where mj � 0 and
Pn

jD1 mj D 1 such that

j�n.1; d�/j �
1
�

log nC c;

where c is a bounded constant.

We will prove this theorem as a sequence of lemmas.
The first lemma, Lemma 4.2, finds a lower bound for the expression from

Lemma 3.3 which is simpler to manipulate. In the second lemma, Lemma 4.4, we
apply the technique of Lagrange multipliers to that lower bound to find a critical
“point”, in our case a scheme of mj s. Finally, in the third lemma, Lemma 4.6, we
insert those derived mj into the approximation and find that we achieve the growth
stated in the theorem.

Set �j D .2�j ��/=n. Inserting those �j into (3-1), we have that

j�n.1/j D
j1�e��i j

2

ˇ̌̌̌ nX
jD1

mj

1Cmj n

sin �j
1�cos �j

ˇ̌̌̌
Ccn D

ˇ̌̌̌ nX
jD1

mj

1Cmj n

sin �j
1�cos �j

ˇ̌̌̌
Ccn

for some constant jcnj<2. We know that sin �j=.1�cos �j / is positive for �j 2 .0; �/
and negative for �j 2 .�; 2�/. Thus, in order to maximize j�n.1/j, we set mj D 0

for all j such that �j 2 .�; 2�/, which prevents destructive interference from the
other side of the circle.

Under this setting, we can say thatˇ̌̌̌ nX
jD1

mj

1Cmj n

sin �j
1� cos �j

ˇ̌̌̌
D

bn=2cX
jD1

mj

1Cmj n

sin �j
1� cos �j

:

We next bound this equation from below with a simpler expression.

Lemma 4.2. For �j D .2�j ��/=n and mj � 0,

bn=2cX
jD1

mj

1Cmj n

sin �j
1� cos �j

�
1

�

bn=2cX
jD1

nmj

1Cmj n

1

j
C d;

where d is some constant.
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Remark 4.3. It may appear contradictory that we first find a lower bound when we
want the n-th degree monic polynomial to be as large as possible. However, this
lower bound is easier to manipulate, and we show in the subsequent lemmas that it
actually achieves the growth stated in the theorem.

Proof. We prove this lemma using two approximations. We first approximate
sin �j=.1 � cos �j / by 2=�j , from the Taylor series; we then approximate 2=�j
by 1=.�j /.

First, we show that 2=�j is a good approximation of sin �j=.1� cos �j /. Let

M D max
�j2Œ0;��

ˇ̌̌̌
sin �j

1� cos �j
�

2

�j

ˇ̌̌̌
:

This maximum, M , is achieved becauseˇ̌̌̌
sin �j

1� cos �j
�

2

�j

ˇ̌̌̌
is continuous in an open neighborhood containing Œ0; ��. Thus, 2=�j is a good
approximation and we can bound the following difference by a constant:ˇ̌̌̌bn=2cX

jD1

mj

1Cmj n

sin �j
1� cos �j

�

bn=2cX
jD1

mj

1Cmj n

2

�j

ˇ̌̌̌

�

bn=2cX
jD1

mj

1Cmj n

ˇ̌̌̌
sin �j

1� cos �j
�

2

�j

ˇ̌̌̌
�

bn=2cX
jD1

1

n
M �M:

Having established this, we can now replace 2=�j with 2n=..2j � 1/�/ and
attain the inequality

bn=2cX
jD1

mj

1Cmj n

2

�j
�

n

�

bn=2cX
jD1

mj

1Cmj n

1

j
:

Combining this and the previous inequality proves the lemma. �

Now that we have the simplified lower bound

1

�

bn=2cX
jD1

nmj

1Cmj n

1

j
;

we can apply the method of Lagrange multipliers to it in order to construct the mj

that prove the theorem.

Lemma 4.4. Let n 2 N. Consider any l 2 N with l � n. Under the constraints
mj � 0 and

Pl
jD1mj D 1, we achieve the maximum of
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lX
jD1

mj n

.1C nmj /j

by setting

mj D
m1
p

j
C

1

n

�
1
p

j
� 1

�
for all 1� j � l , where

m1 D

�
1C

l

n

�
1Pbn=2c

jD1
1=
p

j
�

1

n
:

Proof. Set up f , the function to be maximized, and the constraint g, where m is
the vector listing all mj :

f .m/D

lX
jD1

mj n

.1C nmj /j
;

g.m/D

lX
jD1

mj � 1D 0:

(4-1)

If f under the constraint g has a local extremum at m0 and m0 is not on the boundary,
for example m0j > 0 for all 1� j � l , then there is a � 2 R such that

rf .m0 /D �rg.m0 /: (4-2)

To simplify the following expressions, denote

lX
jD1

1p
j
D ˛.l/:

Calculations yield that, for all j ,
n

.1C nm0
1
/2
D

n

j .1C nm0j /
2
;

which, substituting m0
1

and m0j , gives m0j in terms of m0
1
, that is,

m0j D
m0

1p
j
C

1

n

�
1p
j
� 1

�
: (4-3)

Inserting that expression for m0j into g.m0/D
Pl

jD1 m0j � 1D 0 yields

m01 D
�
1C

l

n

�
1

˛.l/
�

1

n
:
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Remark 4.5. For all 1 � j � l , we have m0j > 0 since ˛.l/ <
lR

0

1=
p

l dl D 2
p

l .
Thus, we satisfy the condition that m0j � 0.

To insure that, in the computation for m0, the Lagrange multipliers method
did in fact give us the m that maximized f .m/ under the constraint mj � 0 andPl

jD1mj D 1, we must check the boundary. We next provide a quick proof that
the maximum is not achieved at the boundary.

Consider the Lagrangian L.m/ D f .m/ � �g.m/ defined on .�1=n;1/l ,
where � is the constant in (4-2). Note that m0 is a critical point of L since m0

satisfies rLDrf ��rgD 0. It suffices to show that L is concave on .�1=n;1/l .
We first calculate the entries of the Lagrangian L:

@2L

@m2
j

D�
2n2

j

1

.1C nmj /3
< 0;

@2L

@mj@mk

D 0 for j ¤ k:

The Hessian of L is then negative definite and hence L is concave on .�1=n;1/l .
Therefore, m0 as computed in (4-3) is a point where L achieves a global maximum
on the open neighborhood .�1=n;1/l . In particular, L.m0/ is the maximum of L

on the region defined by mj � 0 and
Pl

jD1mj D 1, a subset of .�1=n;1/l . On
this region, g D 0, so LD f . Hence f , constrained to the aforementioned region,
achieves a global maximum at m0. �

We conclude the proof by calculating the value of

lX
jD1

mj n

.1C nmj /j

for mj as described in Lemma 4.4. Since this function evaluated at l D bn=2c is a
lower bound of j�n.1; d�/j, as proved in Lemma 4.2, this final lemma concludes
the proof of the theorem.

Lemma 4.6. For the mj described in Lemma 4.4 in (4-3),

lX
jD1

mj n

.1C nmj /j
D

1
�

log l C c;

where c is uniformly bounded.
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Proof. We simply evaluate f from (4-1) at the m0 given by (4-3):

f .m0 /D

lX
jD1

m0j

1C nm0j

n

j
D

lX
jD1

1
n

�
1p
j
.1C nm0

1
/� 1

�
1C n1

n

�
1p
j
.1C nm0

1
/� 1

� n

j

D

lX
jD1

1p
j
.1C nm0

1
/� 1

p
j .1C nm0

1
/
D

lX
jD1

1

j
�

1

1C nm0
1

˛.l/

D

lX
jD1

1

j
�

˛.l/2�
1C l

n

�
n

D

lX
jD1

1

j
�
˛.l/2

nC l
:

Now
Pl

jD1 1=j differs from log l by at most 1, and ˛.l/2=.nC l/ is bounded in n

and l since

0�
˛.l/2

nC l
<
.2
p

l/2

nC l
D

4l

nC l
�

4n

n
D 4:

Therefore, for the m0 given by (4-3), f .m0/D log lCdl , where dl is a constant
bounded uniformly in l . In light of Lemma 4.2, we have constructed a d� such that
j�n.1; d�/j � 1=� log nC c, where c is a bounded constant, completing the proof
of Theorem 4.1. �

5. Investigating higher degree polynomials

In the previous sections, we described the magnitude of monic polynomials of
degree less than or equal to n, where n is the number of discrete masses in the
measure, using Rahmanov’s formula in (1-4). However, we also want to describe
the higher degree monic polynomials, i.e., �n0.zI d�/, where n0 > n. Unfortunately,
we are not able to do this for all n0 > n, but we can partially describe �n0.zI d�/,
where n0 D kn; k 2 N.

Recall the definition of Verblunsky coefficients [Simon 2005]:

�nC1.z/D z�n.z/� N̨n�
�
n .z/; (5-1)

where
�n.z/D ˇnzn

C � � �Cˇ0; 0� j � n; ǰ 2 C;

��n .z/D
Ň
0zn
C � � �C Ňn:

In the n0D kn case, we are able to derive the corresponding Verblunsky coefficients,
and do so explicitly for a d� similar to that of Rahmanov’s in Section 2.
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Theorem 5.1. For a measure d� D d�=2� C
Pn

jD1mjı.� � �j /, with masses
located at �j D ei�j and �j D 2�j=nC �0 (cf. Lemma 2.1),

�nk.z; d�/D znk
� �nk

0

nX
jD1

mj

1Cmj nk
Knk�1.z; �j /;

and

˛nk�1 D �
nk
0

nX
jD1

mj

1Cmj nk
;

where ˛nk�1 is a Verblunsky coefficient. Furthermore, under Rahmanov’s scheme,
where �j D 2�j=n and

d�D
d�

2�
C

nX
jD1

ı.� � �j /

n
;

the Verblunsky coefficients are

˛nk�1 D
1

1C k
:

Proof. Note that, since �n.zI d�/ is a monic polynomial, ˇn from the above
definition of the Verblunsky coefficients is 1, so

��n .0I d�/D 1;

which by (5-1) implies

�nC1.0I d�/D� N̨n: (5-2)

Having set out these preliminaries, we can simply apply Rahmanov’s formula
[1979] from (1-4) to find a formula for �nk.zI d�/ under a measure d� as described
in the statement of Theorem 5.1:

�nk.zI d�/D znk
�

nX
jD1

mj �nk.�j I d�/

1Cmj Knk�1.�j ; �j /
Knk�1.z; �j / (5-3)

D znk
� �nk

0

nX
jD1

mj

1Cmj nk
Knk�1.z; �j /: (5-4)

Remark 5.2. The simplification of the numerator from (5-3) to (5-4) depends upon
the �j being roots of unity times a constant (as in Lemma 2.1). Such a simplification
is only possible in the �nk case, which is why the description of other higher-degree
monic polynomials is considerably more complicated.



588 JOHN HOFFMAN, MCKINLEY MEYER, MARIYA SARDARLI AND ALEX SHERMAN

Now consider z D 0 to find the Verblunsky coefficients:

�nk.0; d�/D��
nk
0

nX
jD1

mj

1Cmj nk
Knk�1.0; �j /D��

nk
0

nX
jD1

mj

1Cmj nk
;

and, applying (5-2), we obtain

� N̨nk�1 D �nk.0; d�/D��
nk
0

nX
jD1

mj

1Cmj nk
;

˛nk�1 D �
nk
0

nX
jD1

mj

1Cmj nk
:

(5-5)

If we now take �0 D 0, as Rahmanov does, and

d�D
d�

2�
C

nX
jD1

ı.� � �j /

n
;

then (5-5) simplifies to

˛nk�1 D
1

1C k
: (5-6)

�
Remark 5.3. It is noteworthy that, as k grows, the ˛nk�1 decay at the rate of
1=.1C k/. In light of the fact that

P1
jD1˛

2
j <1 [Simon 2005], this suggests that

the j̨ are small for j 2 .n.k � 1/; nk/, where k 2 N, and increase rapidly near
j D kn. However, as mentioned above, describing �j .zI d�/ for j ¤ kn is much
more complicated.

Appendix: Numerical appendix

In order to help visualize the results of this paper, the graphs of the magnitudes
of four orthogonal monic polynomials induced by four respective measures have
been included at the end of this section. Each measure has a continuous portion
of d�=2� as well as masses placed at �j D �=n.2j � 1/, where 1 � j � n=2 (cf.
Lemma 2.1). For simplicity, throughout this section, we will consider only even n.
For the first two polynomials (displayed in Figure 1), masses of uniform size 2=n

are used as suggested by Rahmanov (see Section 2). For the second two (Figure 2),
the masses are given their weights according to (4-3).

These graphs have several key features in common, including the presence of
two peaks that grow in n: one at � D 0 and another at � D � . Also, both have
much lower minimums in the range 0� � � � than in �� � � � 0. Upon closer
inspection, it can be seen that the two peaks in Figure 1 are equal; in contrast, in
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4 3 2 1 0 1 2 3 4
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

4 3 2 1 0 1 2 3 4
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Figure 1. Left: j�10.�/j for �j D �
10
.2j � 1/ and mj D

1
5

, where
1 � j � 5. Right: j�100.�/j for �j D �

100
.2j � 1/ and mj D

1
50

,
where 1� j � 50.

Figure 2, the peak at � D 0 is larger than the peak at � D � . Additionally, the peak
at � D 0 in the latter case is higher than in the former, as predicted by Theorem 4.1.

To explain some of these features, first note that with the above choice of
placement of the masses, Rahmanov’s formula (1-4) [1979] reduces to

Re.�n.e
i� //

D .1Ccos.n�//
�

1C
1

2

n
2X

jD1

mj

1Cnmj

�
�1�1

2
sin.n�/

n=2X
jD1

mj

1Cnmj

sin.���j /
1�cos.���j /

;

Im.�n.e
i� //

D sin.n�/
�

1C
1

2

n=2X
jD1

mj

1Cnmj

�
C

1
2
.1Ccos.n�//

n=2X
jD1

mj

1Cnmj

sin.���j /
1�cos.���j /

:

4 3 2 1 0 1 2 3 4
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

4 3 2 1 0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

Figure 2. Left: j�10.�/j for �j D �
10
.2j � 1/ and mj chosen

optimally, where 1� j � 5. Right: j�100.�/j for �j D �
100
.2j �1/

and mj chosen optimally, where 1� j � 50.
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Analysis of the minima. Due to its prominent role in each term, let us evaluate
both the real and imaginary parts at the extrema of 1C cos.n�/, that is, � D �k D

.�=n/.2k�1/ and �D��
k
D2�k=n. For �D�k , sin.n�k/ and 1Ccos.n�k/ are each

zero. However, we must be careful, because for 1� k � n=2, one of the terms in the
sum will have a denominator of zero. Thus, using L’Hôpital’s rule, we take the limits

lim
�!�k

sin.n�/ sin.� � �k/

1� cos.� � �k/
D�2n;

lim
�!�k

.1C cos.n�// sin.� � �k/

1� cos.� � �k/
D 0:

Substituting these values into our formulae, we then have that

j�n.e
i�k /j D

(
1� nmk=.1C nmk/ if 1� k � n=2;

1 otherwise:

Thus, the minima will be lower in the region where the masses are placed than
outside that region. Also, we can now see the reason for the minima increasing
as � increases in the cases where the choice of mj is optimal, as in Figure 2.

Analysis of peaks at � D 0; �. Now, let us examine the values of the polynomials
at � D ��

k
. In this case, sin.n��

k
/ is still zero, but 1C cos.n��

k
/ is instead 2, so we

need not worry about zero denominators. Immediately, we have that our previous
formulae reduce to

Re
�
�n.e

i��
k /
�
D 1C

n=2X
jD1

mj

1C nmj
;

Im
�
�n.e

i��
k /
�
D

n=2X
jD1

mj

1C nmj

sin.��
k
� �j /

1� cos.��
k
� �j /

:

(A-1)

The real part is constant in ��
k

and can be ignored. For k D 0, we have precisely
the sum that was analyzed in Section 4. For k D n=2, we obtain the sum

Im
�
�n.e

i��
n=2/

�
D

n=2X
jD1

mj

1C nmj

sin.� � �j /
1� cos.� � �j /

D

n=2X
jD1

mj

1C nmj

sin �j
1C cos �j

:

It can easily be seen that, if mj is constant, this sum will be identical to the sum
for k D 0, and so the result will be two peaks of equal amplitude as we observed
before in Figure 1. If mj decreases proportionally to 1=

p
j , however, this sum
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will be very different from the sum for k D 0, since the largest terms of the sum
will now be those �j close to � rather than zero. The mj with corresponding �j
close to � will all be of the order 1=n, and so we would expect that the value of the
polynomial here will behave something more similarly to the peaks of the uniform
mass case than to those of the optimal m case.

Analysis of peaks away from � D 0; �. However, we have not yet explained why
the peaks away from � D 0 and � D � are all smaller, so now we consider the case
where � D ��

k
for 0< k < n=2. First, note that

��k � �j D
�

n
.2.k � j /C 1/;

and consider the terms in the sum (A-1), where j D k and j D kC 1. These terms
will be

mk

1C nmk

sin �
n

1� cos �
n

and

�
mkC1

1C nmkC1

sin �
n

1� cos �
n

:

In the case that all the masses have equal weight, these terms will cancel out
completely, and, even in the case of the optimal choice of mj , they still mostly
cancel out since the difference of mkC1 and mk will be small. In general, for the
j D k � l and j D kC l C 1 terms, as long as k � l � 1 and kC l C 1� n=2 are
satisfied, similar cancellations will occur. Thus, the values at these peaks will be
less than those at � D 0 and � D � .
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A type of multiple integral
with log-gamma function

Duokui Yan, Rongchang Liu and Geng-zhe Chang
(Communicated by Kenneth S. Berenhaut)

In this paper, we give a general formula for the multiple integral

I D

Z 1

0

Z 1

0

: : :

Z 1

0

f .x1Cx2C � � �Cxn/ dx1 dx2 : : : dxn:

As an application, the integral I with f .x/D log�.x/ is evaluated for all n 2 N.
The subsidiary computational challenges are interesting in their own right.

1. Introduction

A general idea, when faced with a multiple integral, is to lower its dimension. A
well-known example, (see [Chang and Shi 2003], for instance) is the n-dimensional
integral Z

� � �

Z
x1Cx2C���Cxn�1

x1;x2;:::;xn�0

f .x1Cx2C � � �Cxn/ dx1 dx2 : : : dxn; (1-1)

which can be simplified to a one-dimensional integral

1

.n� 1/!

Z 1

0

tn�1f .t/ dt:

However, to the best of our knowledge, a similar integral,

I D

Z 1

0

Z 1

0

: : :

Z 1

0

f .x1Cx2C � � �Cxn/ dx1 dx2 : : : dxn; (1-2)

has no such formula.
The aim of this paper is to find a formula for the above integral I and apply it to

the special case when f .x/D log�.x/. The main results are as follows. A general
formula of I is obtained in Theorem 4.1.
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Keywords: multiple integral, log-gamma function.
The research of Duokui Yan is supported in part by NSFC (No. 11101221).

593

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2015.8-4
http://dx.doi.org/10.2140/involve.2015.8.593


594 DUOKUI YAN, RONGCHANG LIU AND GENG-ZHE CHANG

Theorem 4.1. The integral I satisfies

I D

Z 1

0

Z 1

0

: : :

Z 1

0

f .x1Cx2C � � �Cxn/ dx1 dx2 : : : dxn

D
1

.n� 1/!

nX
mD1

Z 1

0

Gm.t/f .t Cm� 1/ dt; (1-3)

where

Gm.t/D

mX
iD1

.�1/i�1.t Cm� i/n�1
� n

i�1

�
:

When f .x/ D log�.x/, the value of I is given in Theorem 5.1. The main
challenge of the proof is to find appropriate combinatorial identities to simplify I .

Theorem 5.1.

I D I.n/D

Z 1

0

Z 1

0

: : :

Z 1

0

log�.x1Cx2C � � �Cxn/ dx1 dx2 : : : dxn

D
1
2

log.2�/�
n� 1

2
HnC

n�1X
kD2

.�1/nCkC1kn

n!

�n�1

k

�
log k;

where the last sum is missing when nD 2 and Hn D
Pn

kD1 1=k.

The paper is organized as follows. In Sections 2 and 3, we explain the main
ideas by using the cases nD 2 and 3. One can see from Figures 1 and 2 how we cut
the square and the cube so that the integral I over each subset becomes a simple
one-dimensional integral. In Section 4, a formula of I is derived in Theorem 4.1,
and in Section 5, we evaluate I when f .x/D log�.x/.

2. The case n D 2

When n D 2, the integral I becomes
R 1

0

R 1
0 f .x C y/ dx dy, where the integral

domain is a unit square. Let t D xCy. The unit square can then be divided into
two domains, D1 and D2 as in Figure 1, where

D1 D f.x;y/ W 0� xCy � 1; 0� x � 1; 0� y � 1g;

D2 D f.x;y/ W 1� xCy � 2; 0� x � 1; 0� y � 1g:

The following lemma shows that t1
0

R 1
0 f .xCy/ dx dy is the sum of two one-

dimensional integrals.
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1

b

b b

1 x

y

D1

D2

Figure 1. Domains D1 and D2.

Lemma 2.1.Z 1

0

Z 1

0

f .xCy/ dx dy D

“
D1

f .xCy/ dx dyC

“
D2

f .xCy/ dx dy

D

Z 1

0

tf .t/ dt C

Z 1

0

.1� t/f .t C 1/ dt: (2-1)

Proof. It is clear thatZ 1

0

Z 1

0

f .xCy/ dx dy D

“
D1

f .xCy/ dx dyC

“
D2

f .xCy/ dx dy:

We first consider
’

D1
f .x C y/ dx dy. Note that t D x C y, and consider the

transformation .x;y/ 7! .x; t/. It is clear that the Jacobian is 1. Then“
D1

f .xCy/ dx dy D

Z 1

0

Z t

0

f .t/ dx dt D

Z 1

0

tf .t/ dt: (2-2)

For the integral over domain D2, we set x1 D 1 � x and y1 D 1 � y. Then
.x1;y1/ 2D1 and“

D2

f .xCy/ dx dy D

“
D1

f .2�x1�y1/ dx1 dy1

D

Z 1

0

tf .2� t/ dt: (2-3)

If one sets uD 1� t , it follows that
R 1

0 tf .2� t/ dt D
R 1

0 .1�u/f .uC1/ du. Then“
D2

f .xCy/ dx dy D

Z 1

0

.1�u/f .uC 1/ du: (2-4)

Then, identity (2-1) follows by identities (2-2) and (2-4). �
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3. The case n D 3

When nD 3, the integral domain of I is a unit cube. The main idea is to cut the
unit cube into several simplexes so that we can apply the integral formula (1-1)
over each one.

Let E D f.x;y; z/ W 0� x � 1; 0� y � 1; 0� z � 1g be the unit cube. Set

E1 D f.x;y; z/ W 0� xCyC z � 1; 0� x � 1; 0� y � 1; 0� z � 1g;

E2 D f.x;y; z/ W 1� xCyC z � 2; 0� x � 1; 0� y � 1; 0� z � 1g;

E3 D f.x;y; z/ W 2� xCyC z � 3; 0� x � 1; 0� y � 1; 0� z � 1g:

Then E DE1[E2[E3 and the integral I satisfies

I D

Z 1

0

Z 1

0

Z 1

0

f .xCyC z/ dx dy dz

D

Z
E1

f .xCyC z/ dx dy dzC

Z
E2

f .xCyC z/ dx dy dz

C

Z
E3

f .xCyC z/ dx dy dz:

Using formula (1-1), it follows that
R

E1
f .xCyC z/ dx dy dz D 1

2

R 1
0 t2f .t/ dt .

The difficult parts are the integrals over E2 and E3. The following lemma explains
how to simplify these two integrals to one-dimensional integrals.

Lemma 3.1.Z 1

0

Z 1

0

Z 1

0

f .xCyC z/ dx dy dz D

1

2

Z 1

0

t2f .t/ dtC
1

2

Z 1

0

.�2t2
C2tC1/f .tC1/ dtC

1

2

Z 1

0

.1�t/2f .tC2/ dt: (3-1)

Proof. We introduce the transformation .x;y; z/ 7! .x;y; t/. By formula (1-1),Z
E1

f .xCyC z/ dx dy dz D
1

2

Z 1

0

t2f .t/ dt: (3-2)

Note that integral (3-2) can be applied to calculate the integral over E3. Let
x1 D 1�x, y1 D 1�y and z1 D 1� z. The integral over E3 becomesZ

E3

f .xCyC z/ dx dy dz D

Z
E1

f .3�x1�y1� z1/ dx1 dy1 dz1

D
1

2

Z 1

0

t2f .3� t/ dt: (3-3)
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Figure 2. Region E20 and its partition: E2, E21, E22, E23.

If one sets uD 1� t , it implies that 1
2

R 1
0 t2f .3� t/ dt D 1

2

R 1
0 .1�u/2f .2Cu/ du.

Hence, Z
E3

f .xCyC z/ dx dy dz D
1

2

Z 1

0

.1� t/2f .t C 2/ dt: (3-4)

By equalities (3-2) and (3-4), it is sufficient to show thatZ
E2

f .xCyC z/ dx dy dz D
1

2

Z 1

0

.�2t2
C 2t C 1/f .t C 1/ dt: (3-5)

Consider the domain

E20 D f.x;y; z/ W 1� xCyC z � 2; 0� x � 2; 0� y � 2; 0� z � 2g:

Similar to Figure 1, we can cut E20 into 4 different domains, E2, E21, E22

and E23, so that the integral over each domain can be handled easily. A picture of
this partition is shown in Figure 2.

E2 D f.x;y; z/ W 1� xCyC z � 2; 0� x � 1; 0� y � 1; 0� z � 1g;

E21 D f.x;y; z/ W 1� xCyC z � 2; 1� x � 2; 0� y � 1; 0� z � 1g;

E22 D f.x;y; z/ W 1� xCyC z � 2; 0� x � 1; 1� y � 2; 0� z � 1g;

E23 D f.x;y; z/ W 1� xCyC z � 2; 0� x � 1; 0� y � 1; 1� z � 2g;

where E20 DE2[E21[E22[E23.
Again by using formula (1-1), the integral over E20 isZ
E20

f .xCyCz/ dx dy dzD

Z 2

1

1

2
t2f .t/ dt D

1

2

Z 1

0

.tC1/2f .tC1/ dt: (3-6)
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On the other hand, the integral over E20 satisfiesZ
E20

f .xCyC z/ dx dy dz

D

Z
E21

f .xCyC z/ dx dy dzC

Z
E22

f .xCyC z/ dx dy dz

C

Z
E23

f .xCyC z/ dx dy dzC

Z
E2

f .xCyC z/ dx dy dz: (3-7)

By the definitions of E21, E22 and E23, it is clear thatZ
E21

f .xCyCz/dx dy dzD

Z
E22

f .xCyCz/dx dy dzD

Z
E23

f .xCyCz/dx dy dz:

So we only need to consider
R

E21
f .xCyC z/ dx dy dz. Let Qx D x� 1; then by

equality (3-2),Z
E21

f .xCyC z/ dx dy dz D

Z
E1

f . QxCyC zC 1/ d Qx dy dz

D
1

2

Z 1

0

t2f .t C 1/ dt: (3-8)

Therefore, (3-6), (3-7) and (3-8) imply thatZ
E2

f .xCyC z/ dx dy dz

D

Z
E20

f .xCyC z/ dx dy dz� 3

Z
E21

f .xCyC z/ dx dy dz

D
1

2

Z 1

0

.t C 1/2f .t C 1/ dt �
3

2

Z 1

0

t2f .t C 1/ dt

D
1

2

Z 1

0

.�2t2
C 2t C 1/f .t C 1/ dt;

which shows equality (3-5). �

4. The general case

In this section, we give a general formula for

I D

Z 1

0

Z 1

0

: : :

Z 1

0

f .x1Cx2C � � �Cxn/ dx1 dx2 : : : dxn

in Theorem 4.1. In order to prove it, we first find a recursive formula for I

in Theorem 4.3. The proof of Theorem 4.1 then follows by Theorem 4.4 and
Theorem 4.3.
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Theorem 4.1. The integral I satisfies

I D

Z 1

0

Z 1

0

: : :

Z 1

0

f .x1Cx2C � � �Cxn/ dx1 dx2 : : : dxn

D
1

.n� 1/!

nX
mD1

Z 1

0

Gm.t/f .t Cm� 1/ dt; (4-1)

where

Gm.t/D

mX
iD1

.�1/i�1.t Cm� i/n�1
� n

i�1

�
:

The idea is to divide the n-dimensional unit box into n different polyhedrons
and the integral I over each polyhedron can be simplified to a one-dimensional
integral by applying the ideas in the 2D or 3D cases. The n different polyhedrons
are defined as follows:

K1 D f.x1;x2; : : : ;xn/ W 0� x1Cx2C � � �Cxn � 1;

0� x1 � 1; 0� x2 � 1; : : : ; 0� xn � 1g;

K2 D f.x1;x2; : : : ;xn/ W 1� x1Cx2C � � �Cxn � 2;

0� x1 � 1; 0� x2 � 1; : : : ; 0� xn � 1g;

:::

Kn D f.x1;x2; : : : ;xn/ W n� 1� x1Cx2C � � �Cxn � n;

0� x1 � 1; 0� x2 � 1; : : : ; 0� xn � 1g:

By formula (1-1), the integral over K1 satisfies the following proposition.

Proposition 4.2.Z
K1

f .x1Cx2C � � �Cxn/ dx1 dx2 : : : dxn D
1

.n� 1/!

Z 1

0

tn�1f .t/ dt:

Let

Im D

Z
Km

f .x1Cx2C � � �Cxn/ dx1 dx2 : : : dxn; mD 1; 2; : : : ; n:

It is obvious that I D
Pn

mD1 Im. Then the integral I reduces to the calculation of
each Im .1�m� n/. Define

Js;m D

Z
Ks

f .x1C � � �CxnCm� s/ dx1 dx2 : : : dxn; (4-2)

where s is an integer and 1� s �m. Note that Jm;m D Im. For any 1� s �m�1,
Js;m can be calculated by Is . The following theorem shows that Im satisfies a
recursive formula.
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Theorem 4.3.

Im D
1

.n� 1/!

Z 1

0

.t Cm� 1/n�1f .t Cm� 1/ dt

� a1J1;m� a2J2;m� � � � � am�1Jm�1;m; (4-3)

where

ai D

�mCn�i�1

n�1

�
; i D 1; 2; : : : ;m� 1:

Proof. We consider the region

Km0 D f.x1;x2; : : : ;xn/ W m� 1� x1Cx2C � � �Cxn �m;

0� x1 �m; 0� x2 �m; : : : ; 0� xn �mg:

By Proposition 4.2,Z
Km0

f .x1Cx2C � � �Cxn/ dx1 dx2 : : : dxn

D
1

.n� 1/!

Z m

m�1

tn�1f .t/ dt

D
1

.n� 1/!

Z 1

0

.t Cm� 1/n�1f .t Cm� 1/ dt: (4-4)

We define the subset Ki1i2:::in
�Km0 as follows:

Ki1i2:::in
D f.x1;x2; : : : ;xn/ W m� 1� x1Cx2C � � �Cxn �m;

i1� 1� x1 � i1; i2� 1� x2 � i2; : : : ; in� 1� xn � ing;

where i1; i2; : : : ; in2 Œ1;m� are positive integers. It is easily seen that the intersection
of any two subsets Ki1i2:::in

only happens on their boundaries. We then classify all
possible Ki1i2:::in

so that the integral over each one can be evaluated easily. Note
that by definition, K1;1;:::;1DKm. To find the integral over Km, we need to subtract
the integrals over all the other nonempty subsets Ki1i2:::in

.i1; i2; : : : ; in 2 Œ1;m�)
from

R
Km0

f .x1Cx2C � � �Cxn/ dx1 dx2 : : : dxn.
The first step is to determine when Ki1i2:::in

.i1; i2; : : : ; in 2 Œ1;m�) is nonempty.
For any set Ki1i2:::in

, let

Qx1 D x1� .i1� 1/; Qx2 D x2� .i2� 1/; : : : ; Qxn D xn� .in� 1/: (4-5)

Then Ki1i2:::in
becomes

zKi1i2:::in
D f. Qx1; Qx2; : : : ; Qxn/ WmCn�˛�1� Qx1C Qx2C� � �C Qxn �mCn�˛;

0� Qx1 � 1; 0� Qx2 � 1; : : : ; 0� Qxn � 1g:
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where ˛ D i1 C i2 C � � � C in. Let s D mC n � ˛. It is clear that Ki1i2:::in
Š

zKi1i2:::in
D Ks . Since mC n � s D

Pn
jD1 ij � n, it follows that s � m. Note

that if s Dm, by equality (4-2), Jm;m D Im. If s D 0, Ki1i2:::in
Š zKi1i2:::in

D f0g,
and if s < 0, Ki1i2:::in

Š zKi1i2:::in
D ¿. So we only need to consider the case

1� s �m� 1. For any given s 2 Œ1;m� 1�, it follows thatZ
Ki1i2:::in

f .x1Cx2C � � �Cxn/ dx1 dx2 : : : dxn

D

Z
zKi1i2:::in

f . Qx1C � � �C QxnC i1C � � �C in� n/ d Qx1 : : : d Qxn

D

Z
Ks

f .x1C � � �CxnCm� s/ dx1 : : : dxn

D Js;m: (4-6)

It implies that the subsets Ki1i2:::in
(i1; i2; : : : ; in 2 Œ1;m�; i1C i2C � � �C in ¤ n)

with nonzero measure can be classified into m� 1 classes. In each class, every
element is identical to some subset Ks after a shifting transformation in (4-5):
.x1;x2; : : : ;xn/ 7! . Qx1; Qx2; : : : ; Qxn/.

Next step is to fix m and s (1� s �m� 1), and find out how many subsets are
identical to Ks . Since s DmC n� .i1C i2C � � �C in/, we have

mCn� s D i1C i2C� � �C in; where i1; i2; : : : ; in are positive integers: (4-7)

The number of positive integer solutions .i1; i2; : : : ; in/ for (4-7) is
�
mCn�s�1

n�1

�
. It

follows that the total number of subsets identical to Ks (s 2 Œ1;m� 1�) is

as D

�mCn�s�1

n�1

�
: (4-8)

Therefore, by equalities (4-4), (4-6) and (4-8), Im satisfies

Im D

Z
Km

f .x1Cx2C � � �Cxn/ dx1 dx2 : : : dxn

D
1

.n� 1/!

Z 1

0

.t Cm� 1/n�1f .t Cm� 1/ dt

� a1J1;m� a2J2;m� � � � � am�1Jm�1;m; (4-9)

where as (s D 1; : : : ;m� 1) is defined by (4-8). �

By using the cases nD 2 and 3, we can show by induction that

Im D
1

.n� 1/!

Z 1

0

Gm.t/f .t Cm� 1/ dt; (4-10)
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where Gm.t/ is a polynomial. It follows that

Js;m D

Z
Ks

f .x1C � � �CxnCm� s/ dx1 : : : dxn

D
1

.n� 1/!

Z 1

0

Gs.t/f .t Cm� 1/ dt; (4-11)

where s is an integer and 1� s �m. The integral I satisfies

I D

Z 1

0

Z 1

0

: : :

Z 1

0

f .x1Cx2C � � �Cxn/ dx1 dx2 : : : dxn D

nX
mD1

Im: (4-12)

In order to find a formula for I , we only need to compute the polynomial Gm.t/ in
equality (4-10) for all 1�m� n. For mD 1; 2 and 3, a direct calculation shows that

G1.t/D tn�1;

G2.t/D .t C 1/n�1
�

�n

1

�
tn�1:

(4-13)

By Theorem 4.3 and equality (4-11),

G3.t/D .t C 2/n�1
�

�nC1

n�1

�
G1.t/�

� n

n�1

�
G2.t/

D .t C 2/n�1
�

�n

1

�
.t C 1/n�1

C

�n

2

�
tn�1:

Similarly,

G4.t/D .t C 3/n�1
�

�n

1

�
.t C 2/n�1

C

�n

2

�
.t C 1/n�1

�

�n

3

�
tn�1:

It is reasonable to believe that Gm.t/ follows a pattern. The following theorem
actually proves this fact.

Theorem 4.4. Gm.t/D

mX
iD1

.�1/i�1.t Cm� i/n�1
� n

i�1

�
: .4-14/

Proof. The proof is based on the recursive formula (4-3) in Theorem 4.3 and the
identity (4-11). By formula (4-3),

Im D
1

.n� 1/!

Z 1

0

.t Cm� 1/n�1f .t Cm� 1/ dt �

m�1X
iD1

aiJi;m

D
1

.n� 1/!

Z 1

0

Gm.t/f .t Cm� 1/ dt;
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where

Gm.t/D .t Cm� 1/n�1
�

m�1X
iD1

aiGi.t/; and ai D

�mCn�i�1

n�1

�
: (4-15)

We show this theorem by induction. It is clear that formula (4-14) of Gm.t/ holds
for m D 1. Assume that it holds for any 1 � m � k. We need to show that
formula (4-14) also holds for mD kC 1.

By (4-15) and the induction assumption, the polynomial GkC1.t/ satisfies

GkC1.t/D .t C k/n�1
C

kX
iD1

�kC1Cn�i�1

n�1

� iX
jD1

.�1/j .t C i � j /n�1
� n

j�1

�
:

(4-16)
By formula (4-14), we can consider each Gm.t/ (1�m � k) as a polynomial of
.t Cm� j /n�1 (j D 1; 2; : : : ;m) with coefficient .�1/j�1

�
n

j�1

�
. Then identity

(4-16) implies that the coefficient of .t Cp/n�1 in GkC1.t/ is

Lp.GkC1.t//D

kX
iDpC1

�kC1Cn�i�1

n�1

�
.�1/i�p

� n

i�p�1

�
; (4-17)

where p 2 Œ0; k � 1� is an integer. Similarly, Gk.t/ satisfies

Gk.t/D .t C k � 1/n�1
C

k�1X
iD1

�kCn�i�1

n�1

� iX
jD1

.�1/j .t C i � j /n�1
� n

j�1

�
;

and the coefficient of .t Cp/n�1 (p 2 Œ0; k � 2�) in Gk.t/ is

k�1X
iDpC1

�kCn�i�1

n�1

�
.�1/i�p

� n

i�p�1

�
: (4-18)

Note that Gk.t/D
Pk

iD1.�1/i�1.t C k � i/n�1
�

n
i�1

�
. It follows that

k�1X
iDpC1

�kCn�i�1

n�1

�
.�1/i�p

� n

i�p�1

�
D .�1/k�p�1

� n

k�p�1

�
: (4-19)
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If p ¤ 0, let q D p� 1. By identity (4-19), the coefficient of .t Cp/n�1 in (4-17)
satisfies

Lp.GkC1.t//D

kX
iDpC1

�kC1Cn�i�1

n�1

�
.�1/i�p

� n

i�p�1

�

D

kX
iDqC2

�kC1Cn�i�1

n�1

�
.�1/i�q�1

� n

i�q�2

�

D

k�1X
iDqC1

�kCn�i�1

n�1

�
.�1/i�q

� n

i�q�1

�
D .�1/k�q�1

� n

k�q�1

�
D .�1/k�p

� n

k�p

�
: (4-20)

Identity (4-20) holds for all integers p 2 Œ1; k � 1�. It remains to consider the case
when p D 0.

If p D 0, by (4-17), the coefficient of tn�1 in GkC1.t/ is

L0.GkC1.t//D

kX
iD1

�kC1Cn�i�1

n�1

�
.�1/i

� n

i�1

�
: (4-21)

Next, we show that L0.GkC1.t//D .�1/k
�

n
k

�
. Note that by the binomial theorem,

the coefficient of the term xkC1 in .1Cx/�n.1Cx/n is

kX
iD0

.�1/i
�nCi�1

i

�� n

k�i

�

D

kX
iD0

.�1/i
�nCi�1

n�1

�� n

k�i

�

D

kC1X
jD1

�kC1Cn�j�1

n�1

�
.�1/kC1�j

� n

j�1

�
.j D kC 1� i/

D .�1/kC1
�
L0.GkC1.t//C .�1/kC1

�n

k

��
: (4-22)

On the other hand, for a nonnegative integer k, the coefficient of the term xkC1 in
.1Cx/�n.1Cx/n D 1 is always 0. Hence, (4-22) implies that

L0.GkC1.t//D .�1/k
�n

k

�
: (4-23)
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Therefore, by identities (4-20) and (4-23), it follows that

GkC1.t/D .t C k/n�1
C

k�1X
pD0

.�1/k�p
� n

k�p

�
.t Cp/n�1

D

kC1X
iD1

.�1/i�1.t C kC 1� i/n�1
� n

i�1

�
: (4-24)

This concludes the proof. �

5. Application to log-gamma function

In this section, we consider the integral of log-gamma function

I D

Z 1

0

Z 1

0

: : :

Z 1

0

log�.x1Cx2C � � �Cxn/ dx1 dx2 : : : dxn: (5-1)

The integral of log-gamma function has its own importance in many parts of
mathematics [Amdeberhan et al. 2011; Choi and Srivastava 2005]. Actually, the
case when nD 2 is a problem proposed by Ovidiu Furdui [2010] in the Problems
and Solutions section of The College Mathematics Journal, and one of its solutions
is proposed by Geng-zhe Chang [2011]. When it comes to general dimension n, it
is quite a challenge to evaluate it.

After the preparation of Theorem 4.1 in Section 4, we can evaluate the inte-
gral (5-1). A nice formula is given in Theorem 5.1.

Theorem 5.1.

I D I.n/D

Z 1

0

Z 1

0

: : :

Z 1

0

log�.x1Cx2C � � �Cxn/ dx1 dx2 : : : dxn

D
1
2

log.2�/�
n� 1

2
HnC

n�1X
kD2

.�1/nCkC1kn

n!

�n�1

k

�
log k; (5-2)

where the last sum is missing when nD 2 and Hn D
Pn

kD1 1=k.

The proof of this theorem is based on Theorem 4.1 and several combinatorial
identities in Jihuai Shi’s book [2009].
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Note that �.tC1/D t�.t/ and Gm.t/D
Pm

iD1.�1/i�1.tCm� i/n�1
�

n
i�1

�
. By

Theorem 4.1, the integral I becomes

I D
1

.n� 1/!

nX
mD1

Z 1

0

Gm.t/ log�.t Cm� 1/ dt

D
1

.n� 1/!

Z 1

0

nX
mD1

Gm.t/ log�.t/ dt

C
1

.n� 1/!

Z 1

0

nX
kD2

nX
mDk

Gm.t/ log.t C k � 2/ dt: (5-3)

Several combinatorial identities are introduced to simplify (5-3).

Lemma 5.2.

nX
mDk

Gm.t/D .n� 1/!�

k�1X
mD1

� n�1

k�m�1

�
.�1/k�m�1.t Cm� 1/n�1;

and when k D 1,
Pn

mD1 Gm.t/D .n� 1/! .

Proof. Note that Gm.t/D
Pm

iD1.�1/i�1.t Cm� i/n�1
�

n
i�1

�
. It follows that

kX
mD1

Gm.t/D

kX
mD1

mX
iD1

.�1/i�1.t Cm� i/n�1
� n

i�1

�

D

kX
mD1

k�mX
iD0

.�1/i
�n

i

�
.t Cm� 1/n�1:

By the combinatorial identity
Pm

iD0.�1/i
�
n
i

�
D .�1/m

�
n�1
m

�
(m< n), we have

kX
mD1

k�mX
iD0

.�1/i
�n

i

�
.t Cm� 1/n�1

D

kX
mD1

� n�1

k�m

�
.�1/k�m.t Cm� 1/n�1:

Hence,

kX
mD1

Gm.t/D

kX
mD1

� n�1

k�m

�
.�1/k�m.t Cm� 1/n�1:
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In the case when kDn, the combinatorial identity
Pn

kD0.�1/k
�

n
k

�
.xCn�k/nDn!

implies
nX

mD1

Gm.t/D

nX
mD1

� n�1

n�m

�
.�1/n�m.t Cm� 1/n�1

D

n�1X
kD0

�n�1

k

�
.�1/k.t C n� 1� k/n�1

D .n� 1/! :

Therefore,

nX
mDk

Gm.t/D

nX
mD1

Gm.t/�

k�1X
mD1

Gm.t/

D .n� 1/!�

k�1X
mD1

� n�1

k�m�1

�
.�1/k�m�1.t Cm� 1/n�1: �

Let

TkD

kX
mD1

� n�1

k�m

�
.�1/k�m.tCm�1/n�1

D

k�1X
mD0

�n�1

m

�
.�1/m.tCk�m�1/n�1:

Then
nX

mDk

Gm.t/D .n� 1/!�Tk�1:

By applying Lemma 5.2, (5-3) becomes

I D

Z 1

0

log�.t/ dtC

Z 1

0

n�2X
kD0

log.tCk/ dt�
1

.n�1/!

Z 1

0

n�1X
kD1

Tk log.tCk�1/ dt

D
1
2

log.2�/C.n�1/ log.n�1/�nC1�
1

.n�1/!

Z 1

0

n�1X
kD1

Tk log.tCk�1/ dt:

(5-4)
Then, the calculation of I reduces to the calculation of

Z 1

0

n�1X
kD1

Tk log.t C k � 1/ dt:



608 DUOKUI YAN, RONGCHANG LIU AND GENG-ZHE CHANG

Note that T1 D tn�1 andZ 1

0

Tk log.t C k � 1/ dt

D

k�1X
mD0

�n�1

m

�
.�1/m

Z 1

0

.t C k �m� 1/n�1 log.t C k � 1/ dt:

When k > 1,Z 1

0

.t C k �m� 1/n�1 log.t C k � 1/ dt

D
.k �m/n log k � .k �m� 1/n log.k � 1/

n
�

Z 1

0

.t C k �m� 1/n

n.t C k � 1/
dt

D
.k �m/n� .�m/n

n
log k �

.k �m� 1/n� .�m/n

n

�
1

n

nX
rD1

kr � .k � 1/r

r

�n

r

�
.�m/n�r :

Let S1.1/D 0,

S1.k/D

k�1X
mD0

�n�1

m

�
.�1/m

�
.k �m/n� .�m/n

n
log k�

.k �m� 1/n� .�m/n

n
log.k�1/

�
;

and

S2.k/D
1

n

k�1X
mD0

�n�1

m

�
.�1/m

nX
rD1

kr � .k � 1/r

r

�n

r

�
.�m/n�r :

It follows thatZ 1

0

n�1X
kD1

Tk log.t C k � 1/ dt D

n�1X
kD1

S1.k/�

n�1X
kD1

S2.k/: (5-5)

The next lemma calculates
Pn�1

kD1 S1.k/.

Lemma 5.3.

n�1X
kD1

S1.k/D
1

n

n�2X
kD2

�n�1

k

�
.�1/k.�k/n log kC

log.n� 1/

n

�
n!.n�1/� .n�1/n

�
:
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Proof. Note that S1.1/D 0.

n�1X
kD1

S1.k/

D

n�1X
kD1

k�1X
mD0

�n�1

m

�
.�1/m

�
.k�m/n�.�m/n

n
logk�

.k�m�1/n�.�m/n

n
log.k�1/

�

D
1

n

n�2X
kD2

�n�1

k

�
.�1/k.�k/n logk

C
1

n

n�2X
mD0

�n�1

m

�
.�1/m

�
.n�m�1/n�.�m/n

�
log.n�1/:

Using the combinatorial identity
Pn

kD0

�
n
k

�
.�1/k.x�k/nC1 D .x�n=2/.nC1/! ,

we have

n�2X
mD0

�n�1

m

�
.�1/m.n� 1�m/n D

n�1X
mD0

�n�1

m

�
.�1/m.n� 1�m/n D

n� 1

2
n!;

and

n�2X
mD0

�n�1

m

�
.�1/m.�m/n

D

n�1X
mD0

�n�1

m

�
.�1/m.�m/n� .�1/n�1.1� n/n D .n� 1/n�

n� 1

2
n! :

Hence,

n�1X
kD1

S1.k/D
1

n

n�2X
kD2

�n�1

k

�
.�1/k.�k/n log kC

log.n� 1/

n

�
n!.n�1/� .n�1/n

�
:

�

The following lemma calculates
Pn�1

kD1 S2.k/. Here we only give the result. For
reader’s convenience, the proof of it is given in the Appendix.

Lemma 5.4.
n�1X
kD1

S2.k/D .n� 1/!.n� 1/�
n� 1

2
Hn.n� 1/!;

where Hn D
Pn

kD1 1=k.

Using Lemma 5.3 and Lemma 5.4, we can prove Theorem 5.1 below.
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Proof of Theorem 5.1. Let Hn D
Pn

kD1 1=k. By identity (5-5), Lemma 5.3 and
Lemma 5.4, we have that

Z 1

0

n�1X
kD1

Tk log.t C k � 1/ dt

D

n�1X
kD1

S1.k/�

n�1X
kD1

S2.k/

D
1

n

n�2X
kD2

�n�1

k

�
.�1/k.�k/n log kC

log.n� 1/

n

�
n!.n�1/�.n�1/n

�
� .n� 1/!.n� 1/C

n� 1

2
Hn.n� 1/! : (5-6)

By identities (5-4) and (5-6), it follows that

I D 1
2

log.2�/C.n�1/ log.n�1/�nC1�
1

.n�1/!

Z 1

0

n�1X
kD1

Tk log.tCk�1/ dt

D
1
2

log.2�/�
n�1

2
HnC

1

n!

n�1X
kD2

�n�1

k

�
.�1/kCnC1kn log k: �

When nD 2; 3 and 4, the values of the integral I are

I.2/D�3
4
C

1
2

log.2�/;

I.3/D 1
2

log.2�/C 4
3

log 2� 11
6
;

I.4/D 1
2

log.2�/� 2 log 2C 27
8

log 3� 25
8
:

Appendix.

For reader’s convenience, the proof of Lemma 5.4 is given here.

Lemma 5.4.

n�1X
kD1

S2.k/D .n� 1/!.n� 1/�
n� 1

2
Hn.n� 1/!;

where Hn D
Pn

kD1 1=k.
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Proof. Note that

n�1X
kD1

S2.k/D
1

n

n�1X
kD1

� k�1X
mD0

�n�1

m

�
.�1/m

nX
rD1

kr � .k � 1/r

r

�n

r

�
.�m/n�r

�

D�
1

n

n�2X
kD1

�n�1

k

�
.�1/k.�k/n

nX
rD1

�n

r

�.�1/r

r

C
1

n

n�2X
mD0

�n�1

m

�
.�1/m

nX
rD1

.�m/n�r .n� 1/r

r

�n

r

�
:

Let

R1 D�
1

n

n�2X
kD1

�n�1

k

�
.�1/k.�k/n

nX
rD1

�n

r

�.�1/r

r
(A-1)

and

R2 D
1

n

n�2X
mD0

�n�1

m

�
.�1/m

nX
rD1

.�m/n�r .n� 1/r

r

�n

r

�
: (A-2)

Then
n�1X
kD1

S2.k/DR1CR2: (A-3)

By applying the combinatorial identities

nX
kD0

�n

k

�
.�1/k.x� k/nC1

D

�
x�

n

2

�
.nC 1/! and

nX
kD1

.�1/kC1

k

�n

k

�
DHn;

the sum R1 can be simplified to

R1 D
1

n

n�2X
kD1

�n�1

k

�
.�1/k.�k/n

nX
rD1

�n

r

�.�1/rC1

r

D
Hn

n

�
.n� 1/n�

n� 1

2
n!

�
: (A-4)

To simplify R2, we apply the combinatorial identity

nX
kD1

.�1/kC1

k

�n

k

��
1� .1�x/k

�
D

nX
kD1

xk

k
;
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and it follows that

nX
rD1

.�m/n�r .n�1/r

r

�n

r

�
D�.�m/n

nX
rD1

.�1/rC1

r

�n

r

��
1�

m�nC1

m

�r

D .�m/n
� nX

rD1

1

r

�
m�nC1

m

�r

�

nX
rD1

.�1/rC1

r

�n

r

��

D

nX
rD1

1

r
.m�nC1/r mn�r .�1/n�.�m/nHn:

Recalling the formula of R2 in (A-2), we have

nR2D

n�2X
mD0

�n�1

m

�
.�1/mCn

nX
kD1

1
k
.m�nC1/kmn�k

�Hn

n�2X
mD0

�n�1

m

�
.�1/m.�m/n:

(A-5)
By the combinatorial identity

Pn
kD0

�
n
k

�
.�1/k.x�k/nC1D .x�n=2/.nC1/! , we

see that

n�2X
mD0

�n�1

m

�
.�1/m.�m/n D .n� 1/n�

n� 1

2
n! : (A-6)

We then simplify
Pn�2

mD0

�
n�1
m

�
.�1/mCn

Pn
kD1

1
k
.m� nC 1/kmn�k . Note that

n�2X
mD0

�n�1

m

�
.�1/mCn

nX
kD1

1

k
.m� nC 1/kmn�k

D

nX
kD1

.�1/n

k

� n�2X
mD0

�n�1

m

�
.�1/m

kX
iD0

�k

i

�
mn�kCi.n� 1/k�i.�1/k�i

�
: (A-7)

Let

P .m/D

kX
iD0

�k

i

�
mn�kCi.n� 1/k�i.�1/k�i :
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We apply the combinatorial identity
Pn

kD0.�1/k
�

n
k

�
P.k/D 0 for any polynomial

P.k/ with deg P.k/ < n, and it follows that

n�2X
mD0

�n�1

m

�
.�1/m

kX
iD0

�k

i

�
mn�kCi.n� 1/k�i.�1/k�i

D

n�2X
mD0

�n�1

m

�
.�1/mP .m/

D

n�1X
mD0

�n�1

m

�
.�1/mP .m/� .�1/n�1P .n� 1/

D

n�1X
mD0

�n�1

m

�
.�1/m.�k.n� 1/mn�1

Cmn/: (A-8)

By the combinatorial identity
Pn

kD0.�1/k
�

n
k

�
.xC n� k/n D n! , we have

�k.n� 1/

n�1X
mD0

�n�1

m

�
.�1/mmn�1

D k.n� 1/.�1/n.n� 1/! :

By the combinatorial identity
Pn

kD0

�
n
k

�
.�1/k.x�k/nC1D .x�n=2/.nC1/! , we

see that
n�1X
mD0

�n�1

m

�
.�1/mmn

D .�1/n�1 n� 1

2
n! :

Then equality (A-7) becomes

n�2X
mD0

�n�1

m

�
.�1/mCn

nX
kD1

1

k
.m� nC 1/kmn�k

D

nX
kD1

.�1/n

k

�
k.n� 1/.�1/n.n� 1/!C .�1/n�1 n� 1

2
n!

�
D n!.n� 1/�

n� 1

2
n!Hn; (A-9)

where Hn D
Pn

kD1 1=k.
Hence, by equalities (A-9) and (A-6), nR2 in (A-5) can be simplified to

nR2 D n!.n� 1/� .n� 1/nHn: (A-10)

That is,

R2 D .n� 1/!.n� 1/�
Hn

n
.n� 1/n: (A-11)



614 DUOKUI YAN, RONGCHANG LIU AND GENG-ZHE CHANG

Therefore, by equalities (A-3), (A-4) and (A-11), it follows that

n�1X
kD1

S2.k/DR1CR2

D
Hn

n

�
.n� 1/n�

n� 1

2
n!

�
C .n� 1/!.n� 1/�

Hn

n
.n� 1/n

D .n� 1/!.n� 1/�
n� 1

2
Hn.n� 1/!;

where Hn D
Pn

iD1 1= i . �
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Knight’s tours on boards with odd dimensions
Baoyue Bi, Steve Butler, Stephanie DeGraaf and Elizabeth Doebel

(Communicated by Kenneth S. Berenhaut)

A closed knight’s tour of a board consists of a sequence of knight moves, where
each square is visited exactly once and the sequence begins and ends with the
same square. For boards of size m×n where m and n are odd, a tour is impossible
because there are unequal numbers of white and black squares. By deleting a
square, we can fix this disparity, and we determine which square to remove to
allow for a closed knight’s tour.

1. Introduction

One popular form of recreational mathematics deals with chess problems [Elkies
and Stanley 2003]. While these problems can take many different forms (e.g.,
placing nonattacking queens or solving endgames), one of the most well-known
variations is the knight’s tour. In chess, a knight can move in a very restricted way.
Namely, it must move one unit in one direction and two units in the perpendicular
direction (see Figure 1).

A knight’s tour is a sequence of legal knight moves where each square on the
board is visited once; further, a closed knight’s tour has the additional condition
that it begins and ends with the same square. The problem of determining when a
board has a closed knight’s tour dates back several hundred years (see for example
the work of Euler [1759]), and a full solution using a simple inductive argument
was given by Schwenk.

Theorem 1 [Schwenk 1991]. For m ≤ n, an m× n rectangular board has a closed
knight’s tour unless one of the three following conditions hold:

(1) mn is odd.

(2) m ∈ {1, 2, 4}.

(3) m = 3 and n ∈ {4, 6, 8}.

MSC2010: primary 05C45; secondary 00A09.
Keywords: knight’s tour, expanders, chess boards.
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Figure 1. Legal knight moves.

Variations of this result have been studied including looking at closed knight’s
tours on a torus [Watkins and Hoenigman 1997], cylinders [Watkins 2000], spheres
[Cairns 2002], and other boards [Lam et al. 1999].

When a knight moves on an m×n board, it will alternate between squares which
are white and black. When we add in the requirement that we must start and stop
at the same square this means that we must take an even number of steps in a
closed tour (i.e., to return to our original colored square). However there are mn
steps needed to cover the m × n board, and this establishes the first condition of
Theorem 1. However, by deleting one square it is possible to leave an equal number
of white and black squares on the board opening up the possibility of having a
closed knight’s tour. This leads to the following pair of questions:

Question. Let m, n be odd with m, n≥ 3. Given an m×n board, when is it possible
to delete one square so that the remaining board has a closed knight’s tour? When
it is possible to delete a square, which square(s) can we delete?

An answer to the first question was given by DeMaio and Hippchen [2009] who
showed that it is always possible except for the 3× 5 board. The purpose of this
paper is to give an answer to the second question, namely which squares can be
deleted when it is possible, which we summarize in the theorem below.

For convention, we will label the squares of the board (i, j) as we would a matrix,
i.e., 1≤ i ≤m indicates the row going from top to bottom while 1≤ j ≤ n indicates
the column going from left to right. With this labeling we note that a knight move
will go from (i, j) to (k, `), where i+ j and k+` have different parity. Since there
is one more square with i+ j even than there is with i+ j odd, in order for a knight’s
tour to exist, a necessary condition is that we must delete a square with i + j even.

Theorem 2. Let m, n be odd with 3≤ m ≤ n. Then we can delete the square (i, j)
from the m× n board and have a closed knight’s tour in the remaining board for
the following situations:

(1) For the 3× 3 board, (i, j)= (2, 2).

(2) For the 3× 5 board, there is no single square which can be deleted.

(3) For the 3× 7 board, (i, j) ∈ {(2, 2), (2, 6)}.
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(4) For the 3× 9 board, (i, j) ∈ {(1, 1), (1, 5), (1, 9), (3, 1), (3, 5), (3, 9)}.

(5) For the 3× n board with n ≥ 11, i + j is even and j /∈ {3, 4, n− 3, n− 2}.

(6) For the 5× 5 board, (i, j) ∈ {(1, 1), (1, 5), (5, 1), (5, 5)}.

(7) For m ≥ 5 and n ≥ 7, i + j is even.

The problem of which squares can be deleted from a 3× n board and having
a knight’s tour on the remaining board was independently done by Miller and
Farnsworth [2013]. We include those results here for completeness and also because
the proof of Miller and Farnsworth overlooked the case of removing the (2, 8) square
from the 3× 15 board.

The rest of this paper is organized as follows. In Section 2 we introduce a method
that allows us to expand a closed knight’s tour from a smaller board to a larger
board. In Sections 3, 4, and 5 we handle the cases of 3×(odd), 5×(odd), and finally,
the remaining cases. Lastly, in Section 6, we give some concluding remarks.

In the remainder of the paper we will make extensive use of symmetry, i.e., if we
rotate a board by 90◦ or take a mirror image, we will still have a closed knight’s tour.

2. Gluing on expanders

Our general approach mirrors that which was given in [Schwenk 1991]. Namely, we
will form a large collection of base cases and show how to expand these base cases
to get the remaining results. Our base cases have been relegated to the appendices,
while in this section, we will show how we can expand a board.

Our tool of choice will be m× p expanders which correspond to open knight’s
tours of the m× p board that start at (2, 1) and end at (3, 1). This type of board
can be easily connected to corners (since the moves at corners are forced). The
following shows how to take a closed knight’s tour that uses all or part of a board
(i.e., a sub-board) and extend the board in one direction.

Lemma 3. Given a closed knight’s tour on a sub-board of the m× n board which
visits the square (1, n) and an m× p expander, we can find a closed knight’s tour
on the m× (n+ p) board which, when restricted to the first n columns, covers the
same sub-board as the original m× n board.

Proof. By assumption, our tour visits the (1, n) square. Therefore, we know that one
move on the knight’s tour is from (1, n) to (3, n−1). Deleting this move will result
in an open knight’s tour that starts at (1, n) and ends at (3, n−1). Now sequentially
place the two boards, first placing the m×n board and then the m× p expander. Note
that the expander is now an open tour that starts at (2, n+ 1) and ends at (3, n+ 1).
Finally, we combine these two open tours to form one single closed tour that visits
every square by adding the moves (1, n) to (3, n+ 1) and (3, n− 1) to (2, n+ 1).
By construction this will cover the same sub-board as the original m× n board. �
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Figure 2. An illustration of Lemma 3 for a 3× 4 expander.

start middle end

Figure 3. The three building blocks to form expanders.

An illustration of Lemma 3 which has a 3× 4 expander is shown in Figure 2.
Note by symmetry that we can also use other corners to glue. Since we will only
be deleting one square from the board, we will always have at least one corner on a
side available to use. We note that DeMaio and Hippchen [2009] used a similar
gluing in their approach.

Following Schwenk, we want to be able to add four rows or columns to boards,
which means we want to show that n× 4 expanders exist. Unfortunately, they do
not exist for all n. However, we will show that they exist when n ≥ 7 and is odd.
This will be done by appropriately combining the three pieces shown in Figure 3
(where for convenience we have rotated by 90◦).

Proposition 4. A n× 4 expander exists for odd values n ≥ 7.

Proof. We will use the pieces given above along with induction to show how to do
this. First note that these pieces are designed to overlap in a column, so if we take
the start and end together we get the 7× 4 expander shown in Figure 4.

To finish the proof it suffices to show how we can take an expander and increase
its width by 2; i.e., given that we have n× 4, we can construct (n+ 2)× 4. To do
this we move the end piece over by two spots and in the gap insert a middle. For
example, for n = 9 and n = 11, we now get the expanders shown in Figure 5.

Figure 4. A 4× 7 expander.
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Figure 5. 4× 9 and 4× 11 expanders.

Because of the format of the pieces, as we glue these pieces together, we will
have degree two at each vertex except for the two special vertices coming from
the start piece. To show that this is a valid expander, we only need to make sure
that we have an open knight’s tour (i.e., we visit every square once and we begin
and end in different squares). The key to see why this holds is to note that for the
middle piece we have the relationship shown in Figure 6

This indicates that the relative ordering of the four “tracks” is the same. In
particular, the addition of the middle piece will not effect whether or not we have an
open knight’s tour outside of that piece. But by induction, since we started with an
open knight’s tour, we still have an open knight’s tour, and hence this construction
gives a valid expander. �

3. Closed tours on 3×(odd) boards

In this section we will work through the cases of 3× n for n odd. We will first
look at what happens when n ≤ 9 where there are extra constraints on what can be
deleted, and then we will establish the general case for n ≥ 11.

When n = 3, we note that there is no legal knight move from (2, 2) to another
square. Thus, it cannot be involved in a tour, so it is the only square which can
be deleted. Further, there is a closed knight’s tour with this square deleted (in
Appendix A), establishing the result.

When n = 5, each corner would have a move to (2, 3) and since we only delete
one square, we would have to visit the center square multiple times, which is
impossible for a closed knight’s tour.

When n = 7, if we keep both (2, 2) and (2, 6), then the moves shown in Figure 7
(among others) would be forced to occur. This is impossible to extend to a closed
knight’s tour of the 3× 7 board as we already have a cycle just among these four

a
b
c
d

a
b
c
d

Figure 6. The relationship of the central pieces.
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Figure 7. Forced moves for 3× 7.

vertices. Therefore, we must delete either (2, 2) or (2, 6) (which up to symmetry
are equivalent). Starting with the 3× 3 closed knight’s tour in Appendix A and
gluing on the 3× 4 expander as in Lemma 3 to the left (or right) will give a 3× 7
closed knight’s tour with (2, 6) (or (2, 2)) deleted.

Before moving on to analyze the 3×9 case, we will establish a general restriction
about which square can be deleted.

Lemma 5. It is not possible to construct a closed knight’s tour on a 3× n board, n
odd, with a deleted square in column 3, 4, n− 3, or n− 2.

Proof. By symmetry it suffices to show that we cannot delete a square in columns 3
or 4. Further note that by parity, we only need to show that (1, 3), (3, 3) and (2, 4)

cannot be deleted.
Note that to make a complete tour, each square must have an ingoing and outgoing

move. This restriction forces the moves of several squares including (1, 1), (2, 1)

and (3, 1), as shown in Figure 8 (assuming they have not been deleted).
In particular, since (2, 1) cannot be deleted, both (1, 3) and (3, 3) need to be

present to be able to connect to (2, 1). Thus, we cannot delete a square in column 3.
If we delete (2, 4), then the squares (1, 2) and (3, 2) must connect to (3, 3) and

(1, 3) respectively. This then forces a small cycle (as shown in Figure 8) which we
cannot then extend to a closed knight’s tour. Therefore, we cannot delete (2, 4). �

Applying Lemma 5, we see that for the 3× 9 board, we cannot delete a square
in columns 3, 4, 6, or 7. In Appendix A, we give closed knight’s tours for the cases
when we delete (1, 9) and (1, 5) (which, by symmetry, give tours for when (1, 1),
(3, 1), (3, 9) or (3, 5) are deleted). It remains to show that we cannot delete (2, 2).
This is done by examining forced moves. The process is illustrated in Figure 9.
First we add in all moves which are forced (near the ends). After this is done,
we note that each of the squares (1, 5) and (3, 5) only have two possible moves
available to them, so their moves are also forced. Finally, this leaves (2, 4) with

Figure 8. The forced moves from the left-hand column of a 3× n board.
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Figure 9. Forced moves for the 3× 9 board.

only two available moves and so those moves are also forced. But we are now left
with a closed cycle that does not cover the entire board and so we cannot extend
this to a closed knight’s tour.

We are now ready to establish a general result for larger 3× n boards.

Theorem 6. Suppose we have a 3× n board with n ≥ 11 and odd. Then a closed
knight’s tour is possible on the board after removing the square (i, j) if and only if
i + j is even and j /∈ {3, 4, n− 3, n− 2}.

Proof. By Lemma 5, we cannot delete a square in column 3, 4, n− 3 or n− 2.
It remains to show that the deletion of every other square results in a board

containing a closed knight’s tour. For n = 11, we show in Appendix A closed
knight’s tours with squares (1, 1) and (1, 5) deleted (which by symmetry also gives
(1, 11), (3, 1), (3, 11), (1, 7), (3, 5) and (3, 7)). In addition, we can take the 3× 3
board and using Lemma 3, glue on a 3×4 expander either twice to the left, twice to
the right, or once on each side, giving a closed knight’s tours with squares (2, 10),
(2, 2), or (2, 6), respectively, deleted.

For n= 13, we can use the known solutions for the 3×9 board and use Lemma 3
with the 3× 4 expander to get solutions for the 3× 13 board with a deleted square.
Doing this we get everything except (up to symmetry) boards with squares (1, 7),
(2, 6) or (2, 2) deleted. These boards are given in Appendix A, establishing this case.

Now assume the result holds true for 3× n. Then by taking the collection of
closed knight’s tours and applying Lemma 3 with a 3× 4 expander on the left,
we will get every closed knight’s tour for the 3× (n + 4) board which does not
have a deleted square in column 1, 2, 3, 4, 7, 8, n+ 1, or n+ 2. Similarly, if we
apply Lemma 3 with a 3 × 4 expander on the right, we will get every closed
knight’s tour for the 3× (n + 4) board which does not have a deleted square in
column 3, 4, n−3, n−2, n+1, n+2, n+3, or n+4. The intersection of these sets of
columns will contain the mutually common columns 3, 4, n+1, and n+2. It might
also contain additional term(s) if {7, 8}∩{n−3, n−2} is nonempty. Because n≥ 11
by assumption, this can only occur when n=11 and the common column is 8, giving
that for n ≥ 13, the intersection is {3, 4, n+1, n+2} and {3, 4, 8, 12, 13} if n = 11.

Therefore, we can get all solutions by building off of the base cases, except
for the case when we have a 3× 15 board and we delete the square (2, 8). In
Appendix A we show a closed knight’s tour for such a board, and therefore we can
construct all such boards. �
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Figure 10. Knight’s tour on the 5× 5 board.

4. Closed tours on 5×(odd) boards

In this section we will work through the cases of 5×n. We first handle the exceptional
case of 5× 5 by noting that if we do not delete one of the corner squares and then
we draw in the forced moves, we get the board shown on the left in Figure 10. This
board has a closed cycle, so we will not be able to form a closed knight’s tour.
Therefore, we must delete a corner, and by symmetry, we can delete any corner.
On the right in Figure 10 we have given a closed knight’s tour with (1, 1) deleted.

The remaining cases are handled in the following theorem which makes use of
the 5× 6 expander given in Figure 11.

Theorem 7. Given any 5×n board where n≥ 7 is odd, a closed knight’s tour exists
after deleting (i, j) if and only if i + j is even.

Proof. In Appendix B we have given a knight’s tour for any appropriate deleted
square (up to symmetry) for the 5× 7, 5× 9 and 5× 11 boards.

Now suppose we have a 5× n board with n ≥ 13 and a square (i, j) with i + j
even. Then we show how to form a closed knight’s tour for this board. First we note
that on either the left or the right of the deleted square, there are six full columns in
the board. So we repeatedly pull off sets of six columns from one side or the other of
the deleted square until we have a 5×7, 5×9 or 5×11 board with a deleted square
(which by construction will be at (i ′, j ′) with i ′+ j ′ even). We now take the closed
knight’s tour for this board (which we have already found) and we repeatedly add
back in the sets of six columns that we deleted by use of Lemma 3 and the expander
shown in Figure 11. The end result will be our desired closed knight’s tour. �

Figure 11. A 5× 6 expander.
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The proof we have just given works by showing how to start with a large board
and then showing how to reduce down to a base case which we know is true. An
alternative proof approach would be to start with the base cases and then use the
expanders in all possible ways to construct a collection of boards and then show
that all of the desired boards are in our collection. The latter approach can work
but we have opted for the first approach as it gives a simple constructive approach
to building the boards. Namely take the board, reduce down to a base case which
we know and then reverse the steps to build the desired board. Using the second
approach, it is not obvious a priori which board to build off of or how to build up
to a larger board; this is especially true for the final result in the next section.

5. Closed tours on larger boards

In this section we finish establishing the main result.

Theorem 8. Given an m×n board with m≤n, m≥5 and n≥7 and any square (i, j)
with i+ j even, there is a closed knight’s tour of the m×n board with (i, j) deleted.

Proof. We will make use of the n× 4 expanders from Proposition 4, for odd n ≥ 7,
to mimic the proof of the last theorem. By the previous theorem, we know the
result holds if m = 5, so we can assume that m ≥ 7. Further, in Appendix C we
give (up to symmetry) closed knight’s tours for the 7× 7 board. So we know the
result also holds for m = n = 7.

Now, for any (i, j), there are either four columns to the left or four columns to
the right. We can pull off those four columns and consider the resulting smaller
board. By Lemma 3, it follows that if we have a closed knight’s tour for this smaller
board, we can use the expander to recover a closed knight’s tour of our original
board. (Note that we might possibly interchange the dimensions by rotating after
pulling off these extra columns to maintain that m ≤ n.)

In particular, after finitely many iterations (at most (m + n)/4 since we can
only repeat this at most m/4 times for rows and at most n/4 for columns) we will
have shrunk the board down to either a 5× n or a 7× 7, in which case we have
a solution. We now take this solution and work backwards to recover the desired
original knight’s tour. �

6. Conclusion

In this paper we have determined which squares can be deleted in a board with odd
dimensions to allow the existence of a closed knight’s tour. Reexamining Schwenk’s
result [1991], we note that there are no closed knight’s tours of the 4× n board for
any n. DeMaio and Hippchen [2009] were able to show that there are closed tours
that exist after deleting two squares (as long as n ≥ 3). In light of our discussion
this raises the following natural question:
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Question. For the 4× n board with n ≥ 3, which pairs of squares can be deleted
that result in the existence of a closed knight’s tour on the remaining board?

We note that there is the obvious restriction that there must be one square of
each parity. There is also a more subtle constraint.

Proposition 9. If two squares in the 4× n board are deleted and a closed knight’s
tour exists for the remaining board, then neither square could come from the middle
two rows.

Proof. In the 4×n board, if we have a closed knight’s tour, then any move from the
first or fourth row must go into the middle two rows. By orienting the tour, we can
then create a one-to-one pairing between squares in the first and fourth rows with a
subset of the squares in the middle two rows (i.e., by what square follows after in
the order given by the tour). Therefore, we can not have deleted both squares from
the middle two rows.

Similarly, if we have one square deleted from the middle two rows, then we
deleted one square from the first or fourth rows. Therefore, in the closed knight’s
tour, squares alternate between being in the middle or not. But we also know that
squares alternate between different parities, which would imply that the squares in
the middle two rows are all the same parity. But this is impossible. �

This shows that we must delete our two squares from the first and fourth row. Yet,
when n is small, this is not sufficient. However, computational evidence suggests
the following.

Conjecture. Consider the 4× n board with n ≥ 7. For any pair of squares, with
one of each parity and neither coming from the middle two rows, there is a closed
knight’s tour on the board that avoids only these two squares.

We look forward to seeing the next move in this area.

Appendix A: Base cases for 3×(odd)

The following is the closed knight’s tour of the 3× 3 board:

The following are closed knight’s tours of the 3×9 boards with (1, 9) and (1, 5),
respectively, deleted:
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The following are closed knight’s tours of the 3× 11 boards with (1, 1) and
(1, 5), respectively, deleted:

The following are closed knight’s tours of the 3× 13 boards with (1, 7), (2, 6)

and (2, 2), respectively, deleted:

The following is a closed knight’s tour of the 3× 15 board with (2, 8) deleted:

Appendix B: Base cases for 5×(odd)

The following cover the cases (up to symmetry) for the 5× 7 board:

The following cover the cases (up to symmetry) for the 5× 9 board:
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The following cover the cases (up to symmetry) for the 5× 11 board:

Appendix C: Cases for 7 × 7

The following cover the cases (up to symmetry) for the 7× 7 board:
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Differentiation with respect to parameters of
solutions of nonlocal boundary value problems

for difference equations
Johnny Henderson and Xuewei Jiang

(Communicated by Kenneth S. Berenhaut)

For the n-th order difference equation, 1nu = f (t, u,1u, . . . ,1n−1u, λ), the
solution of the boundary value problem satisfying 1i−1u(t0)= Ai , 1≤ i ≤ n− 1,
and u(t1)−

∑m
j=1 a j u(τ j )= An , where t0, τ1, . . . , τm, t1∈Z, t0< · · ·< t0+n−1<

τ1 < · · ·<τm < t1, and a1, . . . , am, A1, . . . , An ∈R, is differentiated with respect
to the parameter λ.

1. Introduction

With differences defined by 1u(t) = u(t + 1)− u(t) and 1i u(t) = 1(1i−1u(t))
for i > 1, we will be concerned with solutions of the n-th order difference equation,

1nu = f (t, u,1u, . . . ,1n−1u, λ), (1-1)

satisfying Dirichlet conditions

1i−1u(t0)= Ai , 1≤ i ≤ n− 1, (1-2)

and nonlocal boundary conditions

u(t1)−
m∑

j=1

a j u(τ j )= An, (1-3)

where t0, τ1, . . . , τm ∈ Z, t0+n−1< τ1 < · · ·< τm < t1, Ai ∈R, i = 1, . . . , n, and
a j ∈ R, j = 1, . . . ,m.

Let Z,R, and N denote, respectively, the integers, the real numbers and the
natural numbers. Given ∅ 6= S ⊆ R, let SZ := S ∩Z. We assume throughout the
paper that for (1-1):

MSC2010: primary 39A10, 34B08; secondary 34B10.
Keywords: difference equation, boundary value problem, nonlocal, differentiation with respect to

parameters.
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(A) f (t, s1, . . . , sn, λ) : Z×Rn+1
→ R is continuous.

(B) (∂ f/∂si )(t, s1, . . . , sn, λ) : Z×Rn+1
→ R is continuous for i = 1, . . . , n.

(C) (∂ f/∂λ)(t, s1, . . . , sn, λ) : Z×Rn+1
→ R is continuous.

Given a solution u(t) of (1-1), two linear equations playing fundamental roles for
our results are the variational equation along u(t) given by

1nz =
n∑

i=1

∂ f
∂si
(t, u(t), . . . ,1n−1u(t), λ)1i−1z, (1-4)

and the corresponding nonhomogeneous equation along u(t) given by

1nz =
n∑

i=1

∂ f
∂si
(t, u(t), . . . ,1n−1u(t), λ)1i−1z+

∂ f
∂λ
(t, u(t), . . . ,1n−1u(t), λ).

(1-5)
Our primary motivation arises from results by Henderson, Horn and Howard

[Henderson et al. 1994] dealing with differentiation with respect to parameters for
solutions of difference equations satisfying multipoint boundary conditions. Study
of the relationship between a solution to a differential or difference equation and the
associated variational equation can trace its origin to a result that Hartman [1982]
attributed to Peano concerning differentiation of solutions of a differential equation
with respect to initial conditions. Since then, these results have been extended
and refined in various ways including boundary value problems for differential
equations and difference equations [Datta 1998; Ehme and Henderson 1992; Hen-
derson and Lee 1991; Spencer 1975]. Datta and Henderson [1992] did research
on differentiation of solutions of difference equations with respect to boundary
conditions. Benchohra et al. [2007] extended these results to nonlocal boundary
value problems for second order difference equations. Also, interest in multipoint
and nonlocal boundary value problems has grown significantly [Ashyralyev et al.
2004; Benchohra et al. 2007; Henderson et al. 2008; Lyons 2011]. Hopkins et al.
[2009] proved a theorem about boundary data smoothness for solutions of nonlocal
boundary value problems for second order difference equations. Then, Lyons [2014]
generalized those results to n-th order difference equations.

Lyons [2014] has obtained extensive results for solutions of (1-1)–(1-3) when f
is independent of λ. Our main results concern differentiation of solutions of (1-1)–
(1-3) with respect to the parameter λ. Section 2 is devoted to results for initial value
problems. We state theorems concerning solutions of initial value problems for (1-1)
and their continuity and differentiability properties with respect to initial values and
parameters. Then, in Section 3, we present two uniqueness assumptions and state
theorems concerning continuous dependence with respect to both boundary values
and parameters. Finally, in Section 4, we provide our result dealing with solutions
of (1-1)–(1-3) and their differentiability properties with respect to the parameter λ.
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2. Initial value problems

The n-th order difference equation (1-1) along with the conditions

1i−1v(σ0)= ci , 1≤ i ≤ n, (2-1)

where σ0 ∈ Z, ci ∈ R, 1≤ i ≤ n, is called an initial value problem. For notational
purposes, we let v(t)= v(t, σ0, c1, . . . , cn, λ) denote the solution of the initial value
problem (1-1), (2-1) on [σ0,+∞)Z. Results stated in this section concerning con-
tinuous dependence and differentiability of v with respect to initial conditions and
parameters can be found in [Datta and Henderson 1992; Henderson and Lee 1991].

Theorem 2.1 (continuous dependence with respect to initial values). Assume that
condition (A) is satisfied. Let σ0 ∈ Z, c1, . . . , cn ∈ R, and λ0 ∈ R be given. Then,
for each ε > 0 and k ∈ N, there exists a δ(ε, σ0, k, c1, . . . , cn, λ0) > 0 such that if
|ci − di |< δ, 1≤ i ≤ n, and |λ0− p0|< δ, then

|1i−1v(t, σ0, c1, . . . , cn, λ0)−1
i−1v(t, σ0, d1, . . . , dn, p0)|< ε

on [σ0, k]Z for i = 1, . . . , n.

Theorem 2.2 (discrete Peano). Assume that conditions (A), (B) and (C) are satisfied.
Let σ0 ∈ Z, c1, . . . , cn ∈ R, and let λ ∈ R be given. Then, for each 1≤ j ≤ n, given
r1, . . . , rn ∈ R and λ0 ∈ R,

α j (t) :=
∂v

∂c j
(t, σ0, r1, . . . , rn, λ0), 1≤ i ≤ n,

exists, is the solution of the variational equation (1-4) along v(t, σ0, r1, . . . , rn, λ0)

and satisfies the initial conditions

1i−1α j (σ0)= δi j , 1≤ i ≤ n.

Moreover,

β(t) :=
∂v

∂λ
(t, σ0, r1, . . . , rn, λ0)

exists, is the solution of the nonhomogeneous equation (1-5) along v(t, σ0, r1, . . . ,

rn, λ0), and satisfies the initial conditions

1i−1β(σ0)= 0, 1≤ i ≤ n.

3. Boundary value problems

In order to establish a relation between the work in the last section and boundary
value problems, we need two uniqueness assumptions.
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(D) Given λ ∈R, t0, τ1, . . . , τn, t1 ∈ Z, t0+n−1< τ1 < · · ·< τn < t1, and Ai ∈R,
1 ≤ i ≤ n, if u1(t) and u2(t) are solutions of (1-1)–(1-3), then u1(t) ≡ u2(t)
on [t0,+∞)Z.

(E) For each λ∈R and t0, τ1, . . . , τn, t1 ∈Z, and for each solution u(t) of (1-1), the
only solution ρ(t) of the boundary value problem for the variational equation
(1-4) along u(t) and satisfying

1(i−1)ρ(t0)= 0, 1≤ i ≤ n− 1,

and

ρ(t1)−
m∑

j=1

a jρ(τ j )= 0,

where t0+ n− 1< τ1 < · · ·< τm < t1, is

ρ(t)≡ 0 on [t0,+∞)Z.

Theorem 3.1 (continuous dependence with respect to boundary values and parame-
ters). Assume conditions (A) and (D) are satisfied. Let y(t) be a solution of (1-1)
for some λ ∈ R on [a,+∞)Z. Let t0 < · · · < t0 + n − 1 < τ1 < · · · < τm < t1 in
[a,+∞)Z be given. Then, there exists ε > 0 such that if |1i−1 y(t0)− Ai | < ε,
1 ≤ i ≤ n− 1, and |y(t1)−

∑m
j=1 a j y(τ j )− An| < ε, and if |λ−µ| < ε, then the

boundary value problem for (1-1) with respect to the parameter µ satisfying

1i−1h(t0)= Ai , 1≤ i ≤ n− 1,

and

h(t1)−
m∑

j=1

a j h(τ j )= An

has a unique solution, h(t, t0, t1, τ1, . . . , τm, A1, . . . , An, µ), on [t0,+∞)Z, and
moreover,

h(t, t0, t1, τ1, . . . , τm, A1, . . . , An, µ)→ y(t),

as ε→ 0, on [t0,+∞)Z.

4. Main result

Now, we provide our main result concerning differentiation of solutions of (1-1)–
(1-3) with respect to the parameter λ.

Theorem 4.1. Assume conditions (A)–(E) are satisfied. For t0 < · · ·< t0+n−1<
τ1 < · · · < τm < t1 in Z, let u(t, t0, t1, τ1, . . . , τm, A1, . . . , An, λ) denote the
solution of (1-1)–(1-3) on [t0,+∞)Z. Then, ∂u/∂λ exists on [t0,+∞)Z, and
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w(t) := (∂u/∂λ)(t) is the solution of the nonhomogeneous linear equation (1-5)
along u(t) and satisfies

1i−1w(t0)= 0, 1≤ i ≤ n− 1,

and

w(t1)−
m∑

j=1

a jw(τ j )= 0.

Proof. Let ε > 0 be given. For 0< |h|< ε, we consider the difference quotient

wh(t) :=
1
h
(
u(t, t0, t1, τ1, . . . , τn, A1, . . . , An, λ+ h)

− u(t, t0, t1, τ1, . . . , τn, A1, . . . , An, λ)
)
.

We show that limh→0wh(t) exists on [t0,+∞)Z. For h 6= 0, we first observe that,
for 1≤ i ≤ n− 1,

1i−1wh(t0)=
1
h
(
1i−1u(t0, t0, t1, τ1, . . . , τm, A1, . . . , An, λ+ h)

−1i−1u(t0, t0, t1, τ1, . . . , τm, A1, . . . , An, λ)
)

=
1
h
(Ai − Ai )= 0,

and

wh(t1)−
m∑

j=1

α jwh(τ j )=
1
h
(
u(t1, t0, t1, τ1, . . . , τm, A1, . . . , An, λ+ h)

−

m∑
j=1

a j u(τ j , t0, t1, τ1, . . . , τm, A1, . . . , An, λ+ h)

− u(t1, t0, t1, τ1, . . . , τm, A1, . . . , An, λ)

+

m∑
j=1

a j u(τ j , t0, t1, τ1, . . . , τm, A1, . . . , An, λ)
)

=
1
h
(An − An)= 0.

Next, we set

D :=1n−1u(t0, t0, t1, τ1, . . . , τm, A1, . . . , An, λ)

and

εh := ε0(h)=1n−1u(t0, t0, t1, τ1, . . . , τm, A1, . . . , An, λ+ h)− D.

By Theorem 3.1, εh→ 0 as h→ 0. With v(t, t0, c1, . . . , cn, λ) being our notation
for solutions of initial value problems (1-1), (2-1) corresponding to λ in (1-1), we
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have, by using a telescoping sum,

wh(t)=
1
h
(
v(t, t0, A1, . . . , An−1, D+ε, λ+h)−v(t, t0, A1, . . . , An−1, D, λ)

)
=

1
h
(
v(t, t0, A1, . . . , An−1, D+ε, λ+h)−v(t, t0, A1, . . . , An−1, D, λ+h)

+v(t, t0, A1, . . . , An−1, D, λ+h)−v(t, t0, A1, . . . , An−1, D, λ)
)
.

By Theorem 2.2, αn = ∂v/∂cn and β = ∂v/∂λ both exist. So, by the mean value
theorem,

wh(t)=
1
h
(
αn(t, v(t, t0, A1, . . . , An−1, D+ ε̄, λ+ h))(D+ ε− D)

+β(t, v(t, t0, A1, . . . , An−1, D, λ+ h̄)(λ+ h− λ))
)

=
ε

h
αn(t, v(t, t0, A1, . . . , An−1, D+ ε̄, λ+ h))

+β(t, v(t, t0, A1, . . . , An−1, D, λ+ h̄)),

where

αn(t, v(t, t0, A1, . . . , An−1, D+ε̄, λ+h))=
∂v

∂cn
(t, t0, A1, . . . , An−1, D+ε̄, λ+h),

β(t, v(t, t0, A1, . . . , An−1, D, λ+ h̄))=
∂v

∂λ
(t, t0, A1, An−1, D, λ+ h̄),

ε̄ is between 0 and ε, and h̄ is between 0 and h.
To show that limh→0wh(t) exists, it suffices to show that limh→0 ε/h exists.

We have the n−1 conditions, 1i−1wh(t0)= 0, i = 1, . . . , n− 1, and the condition
wh(t1)−

∑m
j=1 a jwh(τ j )= 0. So, from the last condition,

ε

h
∂v

∂cn
(t1, t0, A1, . . . , An+1, D+ε̄, λ+h)+

∂v

∂λ
(t1, t0, A1, . . . , An−1, D, λ+h̄)

−
ε

h

m∑
j=1

a j
∂v

∂cn
(t1, t0, A1, . . . , An+1, D+ε̄, λ+h)

−

m∑
j=1

a j
∂v

∂λ
(t1, t0, A1, . . . , An−1, D, λ+h̄)= 0.

Hence, we have

ε

h
=

1
Mh,ε̄

(
−β(t1, v(t, t0, A1, . . . , An−1, D, λ+ h̄))

+

m∑
j=1

a jβ(τ j , v(t, t0, A1, . . . , An−1, D, λ+ h̄))
)
,
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where

Mh,ε̄ := αn(t1, v(t, t0, A1, . . . , An−1, D+ ε̄, λ+ h))

−

m∑
j=1

a jαn(τ j , v(t, t0, A1, . . . , An−1, D+ ε̄, λ+ h)).

Now, 1n−1αn(t0, v(t, t0, A1, . . . , An−1, D, λ))= 1, so

αn(t, v(t, t0, A1, . . . , An−1, D, λ) 6≡ 0.

By uniqueness assumption (E),

αn(t1,v(t, t0, A1, . . . , An−1,D,λ))−
m∑

j=1

a jαn(τ j ,v(t, t0, A1, . . . , An−1,D,λ)) 6= 0.

By Theorem 3.1, for h sufficiently small, Mh,ε̄ 6= 0. So, limh→0 ε/h exists, and

lim
h→0

ε

h
= lim

h→0

−1
Mh,ε̄

(
β(t1, v(t, t0, A1, . . . , An−1, D, λ+ h̄))

−

m∑
j=1

a jβ(τ j , v(t, t0, A1, . . . , An−1, D, λ+ h̄))
)
:= J.

Hence, limh→0wh(t) exists, or in particular, (∂u/∂λ)(t)= limh→0wh(t) exists on
[t0,+∞)Z, and

w(t) := lim
h→0

wh(t)

=
∂u
∂λ
(t)

=J ·αn(t, v(t, t0, A1, . . . , An−1, D, λ))+β(t, v(t, t0, A1, . . . , An−1, D, λ))

=J ·αn(t, u(t, t0, t1, τ1, . . . , τm, A1, . . . , An, λ))

+β(t, u(t, t0, t1, τ1, . . . , τm, A1, . . . , An, λ)),

which is a solution of (1-5) along u(t), and from above satisfies the boundary
conditions,

1i−1w(t0)= lim
h→0

1i−1wh(t0)= 0, 1≤ i ≤ n− 1,

and

w(t1)−
m∑

j=1

a jw(τ j )= lim
h→0

(
wh(t1)−

m∑
j=1

a jwh(τ j )
)
= 0. �
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Outer billiards and tilings of the hyperbolic plane
Filiz Dogru, Emily M. Fischer and Cristian Mihai Munteanu

(Communicated by Kenneth S. Berenhaut)

We present new results regarding the periodicity of outer billiards in the hyper-
bolic plane around polygonal tables which are tiles in regular two-piece tilings of
the hyperbolic plane.

1. Introduction

Outer billiards is a simple dynamical system introduced by B. H. Neumann [1959].
J. Moser [1973; 1978] popularized outer billiards as a toy model for planetary motion
as a means of finding possible unbounded orbits. Since then, many mathematicians
have asked and answered questions about outer billiards systems in various geome-
tries. For example, C. Culter proved in 2004 the existence of periodic orbits for
polygonal tables in the Euclidean plane (the proof is presented by S. Tabachnikov
[2007]). R. Schwartz [2007; 2009] answered, in the affirmative, Moser’s question
about the existence of unbounded orbits for certain polygons.

The main motivation for this paper is a result of Vivaldi and Shaidenko [1987]
that in the Euclidean case, outer billiards associated to quasirational polygons
have all orbits bounded; see also [Kołodziej 1989; Gutkin and Simányi 1992].
As a consequence, all orbits about a lattice polygon in the Euclidean plane are
periodic. We continue the work of Dogru and Tabachnikov [2003], who studied the
relationship between one-tile regular tilings of the hyperbolic plane and the outer
billiards system.

For a detailed account of hyperbolic geometry and the hyperbolic plane, we direct
the reader to [Greenberg 1980], and for a survey of outer billiards, see [Tabachnikov
and Dogru 2005; Tabachnikov 2005].

2. Definitions

The outer billiard map associated to a convex polygonal table P in the hyperbolic
plane is defined as follows. For a point x 2 H2 nP , there are two lines that pass

MSC2010: 37E15.
Keywords: hyperbolic billiards, outer billiards, polygonal billiards, symbolic dynamics, tiling,

rotation number, crochet.
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T .x/

x

table

clockwise
continuation

of a side

Figure 1. Outer billiards map in the Klein model.

through x and are tangent to the table P . By convention, we consider the tangent
line for which P is on the left, from the point of view of x. Then we reflect x about
the tangency (support) point to get T .x/ (see Figure 1). The map is well-defined
whenever the tangency point is unique and so we are able to define the map T on
the entire hyperbolic plane except for the clockwise continuations of the sides of P

(see Figure 1) and their preimages under T . An immediate consequence of the
definition is that T is a piecewise isometry.

Likewise, the inverse map T �1 is not defined on the counterclockwise continua-
tions of the sides of P . We define the web associated to P to be the union of all
preimages under T of the clockwise continuation of the sides and of all preimages
under T �1 of the counterclockwise continuation of the sides. For each connected
component of the complement of the web, the restriction of the map T n to that
component is defined by a single isometry of the hyperbolic plane for every n 2 Z.
That means that each connected component of the complement of the web maps as
a whole under the iterations of T .

Another feature of the billiards map T is that it extends continuously to a
continuous circle map t W S1 ! S1 at infinity. The map t is defined using the
same reflecting procedure. In this case, the uniqueness of the support point is not
needed since the distance between our initial point and the support point is infinite
no matter the choice, and hence the map t is well-defined for every point at infinity.
Since t is a circle map, it has a well-defined Poincaré rotation number �.t/, and
we will prove in Section 3 that �.t/ encodes information about the combinatorial
dynamics of the outer billiards.
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3. Outer billiards on tilings

We are studying the hyperbolic outer billiards map associated with a polygonal
table that is part of a two-piece regular tiling of the hyperbolic plane. These tilings
use two polygonal pieces, a regular M -gon and a regular N -gon that meet four
in each vertex (see Figure 2). We describe the combinatorial dynamics for outer
billiards around one of the M -gons. We note that the web associated to such a map
will fall exactly on the grid lines of the tiling. This is because the reflection around
a vertex of the table tile is just a rotation by 180ı around vertices in the tiling. It
follows that each tile maps as a whole under iterations of T .

3.1. Previous results. Previous results describing outer billiards of tiles in the
hyperbolic plane are obtained in [Dogru and Tabachnikov 2003]. In this paper, the
authors have proved that every orbit of the outer billiard map around a right-angled
regular n-gon, for n� 5, is periodic. Any right-angled regular n-gon generates a
tiling of the hyperbolic plane entirely consisting of n-gons. The theorems proven in
the next sections have the same flavor as Theorem 4 in the above mentioned paper.

Define the rank of a tile as the minimum number of sides that one has to cross,
when starting inside the table, to get to the given tile. This means that tiles that
have one common side with the table have rank 1, and tiles that have a common
side with a tile of rank 1 have rank 2, and so on.

Figure 2. Example of .M;N /-tiling for .M;N /D .6; 7/.
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Theorem 1 [Dogru and Tabachnikov 2003]. For a tiling of regular n-gons meeting
in four, n� 5, the dual billiard map T preserves the rank of a tile, and every orbit
of T is periodic. The set of rank k tiles consists of

qk D n
�k

1
��k

2

�1��2

elements, where

�1;2 D
n� 2˙

p
n.n� 4/

2

are the roots of the equation �2� .n� 2/�C 1D 0. The action of T on the set of
rank k tiles is a transitive cyclic permutation i 7! i Cpk , where

pk D
�k�1

1
��k�1

2

�1��2

C
�k

1
��k

2

�1��2

:

The rotation number of the dual billiard map at infinity is given by the formula

�.t/D lim
k!1

pk

qk

D
n�

p
n.n� 4/

2n
:

The proof of this theorem uses geometric arguments for the periodicity of orbits
and recurrence formulas for computing the number of tiles in each rank and the
rotation number of t (see [Dogru and Tabachnikov 2003] for details). The authors
make an important remark that the representation of �1 (and so the rotation number
of the map at infinity) as a continued fraction encodes the dynamics of the tiles
under the billiard map T . We will deduce similar results for two-piece tilings.

3.2. New results. Our results extend Theorem 1 to two-piece regular tilings of the
hyperbolic plane. We will denote a tiling of regular M -gons and regular N -gons
as an .M;N /-tiling, and we will always consider the table to be an M -gon. Such
an .M;N /-tiling exists if 1

M
C

1
N
< 1

2
. As mentioned earlier, these tilings have

four shapes meeting at each vertex, two M -gons and two N -gons.

3.2.1. Triangles and N -gons. Most of the geometric arguments used here are
analogous to those used by Dogru and Tabachnikov. Our counting arguments are
different, although they are also based on recurrence relations.

Let us introduce a more general notation for rank in order to avoid cumbersome
indexing. Observe that the layer of tiles of rank k includes tiles of the same type
(all M -gons or all N -gons) and as rank changes by one, that shape changes. So
triangles always have even rank and N -gons always have odd rank. We will say
that a rank 2k�1 tile is a rank k N -gon and a rank 2k tile is a rank k triangle. The
rest of this section is dedicated to describing the dynamics of the billiard map T in
the .3;N /-tilings through the proof of the following theorem:
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Theorem 2. For a .3;N /-tiling, N � 7, the outer billiard map T preserves the
rank of a tile and every orbit of T is periodic. The set of rank k N -gons consists of

qk D
1

p
N � 6

.ˆ2k�3
1 Cˆ2k�3

2 /Cˆ2k�2
1 Cˆ2k�2

2

elements and the set of rank k triangles consists of

lk D
N � 4
p

N � 6
.ˆ2k�3

1 Cˆ2k�3
2 /C .N � 3/.ˆ2k�2

1 Cˆ2k�2
2 /

elements, where

ˆ1;2 D

p
N � 6˙

p
N � 2

2

are the two roots of the equation

ˆ2
�
p

N � 6ˆ� 1D 0:

The action of T on the set of rank k N -gons is a cyclic permutation i 7! i Cpk ,
where

pk D
qk

3
C

ˆ2k�4
1

�ˆ2k�4
2p

.N � 6/.N � 2/
C
ˆ2k�3

1
�ˆ2k�3

2
p

N � 2
;

and the action of T on the set of rank k triangles is also a cyclic permutation
i 7! i C jk , where

jk D
lk

3
C .N � 4/

ˆ2k�4
1

�ˆ2k�4
2p

.N � 6/.N � 2/
C .N � 3/

ˆ2k�3
1

�ˆ2k�3
2

p
N � 2

:

The rotation number of the outer billiard map at infinity is given by the formula

�.t/D lim
k!1

pk

qk

D lim
k!1

jk

lk
D

1

3
C

1

3.1Cˆ2
1
/
D

1

3
C

1

3
p

N � 2ˆ1

:

Theorem 2 contains many independent results and for reasons of clarity we will
prove them one by one as claims.

Claim 3. Every orbit of T is periodic.

Proof. The proof of this result is written in much detail in [Dogru and Tabachnikov
2003]. We will present here a sketch of it and will refer the reader to the above
work for detailed explanations. The statement of the claim is a consequence of the
following lemma:

Lemma 4. The rank of a tile is preserved under T .

Proof of lemma. The proof is by induction on the rank, based on geometrical observa-
tions. Observe that rank 1 tiles are preserved by T and notice that every rank k tile is
adjacent to a rank k�1 tile, where these two tiles map together under a single appli-
cation of T . These two facts complete the base case and the step of the induction. �
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P2

B0
A0

P1 O2 O1 B

P

A

Tile 2T (Tile 1)

Tile 1
T (Tile 2)

Figure 3. Special case for Lemma 6.

From Lemma 4, since there are finitely many tiles of rank k, every tile must
eventually map back to itself after m iterations, for some natural number m. Hence
the m-th iteration of T maps the entire tile to itself. This implies that T ım (the
composition of T with itself m times) is a rotation by either 2�j=N (for N -gons)
or 2�j=3 (for triangles) around some point inside the tile. Hence T ıN m restricted
to that tile is the identity if the tile is an N -gon and T ı3m restricted to that tile is
the identity if the tile is a triangle. We conclude that every orbit of T is periodic.

�
Claim 5. For every k � 1, T permutes the rank k tiles cyclically.

Proof. This claim is an immediate corollary to the following lemma:

Lemma 6. Any two consecutive rank k tiles are mapped to two consecutive rank k

tiles.

Proof of lemma. We know by Lemma 4 that the rank of two tiles is preserved
under T . If the two consecutive tiles are not separated by a clockwise continuation
of one of the sides of the table then their common point is mapped, together with the
two tiles, through the same vertex. Thus the tiles are mapped to two consecutive tiles.

If the two tiles are separated by such a continuation of one side of the table then
the argument is more involved. A similar argument is presented in [Dogru and
Tabachnikov 2003]. Figure 3 gives a pictorial representation of the situation. The
first tile is reflected in O1, while the second one is reflected in O2. What remains
to prove is that A0=B0 so that the images of the two tiles still touch in one point.
The following sequence of equalities completes the proof:

A0O2DA0O1�O1O2DBO1CAB�O1O2DBO1CO1O2DBO2DB0O2: �

In order to compute the formulas for qk ;pk ; jk ; lk , we first explain why the
tiling we are working with has an intrinsic self-similar geometric structure. We will
refer from now on to this self-similar structure as the crochet pattern. To describe
the crochet pattern, we consider N -gons to be of two types, X -type and Y -type (see
Figure 4). Type X N -gons have two parents in the sense that they touch two N -
gons of the previous rank, while type Y N -gons touch only one parent. The rank 1
N -gons are of neither of the types, having zero parents, so we call them type 0
N -gons. (This is why our counting argument begins with counting rank 2 N -gons.)
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The following claim gives an intuitive explanation of why we call this self-similar
structure of the tiling a crochet pattern.

Claim 7. When passing from the k-th layer of N -gons to the .kC1/-th layer of
N -gons, we apply the replacement rules

X !XY N�6;

Y !XY N�5;

i.e., when incrementing rank of the layer by 1, every X gets replaced by an X

followed by N�6 Y s, and every Y gets replaced by an X followed by N�5 Y s.

Proof. The methods used to prove this claim have been developed by Poincaré, and
we will not dwell on the details here. The reader can find extensive explanation in
The Symmetry of Things [Conway et al. 2008].

Instead, we will illustrate the methods used to prove the claim in the case of
N D7 in order to give the geometrical intuition behind the proof. Figure 4 illustrates
the local and global behavior of a .3; 7/-tiling.

In the local picture, the difference between a type X 7-gon and a type Y 7-gon
is encoded in the different types of degenerate heptagons we associate to them. We
associate to the Y -type heptagon a rectangle with three additional points on the upper
side, while to the X -type heptagon we associate a rectangle with two additional
points on the upper side and one on the lower side since it has two parents. Now by
reducing the triangles in the global picture to points, we notice that the heptagons
must meet three in each vertex. This results in the crochet pattern shown in Figure 4.
This crochet pattern immediately implies the claimed replacement rules. �

X Y Y X Y X Y Y X

Y X Y

Y

Y

X

Y

YY

X

Y

Y

Y
X

Y

0

0

0

X

Y X
Y Y

X

big
cone

small
cone

table

Figure 4. The .3; 7/-tiling.
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We can now use this crochet pattern to start our counting argument in order to
get the exact numbers in Theorem 2.

Claim 8. The formulas for qk ;pk ; jk ; lk hold as stated in Theorem 2.

Proof. Denote the number of X -type and Y -type N -gons of rank k by xk and yk

and use Claim 7 to obtain the system of linear difference equations�
xk

yk

�
D

�
1 1

N � 6 N � 5

��
xk�1

yk�1

�
:

The initial configuration is
�

x2

y2

�
D
�

3
3.N�4/

�
because there must be three rank 2

N -gons with two parents, and the rest of the vertices of the rank 1 N -gons must
serve as an anchor for a different Y -type rank 2 N -gon. Solving this recurrence
gives the general term formula

�
xk

yk

�
D 3

 
1p

N�6
.ˆ2k�3

1
Cˆ2k�3

2
/

ˆ2k�2
1

Cˆ2k�2
2

!
;

where

ˆ1 D

p
N � 2C

p
N � 6

2
and ˆ2 D

�
p

N � 2C
p

N � 6

2
:

From here the formula for qk D xk Cyk follows immediately.
To count the triangles of rank k, we observe that the triangles of rank k are the

next layer after the N -gons of rank k, and each X -type N -gon is replaced by N�4

triangles and each Y -type is replaced by N�3 triangles. Hence the formula for
lk D .N � 4/xk C .N � 3/yk can be computed.

In order to count how many rank k N -gons T jumps, i.e., pk , we need to define
sk as the number of rank k N -gons in a small cone, as can be seen in Figure 4. A
small cone is opposite one of the triangle’s vertices and doesn’t contain any side of
the triangle. In the same way, a big cone (see Figure 4) is opposite one of the sides
of a triangle and contains the table. The number of rank k N -gons in a big cone is
just qk=3� sk because of the 3-fold symmetry of the tiling.

As above, we need to introduce xs
k

and ys
k

, the number of X -type and Y -type
rank k N -gons in a small cone. With this, sk D xs

k
Cys

k
. The billiard map T makes

any tile jump over two small cones and one big cone so in total it will jump

pk D 2sk C

�qk

3
� sk

�
D

qk

3
C sk :

By studying the structure of the small cone, we observe the crochet pattern once
again. One notices that the cone that starts at the last X -type N -gon of the rank k

(k � 2) layer looks exactly the same as the initial small cone. That is why sk is
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equal to the total number of N -gons obtained by starting with an X -type N -gon
and using the replacement rules in Claim 7. We express this as a sum,�

xs
k

ys
k

�
D

k�2X
iD0

�
1 1

N �6 N �5

�i �
1

0

�
;

which, after some computation, becomes

�
xs

k

ys
k

�
D

0BBBB@
1C

ˆ2k�4
1

�ˆ2k�4
2p

.N � 6/.N � 2/

�1C
ˆ2k�3

1
�ˆ2k�3

2
p

N � 2

1CCCCA :
The formula for pk D qk=3Cxs

k
Cys

k
follows immediately, and jk is computed

in the same manner as lk was computed. As we have already said, every X type
N -gon is replaced by N�4 triangles and every Y type N -gon is replaced by N�3

triangles on the next level, and this procedure leaves uncounted only one rank k

triangle in the small cone, so jk D .N � 4/xs
k
C .N � 3/ys

k
C 1. �

Claim 9. The rotation number �.t/ equals

1

3
C

1

3.1Cˆ2
1
/
D

1

3
C

1

3
p

N � 2ˆ1

:

Proof. The k-th layer of N -gons gives a discrete approximation of the circle map
at infinity and so pk=qk is an approximation of �.t/ as k goes to1. By taking the
limit we obtained the desired formula for the rotation number �.t/. �

This last claim completes the proof of all the statements in Theorem 2.

Remark 10. (1) One might expect the formulas in Theorem 2 to also work for
N D 6, i.e., a .3; 6/-tiling of the Euclidean plane. That is not the case even
though the crochet pattern works exactly the same also in the .3; 6/-tiling. The
difference that appears when computing the formulas in the .3; 6/-tiling is that
the matrix of the difference system is not diagonalizable and so its powers
look completely different.

(2) Note that the determinant of all the matrices given by the crochet pattern is 1.
We believe this is true because the crochet pattern replacement can also be re-
versed, i.e., starting with the rank k layer, we can construct the rank k�1 layer.

(3) According to Theorem 2, one can express the eigenvalues ˆ1 and ˆ2D 1=ˆ1

via the rotation number �.t/. Therefore this rotation number determines the
numbers qk ; lk ;pk ; jk , and hence the whole dynamics of the map T .
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3.2.2. General .M;N /-tilings. Next we consider the case of a general .M;N /-
tiling. The theorem and subsequent proof are analogous to those in the .3;N / case in
the previous subsection, but we must consider the cases separately due to a difference
in the counting method. In the previous section, N -gons were classified into types
X and Y , having two parents and one parent, respectively. However, due to the
difference in geometry of triangles versus generic M -gons, the tilings in the M � 4

case never produce N -gons with two parents. In this case, N -gons either have one
parent or no parent, which we denote as types Y and Z. This alternate counting
method will be explained in detail in the proof, but first we state the theorem:

Theorem 11. For an .M;N /-tiling with M;N � 4 and

1

M
C

1

N
<

1

2
;

the outer billiard map T preserves the rank of a tile and every orbit of T is periodic.
The set of rank k N -gons consists of

qk D
M

p
b2� 4

�
.bC 1/.˛2k�2

1 �˛2k�2
2 /� .˛2k�4

1 �˛2k�4
2 /

�
elements, and the set of rank k M -gons consists of

lk D
M.N � 2/
p

b2� 4

�
b.˛2k�2

1 �˛2k�2
2 /� .˛2k�4

1 �˛2k�4
2 /

�
elements, where b D .M � 2/.N � 2/� 2 and

˛1;2 D

p
b� 2˙

p
bC 2

2

are the two roots of the equation ˛2�
p

b� 2˛� 1D 0. The action of T on the set
of rank k N -gons is a cyclic permutation i 7! i Cpk , where

pk D
qk

M
C

M � 2

.b� 2/
p

bC 2

�
.b� 1/.˛2k�3

1 �˛2k�3
2 /� .˛2k�5

1 �˛2k�5
2 /

�
;

and the action of T on the set of rank k M -gons is also a cyclic permutation
i 7! i C jk , where

jk D
lk

M
C

1

.b� 2/
p

bC 2

�
.b2
� 2/.˛2k�3

1 �˛2k�3
2 /� b.˛2k�5

1 �˛2k�5
2 /

�
:

The rotation number of the outer billiard map at infinity is given by the formula

�.t/D
1

M
C

M � 2

M
p

b� 2˛1

.b� 1/˛2
1
� 1

.bC 1/˛2
1
� 1

:

Remark 12. If N DM , the statement of Theorem 11 reduces to that of Theorem 1.
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Figure 5. A .4; 5/-tiling, with rank 1 and rank 2 pentagons labeled
either as type Y (one parent) or as type Z (no parents).

The proof of Theorem 11 also consists of several steps.

Claim 13. Every orbit of T is periodic.

Proof. The proof of this claim is analogous to the proof in the previous section.
Because the rank of each tile is preserved under the billiard map, and because there
are finitely many tiles of a given rank, every tile must map back to itself after some
finite number of iterations m. When the tile maps back to itself, it has rotated by
2�j=M if it is an M -gon or by 2�j=N if it is an N -gon. Then T ımM is the
identity if the tile is an M -gon and T ımN is the identity if the tile is an N -gon. �
Claim 14. For every k � 1, T permutes the rank k tiles cyclically.

Proof. Proof is similar to that for Claim 5. �
Recall that type Y tiles have one parent and type Z tiles have zero parents (see

Figure 5). We now give a crochet pattern for general .M;N /-tilings, M � 4.

Claim 15. The following replacement rules hold for .M;N /-tilings:

Y ! .YZM�3/N�4YZM�4; (1)

Z! .YZM�3/N�3YZM�4: (2)

Proof. In a similar manner to the .3;N / case, we represent type Y and Z tiles
as degenerate polygons, with additional vertices. See Figure 6 for illustrations of
the .4; 5/ case. Type Y tiles are represented as quadrilaterals with N vertices, and
type Z tiles are represented as triangles with N vertices. Because a Y tile has
N�3 sides available to connect with a tile of higher rank, a rank k Y tile produces
N�3 Y tiles of rank kC 1. Then, since tiles must meet M to a vertex, there must
be M�3 Z tiles between every pair of Y tiles, and there must be M�4 type Z
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� � ��� � � �����

Y Y

Z Z Z

Y Y Y

Y Z

Y ! YZY Z! YZYZY

Figure 6. Tiling of pentagons meeting in fours. Can be extended
to a .4; 5/-tiling.

tiles following the last Y . Similarly, a Z tile has N � 2 edges free to connect to a
tile of higher rank, so a rank k Z tile produces N�2 Y tiles of rank kC1, again
with Z tiles appropriately interspersed.

This crochet pattern tiles the hyperbolic plane with M N -gons meeting at every
vertex. From this tiling, we obtain the .M;N /-tiling by considering the points in
the tiling becoming M -gons, as in Figure 7 (compare with [Conway et al. 2008]).
The described crochet pattern translates to the replacement rules given above. �

We can now compute the formulas for the number of M - and N -gons of any
rank, as well as for the cyclic permutation of M - and N -gons of any rank.

Claim 16. The formulas for qk ;pk ; jk ; lk hold as stated in Theorem 11.

Proof. Denoting the number of Y -type and Z-type N -gons of rank k by yk and zk ,

Figure 7. Left: Tiling of the plane by hexagons meeting in fives.
Right: by replacing the vertices in the previous picture with pen-
tagons, we achieve a .5; 6/-tiling. Here two hexagons and two
pentagons meet at each single vertex.
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we obtain the recursion formula�
yk

zk

�
DA

�
yk�1

zk�1

�
; (3)

where the matrix A is obtained from the rules given in (1) and (2), and

AD

�
N � 3 N � 2

.M � 3/.N � 3/� 1 .M � 3/.N � 2/� 1

�
: (4)

As mentioned above, the initial conditions are
�

y1

z1

�
D
�

0
M

�
.

Solving the recurrence, we find the general formula

 
yk

zk

!
D

0BBB@
M.N �2/.˛2k�2

1 �˛2k�2
2 /

p
b2�4

M..M�3/.N �2/�1/.˛2k�2
1
�˛2k�2

2
/CM.˛2k�4

2
�˛2k�4

1
/

p
b2�4

1CCCA ;
where

b D .M � 2/.N � 2/� 2; ˛1 D

p
b� 2C

p
bC 2

2
; ˛2 D

p
b� 2�

p
bC 2

2
:

Then qk D yk C zk , so

qk D
M

p
b2� 4

�
.bC 1/.˛2k�2

1 �˛2k�2
2 /C˛2k�4

2 �˛2k�4
1

�
:

Now that we have counted the N -gons, we count the M -gons of rank k by
noticing a pattern in the tiling. We see that a type Y N -gon of rank k produces
N�3 M -gons of rank k, and a type Z N -gon produces N�2 M -gons. Thus the
number of M -gons of rank k is given by lk D .N �3/ykC.N �2/zk . The formula
for lk given in Theorem 11 follows.

Next we determine pk by counting how many tiles a rank k N -gon jumps
when T is applied. As in the previous section, we define sk as the number of rank
k N -gons in a small cone. We call ys

k
and zs

k
the number of rank k Y s and Zs in

the small cone. Also, as before, applying T to any tile causes the tile to jump over
two small cones and one big cone. In total, the jump is given by pk D sk C qk=M .

We observe that �
ys

k

zs
k

�
D

k�2X
iD0

Ai

�
2

M � 4

�
; (5)

where A is given in (4).
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This becomes

 
ys

k

zs
k

!
D

0BBB@
1�˛2k�2

1

1�˛2
1

C
2

p
b2�4

1�˛2k�2
2

1�˛2
2

.˛2
1
�N C 3/

1
p

b2�4

�
1�˛2k�2

1

1�˛2
1

.B �˛2
2
.M � 4//C

1�˛2k�2
2

1�˛2
2

.�BC˛2
1
.M � 4//

�
1CCCA ;

where B D .M � 3/.b� 2/C .M � 4/. Then, since sk D ys
k
C zs

k
, we have

sk D
M � 2

.b� 2/
p

bC 2

�
.b� 1/.˛2k�3

1 C˛2k�3
2 /C˛2k�5

2 �˛2k�5
1

�
:

This allows us to calculate pk , and we can compute jk by noticing again that every
Y -type N -gon will be replaced by N�3 M -gons and every Z-type .N�2/-gon
will be replaced by N�3 M -gons on the next level. This procedure will leave again
only one M -gon out, so jk D .N � 3/ys

k
C .N � 2/zs

k
C 1. �

Claim 17. The rotation number is given by

�.t/D
1

M
C

M � 2

M
p

b� 2˛1

.b� 1/˛2
1
� 1

.bC 1/˛2
1
� 1

:

Proof. This results from taking the limit of pk=qk as k!1. �
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Sophie Germain primes and involutions of Z�n

Karenna Genzlinger and Keir Lockridge

(Communicated by Kenneth S. Berenhaut)

In the paper “What is special about the divisors of 24?”, Sunil Chebolu proved
an interesting result about the multiplication tables of Zn from several different
number theoretic points of view: all of the 1s in the multiplication table for Zn

are located on the main diagonal if and only if n is a divisor of 24. Put another
way, this theorem characterizes the positive integers n with the property that the
proportion of 1s on the diagonal is precisely 1. The present work is concerned
with finding the positive integers n for which there is a given fixed proportion of
1s on the diagonal. For example, when p is prime, we prove that there exists a
positive integer n such that 1=p of the 1s lie on the diagonal of the multiplication
table for Zn if and only if p is a Sophie Germain prime.
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1. Introduction

Let R be a ring and let R� denote its group of units. Call a unit u in R� a diagonal
unit if the multiplicative order of u is at most 2. Such units are more commonly
referred to as involutions; our motivation for calling them diagonal units is as
follows. The units of R are in one-to-one correspondence with 1s appearing in its
multiplication table, and the diagonal units are in one-to-one correspondence with
the 1s appearing on the diagonal. When the order of R� is finite, we will write
du.R/ for the number of diagonal units and

pdu.R/D
du.R/
jR�j

MSC2010: primary 11A41; secondary 16U60.
Keywords: Sophie Germain primes, group of units, Gauss–Wantzel theorem.
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for the proportion of diagonal units in R�. We will only consider commutative rings,
in which case R� is an abelian group. This means that the units of order at most 2
form a subgroup of R�. Hence, du.R/ divides jR�j by Lagrange’s theorem, so
pdu.R/ is always the reciprocal of an integer. We therefore find it more convenient
to work with the ratio of diagonal units,

rdu.R/D
jR�j

du.R/
D

1

pdu.R/
:

For brevity, we will write du.n/, pdu.n/ and rdu.n/ for the quantities du.Zn/,
pdu.Zn/, and rdu.Zn/.

A ring R is said to satisfy the diagonal property if every unit of R is a diagonal
unit; that is, R satisfies the diagonal property if and only if pdu.R/D rdu.R/D 1.
Chebolu [2012] proved that Zn satisfies the diagonal property if and only if n is a
divisor of 24. This leads naturally to a more general study of the equation

rdu.n/D �; (1)

where � � 1. For which values of � does (1) have a solution? If (1) has a solution,
can we find the entire solution set? We will answer both of these questions in
several cases in Section 4. For example, we will prove the following theorem,
which answers both questions when � is prime.

Theorem 1.1. Let p be a prime. There exists a positive integer n such that the
proportion of diagonal units in Zn is 1=p if and only if p is a Sophie Germain prime.
For a Sophie Germain prime p, the set of solutions to rdu.n/D p is

.2pC 1/ � fdivisors of 24g if p > 3;

.2pC 1/ � fdivisors of 24g[ p2
� fdivisors of 8g if p D 3;

.2pC 1/ � fdivisors of 24g[ p4
� fdivisors of 3g if p D 2:

A Sophie Germain prime is a prime p such that 2pC1 is also prime, in which case
2pC 1 is called a safe prime. Such primes arose in Marie-Sophie Germain’s con-
siderable work on Fermat’s last theorem (see [Laubenbacher and Pengelley 1999]).

The remainder of this paper is organized as follows. Section 2 includes back-
ground information and a formula for the ratio of diagonal units. We then prove
in Section 3 that the equation rdu.n/D � has a solution if and only if � admits a
special type of factorization, and we provide a principle for organizing solutions to
this equation given a list of these factorizations. Section 4 is devoted to examples,
including proofs of Chebolu’s 24 theorem and Theorem 1.1. We also explore a
surprising connection between the proportion of diagonal units and the Gauss–
Wantzel theorem on the constructibility of regular polygons (Theorem 4.2). In the
last section, we consider a generalization of the current situation and examine 1s
on the diagonal of the multiplication cube for Zn.
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2. The ratio of diagonal units

A common concept in number theory is the notion of a multiplicative function. A
function f W ZC! ZC is multiplicative if f .st/D f .s/f .t/ whenever s and t are
relatively prime. Euler’s totient function is an example of a multiplicative function
par excellence (see [Burton 1989, §7]); it counts the positive integers k � n that
are relatively prime to n. The relevant properties of �.n/ are summarized in the
next theorem.

Theorem 2.1 (Euler’s totient function). Let �.n/ denote the number of positive
integers less than n and relatively prime to n.

(A) The order of Z�n is precisely �.n/.

(B) The function �.n/ is multiplicative.

(C) For any prime p and positive integer k, we have �.pk/D pk�1.p� 1/.

We now prove that the functions defined in Section 1 are multiplicative.

Proposition 2.2. The functions du.n/, pdu.n/, and rdu.n/ are multiplicative.

Proof. Certainly, rdu.n/ is multiplicative if and only if pdu.n/ is multiplicative.
Since rdu.n/D jZ�n j= du.n/D �.n/= du.n/ and � is multiplicative by the previous
theorem, it suffices to prove that du.n/ is multiplicative.

Let s and t be relatively prime positive integers. By the Chinese remainder
theorem, Zst Š Zs �Zt . Since the order of .x;y/ 2 Zs �Zt is the least common
multiple of the orders of x and y, the pair .x;y/ is a diagonal unit if and only if x

and y are diagonal units. Thus, du.st/D du.s/ du.t/. �
Our next goal is to give a formula for rdu.n/. To do so, we need one more

ingredient.

Theorem 2.3 (isomorphism class of Z�n ). For any integer k � 1 and odd prime p,

Z�
pk Š Z�.pk/ D Zpk�1.p�1/;

and

Z�
2k Š

8<:
f1g if k D 1,
Z2 if k D 2,
Z2 �Z2k�2 if k � 3.

The odd primary case is a consequence of the primitive root theorem; see [Cohen
2007, 2.1.24] for a short, fairly self-contained proof.

The next proposition provides a formula for the ratio of diagonal units in Zn.

Proposition 2.4. Let n be a positive integer.

(A) For any odd prime p and integer k � 1,

rdu.pk/D �.pk/=2D pk�1.p� 1/=2:
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(B) For any integer k � 0,

rdu.2k/D

�
1 if k D 0; 1; 2, or 3,
2k�3 if k > 3.

(C) Let n D 2a3bn0, where a; b � 0 and .n0; 6/ D 1. Let r denote the number of
distinct primes dividing n0. Then,

rdu.n/D

8̂̂̂<̂
ˆ̂:
�.n0/=2r if a� 3; b � 1;

2a�3�.n0/=2r if a> 3; b � 1;

3b�1�.n0/=2r if a� 3; b > 1;

2a�33b�1�.n0/=2r if a> 3; b > 1:

Proof. By Theorem 2.1(A), rdu.n/D �.n/= du.n/. Next observe that du.2/D 1,
du.4/ D 2, du.2k/ D 4 for k � 3, and du.pk/ D 2 for any odd prime p by
Theorem 2.3 (for the last case, note that the group of units is cyclic of even order,
so it has a unique subgroup of order 2). Combining these facts with the formula for
�.pk/ given in Theorem 2.1(C), one obtains parts (A) and (B). Part (C) follows
from the previous two parts and the fact that rdu.n/ is multiplicative. �

Though it is likely no surprise that the prime 2 is isolated in Proposition 2.4(C),
our reason for isolating the prime 3 may be unclear. For now, we hope the reader
is content with the observation that 2 and 3 are the only prime divisors of 24. In
slightly more detail, the issue has to do with the fact that if p > 3 is prime, then
rdu.pk/ D p is impossible, but rdu.32/ D 3 and rdu.24/ D 2. Note further that
rdu.pk/ in Proposition 2.4(A) factors as �.2� C 1/k , where 2� C 1 is prime. This
hints at the relevance of Sophie Germain primes, which appeared in Theorem 1.1,
and leads to the study of positive integers that admit the special type of factorization
discussed in the following section.

3. Sophie Germain factorizations

Given a positive integer � , a Sophie Germain factorization of � is a triple

F D .s; t; f.�1; ˇ1/; : : : ; .�r ; ˇr /g/;

where

(A) � D jF j D 2s3t
Qr

iD1 �i.2�i C 1/ˇi ,

(B) s � 0 and t � 0;

(C) for i D 1; : : : ; r , ˇi � 0 and �i > 1; and

(D) the integers 2�1C 1; : : : ; 2�r C 1 are distinct primes.

When r D 0, the set in the third coordinate of F is empty and the indexed product
in (A) is 1. The ordered triple gives the data for the factorization, but the definition
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of jF j gives a far more readable interpretation of what the data represent. We will
therefore abuse notation and use the expression defining jF j in place of F itself.
There is some ambiguity, however, since �i can be 2 or 3; consequently, we will
always include the exponents s and t unsimplified, even when sD 1 or t D 1, unless
either is equal to zero, in which case we will omit the corresponding factor entirely.
We will not omit zero exponents in the indexed product, and the empty product will
appear as 1. For clarification, here are several examples:

j.0; 0;∅/j D 1;

j.0; 0; f.3; 0/g/j D 3 � 70;

j.0; 1;∅/j D 31
� 1;

j.5; 1; f.3; 0/; .5; 2/; .9; 4/g/j D 25
� 31
� 3 � 70

� 5 � 112
� 9 � 194:

The main difficulty of our current undertaking is to find all possible such factor-
izations of a given positive integer. However, given a list of the Sophie Germain
factorizations of rdu.n/, we will see at the end of this section that it is easy to find
all solutions to (1).

Let S denote the set of all Sophie Germain factorizations of positive integers.
We next define two functions,

F W ZC! S
and

N W S! ZC:

The function F.n/ will select a canonical Sophie Germain factorization of n, and
the function N .F / will select a positive integer whose canonical Sophie Germain
factorization is F . Let

F
�
2a3b

rY
iD1

p
˛i

i

�
D

8̂̂̂̂
<̂
ˆ̂̂:

Qr
iD1..pi � 1/=2/ �p

˛i�1
i if a� 3; b � 1; .1/

2a�3 �
Qr

iD1..pi � 1/=2/ �p
˛i�1
i if a> 3; b � 1; .2/

3b�1 �
Qr

iD1..pi � 1/=2/ �p
˛i�1
i if a� 3; b > 1; .3/

2a�33b�1 �
Qr

iD1..pi � 1/=2/ �p
˛i�1
i if a> 3; b > 1; .4/

and let

N
�
2s3t
�

rY
iD1

�i.2�iC1/ˇi

�
D

8̂̂̂̂
<̂
ˆ̂̂:

Qr
iD1.2�i C 1/ˇiC1 if s D 0; t D 0;

2sC3 �
Qr

iD1.2�i C 1/ˇiC1 if s > 0; t D 0;

3tC1 �
Qr

iD1.2�i C 1/ˇiC1 if s D 0; t > 0;

2sC33tC1 �
Qr

iD1.2�i C 1/ˇiC1 if s > 0; t > 0;

The indexed product in the definition of F is of course just �.n0/=2r , where
n0D n=.2a3b/. In the definition of F , we have labeled the cases 1–4. Every Sophie
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Germain factorization falls into precisely one of these four cases, so we will use
these numbers to refer to the type of a Sophie Germain factorization. If we were to
only consider integers relatively prime to 6, the above formulas would each have a
single case and these functions would be inverses; interference from the divisors of
24 causes a bit of trouble. We summarize the relevant properties of F and N in the
following theorem.

Proposition 3.1. Let F W ZC! S and N W S! ZC be the functions defined above.

(A) For any positive integer n, rdu.n/D jF.n/j.
(B) For any Sophie Germain factorization F ,

F.N .F //D F:

In particular, F is surjective.

Proof. The verification of each statement entails a straightforward computation
using the definitions of F and N combined with Proposition 2.4(C). �

We now have the following general result.

Theorem 3.2. Fix a positive integer � . The equation

rdu.n/D � (2)

has a solution if and only if � admits a Sophie Germain factorization.

Proof. If (2) has a solution, then � D jF.n/j, so � admits a Sophie Germain
factorization. Conversely, if jF j D � , then take nDN .F /. Now,

rdu.n/D jF.N .F //j D jF j D �: �

It may feel at this point that we have saddled the reader with a great deal of
notation without having accomplished much, given that the true difficulty is finding
all possible Sophie Germain factorizations. However, given the set of factorizations,
the following proposition provides a nice principle for organizing the solutions
to (2). It measures the failure of F to be injective, and it is the main reason we
have defined F and N . The proof amounts to a reflection upon the meaning of the
conditions used to divide the definition of F into four cases.

Proposition 3.3. Let Fi be a Sophie Germain factorization of type i . Then,

F�1.F1/DN .F1/ � fdivisors of 24g;

F�1.F2/DN .F2/ � fdivisors of 3g;

F�1.F3/DN .F3/ � fdivisors of 8g;

F�1.F4/DN .F4/ � f1g:

We will use the above proposition in the next section.
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4. Examples

Thankfully, it is now time to more concretely investigate the possible proportions
of diagonal units using the tools developed above. We begin with Chebolu’s
theorem [2012].

4A. Chebolu’s 24 theorem. We include this example for completeness; certainly,
the proofs given in [Chebolu 2012] are either more direct or more interesting, or both.

Theorem 4.1 (Chebolu). The ring Zn satisfies the diagonal property if and only if
n is a divisor of 24.

Proof. We seek all possible solutions to rdu.n/ D 1. Since the integer 1 has the
unique (type 1) Sophie Germain factorization 1, the solution set is

N .1/ � fdivisors of 24g D 1 � fdivisors of 24g

D fdivisors of 24g:

by Proposition 3.3. �

4B. Proof of Theorem 1.1. It is straightforward to check that when p is a Sophie
Germain prime, the listed sets provide solutions to rdu.n/D p. We therefore turn
our attention to the converse.

Let p > 3 be prime and suppose rdu.n/ D p has a solution, in which case p

admits a Sophie Germain factorization. Any such factorization F of p must have
sD t D 0 and r D 1 since p cannot have more than one distinct prime factor. Hence,
jF j D �.2� C 1/ˇ . Further, since �.2� C 1/ˇ D p and � > 1, we must have � D p

and ˇ D 0. Thus,
p � .2pC 1/0

is the only possible Sophie Germain factorization of p. This forces 2pC 1 to be
prime, so p is a Sophie Germain prime and the set of solutions to rdu.n/D p is

N .p � .2pC 1/0/ � fdivisors of 24g D .2pC 1/ � fdivisors of 24g

by Proposition 3.3.
For p D 2, the only Sophie Germain factorizations of 2 are 2 � 50 and 21 � 1. The

first factorization has type 1, and the second has type 2. Note that N .2 � 50/D 5

and N .21 � 1/D 16. Hence, the set of solutions to rdu.n/D 2 is

5 � fdivisors of 24g[ 16 � fdivisors of 3g:

Finally, for p D 3, we have the type 1 factorization 3 � 70 with N D 7 and the
type 3 factorization 31 � 1 with N D 9. Hence, the set of solutions to rdu.n/D 3 is

7 � fdivisors of 24g[ 9 � fdivisors of 8g:

This completes the proof of Theorem 1.1.
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4C. Prime power ratios. We now consider the more general case rdu.n/D pk for
k � 1. First, assume p > 3 is prime.

Any Sophie Germain factorization of pk must have the property that sD tD0 and
each �i is a positive power of p. Since p cannot divide both �i and 2�iC1, we must
have ˇi D 0 for all i . Thus, every Sophie Germain factorization must have the form

rY
iD1

pki .2pki C 1/0;

where the integers 2pk1 C 1; : : : ; 2pkr C 1 are distinct primes and
P

ki D k is a
partition of k into distinct odd parts (each ki is odd because 2pvC 1 is divisible
by 3 whenever v is even). Each such factorization contributes

rY
iD1

.2pki C 1/ � fdivisors of 24g

to the set of solutions to rdu.n/D pk . Here are several examples of what may be
gleaned from this discussion:

(A) There is no solution to rdu.n/D pk when p � 1 .mod 3/ (since this implies
that 2pvC 1 is always divisible by 3).

(B) There is no solution to rdu.n/Dp2 since there is no partition of 2 into distinct
odd parts.

(C) There is a solution to rdu.n/ D p4 if and only if 2pC1 and 2p3C1 are
both prime.

(D) There is a solution to rdu.n/D p7 if and only if 2p7C 1 is prime.

(E) There is a solution to rdu.n/D p8 if and only if either f2pC 1; 2p7C 1g or
f2p3C 1; 2p5C 1g is a set of primes.

The prime p D 5 illustrates (C). The prime p D 677, which is not a Sophie
Germain prime, illustrates (D). For (E), p D 29 is a prime where both of the
indicated sets are sets of primes; p D 149 is a prime where the second set is a set
of primes and neither element of the first set is prime; p D 179 is a prime where
the first set is a set of primes and neither element of the second set is prime.

The situations for the primes 2 and 3 are similar, so will only discuss the case
p D 2. A Sophie Germain factorization of 2k must be of type 1 or 2. For type 1
factorizations, one obtains solutions as above: k must admit a partition into distinct
positive integers such that 2 � 2ki C 1D 2kiC1C 1 is prime. Such primes are called
Fermat primes, and ki C 1 is forced to be a power of 2, so again each ki must be
odd. It is unknown whether there are infinitely many Fermat primes, therefore it
is unknown whether there are infinitely many powers of 2 such that rdu.n/D 2k

admits a type 1 solution. A type 2 factorization must take the form 2s �� , where � is
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a type 1 Sophie Germain factorization of 2k�s . Since 3 is a Fermat prime, and the
set of all solutions is obtained by multiplying the relevant N -values by divisors of
3 or 24, we obtain that rdu.n/ is a power of 2 if and only if nD 2sp1 � � �pt , where
s � 0 and p1; : : : ;pt is a (possibly empty) list of distinct Fermat primes.

This provides an interesting connection between the ratio of diagonal units and a
classical result of Gauss and Wantzel (see [Pollack 2009]): it is possible to construct
a regular n-sided polygon in the plane with straightedge and compass if and only
if n takes the form given at the end of the previous paragraph. Gauss proved that
the condition on n is necessary, and Wantzel proved that it is sufficient. Gauss’
decision to devote his life to mathematics was in part due to his discovery at age 18
of the constructibility of the regular 17-gon. We summarize our observation in the
next theorem.

Theorem 4.2. Let n be a positive integer. The following statements are equivalent.

(A) The ratio of diagonal units in Zn is a power of 2.

(B) The integer n has the form 2sp1 � � �pt , where s � 0 and p1; : : : ;pt is a
(possibly empty) list of distinct Fermat primes.

(C) It is possible to construct a regular n-gon in the plane with straightedge and
compass.

The authors wish to thank Sunil Chebolu for noticing this connection to the
Gauss–Wantzel theorem.

4D. Pairs of distinct primes. Call a positive integer n a Sophie Germain number if
2nC1 is prime. In all of the cases thus far considered, the integer � is a product of So-
phie Germain numbers whenever rdu.n/D � has a solution. We include this section
mainly to give a family of simple examples where this is not necessarily the case.

Let 3< p < q be distinct primes. The possible Sophie Germain factorizations
of pq are p.2pC 1/0q.2qC 1/0 (if p and q are each Sophie Germain primes),
.pq/.2pqC 1/0 (if pq is a Sophie Germain number), and p � q0 (if p is a Sophie
Germain prime with safe prime q D 2p C 1). Each of these factorizations is
type 1, so the solution sets (provided they exist) are .2p C 1/ � fdivisors of 24g,
.2pC 1/.2qC 1/ � fdivisors of 24g, and .2pC 1/2 � fdivisors of 24g, respectively.

The integer 1081D 23 � 47 is not expressible as a product of Sophie Germain
numbers since, though 2 � 23 C 1 D 47 is prime, neither 2 � 47 C 1 D 95 nor
2 � 23 � 47C 1D 2163 is prime. However, rdu.n/D 1081 has solution set

472
� fdivisors of 24g:

4E. Further questions. We conclude this section with a few questions to ponder.

� The set of primes such that rdu.n/D p has a solution is precisely the set of
Sophie Germain primes. From (B) in Section 4C we see that the set of primes



662 KARENNA GENZLINGER AND KEIR LOCKRIDGE

such that rdu.n/D p2 has a solution is the set f2; 3g (since rdu.25/D 22 and
rdu.33/D 32). For k > 2, what can we say about the set of primes such that
rdu.n/D pk has a solution? Is it always nonempty? When is it finite?

� If p � 2 .mod 3/, must rdu.n/D pk have a solution for some k?

� The number of partitions of k into distinct odd parts is the same as s.k/, the
number of self-conjugate partitions of k. The maximum number of solutions
to rdu.n/D pk (for p > 3 prime) is 8 � s.k/. For each k, how many primes
actually achieve this maximum value?

� Let k be a positive integer. Call a prime p a k-Sophie Germain prime (k-SGP)
if k admits a partition into distinct odd parts and 2pk1 C 1; : : : ; 2pkr C 1 is a
list of prime numbers for every partition k D k1C � � �C kr of k into distinct
odd parts. The value k D 1 corresponds to an ordinary Sophie Germain prime,
and there are no 2-SGPs. A prime p is a 3-SGP if and only if 2p3C1 is prime;
a prime p is an 8-SGP if and only if 2pC 1; 2p7C 1; 2p3C 1, and 2p5C 1

are prime. Does a k-SGP exist for each k > 2?

5. The multiplication cube for Zn

One could also analyze the multiplication cube for Zn. We know 1s lie exclusively
on the diagonal if and only if nD 1 or 2 since otherwise .�1/ � .�1/ � 1 gives a 1
off the diagonal. Since this question seems uninteresting, we might require that
every 1 in the multiplication table that is not in a coordinate plane (where one entry
in the product is equal to 1) lies on the diagonal. The number of 1s appearing in
the multiplication cube for Zn is �.n/2. (The first and second coordinates may
be completely arbitrary units, but then the third coordinate is determined.) The
number of 1s off all coordinate planes is �.n/2� 3�.n/C 3� 1 (by the principle
of inclusion/exclusion), and we wish to find values of n where this quantity is
equal to the number of elements of multiplicative order precisely 3 (since the entry
for 1 � 1 � 1 has been omitted). Put another way, we wish to find values of n such
that �.n/2 � 3�.n/C 3 is equal to the number of elements of order dividing 3.
In Z�

pk there is one element of order dividing 3 if p � 2 .3/; three such elements
if p � 1 .3/; one such element if p D 3 and k D 1; and three such elements if
p D 3 and k � 2. Hence, the number of elements of Z�n whose order divides 3
is 3rC�, where r is the number of prime divisors congruent to 1 modulo 3 and
� D 1 if 9 divides n and � D 0 otherwise. We must now consider the equation
�.n/2� 3�.n/C 3D 3rC�. If 3 divides the right-hand side, then 3 divides �.n/2,
so in fact 9 divides �.n/2� 3�.n/. This means 9 cannot divide the right-hand side,
so we need only consider �.n/2�3�.n/C3D 1 or 3. This in turn forces �.n/D 1

or 2 (�.n/ cannot equal 3). The only values of n satisfying either of these equalities
are nD 1; 2; 3; 4, and 6. Conversely, it is easy to check that for nD 1; 2; 3; 4 or 6,
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all 1s in the multiplication cube lie on the diagonal or the coordinate planes. This
proves the following theorem.

Theorem 5.1. All 1s in the multiplication cube for Zn lie exclusively on the diagonal
or the coordinate planes (where one of the three coordinates is 1) if and only if n is
a divisor of 4 or 6.
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On symplectic capacities of toric domains
Michael Landry, Matthew McMillan and Emmanuel Tsukerman

(Communicated by Michael Dorff)

A toric domain is a subset of (Cn, ωstd) which is invariant under the standard rota-
tion action of Tn on Cn . For a toric domain U from a certain large class for which
this action is not free, we find a corresponding toric domain V where the standard
action is free and for which c(U )= c(V ) for any symplectic capacity c. Michael
Hutchings gives a combinatorial formula for calculating his embedded contact
homology symplectic capacities for certain toric four-manifolds on which the T2-
action is free. Our theorem allows one to extend this formula to a class of toric do-
mains where the action is not free. We apply our theorem to compute ECH capac-
ities for certain intersections of ellipsoids and find that these capacities give sharp
obstructions to symplectically embedding these ellipsoid intersections into balls.

1. Introduction

Symplectic capacities, introduced by Gromov and Hofer, are symplectic invariants
that assign a nonnegative real number to a subset U ⊂ (Cn, ωstd) and have the
following properties:

(C1) Monotonicity: c(U )≤ c(V ) if U ↪→ V .

(C2) Conformality: c(λU )= λ2c(U ) for λ ∈ R.

(C3) Nontriviality: 0< c(B2n(1)) <∞.

Note that combining all three requires a finite capacity for any bounded U .
Sometimes additional nontriviality and normalization axioms are also assumed, but
we do not use them here. Many useful symplectic capacities have been defined;
some are listed in [Cieliebak et al. 2007].

Define the moment map µ : Cn
→ Rn of the symplectic manifold (Cn, ωstd) by

µ(z1, . . . , zn)= (π |z1|
2, . . . , π |zn|

2),

where ωstd is the standard symplectic form ωstd =
∑n

i=1 dxi ∧ dyi on Cn , and
call µ(Cn) the moment space. We call U ⊂ (Cn, ωstd) a toric domain when it can

MSC2010: 53D05, 53D20, 53D35.
Keywords: symplectic capacities, toric domain, moment space axes.
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(a) (b) (c)

Figure 1. Appropriate moment regions; (a) and (b) satisfy the
conditions of Criterion 1.1, but (c) does not.

be written U = µ−1(A) for some moment region A ⊂ Rn
≥0 in the moment space, or

equivalently when it is invariant under the rotation action of Tn on Cn . Note that this
is a special case of the more general moment map associated with a Hamiltonian
action of a Lie group.

Since these toric domains are uniquely represented by their moment regions, we
will refer to a symplectic capacity c(A) of a moment region A, and by this mean
c(µ−1(A)). A simple calculation shows that (C2) is equivalent to c(λA)= λc(A).

Our main theorem is that for a duly qualified toric domain U whose moment
region satisfies Criterion 1.1 given below, any symplectic capacity of U is the same
as the capacity of a toric domain with a free action, one whose moment region
is µ(U ) translated off the coordinate planes in the moment space.

Criterion 1.1. Let A ⊂ Rn
≥0. If A intersects a coordinate plane

Pi = {(ρ1, . . . , ρn) ∈ Rn
| ρi = 0},

then any line normal to Pi has connected intersection with A∪ Pi .

The necessary further qualifications are given in the theorem statement below.
Figure 1 illustrates this condition for n=2. In this case, Criterion 1.1 ensures that the
toric domain is a disk bundle over its projection to the first complex plane of C2; more
generally, for A satisfying the other conditions below, Criterion 1.1 requires µ−1(A)
to be a (generalized) disk bundle over its projection to any coordinate plane Pi

which it touches. Disks in the fiber space degenerate to points where A touches a
coordinate plane.

Theorem 1.2. Let A⊂Rn
≥0 be a moment region which is compact with star-shaped

interior and whose boundary intersects transversely the rays from the star-center.
Assume that A satisfies Criterion 1.1. Then c(A) = c(A+ (1, 1, . . . , 1)) for any
symplectic capacity c.

The theorem is proved by establishing equal lower and upper bounds on c(A) in
terms of c(A+ (1, 1, . . . , 1)). The lower bound follows readily from properties of
toric domains and the axioms (C1)–(C3), but for the upper bound we must combine
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the axioms with a nontrivial symplectic embedding. Since the proof assumes only
the general axioms for capacities, this result holds for all symplectic capacities.
Note that the action on a given toric domain U = µ−1(A) is free if and only if U
does not intersect the origin in any C factor; that is, its moment region does not
touch any coordinate plane Pi = {(ρ1, . . . , ρn) ∈ Rn

| ρi = 0} in the moment space.
The embedded contact homology (ECH) developed by Michael Hutchings pro-

vides a natural way to define certain symplectic capacities called ECH capacities.
They are defined for any subset of a symplectic 4-manifold. Hutchings [2011]
gives a combinatorial method to compute these capacities for toric domains over
convex moment regions that do not touch the axes of the moment space R2

≥0 (that
is, the torus action is free). This method is presented in Section 3. In [Hutchings
2014, Remark 4.15] and [Choi et al. 2014, §1.2], it was conjectured that Hutchings’
formula should remain true in most, and probably all, cases where µ(U ) does touch
one or both axes. Theorem 1.2 shows that this is true for the ECH capacities of a
large class of toric domains by showing that it is true for all symplectic capacities.

Given a, b ∈ R+, define the ellipsoid

E(a, b):=
{
(z1, z2) ∈ C2

∣∣∣∣ π |z1|
2

a
+
π |z2|

2

b
≤ 1

}
, (1)

the ball
B(a):=E(a, a),

and the polydisk

P(a, b):=
{
(z1, z2) ∈ C2 ∣∣ π |z1|

2
≤ a, , π |z2|

2
≤ b

}
, (2)

where each inherits the standard symplectic form from C2.
In Section 3, we use Theorem 1.2 to compute ECH capacities of a class of

intersections of ellipsoids. We also study symplectic embeddings of domains from
this class, proving the following proposition:

Proposition 1.3. Let a > b and c > d. Let R be the radius of the smallest ball
containing E(a, b)∩ E(c, d), and let ρ = inf{r | E(a, b)∩ E(c, d) ↪→ B(r)}. If
2a, 2d ≥ R, then ρ = R.

It is known that ECH capacities provide sharp obstructions to symplectically
embedding ellipsoids into ellipsoids (proved by McDuff [2011]) and ellipsoids
into polydisks [Frenkel and Müller 2012]. Recall that by Gromov’s nonsqueezing
theorem [1985], a ball symplectically embeds into a cylinder in R2n if and only if the
radius of the cylinder exceeds that of the ball. This is an illustration of symplectic
rigidity and is easily recovered from the ECH capacities on these domains. The
computation of ECH capacities of the ellipsoid intersections above shows that they
give sharp obstructions to symplectically embedding those ellipsoid intersections
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into balls. Since the balls have much larger volume than the ellipsoid intersections,
Proposition 1.3 is another example of symplectic rigidity.

In Proposition 1.3, the ECH capacities give a sharp obstruction. Recent work
of Hind and Lisi [2014] shows that neither ECH capacities nor Ekeland–Hofer
capacities give sharp obstructions to symplectic embeddings of arbitrary toric
domains; in particular the ECH and Ekeland–Hofer obstructions to symplectically
embedding a product of polydisks into a ball are not always sharp. The torus action
on polydisks and balls is not free, so we might ask whether the situation is any
different if we consider only toric domains for which the action is free. However,
the case of free torus action is not different in this way, as the following corollary
of Theorem 1.2 shows:

Corollary 1.4. Let P∗(1, 2) = µ−1(µ(P(1, 2)) + (1, 1)) be a toric domain, let
a < 3 and let B∗(a)= µ−1(µ(B4(a))+ (1, 1)). There is no symplectic embedding
P∗(1, 2) ↪→ B∗(a).

This shows that neither ECH nor Ekeland–Hofer capacities are sharp even when
we consider only toric domains with a free action because the obstruction given
by both of these sequences of capacities is a ≥ 2 (see [Hind and Lisi 2014]). This
corollary is proved in Section 3B.

2. Proof of main theorem

In this section, we prove Theorem 1.2 by constructing symplectomorphisms as
the products of area preserving maps. It will be convenient to have the follow-
ing standard lemma, which shows that translations in the moment space induce
symplectomorphisms on toric domains whose moment regions do not touch any
coordinate plane.

Lemma 2.1. Suppose U ⊂ (R2n, ωstd) is a toric domain with free torus action such
that µ(U ) = A, and B is any translate of A such that the torus action on µ−1 is
also free. Then U and V = µ−1(B) are symplectomorphic. In particular, they have
the same symplectic capacity for any capacity.

Proof. We can parametrize U by g : A×Tn
→U defined by

g(ρ1, . . . , ρn, eiθ1, . . . , eiθn )=

(√
ρ1

π
eiθ1, . . . ,

√
ρn

π
eiθn

)
.

Then we can pull back the standard symplectic form to A×Tn . A simple calculation
shows that for the first term,

g∗(dx1 ∧ dy1)=
1

2π
dρ1 ∧ dθ1,
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and thus

g∗ωstd =
1

2π

n∑
i=1

dρi ∧ dθi .

Clearly translation in moment space does not affect this last form, so conjugating
a translation by this parametrization yields the desired symplectomorphism. �

Another important fact that can be seen from the proof of Lemma 2.1 is that
for a toric domain U with free torus action and moment region A, the symplectic
volume of U is equal to the volume of A:

vol(U, ωstd)=
1
n!

∫
U
ωn

std =
1
n!

∫
A×Tn

(g∗ωstd)
n

=
1

(2π)n

∫
A×Tn

dρ1 ∧ · · · ∧ dρn ∧ dθ1 ∧ · · · ∧ dθn

=

∫
A

dρ1 ∧ · · · ∧ dρn = vol(A).

So a symplectic embedding of toric domains U ↪→ V may be possible only if
vol(µ(U ))≤ vol(µ(V )).

We will also use the following version of the “Traynor trick” (cf. Proposition 5.2
of [Traynor 1995]):

Lemma 2.2. Given ε > 0, there exists an area preserving diffeomorphism

9 : B2(1)→ SD2(1+ ε)= B2(1+ ε)−{x + iy | y = 0, x ≥ 0}

from the disk to the slit-disk such that

δ < |9(z)|2 < |z|2+ ε

for some δ > 0.

Proof. The left inequality follows from continuity (given such a map). For existence
and the right inequality, define a family of loops which avoid the slit as in Figure 2,
and apply Schlenk [2005, Lemma 3.1]. �

With these tools we can prove Theorem 1.2.

Proof of Theorem 1.2.
Our technique is to find upper and lower bounds on c(A) by producing symplectic

embeddings and applying (C1) and (C2). We show that these bounds agree with
each other and with c(A+ (1, 1, . . . , 1)).

For what follows, we define the scaling of Rn by λ> 0 from p ∈Rn to be the map
q 7→ λ(q− p)+ p. Since λ(q− p)+ p= λq+(1−λ)p, any scaling by λ from p is
equivalent to a scaling from the origin by λ followed by translation by (1−λ)p. So
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Figure 2. A family of loops defining a symplectomorphism
B2(1)→ SD(1+ ε).

with Lemma 2.1 we may apply conformality of capacities, axiom (C2), on moment
regions scaled from points other than the origin. The reason for the requirement
that rays from the star-center be transverse to the boundary will become clear in
Step 2 with the scaling argument.

Step 1. The lower bound may be computed as follows. Let p be a star-center
of int A, which means that any other point in int A may be connected to p by a
line contained in int A. Given any λ < 1, let Aλ be the image of A under the
scaling of the moment space towards p by λ. Since p is away from the coordinate
planes, Aλ is bounded away from the coordinate planes and contained in A. By
Lemma 2.1 and conformality, c(Aλ)=λc(A+(1, 1, . . . , 1)). Then by monotonicity,
λc(A+ (1, 1, . . . , 1))≤ c(A), and since λ < 1 was arbitrary,

c(A+ (1, 1, . . . , 1))≤ c(A).

Step 2. For the upper bound, we embed A into an expanded version of A, and
apply an area-preserving map in each dimension in which A touches a coordinate
plane Pi . We will assume that A is compact, star-shaped, and that the rays from a
star-center p intersect each ∂A j transversely.

Assume without loss of generality that A touches the first k coordinate planes
and does not touch the others. Let p = (ρ1, . . . , ρn) be the star-center in A noted
above. The projection p̃1 = (0, ρ2, . . . , ρn) is also a star-center: Choose any other
point q = (x1, . . . , xn) ∈ A. The line from p̃1 to q is entirely below that from p
to q in the ρ1 coordinate. By Criterion 1.1, any perpendicular dropped from a point
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in A to P1 remains in A. Hence the line from p̃1 to q is also in A, so p̃1 is a star-
center. Repeating in the first k coordinates, we find that p̃k = (0, . . . , ρk+1, . . . , ρn)

is a star-center; call this point p̃. A simple geometric argument making use of
Criterion 1.1 shows that the rays from p̃ must also be transverse to each ∂A j ; we
omit that here.

The next step will be to expand A to Aλ by a finite factor of λ. In order to pre-
vent Aλ from colliding with coordinate planes, first translate A away from the coordi-
nate planes Pk+1 through Pn by some large amount. Note that this is possible because
by assumption pi > 0 for i > k, and furthermore translation in the moment spaces
induces a symplectomorphism. So we shall instead compute the capacity of this
translate, and relabel it A. Now let Aλ be the scaling of A from p̃ by a small λ > 1.

We show that A⊂ int Aλ. Consider any point q = (x1, . . . , xn) ∈ A. If q ∈ int A
then q ∈ int Aλ, so suppose q ∈ ∂A. Write q1/λ for the point mapped to q under
the scaling; q1/λ will be between p̃ and q. Now since the ray from p̃ to q is
transverse to ∂A, it follows that q1/λ must be in int A, so we can find an open ball U
around q1/λ. That ball maps under the scaling to Uλ, which is an open ball around q
in Aλ. Thus q ∈ int Aλ, and A ⊂ int Aλ.

Let ext Aλ denote the exterior of Aλ in Rn
≥0. Both A and Aλ are compact, so

there is some d so that 0< d < dλ = 1
2 dist(A, ext Aλ). Now A is bounded, so let a

be the maximum of the ρ1 coordinate of A, and choose ε > 0 so that ε < d. Then
by Lemma 2.2, there exists 9a : B2(a)→ SD2(a+ ε) such that

δ < |9a(z)|2 < |z|2+ ε (3)

for δ > 0. Let Fε =9a × id× · · ·× id.
Set B = µ ◦ Fε(µ−1(A)). Then we claim B ⊂ int Aλ. Consider a point

(z1, . . . , zn) ∈ µ
−1(A), and let

(ρ1, . . . , ρn)≡ µ(z1, . . . , zn) ∈ A.

By the inequality above, µ ◦ Fε((z1, . . . , zn)) = (ρ̃1, . . . , ρ̃n), where ρ̃1 < ρ1+ ε

and ρ̃i = ρi for i > 1. Thus every point in µ−1(A) is carried by Fε to a point
less than d away from A, so B ⊂ int Aλ; moreover, dist(B, ext Aλ) > dλ. Then let
δ= 1

2 min{δ, dλ} and γ = λδ (using λ< 2). Set A′λ= Aλ+(γ, 0, . . . , 0). The lower
bound on the left of equation (3), together with the distance from B to outside Aλ,
show that in fact B ⊂ A′λ. So by Lemma 2.1, c(B)≤ c(A′λ)= λc(A+(δ, 0, . . . , 0)).
Now λ > 1 was arbitrary, so c(B) ≤ c(A + (δ, 0, . . . , 0)). Since A and B are
symplectomorphic,

c(A)≤ c(A+ (δ, 0, . . . , 0)).

Repeating the same process in the dimensions up to k and translating up by δ
in the other coordinates shows that for some δ > 0, c(A) ≤ c(A+ (δ, δ, . . . , δ)).
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Aλ

A

Aλ+ (δ, 0, . . . , 0)

A

Figure 3. Illustration of the conformality argument for the lower
bound (left) and the upper bound (right).

Combining with the lower bound, and using Lemma 2.1,

c(A)= c(A+ (1, 1, . . . , 1)). �

Remark 2.3. It is worth noting that we may like to consider regions A for which ∂A
is not completely smooth. The ellipsoid intersections below are one example.
The notion of transversality must then be generalized slightly with the goal that
A ⊂ int Aλ. If ∂A is the gluing of multiple hypersurfaces, it is sufficient that the
rays from the star-center be transverse to each of the hypersurfaces at the points
where they are glued together.

3. Applications

3A. ECH capacities. The remainder of this paper focuses on 4-dimensional toric
domains, with accompanying planar moment regions. Using Michael Hutchings’
theory of embedded contact homology (ECH), one can associate real numbers

0= c0(M)≤ c1(M)≤ c2(M)≤ · · ·

called ECH capacities to any 4-dimensional Liouville domain M , such that each ci

is a symplectic capacity for 4-manifolds. For precise definitions of ECH capacities
and Liouville domains, see [Hutchings 2011].

We briefly describe the computation of ECH capacities, as given by Theorem 4.14
of [Hutchings 2014]. Given a convex body A in the moment space which does not
touch any coordinate plane, we can define a norm `A, not necessarily symmetric, as
follows. Choose an origin in A from which to draw position vectors to ∂A. Let vi

be some vector, and qi one of the position vectors on ∂A such that the outward
normal to ∂A at qi is parallel to vi . If vi has angle between the normals to ∂A
at two incident edges of ∂A, let qi be the corner where the edges meet. Then set
`A(vi ) = vi · qi . It is not hard to check that this yields a well-defined norm; see
[Hutchings 2014] for details.
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(0, d)

(a, 0)

(0, R)

(R, 0)

(abc−acd
bc−ad ,

bcd−abd
bc−ad

)

Figure 4. The image of E(a, b)∩ E(c, d) under µ with suitable
a, b, c, d , and the smallest ball into which it symplectically embeds.

We compute the ECH capacities according to [Hutchings 2011] as follows:
for each k, ck(A) is the shortest perimeter length of an oriented lattice-polygon
enclosing k+ 1 lattice points, where perimeter length is measured in the norm `A

on the edge vectors of the oriented polygon.

3A1. Embedding ellipsoid intersections into balls. We now use Theorem 1.2 to
compute the second ECH capacity of a family of ellipsoid intersections. This
capacity is in turn used to prove Proposition 1.3. Throughout this section, let
a, b, c, d > 0, a < b, c > d , and put

R =
abc+ bcd − acd − abd

bc− ad

(see Figure 4). We show that for 2a, 2d ≥ R, we have c2(E(a, b)∩ E(c, d))= R.
A simple consequence is that E(a, b)∩ E(c, d) symplectically embeds into a ball
if and only if it embeds by inclusion (that is, Proposition 1.3). While in principle
that result only requires the easier lower bound of Theorem 1.2, we illustrate the
use of Theorem 1.2 to produce the actual ECH capacity, which is sufficient to prove
the proposition.

A short computation, or consideration of Figure 4, shows that B(R) is indeed
the smallest ball into which E(a, b)∩ E(c, d) embeds by inclusion. We first prove
the following lemma:

Lemma 3.1. If 2a, 2d ≥ R, then c2(E(a, b)∩ E(c, d))= R.

Assuming Lemma 3.1, observe that Proposition 1.3 is immediate:
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1 2
3

4

5

c
d x

a
b x

Figure 5. Calculation of `A′-length by region.

Proof of Proposition 1.3. By [Hutchings 2011, Corollary 1.3], c2(B(r))= r , so we
have ρ ≥ R by Lemma 3.1. Since E(a, b)∩ E(c, d)⊂ B(R), ρ ≤ R and the result
follows. �

Proof of Lemma 3.1. Let A be the moment region of E(a, b)∩ E(c, d). Since A
satisfies Criterion 1.1, we know that c2(A)= c2(A′) for A′ = A+ (1, 1).

First, we observe that the oriented lattice-polygonal path shown in Figure 6 has
`A′-length R when oriented clockwise, so c2(A)≤ R.

Let 0 be an oriented lattice path containing three lattice points with edge vectors
(α, β), (γ, δ), (ε, ζ ) (if 0 has only two edge vectors, i.e., is just a line segment, the
forthcoming argument applies mutatis mutandis). Suppose for a contradiction that
`A′(0) < R.

We first claim that β, δ, ζ ≤ 1 and that at most one is positive. Suppose without
loss of generality that β ≥ 2. Depending on the region in which (α, β) lies (or its
slope β/α, Figure 5), the `A′-length is determined by cases:

`A′((α, β))=


(α, β) · (0, d) if α ≤ 0 or β

α
≥

c
d (regions 1, 2),

(α, β) ·
(abc−acd

bc−ad ,
bcd−abd

bc−ad

)
if c

d ≤
β

α
≤

a
b (region 3),

(α, β) · (a, 0) if 0< β

α
≤

a
b (region 4).

We treat each case separately. In region 1, we have (α, β) ·(0, d)= βd ≥ 2d ≥ R,
a contradiction. In region 2,

`A′((α, β))= (α, β) ·
(abc−acd

bc−ad
,

bcd−abc
bc−ad

)
and α ≥ 1. Hence,

(α, β) ·
(abc−acd

bc−ad
,

bcd−abc
bc−ad

)
> (1, 1) ·

(abc−acd
bc−ad

,
bcd−abc
bc−ad

)
= R.
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Figure 6. The minimal path for c2(A) in Lemma 3.1.

Lastly, in region 3, `A′((α, β))= (α, β) · (a, 0) and α > β, so `A′((α, β))= αa >
2a ≥ R. Thus β, δ, ζ ≤ 1.

To show that at most one of β, δ, γ is positive, assume without loss of gener-
ality that β, δ ≥ 1. Another calculation as above shows that both `A′((α, β)) and
`A′((γ, δ)) are greater than or equal to min{a, d}, so `A′(0)≥ 2 min{a, d} ≥ R, a
contradiction.

A symmetric argument but with regions 2, 3, 4, and 5 shows that α, γ, ε ≤ 1 and
that at most one is positive. These facts imply that the maximum displacement in
either coordinate is 1; that is, 0 lies in [0, 1]2 up to translation. We check that the
shortest lattice path containing three lattice points in [0, 1]2 has `A′-length R, so 0
cannot exist. �

3B. Toric domains with free action. The proof of Corollary 1.4 simply combines
the embeddings involved in the proof of Theorem 1.2 with the result that a symplectic
embedding P(1, 2) ↪→ B4(a) is possible if and only if a ≥ 3 [Hind and Lisi 2014,
Theorem 1.1].

Proof of Corollary 1.4. Suppose to the contrary that a< 3 is given for which we can
find an embedding f : P∗(1, 2) ↪→ B∗(a). Let λ> 1 be close to 1 such that λ2a< 3.
Let P∗λ (1, 2)= µ−1(µ(P(λ, 2λ))+ (1, 1)) and B∗λ(a)= µ

−1(µ(B4(λa))+ (1, 1)).
After scaling by λ, we can find an embedding fλ : P∗λ (1, 2) ↪→ B∗λ(a). This is
combined with the embeddings from the proof of Theorem 1.2 as follows:

First, we can find a symplectic embedding F : P(1, 2) ↪→ P∗λ (1, 2) by the same
technique illustrated in that theorem since P∗λ (1, 2) is just the translated expansion
of P(1, 2). We also have the inclusion embedding ι : B∗λ(a) ↪→ B(λ2a) because of
the translation law (Lemma 2.1) above. Combining these we get

ι ◦ fλ ◦ F : P(1, 2) ↪→ B(λ2a).

Since λ2a < 3, this violates [Hind and Lisi 2014, Theorem 1.1]. Thus no such
embedding f : P∗(1, 2) ↪→ B∗(a) exists. �

By Theorem 1.2, the ECH and Ekeland–Hofer capacities of P∗(1, 2) and B∗(a)
are the same as those of P(1, 2) and B(a), so neither of these capacities give sharp
obstructions to embedding P∗(1, 2) into B∗(a).
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When the catenary degree agrees with
the tame degree in numerical semigroups

of embedding dimension three
Pedro A. García-Sánchez and Caterina Viola

(Communicated by Scott T. Chapman)

We characterize numerical semigroups of embedding dimension three having the
same catenary and tame degrees.

1. Introduction

Let S be a numerical semigroup minimally generated by {n1, . . . ,n p}. A factoriza-
tion of s ∈ S is an element x = (x1, . . . , x p) ∈Np such that x1n1+· · ·+ x pn p = s
(N denotes the set of nonnegative integers). The length of x is given by |x | =
x1+ · · ·+ x p. Given another factorization y = (y1, . . . , yp), the distance between
x and y is d(x, y) = max{|x − gcd(x, y)|, |y − gcd(x, y)|}, where gcd(x, y) =
(min{x1, y1}, . . . ,min{x p, yp}).

The catenary degree of S is the minimum nonnegative integer N such that for
every s ∈ S and any two factorizations x and y of s, there exists a sequence of
factorizations x1, . . . , xt of s such that

(1) x1 = x , xt = y,

(2) for all i ∈ {1, . . . , t − 1}, d(xi , xi+1)≤ N .

The tame degree of S is defined also in terms of distances, and it is the minimum N
such that for any s ∈ S and any factorization x of s, if n − ni ∈ S for some
i ∈ {1, . . . , p}, then there exists another factorization x ′ of s such that d(x, x ′)≤ N
and the i-th coordinate of x ′ is nonzero (ni “occurs” in this factorization).

It is well known that the catenary degree of S is less than or equal to the tame
degree of S (in greater generality; see [Geroldinger and Halter-Koch 2006]). It
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is also known that in some cases both coincide (for instance for monoids with a
generic presentation [Blanco et al. 2011]). In this paper, we want to characterize
when this is the case if p (the embedding dimension of S) is three. This description
is given in terms of the connectedness of some graphs associated to the elements
of S.

Given s ∈ S, we define the graph ∇s as the graph with vertices given by the
factorizations of s, and edges given by the pairs of factorizations x and y with
x · y 6= 0 (here · is the dot product; that is, x and y have common support). We
say that s is a Betti element of S if ∇s is not connected. It is well known (see for
instance [Rosales and García-Sánchez 2009], where the connected components of
∇s are called R-classes of s) that the number of Betti elements of S = 〈n1, n2, n3〉

is at most three. We characterize when t(S)= c(S) in terms of the Betti elements
of S; this is done in Theorem 25.

2. Preliminaries

A numerical semigroup is a submonoid of (N,+)with finite complement in N. Every
submonoid M of (N,+) is isomorphic to the numerical semigroup M/gcd(M). The
least positive integer in a numerical semigroup S is known as its multiplicity, m(S).
Every numerical semigroup S is minimally generated by S∗\(S∗+S∗), and as every
two minimal generators are incongruent modulo the multiplicity, this set has finitely
many elements. Its cardinality is known as the embedding dimension of S, denoted
by e(S). Thus, every numerical semigroup admits a unique (and finite) minimal
generating system. Its elements are known as minimal generators of the semigroup.
The largest integer not belonging to S is the Frobenius number of S, F(S).

For a given nonempty subset A of N, set

〈A〉 = {λ1a1+ · · ·+ λnan | n ∈ N, a1, . . . , an ∈ A},

which is the submonoid of (N,+) generated by A.

2.1. Catenary and tame degrees. Let S be minimally generated by {n1, . . . , n p}.
We recall some key notions from the theory of nonunique factorizations. Consider
the monoid epimorphism

ϕ : Np
→ S, ϕ(a1, . . . , ap)= a1n1+ · · ·+ apn p,

known as the factorization morphism of S. The monoid S is isomorphic to Np/σ ,
where σ = {(a, b) ∈Np

| ϕ(a)= ϕ(b)} is the kernel congruence of ϕ. As usual, we
write aσb if (a, b) ∈ σ . The set of factorizations of an element n ∈ S is

Z(n)= ϕ−1(n)= {(a1, . . . , ap) ∈ Np
| a1n1+ · · ·+ apn p = n}.

Let a= (a1, . . . , ap)∈ Z(n). The length of the factorization a is |a| = a1+· · ·+ap.
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For z = (z1, . . . , z p), z′ = (z′1, . . . , z′p) ∈ Np, write

gcd(z, z′)= (min{z1, z′1}, . . . ,min{z p, z′p}).

Set d(z, z′) = max{|z − gcd(z, z′)|, |z′ − gcd(z, z′)|} to be the distance between
z and z′. Given x ∈ Np and Y ⊂ Np, we define d(x, Y ) = min{d(x, y) | y ∈ Y }
(which exists by Dickson’s lemma). The support of z ∈ Np is defined, as usual, by
Supp(z) = {i ∈ {1, . . . , p} | zi 6= 0}. Let n ∈ S be such that n− ni ∈ S. Then the
set Zi (n)= {z ∈ Z(n) | i ∈ Supp(z)} is not empty.

Given n ∈ S and z, z′ ∈ Z(n), an N-chain of factorizations from z to z′ is a
sequence z0, . . . , zk ∈ Z(n) such that z0 = z, zk = z′ and d(zi , zi+1) ≤ N for all i .
The catenary degree of n, c(n), is the minimal N ∈ N∪ {∞} such that for any two
factorizations z, z′ ∈ Z(n), there is an N -chain from z to z′. The catenary degree
of S, c(S), is defined by

c(S)= sup{c(n) | n ∈ S}.

The tame degree tS(S′, X) of S′ ⊆ S and X ⊂ Np is the minimum of all N ∈
N ∪ {∞} such that for all s ∈ S′, z ∈ Z(s) and x ∈ X with s − ϕ(x) ∈ S, there
exists z′ ∈ Z(s) satisfying x ≤ z′ and d(z, z′) ≤ N . We simply write t(S′, X)
when S is understood. We also simply write t(s) for t({s}, {n1, . . . , n p}), and
t(S)= t(S, {n1, . . . , n p}), which equals max{t(s) | s ∈ S}.

A presentation for S is a subset τ of σ such that σ is the least congruence (with
respect to set inclusion) containing τ , or in other words, a system of generators
of σ . A minimal presentation is a presentation that is minimal with respect to set
inclusion (and it can be shown that in this setting it is also minimal with respect to
cardinality, see [Rosales and García-Sánchez 2009, Chapter 7]; in monoids these
two concepts do not have to be equivalent). We say that S is uniquely presented
if for every two minimal presentations τ and τ ′ of S and every (a, b) ∈ τ , either
(a, b) ∈ τ ′ or (b, a) ∈ τ ′ (see [García-Sánchez and Ojeda 2010]).

Two elements z and z′ of Np are R-related if there exists a chain z = z1, z2,
. . . , zk = z′ such that Supp(zi )∩Supp(zi+1) is not empty for all i ∈ {1, . . . , k− 1}.
The number of factorizations of an element in a numerical semigroup is finite, and
so is the number of R-classes in this set. These classes are crucial, since from
them a minimal presentation of S can be constructed. Moreover, let n ∈ S and
let Rn

1, . . . ,R
n
kn

be the different R-classes of Z(n). Set µ(n)=max{rn
1 , . . . , r

n
kn
},

where rn
i =min{|x | | x ∈Rn

i }. Define

µ(S)=max{µ(n) | n ∈ S, kn ≥ 2}.

Theorem 1 [Chapman et al. 2009, Theorem 1]. Let S be numerical semigroup.
Then c(S)= µ(S).
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Let S be a numerical semigroup. An element s ∈ S is said to be a Betti element if
Z(S) has more than one R-class. Observe that there are finitely many Betti elements
in S if it is finitely presented. The set of Betti elements of S is denoted by Betti(S).
As a consequence of the above theorem, we deduce that

c(S)=max{c(b) | b ∈ Betti(S)}.

For the computation of the tame degree of the numerical semigroup S, a minimal
presentation is not, in general, enough as shown in [Chapman et al. 2006]. Let I(S)
be the set of minimal nonnegative nonzero solutions of the equation

n1x1+ · · · n px p − n1 y1− · · ·− n p yp = 0.

Let (x, y)= (x1, . . . , x p, y1, . . . , yp) ∈N2p. Then (x, y) is a nonzero solution of
the above equation if and only if (x1, . . . , x p) and (y1, . . . , yp) are elements in
Z(π(x1, . . . , x p)). For n ∈ S, we write

In(S)= {(x1, . . . , x p, y1, . . . , yp) ∈ I(S) | π(x1, . . . , x p)= n}.

We have the following.

Theorem 2 [Chapman et al. 2009, Theorem 2]. Let S be a numerical semigroup
minimally generated by {n1, . . . , n p}. Then

t(S, {ni })=max{d(a,Zi (π(a))) | a ∈ Np, π(a)− ni ∈ S, Iπ(a)(S) 6=∅}.

And clearly, t(S)=max{t(S, {ni }) | i ∈ {1, . . . , p}}.
Let S be a numerical semigroup minimally generated by {n1, . . . , n p}, with

p > 1. Let n ∈ S. Assume that n − ni ∈ S for some i ∈ {1, . . . , p}. We define
ti (n)=max{d(z,Zi (n))|z ∈Z(n)}. Hence t(n)=max{ti (n) | n−ni ∈ S, 1≤ i ≤ p},
and we have that t(S)=max{t(n) | n ∈ S}.

Define

Prim(S)= {n ∈ S | there are a, b ∈ Z(n) with (a, b) ∈ I(S) and a 6= b},

which we call the set of primitive elements of S (note that the condition a 6= b
means (a, b) 6= (ei , ei ) for all i). As we observed above, the catenary degree of S is
attained in one of its Betti elements. The tame degree, in light of the above theorem,
is reached in a primitive element.

Given n ∈ S, define Gn as the graph with vertices given by the minimal gen-
erators ni such that n− ni ∈ S, and edges given by ni n j if n− (ni + n j ) ∈ S. It
can be shown that the number of R-classes (connected components of ∇n) equals
the number of connected components of Gn (see for instance [Rosales and García-
Sánchez 2009, Chapter 7]). From [Blanco et al. 2011, Lemma 5.4], it can be deduced
that if n is minimal in S with t(S) = t(n), then the graph Gn is not complete, as
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proved by Alfredo Sánchez-R. Navarro in a forthcoming Ph.D. dissertation. Denote
by NC(S) the set

NC(S)= {n ∈ S | Gn is not complete}.
Then

t(S)=max{t(s) | s ∈ Prim(S)∩NC(S)}.

2.2. Symmetric numerical semigroups. In this subsection we follow the notation
used in [Rosales and García-Sánchez 2009, Chapter 3].

A numerical semigroup is irreducible if it cannot be expressed as the intersection
of two numerical semigroups properly containing it.

A numerical semigroup S is symmetric if it is irreducible and F(S) is odd.
The following characterization is sometimes used as the definition of a symmetric

numerical semigroup.

Proposition 3. Let S be a numerical semigroup. Then, S is symmetric if and only if
for all x ∈ Z, x /∈ S implies F(S)− x ∈ S.

2.3. Gluing of numerical semigroups. There is an easy way to obtain symmetric
numerical semigroups from other symmetric numerical semigroups (this also applies
to complete intersections, but for complete intersections this construction fully
characterizes them). The proofs of the results in this paragraph can be found in
[Rosales and García-Sánchez 2009, Chapters 7 and 8].

Theorem 4. Let S be a numerical semigroup. Then the cardinality of a minimal
presentation for S is greater than or equal to e(S)− 1.

A numerical semigroup is a complete intersection if the cardinality of any of its
minimal presentations equals its embedding dimension minus one.

Let S1 and S2 be two numerical semigroups minimally generated by {n1, . . . , nr }

and {nr+1, . . . , ne}, respectively. Let λ∈ S1\{n1, . . . , nr } andµ∈ S2\{nr+1, . . . , ne}

be such that gcd(λ, µ)= 1. We say that

S = 〈µn1, . . . , µnr , λnr+1, . . . , λne〉

is a gluing of S1 and S2.
The following characterization of complete intersections was first given by

Delorme [1976] (though with different notation).

Theorem 5. A numerical semigroup other than N is a complete intersection if and
only if it is a gluing of two complete intersection numerical semigroups.

Also the symmetric property is preserved under gluings. As a consequence of
this, every complete intersection numerical semigroup is symmetric.

Proposition 6. A gluing of symmetric numerical semigroups is symmetric.
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Corollary 7. Every complete intersection numerical semigroup is symmetric.

Corollary 8. Every numerical semigroup of embedding dimension two is symmetric.

If in the process of gluing S1 and S2 we always take S2 to be a copy of N, we
obtain a special class of complete intersections. A numerical semigroup S is free if
it is either N or the gluing of a free numerical semigroup with N.

2.4. Numerical semigroups of embedding dimension three.

Theorem 9 [Herzog 1970]. Let S be a numerical semigroup with embedding di-
mension three. Then, S is a complete intersection if and only if it is symmetric.

Symmetric numerical semigroups with embedding dimension three are free since
they are a gluing of a numerical semigroup of embedding dimension two and N.
This can be used to give an explicit description of the minimal generators of a
semigroup of this kind.

Theorem 10 [Rosales and García-Sánchez 2009, Theorem 10.6]. Let m1 and m2

be two relatively prime integers greater than one. Let a, b and c be nonnegative
integers with a ≥ 2, b+ c ≥ 2 and gcd(a, bm1+ cm2)= 1.

Then S = 〈am1, am2, bm1 + cm2〉 is a symmetric numerical semigroup with
embedding dimension three. Moreover, every symmetric numerical semigroup of
embedding dimension three is of this form.

Let S= 〈n1 < n2 < n3〉 be a numerical semigroup of embedding dimension three.
Define

ci =min
{
k ∈ N \ {0} | kni ∈ 〈n j , nk〉, {i, j, k} = {1, 2, 3}

}
.

Then, for all {i, j, k} = {1, 2, 3}, there exists some ri j , rik ∈ N such that

ci ni = ri j n j + riknk .

From Example 8.23 and Theorem 8.17 in [loc. cit.], we know that

Betti(S)= {c1n1, c2n2, c3n3}.

Hence 1≤ # Betti(S)≤ 3. Herzog [1970] proved that S is symmetric if and only if
ri j = 0 for some i, j ∈ {1, 2, 3}, or equivalently, # Betti(S) ∈ {1, 2}. Therefore, S is
nonsymmetric if and only if # Betti(S)= 3.

3. Catenary and tame degrees in embedding dimension three

Let S be a numerical semigroup of embedding dimension three minimally gen-
erated by {n1, n2, n3} with n1 < n2 < n3. Corollary 5.8 in [Blanco et al. 2011]
states that c(S)= t(S) for S a nonsymmetric numerical semigroup of embedding
dimension three. It also gives an explicit formula for c(S) (and consequently t(S)).
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For this reason, we focus henceforth on the case when S is symmetric, and thus
# Betti(S) ∈ {1, 2}.

Notice that if n ∈Betti(S), then Gn is not connected, and so it cannot be complete.
Hence Betti(S)⊆ NC(S). Also the minimality of ci forces ci ni ∈ Prim(S). Thus,

Betti(S)⊆ Prim(S)∩NC(S).

(This is true not only for embedding dimension three, but in this case the inclusion
is straightforward.)

Numerical experiments were performed using the GAP package numericalsgps
[GAP; Delgado et al. 2013].

3.1. When S has two Betti elements. We first give several technical lemmas that
will be used in the following subcases.

Let ci be as above. Denote by ei the i-th row of the 3× 3 identity matrix.

Lemma 11. Assume that ci ni = c j n j 6= cknk for some {i, j, k} = {1, 2, 3}. Then

(1) Z(ci ni )= {ci ei , c j e j },

(2) the set Z(cknk) has two R-classes: {ckek} and Z(cknk) \ {ckek},

(3) S is uniquely presented if and only if Z(cknk)\{ckek}= {rki ei+rk j e j } for some
rki , rk j ∈ N \ {0}, with 0< rki < ci and 0< rk j < c j .

Proof. (1) Assume that there exists ai ei + a j e j + akek ∈ Z(ci ni ) \ {ci ei , c j e j }.
Then ai < ci since otherwise (ai − ci )ni + a j n j + aknk = 0, which leads to
ai = ci , a j = 0 and ak = 0, contradicting that ai ei + a j e j + akek 6= ci ei . Hence
a j n j + aknk = (ci − ai )ni . The minimality of ci forces ai = 0. Arguing analo-
gously, we obtain that a j < c j . But then (c j − a j )n j = aknk , and the minimality
of c j yields a j = 0. Thus ci ni = c j n j = aknk . This implies that ak > ck (the
equality cannot hold since we are assuming that ci ni = c j n j 6= cknk). Thus,
ci ni = c j n j = (ak − ck)nk + rk j n j + rki ni for some rk j , rki ∈ N with rk j + rki 6= 0.
Assume without loss of generality that rk j 6= 0. Then the minimality of c j forces
c j ≤ rk j , and consequently (ak−ck)nk+(rk j−c j )n j+rki ni =0, which is impossible
since ak − ck 6= 0.

(2) We already know that cknk ∈ Betti(S), and so Z(cknk) contains at least two R-
classes. Denote by R1 the one containing ckek . If there exists another element in R1,
then there are some ai , a j , ak ∈N, ak 6=0, such that cknk=ai ni+a j n j+aknk . From
the minimality of ck we deduce that ck ≤ ak , whence ai ni + a j n j + (ak − ck)nk = 0.
But this implies that ai = a j = 0 and ak = ck , contradicting that ai ei + a j e j + akek

was a factorization of cknk different from ckek .
Now take any other element in Z(cknk) \ {ckek}, say ai ei + a j e j + akek . By the

same argument used in the preceding paragraph, we deduce that ak = 0. Assume
that ai = 0. Then a j n j = cknk , and the minimality of c j implies that a j > c j
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(the equality cannot hold since c j n j 6= cknk). Hence (a j − c j )n j + ci ni = cknk ,
and a j e j R (a j − c j )e j + ci ei . The same holds if a j = 0, and we deduce that all
factorizations different from ckek are R-related.

(3) If S is uniquely presented, then Z(cknk) has exactly two elements, say ckek

and rki ei + rk j e j , each in a different R-class [García-Sánchez and Ojeda 2010].
Observe that if either rki = 0 or rk j = 0, arguing as above, we deduce that cknk has
at least three factorizations, which is impossible. Also rki ≥ ci or rk j ≥ ck yields a
new factorization.

For the converse, assume that cknk = rki ni + rk j n j with 0 < rki < ci and
0< rk j < c j . If (akek+ai ei+a j e j )∈Z(c3n3)\{ckek, rki ei+rk j e j }, as Z(cknk) has
two R-classes and one of them is {ckek}, we have that ak = 0. Hence ai ni+a j n j =

rki ni+rk j n j . If (ai , a j )≥ (rki , rk j ), we obtain (ai−rki )ni+(a j−rk j )n j = 0, which
yields ai = rki and a j = rk j , which is impossible (here≤ denotes the usual partial or-
der on N2; that is, (a, b)≤ (c, d) if (c−a, d−b)∈N2, and analogously for≥). Also
(ai , a j )≤ (rki , rk j ) leads to the same contradiction. So, either ai ≥ rki and ak ≤ rk j

(and not equality in both), or ai ≤ rki and ak ≥ rk j . By symmetry, and without loss
of generality, assume that the first possibility holds. Then (ai−rki )ni = (rk j−a j )n j .
But this implies that rk j−a j ≥ c j , whence rk j ≥ c j , contradicting the hypothesis. �

Since we are assuming n1<n2<n3, the following two lemmas are easy to prove.

Lemma 12. The inequality c3<r31+r32 holds for any r31e1+r32e2∈Z(c3n3)\{c3e3}.

Proof. Since n1 < n2 < n3, we have c3n3 = r31n1 + r32n2 < r31n3 + r32n3, and
hence c3 < r31+ r32. �

Lemma 13. For all r12e2+ r13e3 ∈ Z(c1n1) \ {c1e1}, we have r12+ r13 < c1.

Proof. We have c1n1 = r12n2 + r13n3 > r12n1 + r13n1 = (r12 + r13)n1, and thus
r12+ r13 < c1. �

The case c1n1 = c2n2 6= c3n3. Recall that we want to compute µ(b) for b a Betti
element (Theorem 1). So we must see what factorizations in every R-class have
minimum length.

In our setting c1n1 = c2n2 implies c2 < c1 because n1 < n2.

Proposition 14. Let S = 〈n1, n2, n3〉 with n1 < n2 < n3 and c1n1 = c2n2 6= c3n3.
Then c(S) < t(S).

Proof. By Lemma 11, Z(c3n3) has two R-classes: {c3e3} and Z(c3n3) \ {(c3e3}.
Denote {c3e3} by R1 and its complement in Z(c3e3) by R2. Lemma 12 implies that
c(c3n3)=min{r + s | (r, s, 0) ∈ R2}, and as c(c1n1)= c(c2n2)= c1 (c1 > c2), from
Theorem 1, we deduce that

c(S)=max
{
c1,min{r + s | (r, s, 0) ∈ R2}

}
.
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We distinguish two cases, depending on whether or not S is uniquely presented.
Assume first that S is not uniquely presented. Let (u, v, 0) ∈ Z(c3n3) be such that
u+ v =max{r + s | (r, s, 0) ∈ R2}. As S is not uniquely presented, either u ≥ c1

or v ≥ c2. If v ≥ c2, then (u + c1, v − c2, 0) ∈ Z(c3n3), and u + c1 + v − c2 =

u+ v+ (c1− c2) > u+ v, in contradiction with the maximality of u+ v. Hence
v < c2 and u ≥ c1. If u = c1, then v 6= 0 since c1n1 6= c3n3. So u+ v > c1. Then
t(S) ≥ d((u, v, 0), (0, 0, c3)), which by Lemma 12 equals u + v. Observe that
u+ v >min{r + s | (r, s, 0) ∈ R2}. Therefore

t(S) >max
{
min{r + s | (r, s, 0) ∈ R2}, c1

}
= c(S).

Now assume that S is uniquely presented. By Lemma 11, there exists one and
only one (r31, r32) ∈ N2 such that c3n3 = r31n1 + r32n2 with 0 < r31 < c1 and
0< r32 < c2, and consequently r32 < c1.

Take
n = (c2− r32)n2+ c3n3 = r31n1+ c2n2 = (c1+ r31)n1.

Observe that n has just the three factorizations (0, c2 − r32, c3), (r31, c2, 0) and
(c1+ r31, 0, 0). To see this, assume to the contrary that there exists a1, a2, a3 ∈ N

such that n = a1n1+ a2n2+ a3n3 and

(a1, a2, a3) 6∈ {(0, c2− r32, c3), (r31, c2, 0), (r31+ c1, 0, 0)}.

Since a1n1+a2n2+a3n3 = (c1+r31)n1, we easily deduce that a1 < c1+r31. Thus
a2n2+ a3n3 = (r31+ c1− a1)n1, so c1+ r31− a1 > c1, and hence a1 < r31 < c1.

• If c2 − r32 ≤ a2, from a1n1 + a2n2 + a3n3 = (c2 − r32)n2 + c3n3, we obtain
(c3−a3)n3= a1n1+(a2−c2+r32)n2> 0. Hence c3−a3≥ c3, or equivalently,
a3 ≤ 0, which forces a3 = 0. This implies c3n3 = a1n1+ (a2−c2+r32)n2. As
Z(c3n3)= {c3e3, r31e1+ r32e2}, we get a2 = c2, which is impossible.

• If, instead, a2 < c2 − r32, from a1n1 + a2n2 + a3n3 = r31n1 + c2n2, we
obtain a3n3 = (r31 − a1)n1 + (c2 − a2)n2 and then a3 ≥ c3. Then, from
a1n1+ a2n2+ a3n3 =(c2− r32)n2+ c3n3, it follows that (c2− r32− a2)n2 =

a1n1+(a3−c3)n3, whence c2−r32−a2≥c2; that is, r32+a2≤0, a contradiction.

Hence we have Z(n)= {(0, c2− r32, c3), (r31, c2, 0), (c1+ r31, 0, 0)}. Observe
that

t(n)≥ d
(
(c1+r31, 0, 0), (0, c2−r32, c3)

)
=max{c2−r32+c3, r31+c1} = r31+c1

(because (r31+c1)n1= (c2−r32)n2+c3n3>(c2−r32)n1+c3n1= (c2−r32+c3)n1,
which yields r31+ c1 > c2− r32+ c3). Then t(n) >max{c1, r31+ r32}, and hence
t(S)≥ t(n) > c(S). �
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Example 15. As an illustration, we offer a numerical semigroup of embedding
dimension three 〈n1, n2, n3〉 that is a gluing of 〈n1, n2〉/gcd(n1, n2) and N.

We make use of the GAP package numericalsgps to perform the calculations.
We try it with S = 〈4, 6, 7〉. Actually, we first started with S1 = 〈2, 3〉 and S2 = N,
and glued them together as S = 〈2× 2, 2× 3, 7× 1〉; that is, λ= 2 and µ= 7 with
the notations of Section 2.3. The choices of λ= 2 and µ= 7 are restricted by the
following facts: they must belong to S2 and S1, respectively, and cannot be minimal
generators; we also need n1 < n2 < n3.

gap> s:=NumericalSemigroup(4,6,7);
<Numerical semigroup with 3 generators>
gap> AsGluingOfNumericalSemigroups(s);
[ [ [ 4, 6 ], [ 7 ] ] ]

Now we compute a minimal presentation of S and the Betti elements of S.

gap> MinimalPresentationOfNumericalSemigroup(s);
[ [ [ 2, 1, 0 ], [ 0, 0, 2 ] ], [ [ 3, 0, 0 ], [ 0, 2, 0 ] ] ]
gap> BettiElementsOfNumericalSemigroup(s);
[ 12, 14 ]

Finally, we see that c(S) < t(S).

gap> CatenaryDegreeOfNumericalSemigroup(s);
3
gap> TameDegreeOfNumericalSemigroup(s);
5

The case c1n1 6= c2n2 = c3n3. Observe that c2n2 = c3n3 forces c3 < c2.

Lemma 16. If c1n1 6= c2n2 = c3n3, then c(S)=max{c1, c2}.

Proof. By Theorem 1, the catenary degree is reached in one of the two Betti
elements: Betti(S) = {c1n1, c2n2 = c3n3}. From Lemma 11, we have c(c2n2) =

max{c2, c3} = c2, and from Lemma 13, c(c1)= c1. So c(S)=max{c1, c2}. �

Proposition 17. Let S = 〈n1, n2, n3〉 with n1 < n2 < n3 and c1n1 6= c2n2 = c3n3.
If c2n2 - c1n1, then t(S) > c(S).

Proof. From Lemma 16, we know that c(S)=max{c1, c2}. As before, we distinguish
two cases, depending on whether or not S is uniquely presented.

Assume first that S is uniquely presented. In light of Lemma 11, there exists
r12, r13 ∈ N \ {0} such that Z(c1n1) = {c1e1, r12e2+ r13e3}, r12 < c2 and r13 < c3

(thus r13 < c2). Set

n = c1n1+ (c2− r12)n2 = c2n2+ r13n3 = (c3+ r13)n3.
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As in the proof of Proposition 14, we can see that

Z(n)= {(c1, c2− r12, 0), (0, c2, r13), (0, 0, c3+ r13)}.

Then t(n)≥ d
(
(c1, c2−r12, 0), (0, 0, c3+r13)

)
= c1+c2−r12 (since c1 > r12+r13

and c2 > c3 imply c1 + c2 − r12 > c3 + r13). By observing that c1 > r12, we get
c1−r12> 0, and then c1+c2−r12> c2. Also r12< c2 implies c1+c2−r12> c1. So
t(n)≥ c1+c2−r12 >max{c1, c2} = c(S), and we conclude that t(S)≥ t(n) > c(S).

Now suppose S is not uniquely presented. From Lemma 11, we deduce that
there exists an expression c1n1 = r12n2 + r13n3, and we have either r12 ≥ c2 or
r13 ≥ c3. Without loss of generality suppose that r13 ≥ c3. If r12 ≥ c2, we derive
c1n1 = (r12− c2)n2+ (r13+ c3)n3. So we can assume, in addition, that r12 < c2.

Case 1: If r12 6= 0, take n = (c3+ r13)n3. We prove that the only factorization with
nonzero first coordinate of n is (c1, c2− r12, 0). Assume to the contrary that

(c3+ r13)n3 = c1a1+ (c2− r12)n2 = a1n1+ a2n2+ a3n3,

with a1, a2, a3 ∈ N, a1 6= 0 and (a1, a2, a3) 6= (c1, c2− r12, 0). Then a3 < c3+ r13

since otherwise a1n1 + a2n2 + (a3 − c3 − r13)n3 = 0, and this forces a1 = 0, a
contradiction. Hence (c3+ r13− a3)n3 = a1n1+ a2n2, and thus c3+ r13− a3 ≥ c3,
or equivalently, r13 ≥ a3. Thus c3n3 + (r13 − a3)n3 = a1n1 + a2n2, which leads
to c2n2 + (r13 − a3)n3 = a1n1 + a2n2. Since r12 6= 0, we derive a1 < c1 because
otherwise (c2−r12)n2= (a1− c1)n1+ a2n2+ a3n3, and this either leads to a1= c1,
a2 = c2− r12 and a3 = 0, which is impossible, or contradicts the minimality of c2.
As c2n2 + (r13 − a3)n3 = a1n1 + a2n2 and a1 < c1, we have a2 ≥ c2. Hence
(r13−a3)n3 = a1n1+ (a2−c2)n2. This again leads to r12−a3 ≥ c3. We can repeat
the process and obtain (r13−a3−kc3)n3 = a1n1+ (a2− (k+1)c2)n2 for all k ∈N,
which leads also to a contradiction.

Now, we have that

t(n)≥d
(
(0, 0, c3+r13), (c1, c2−r12, 0)

)
=max{c3+r13, c1+c2−r12}=c1+c2−r12

because (c3+r13)n3= c1n1+(c2−r12)n2< c1n3+(c2−r12)n3= (c1+c2−r12)n3.
Thus this distance is greater than both c1 and c2. In fact, c1+ c2− r12 > c1 follows
easily from c2 > r12, and c1+c2−r12 > c2 follows from c1 > r12+r13 (Lemma 16).

Case 2: If r12 = 0, then c1n1 = r13n3, so we get the inequalities c3 < r13 < c1.
Take h =min{m ∈ N | mc3 > r13} (h ≥ 2) and let us consider n = hc3n3. Clearly,
{(0, 0, hc3), (c1, 0, hc3− r13), (0, hc2, 0)} ⊆ Z(n). We prove that the only factor-
ization of n with nonzero first coordinate is (c1, 0, hc3− r13).

To see this, notice that the minimality of h forces hc3− r13 ≤ c3 since otherwise
(h−1)c3 > r13. Also hc3−r13 = c3 implies that (h−1)c3 = r13, and consequently
c1n1=r13n3= (h−1)c3n3= (h−1)c2n2, which means that c2n2 |c1n1, contradicting
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the hypothesis. Hence hc2 − r13 < c3. Assume that there is another expression
of the form n = hc3n3 = a1n1 + a2n2 + a3n3 with a1 6= 0. We can assume that
a2 < c2 because otherwise (a1, a2− c2, a3+ c3) is another factorization of n, and
we can repeat this procedure until the second coordinate is less than c2. Thus
(hc3− r13)n3+ c1n1 = a1n1+ a2n2+ a3n3.

• If a3≥ hc3−r13, then c1n1= a1n1+a2n2+(a3+r13−hc3)n3. The minimality
of c1 forces a1≥c1, and consequently (a1−c1)n1+a2n2+(a3+r13−hc3)n3=0.
This can only happen if (a1, a2, a3)= (c1, 0, hc3− r13), a contradiction.

• If a3<hc3−r13, then (hc3−r13−a3)n3+c1n1=a1n1+a2n2. As hc3−r13<c3,
it follows that c1 > a1, and thus (hc3− r13− a3)n3+ (c1− a1)n1 = a2n2. But
this forces a2 = 0 since otherwise a2 ≥ c2, contradicting the choice of a2.
Again we obtain (a1, a2, a3)= (c1, 0, hc3− r13).

Since hc3 > r13 and hc2 > c2, we have

t(S)≥ d((c1, 0, hc3− r13), (0, hc2, 0))

=max{c1+ hc3− r13, hc2}>max{c1, c2} = c(S). �

Example 18. We use the same idea of Example 15. Here we need a gluing of N and
〈n2, n3〉/gcd(n2, n3). We start again with N and 〈2, 3〉. As we need n1 < n2 < n3,
we choose, for example, λ= 5 and µ= 4, obtaining S = 〈5, 8, 12〉.

gap> s:=NumericalSemigroup(5,8,12);;
gap> AsGluingOfNumericalSemigroups(s);
[ [ [ 5 ], [ 8, 12 ] ] ]

The minimal presentation and Betti elements of S are

gap> MinimalPresentationOfNumericalSemigroup(s);
[ [ [ 0, 3, 0 ], [ 0, 0, 2 ] ], [ [ 4, 0, 0 ], [ 0, 1, 1 ] ] ]
gap> BettiElementsOfNumericalSemigroup(s);
[ 20, 24 ]

Finally, we check that indeed c(S) < t(S).

gap> CatenaryDegreeOfNumericalSemigroup(s);
4
gap> TameDegreeOfNumericalSemigroup(s);
6

Proposition 19. Let S = 〈n1, n2, n3〉 with n1 < n2 < n3 and c1n1 6= c2n2 = c3n3.
If c2n2 | c1n1, then t(S)= c(S).

Proof. Since c2n2 | c1n1 and c2n2 6= c1n1, we deduce that c1n1 = kc2n2 for some
integer k ≥ 1.
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We start by proving that Betti(S)= Prim(S)∩NC(S). Assume that there exists
n ∈ (Prim(S)∩NC(S)) \Betti(S). Then, for some permutation (i, j, k) of (1, 2, 3)
and some ai , a j , ak ∈N with ai > 0 and a j+ak ≥ 2, we have n=ai ni =a j n j+aknk

and ai ei + a j e j+3+ akek+3 ∈ In(S). We distinguish three cases depending on i .

Case 1: If i = 1, then n=a1n1=a2n2+a3n3. Hence a1≥ c1, and since n 6∈Betti(S),
a1 > c1. This implies that

n = a1n1 = (a1− c1)n1+ c1n1 = (a1− c1)n1+ (k− 1)c2n2+ c3n2,

and consequently the graph associated to n is complete, a contradiction.

Case 2: If i = 2, then n = a2n2 = a1n1+ a3n3. As above, we deduce that a2 > c2.
Hence n = a2n2 = (a2 − c2)n2 + c3n3 = a1n1 + a3n3, and in particular the edge
n2n3 is in the graph associated to n.

Assume that a3≥ c3. Then (a2−c2)n2= a1n1+(a3−c3)n3. But this implies that
(a1, 0, a3− c3, 0, a2− c2, 0) < (a1, 0, a3, 0, a2, 0), contradicting that n ∈ Prim(S).
Thus, a3 < c3, and then (a2 − c2)n2 + (c3 − a3)n3 = a1n1. The minimality of c1

leads to a1 ≥ c1. If a1 = c1, then a2n2 = kc2n2 + a3n3. The fact that a3 < c3

forces kc2 ≥ a2. But then, 0= (kc2− a2)n2+ a3n3 which implies that a3 = 0, and
consequently n = c1n1 ∈ Betti(S), a contradiction. It follows that a1 > c1. We
conclude that

n = a2n2 = a1n1+ a3n3 = (a1− c1)n1+ kc2n2+ a3n3

= (a1− c1)n1+ (kc3+ a3)n3,

and thus the graph associated to n is complete.

Case 3: The case i = 3 is analogous to the previous one.

Hence t(S)=max{t(c1n1), t(c2n2)}. We already know that Z(c2n2)={c2e2,c3e3},
and then t(c2n2) = c2. Also every factorization of c1n1 is either c1e1 or some
xe2+ ye3 with x + y < c1. It follows that t(c1n1)= c1. We conclude the proof by
using Lemma 16. �

Example 20. We use once more S1 =N and S2 = 〈2, 3〉. We need c2n2 | c1n1. We
choose λ= 12 and µ= 7, obtaining S = 〈12, 14, 21〉.

gap> s:=NumericalSemigroup(12,14,21);;
gap> AsGluingOfNumericalSemigroups(s);
[ [ [ 12 ], [ 14, 21 ] ], [ [ 12, 14 ], [ 21 ] ],

[ [ 12, 21 ], [ 14 ] ] ]
gap> MinimalPresentationOfNumericalSemigroup(s);
[ [ [ 0, 3, 0 ], [ 0, 0, 2 ] ], [ [ 7, 0, 0 ], [ 0, 0, 4 ] ] ]
gap> BettiElementsOfNumericalSemigroup(s);
[ 42, 84 ]
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Thus c1n1 = 7× 12= 22
× 3× 7, which is a multiple of c2n2 = 3× 14= 2× 3× 7.

We check that the tame and catenary degrees agree in this case.

gap> CatenaryDegreeOfNumericalSemigroup(s);
7
gap> TameDegreeOfNumericalSemigroup(s);
7

The case c1n1 = c3n3 6= c2n2.

Proposition 21. Let S = 〈n1, n2, n3〉 with n1 < n2 < n3 and c1n1 = c3n3 6= c2n2.
Then c(S) < t(S).

Proof. The catenary degree is reached in one of the two Betti elements, Betti(S)=
{c1n1, c2n2}.

We know that c(c1n1)= c1 and that Z(c2n2) has just two R-classes, say R1 =

{(0, c2, 0)} and R2 = Z(c2n2) \ R1 (Lemma 11). Take (r21, 0, r23) ∈ R2 such that
r21+ r23 =min{r + s | (r, 0, s) ∈ R2}. Hence, c(c2n2)=max{c2, r21+ r23}. So we
can conclude that c(S)=max{c1, c2, r21+ r23} (Theorem 1).

Since c2n2 = r21n1+ r23n3 > r23n2, we have r23 < c2. Moreover, c1 > c3, and
so if r21 ≥ c1, we have r21n1+r23n3 = (r21−c1)n1+ (r23+c3)n3, with r21+r23 >

r21+ r23+ c3− c1, contradicting the minimality of r21+ r23. Therefore, r21 < c1.
We distinguish two cases.

Case 1: If r21 6=0, then take n = (c1− r21)n1+ c2n2 = c1n1+ r23n3 = (c3+ r23)n3.
We prove that the only factorization of n with nonzero second coordinate is
(c1− r21, c2, 0). Assume that there exists (a1, a2, a3) ∈ Z(n) \ {(c1 − r21, c2, 0)}
with a2 6= 0. Since a1n1+ a2n2+ a3n3 = (c3+ r23)n3, we can easily deduce that
a3 < c3+ r23. Thus a1n1 + a2n2 = (c3 + r23 − a3)n3, so c3 + r23 − a3 > c3, and
hence a3 < r23.

If c1 − r21 ≤ a1, from a1n1 + a2n2 + a3n3 = (c1 − r21)n1 + c2n2, we obtain
(c2− a2)n2 = (a1− c1+ r21)n1+ a3n3 > 0. Hence c2− a2 ≥ c2, or equivalently
a2 ≤ 0, which forces a2 = 0.

If, instead, a1 < c1− r21, from a1n1+ a2n2+ a3n3 = c1n1+ r23n3, we obtain
a2n2 = (r23− a3)n3+ (c1− a1)n1, and then a2 ≥ c2. From a1n1+ a2n2+ a3n3 =

(c1− r21)n1+ c2n2, it follows that (c1− r21− a1)n1 = (a2− c2)n2+ a3n3. Thus,
c1− r21− a1 ≥ c1, that is, r21+ a1 ≤ 0, and then a1 = r21 = 0, a contradiction.

Hence, t(n)≥ d
(
(c1−r21, c2, 0), (0, 0, c3+r23)

)
=max{c1−r21+c2, c3+r23}=

c1− r21+ c2, since (c3+ r23)n3 = (c1− r21)n1+ c2n2 < (c1− r21+ c2)n3.
Now we have

• c1 − r21 + c2 > c1 since (c2 − r21)n2 > c2n2 − r21n1 = r23n3 > 0 implies
c2− r21 > 0;

• c1− r21+ c2 > c2 since r21 > c1;
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• c1 − r21 + c2 > r21 + r23 since c1 > r21 and (c2 − r21)n2 > c2n2 − r21n1 =

r23n3 > r23n2 implies c2− r21 > r23.

So we finally have that

t(S)≥ d
(
(c1− r21, c2, 0), (0, 0, c3+ r23)

)
>max{c1, c2, r21+ r23} = c(S).

Case 2: If r21 = 0, then c2n2 = r23n3, so we deduce the inequalities c3 < r23 < c2.
Take h =min{m |mc3 > r23} (h ≥ 2) and let us consider n = hc3n3. It follows that

{(0, 0, hc3), (0, c2, hc3− r23), (hc1, 0, 0)} ⊂ Z(n).

Arguing as in Proposition 17, we can prove that the only possible factorizations
with nonzero second coordinate are (0, c2, hc3−r23) and (c1, c2, 0) (this one occurs
only if hc3− r23 = c3).

So we have

• d((0, c2, hc3−r23), (hc1, 0, 0))=max{c2+hc3−r23, hc1}>max{c1, c2, r23}=

max{c1, c2} = c(S) since hc3 > r23 and hc1 > c1;

• if hc3− r23 = c3, then c2n2 = (h− 1)c1n1, and consequently (h− 1)c1 > c2

and h− 1> 1 (recall that c2n2 6= c1n1), whence

d((c1, c2, 0), (hc1, 0, 0))=max{(h− 1)c1, c2}> c(S).

We conclude that t(S) > c(S). �

Example 22. As in the preceding example we start with S1 = N and S2 = 〈2, 3〉.
We need n1 < n2 < n3, that is 2µ < λ < 3µ. For the first case of the proof of
Proposition 21 (r21 6= 0), we choose λ= 5 and µ= 2.

gap> s:=NumericalSemigroup(4,5,6);;
gap> AsGluingOfNumericalSemigroups(s);
[ [ [ 4, 6 ], [ 5 ] ] ]
gap> MinimalPresentationOfNumericalSemigroup(s);
[ [ [ 0, 2, 0 ], [ 1, 0, 1 ] ], [ [ 3, 0, 0 ], [ 0, 0, 2 ] ] ]
gap> BettiElementsOfNumericalSemigroup(s);
[ 10, 12 ]
gap> CatenaryDegreeOfNumericalSemigroup(s);
3
gap> TameDegreeOfNumericalSemigroup(s);
4

For the second case, r21 = 0, we choose λ= 18 and µ= 7.

gap> s:=NumericalSemigroup(14,18,21);;
gap> AsGluingOfNumericalSemigroups(s);
[ [ [ 14 ], [ 18, 21 ] ], [ [ 14, 18 ], [ 21 ] ],
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[ [ 14, 21 ], [ 18 ] ] ]
gap> MinimalPresentationOfNumericalSemigroup(s);
[ [ [ 0, 0, 6 ], [ 0, 7, 0 ] ], [ [ 3, 0, 0 ], [ 0, 0, 2 ] ] ]
gap> BettiElementsOfNumericalSemigroup(s);
[ 42, 126 ]
gap> CatenaryDegreeOfNumericalSemigroup(s);
7
gap> TameDegreeOfNumericalSemigroup(s);
9

3.2. When S has a single Betti element. Numerical semigroups having a single
Betti element are fully characterized in [García Sánchez et al. 2013, Theorem 12].
The following proposition is a particular instance of [loc. cit., Theorem 19]; we
include it here for sake of completeness.

Proposition 23. Let S = 〈n1, n2, n3〉 with n1 < n2 < n3 and c1n1 = c2n2 = c3n3.
Then c(S)= t(S).

Proof. Take h = c1n1 = c2n2 = c3n3. The catenary degree of S is reached in one of
the Betti elements; since in our case Betti(S)= {c1n1 = c2n2 = c3n3 = h}, we get
c(S)= c(h)=max{c1, c2, c3} = c1.

We know that the tame degree is reached in some n ∈ Prim(S)∩NC(S). Since
we have that Betti(S)⊆ Prim(S)∩NC(S) and t(h)=max{c1, c2, c3} = c1, in order
to prove that c(S) = t(S), we show that Betti(S) = Prim(S) ∩ NC(S). To this
end, take n ∈ (Prim(S)∩NC(S)) \Betti(S). So n = ai ni = a j n j + aknk for some
{i, j, k} = {1, 2, 3}. It follows that ai ≥ ci and, since n /∈ Betti(S), we have ai 6= ci .
So ai > ci . Then we have two cases:

• If a j ak 6= 0, then n /∈NC(S) because n= (ai−ci )ni+c j n j = (ai−ci )ni+cknk ,
and consequently Gn is a triangle.

• If a j = 0, then ak > ck , so we get (ak−ck)nk+c j n j = ai ni = (ai−ci )ni+cknk ,
and then Gn is a triangle.

In any case we get a contradiction. �

Example 24. If we want c1n1 = c2n2 = c3n3, according to [García Sánchez et al.
2013, Theorem 12], we need three pairwise coprime integers greater than one, and
then we need to take all of the products of any two of them. The easiest example is
2, 3, 5, and thus n1 = 2× 3, n2 = 2× 5 and n3 = 3× 5.

gap> s:=NumericalSemigroup(6,10,15);
<Numerical semigroup with 3 generators>
gap> AsGluingOfNumericalSemigroups(s);
[ [ [ 6 ], [ 10, 15 ] ], [ [ 6, 10 ], [ 15 ] ],
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[ [ 6, 15 ], [ 10 ] ] ]
gap> BettiElementsOfNumericalSemigroup(s);
[ 30 ]
gap> MinimalPresentationOfNumericalSemigroup(s);
[ [ [ 5, 0, 0 ], [ 0, 0, 2 ] ], [ [ 5, 0, 0 ], [ 0, 3, 0 ] ] ]
gap> CatenaryDegreeOfNumericalSemigroup(s);
5
gap> TameDegreeOfNumericalSemigroup(s);
5

4. Main result

Gathering the results from the previous section, we obtain the following theorem.

Theorem 25. Let S be a numerical semigroup of embedding dimension three mini-
mally generated by {n1, n2, n3}. For every {i, j, k} = {1, 2, 3}, define

ci =min{k ∈ N \ {0} | kni ∈ 〈n j , nk〉}.

Then c(S)= t(S) if and only if

• either # Betti(S) 6= 2,

• or c1n1 6= c2n2 = c3n3 and c2n2 divides c1n1.
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Cylindrical liquid bridges
Lamont Colter and Ray Treinen

(Communicated by Frank Morgan)

We consider a cylindrical liquid bridge under capillary effects, spanning two
horizontal plates and further bounded by a pair of parallel vertical planes. We
explicitly formulate the volume-constrained problem and describe a numerical
procedure for approximating the solution. Finally, a problem of finding the
minimum spanning volume is considered.

1. Introduction

We consider a fluid trapped between two horizontal plates P0, Ph , and further
bounded by two parallel vertical planes 50,5d . Define the distance between P0

and Ph to be h, and that between 50 and 5d to be d. We orient a coordinate
system (x, y, z) so that P0 is given by z ≡ 0 and Ph is given by z ≡ h, while 50 is
given by y ≡ 0 and 5d is given by y ≡ d. We assume that the fluid is connected
and any wetted portions of the plates are simply connected. The fluid then has a
free interface 3 bounding a volume in the x-direction, and we denote the enclosed
volume by V . For an example, see Figure 1, where we have not drawn 50 or 5d .

We consider dominant energies due to surface tension, wetting energy and
gravitational potential energy. This gives the energy functional

E[3] = σA[3] − σβW[3] +
∫
V
ρgz dz, (1)

where σ is the (constant) surface tension, β is the wetting coefficient, taken to be
constant on each plate, ρ is the uniform fluid density, and g is the gravitational
constant. Further, A is the area functional for the free-surface, and W is the area
functional for the wetted portions of P0, Ph,50 and 5d .

It is well known that the first variation for this functional implies

2H = κu− λ, (2)
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Figure 1. A cylindrical bridge.

where H is the mean curvature of 3, u is the height of the interface, the capillary
constant is κ = ρg/σ , and we have included a Lagrange multiplier λ. It may also be
derived that β = cos γ for a contact angle γ measured within the fluid. The standard
reference is a manuscript by Finn [1986]. In what follows we do not assume that
the interface is a graph over a base domain, though we do restrict our attention to
the physical case where the interface is embedded. See Theorem 2.1 for details on
how we interpret (2).

We make the assumption that β = 0 on 50 and 5d . This implies a contact angle
of π/2 along the intersection of 3 with those planes. As we shall see in Section 2,
this also implies that the free-surface is generated by curves in the plane 50 and is
extended as a right cylinder. See Figure 2 for an example of the generating curves,
where δ/2 denotes the value of the horizontal displacement of the fluid interface
on P0. On the plates P0 and Ph , we allow the constant β to differ at heights 0 and h
and to be any number in [−1, 1]. This corresponds to contact angles along the
intersection of 3 with those plates, which we will denote by γ0 and γh respectively.

In Section 3, we derive a formula for the enclosed volume in terms of the solution
to a version of the differential equation (2) when the fluid remains connected. Then
we give an algorithm for computing the interface 3 with a volume constraint in

γh

γ0

−δ/2 δ/2

Volume V

Figure 2. A liquid bridge.
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Section 4. We use this algorithm to give a numerical approximation of 3 for
different parameters h, γ0, γh , and volume V . Next, in Section 5, we present a
collection of examples. Finally, we explore the minimum spanning volume for
(γ0, γh) ∈ [0, π/2]× [0, π/2] in Section 6.

As far as we have been able to determine, this is the first exploration of liquid
bridges of this type. Three dimensional liquid bridge problems have been studied
by Athanassenas [1992]; Concus, Finn and McCuan [Concus et al. 2001]; Finn
and Vogel [1992]; and Vogel [1982; 1987; 1989; 2005; 2006; 2013]. In recent
work there is a trend to study the lower dimensional versions of certain related fluid
mechanics problems. We point to papers by Bhatnagar and Finn [2006], as well as
by McCuan and Treinen [2013; ≥ 2015], and Wente [2006] for examples of this
approach. In particular, we mention a paper by McCuan [2013] as a model for the
present approach.

2. Symmetries

There are two types of symmetries in the fluid configurations. The first is the
cylindrical symmetry that allows us to restrict our attention to the generating curves
in the 50 plane. The second is a reflective symmetry about the plane x = 0.

An Alexandrov moving plane argument has been successful in establishing sym-
metry properties for similar fluid configurations. See Wente [1980], Treinen [2012],
and McCuan [2013]. The following is a direct consequence of first using those
methods with a moving plane parallel to 50, then a second argument using those
methods with a moving plane parallel to x = 0 can be used to show symmetry
about x = 0. The details are left to the interested reader.

Theorem 2.1. The interface 3 is right-cylindrically symmetric with generating
curves restricted to the plane 50. The generating curves satisfy

dx
ds
= cosψ, (3)

du
ds
= sinψ, (4)

dψ
ds
= κu− λ, (5)

and it suffices to compute one generating curve where x ≥ 0.

Note that then the distance d is not important to our consideration, and hence we
can view our problem in this reduced dimensional setting, or as extending infinitely
in a horizontal direction. With this perspective, we normalize so that d = 1 so
that we are considering volume per unit distance in the y-direction. The solution
may be extended infinitely in both y-directions and be seen as an infinitely long
liquid bridge between two horizontal plates generated by the curves in 50. The
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solution may also interpreted as a lower dimensional problem, where the interfaces
are reduced to curves in the plane 50, spanning a volume that is more properly seen
as an area in 50. This last interpretation is the easiest way to visualize the results of
our computations, and so is our default for figures, even while we continue to use the
terminology of volume and area, and we use them in the sense of per unit distance d .

3. Computing the fluid volume

Consider solutions to (3)–(5) with the boundary conditions

sinψ(0)= cos γ0 at s = 0, where u(0)= 0, (6)

sinψ(`)= cos γh at s = `, where u(`)= h. (7)

Solutions to this two-point boundary value problem will determine a value of x(0),
which we denote by δ/2. We will later use this as a parameter in the process of
constructing approximate solutions, but it is immediately useful in determining a
volume formula as follows.

Theorem 3.1. The volume enclosed by the upper plate, lower plate, and the fluid-air
interface given by area per unit distance in the y-direction satisfies

V = (h− λ)
(

x(`)− δ
2

)
+ sin γ0− sin γh, (8)

where the solutions x, u, and ψ are parametrized by arc length s, with s = 0 at
height u = 0 and s = ` at height u = h.

Proof. We find the volume of the enclosed fluid by computing the right half of the
volume. The geometric idea is to start with a rectangle with height h and width δ/2,
and then add to it the additional volume outside this region. The first configuration
is illustrated in Figure 3. This configuration contains a vertical point given by (x̄, ū),
and this partitions the volume outside of the rectangle into two regions. The lower

u

δ/2 x

Figure 3. The configuration used in the volume computation, with
only the portion x > 0 shown. Here x = x̄ and u = ū, and the plate
heights are 0 and h.
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u

x δ/2

u

x δ/2

Figure 4. Two volume configurations. Here x = x̄ and u = ū, and
plate heights are 0 and h.

region is bounded by δ/2 on the left, u = ū above, and the fluid interface on the
right. The upper region is bounded by x = x(`) on the left, u = ū below, and
the fluid interface on the right. Added to this upper region is a second, smaller,
rectangle of height h− ū and width x(`)− δ/2. So, we calculate using equations
(3)–(5) and integration by parts as follows:

V =
∫ x̄

δ/2
(ū− u) dx +

∫ x̄

x(`)
(u− ū) dx +

(
x(`)− δ

2

)
(h− ū) (9)

= ū
(

x̄ − δ
2
+ x(`)− x̄

)
+

(
x(`)− δ

2

)
(h− ū)+

∫ x̄

x(`)
u dx −

∫ x̄

δ/2
u dx (10)

= h
(

x(`)− δ
2

)
+ ū(0)+

∫ x̄

x(`)
u dx −

∫ x̄

δ/2
u dx (11)

= h
(

x(`)− δ
2

)
+

∫ x̄

x(`)

(dψ
ds
+ λ

)
dx −

∫ x̄

δ/2

(dψ
ds
+ λ

)
dx (12)

= (h− λ)
(

x(`)− δ
2

)
+

∫ x̄

x(`)

dψ
ds

dx −
∫ x̄

δ/2

dψ
ds

dx (13)

= (h− λ)
(

x(`)− δ
2

)
+

∫ π/2

γh−π

cosψ dψ −
∫ π/2

−γ0

cosψ dψ (14)

= (h− λ)
(

x(`)− δ
2

)
+ sin γ0− sin γh . (15)

There are multiple possible configurations; however, it suffices to adapt the above
calculation to these remaining cases:

• x(s) < δ/2 for 0< s < ` and x(`) < δ/2. See Figure 4 (left).

• x(s) < δ/2 for some initial s > 0, and then x(s) increases and x(`) > δ/2. See
Figure 4 (right).
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u

xδ/2 x δ/2

Figure 5. Two remaining volume configurations. Here x = x̄ and
u = ū, and plate heights are 0 and h.

• x(s) > δ/2 for some initial s > 0, and then x(s) decreases and x(`) < δ/2.
See Figure 5 (left).

• There is no vertical point on the interface profile curve. There are many
such configurations; see Figure 5 (right) for a typical example. The volume
computation is straightforward in these cases, only requiring use of (3)–(5). �

4. Numerical solver

We use a shooting method to solve the two-point boundary value problem of (3)–(5)
with boundary conditions (6) and (7). We implement this by nesting two algorithms,
namely an inner implementation of an adaptive Runge–Kutta–Felberg method and
an outer implementation of a multidimensional root finder.

Values for the initial and terminal contact angles γ0, γh , volume V , and height h
are prescribed for the desired solution. The lower conditions for the boundary value
problem are

r(0)= δ
2
, (16)

u(0)= 0, (17)

ψ(0)= γ0, (18)

where the tangent to the curve forms the contact angle γ0 with the lower plate, and
the upper boundary conditions are

u(`)= h, (19)

ψ(`)=−γh, (20)

where the ending arc length ` is chosen to terminate at height h with the tangent to
the curve forming the angle γh with the upper parallel plate.
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1
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u
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Figure 6. A liquid bridge with contact angle π/2 on the upper plate.

Again, the boundary value problem is solved using a shooting method based
on an adaptive ODE solver. The solver uses the adaptive Runge–Kutta–Felberg
method for 4th and 5th order, implemented by Matlab as ODE45. The absolute
and relative tolerances were both set to 1e − 8. To begin to solve the problem,
reasonable guesses are given for the free parameters: the distance between the
generating curves δ, the ending arc length `, and the Lagrange multiplier λ. These
values are used to generate candidates satisfying the ODE. Then the solutions to
(3)–(5) with these values of the free parameters are used to evaluate the equations

V − V (`)= 0, (21)

h− u(`)= 0, (22)

γh −ψ(`)= 0, (23)

which are not, in general, solved. The parameters δ, `, and λ are adjusted in the
multidimensional root finder implemented in Matlab as FSOLVE, which defaults to a
trust region method. The tolerances for this portion of the algorithm were set to 1e−6.
We recompute the solutions to (3)–(5) with new values of the parameters δ, `, and λ
at each step, until (21)–(23) are satisfied to the prescribed tolerance.

5. Examples

We present some examples of note generated with the algorithm described in the
previous section. In Figure 2 we saw a typical example of a configuration where
γ0, γh ∈

[
0, π2

]
. Figure 6 shows a configuration where γh = π/2, and Figure 7

shows a configuration where both γ0, γh > π/2. If the volume does not span the
gap between P0 and Ph , then it will rest on the plate P0 as a sessile drop. We see in
Figure 8 a configuration where (γ0, γh)= (2.57, 1.05), which appears to be close
to the maximum height h before the liquid bridge pinches off of the upper plate Ph

and becomes a sessile drop.
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−1.5 −1 −0.5 0 0.5 1 1.5
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0
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1
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x

Figure 7. A liquid bridge with both γ0 and γh larger than π/2.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.2

0

0.2
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1
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x

Figure 8. A liquid bridge that is visually similar to a sessile drop.

6. Minimum spanning volume

Consider configurations where the contact angles γ0 and γh are both less than π/2.
The phenomenon explored is the minimum volume which admits a solution spanning
the two plates P0 and Ph . In Figure 9 we see that for angles (γ0, γh)= (0.99, 0) and
a particular volume, we have a point on the interior of the fluid interface on the right
that touches a corresponding point on the interior of the fluid interface on the left.

−0.5 0 0.5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

u

x

Figure 9. A liquid bridge with interfaces touching on the interior.
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Figure 10. The minimum spanning volume over a grid of 50× 50
samples in the (γ0, γh)-space.

This is clearly nonphysical and represents an absolute minimum spanning volume.
It is apparent that this contact between the left and right interfaces occurs on either
P0 or Ph if either γ0 > π/2 or γh > π/2. Therefore, we restrict our attention to
the region 0 ≤ γ0 ≤ π/2 and 0 ≤ γh ≤ π/2. We seek a minimum volume where
x(s)= 0 for some s ∈ [0, `].

Observe the crucial fact of the system (3)–(5) that

dψ
ds
= κu− λ

is independent of x , and so the x solution may be translated by a constant. We
are able to use this to some degree to adjust the volume spanned. If the left and
right interfaces are rigidly moved apart in the x-direction, then the spanned volume
increases while still solving the boundary value problem, and conversely, if they are
rigidly moved together, they will eventually touch. At this point there exists an arc
length s such that x(s)= 0 for both the left and right portions of the configuration.
We are able to use this idea in conjunction with our previous solver to obtain the min-
imum spanning volume at a fixed height h for a given pair of contact angles (γ0, γh).

We use the following algorithm to run over a grid of 50× 50 samples in the
(γ0, γh)-space. We solve the constrained boundary value problem similar to the
method in Section 4, however, we replace the condition

V − V (`)= 0
with

x(s)= 0 for some s ∈ [0, `]. (24)

The results are collected in Figure 10. Here it is worth noting that the examples from
Figure 11 are generated from interesting points on the minimum spanning volume
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Figure 11. Left: The minimum spanning volume. Here (γ0, γh)≈(
π
2 , 1.35

)
. Right: A very small spanning volume, but not the

minimum spanning volume. Here (γ0, γh)=
(
π
2 ,

π
2

)
.

surface. The minimum spanning volume on the left is actually the minimum volume
of all the contact angle pairs, and perhaps surprisingly, it is not the (π/2, π/2) case
(which is pictured on the right).
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Some projective distance inequalities
for simplices in complex projective space

Mark Fincher, Heather Olney and William Cherry

(Communicated by Michael Dorff)

We prove inequalities relating the absolute value of the determinant of n + 1
linearly independent unit vectors in Cn+1 and the projective distances from the ver-
tices to the hyperplanes containing the opposite faces of the simplices in complex
projective n-space whose vertices or faces are determined by the given vectors.

A basis of unit vectors in Cn+1 determines the vertices (or the faces) of a simplex
in n-dimensional complex projective space. For reasons originally motivated by an
inequality in complex function theory proven by Cherry and Eremenko [2011], we
investigated the relationship between the determinant of the vectors forming the
basis and the projective distances from each vertex of the simplex to the hyperplane
containing the face of the opposite side. We show that if dmin denotes the minimum
of these projective distances and if D denotes the determinant of the basis vectors,
then dn

min ≤ |D| ≤ dmin.
Let e0, . . . , en be a basis for Cn+1. Given two vectors a= a0e0+· · ·+anen and

b= b0e0+ · · ·+ bnen in Cn+1, we use a · b to denote the standard dot product,

a · b= a0b0+ · · ·+ anbn,

rather than the Hermitian inner product more typically used with complex vector
spaces. Thus, in our notation,

|a|2 = a · ā,

where the bar denotes complex conjugation, as usual.
For k = 1, . . . , n+1, we let 3kCn+1 denote the k-th exterior power of the vector

space Cn+1, and we recall that

e0∧e1∧· · ·∧ek−1, . . . , ei1∧ei2∧· · ·∧eik , . . . , en+1−k∧en+2−k∧· · ·∧en,

MSC2010: primary 51N15; secondary 32Q45.
Keywords: projective height, projective simplex, determinant.
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where 0≤ i1 < i2 < · · ·< ik ≤ n form a basis for 3kCn+1. By declaring this basis
to be orthonormal in 3kCn+1, the norm and dot product on Cn+1 extend to a norm
and inner product on 3kCn+1. For a detailed introduction to exterior algebras and
wedge products, see [Bowen and Wang 1976].

Proposition 1. Let 1≤ k ≤ n+ 1 be an integer, and let v1, . . . , vk and w1, . . . ,wk

be vectors in Cn+1. Then,

(v1 ∧ · · · ∧ vk) · (w1 ∧ · · · ∧wk)= det(vi ·w j )1≤i, j≤k .

Remark. The matrix of dot products on the right is called a Gramian matrix.

Proof. This is Exercise 39.3 in [Bowen and Wang 1976]. �

Corollary 2. Let v1, . . . , vk be k vectors in Cn+1. Then,

|v1 ∧ · · · ∧ vk |
2
= det(vi · v̄ j )1≤i, j≤k .

Corollary 3. Let v1, . . . , vk be k vectors in Cn+1. Then,

|v1 ∧ · · · ∧ vk | ≤ |v1| · · · |vk |.

Equality holds if and only if one of the vectors is the zero vector or if vi · v̄ j = 0 for
all i 6= j .

Proof. If any of the vectors v j are the zero vector, then the inequality is obvious.
So, assume that none of the v j are zero. Let

u j =
v j

|v j |

be unit vectors in the directions of the v j . Then, clearly,

|v1 ∧ · · · ∧ vk | =
∣∣|v1|u1 ∧ · · · ∧ |vk |uk

∣∣= |v1| · · · |vk ||u1 ∧ · · · ∧ uk |.

Thus, it suffices to show that |u1 ∧ · · · ∧ uk | ≤ 1. To this end, by Corollary 2,

|u1 ∧ · · · ∧ uk |
2
= det(ui · ū j ). (1)

The matrix (ui · ū j ) is a k × k Hermitian matrix with nonnegative eigenvalues
λ1, . . . , λk . Thus, by the geometric-arithmetic mean inequality,

det(ui · ū j )= λ1 · · · λk ≤

(
λ1+ · · ·+ λk

k

)k

= 1,

where the equality on the right follows from the fact that

λ1+ · · ·+ λk = Trace(ui · ū j )= k,

since ui · ūi = 1.
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Equality holds in the arithmetic-geometric mean inequality if and only if all
the eigenvalues are equal, and hence all equal to one. This is the case if and only
if (ui · ū j ) is the k × k identity matrix, which happens if and only if vi · v̄ j = 0
for all i 6= j . �

We will be most interested in the n-th exterior power of Cn+1, where

e1 ∧ · · · ∧ en, . . . , e0 ∧ · · · ∧ e j−1 ∧ e j+1 ∧ · · · ∧ en, . . . , e0 ∧ · · · ∧ en−1

form a basis of 3nCn+1. Let L denote the isometric isomorphism from 3nCn+1

to Cn+1 defined on the basis vectors as follows:

L(e1 ∧ · · · ∧ en)= e0,

...

L(e0 ∧ · · · ∧ e j−1 ∧ e j+1 ∧ · · · ∧ en)= (−1) j e j ,

...

L(e0 ∧ · · · ∧ en−1)= (−1)nen.

Observe that if n = 2 and a and b are vectors in C3, then L(a∧ b)= a× b, where
the product on the right is the ordinary cross product in C3.

We will use L(b1 ∧ · · · ∧ bn) as a generalized cross product.

Proposition 4. Let a, b1, . . . , bn be n+ 1 vectors in Cn+1. Then,

det(a, b1, . . . , bn)= a · L(b1 ∧ · · · ∧ bn).

Proof. If we compute the determinant of the (n+1)×(n+1) matrix whose rows are
a, b1, . . . , bn , then the expression on the right is nothing other than the computation
of the determinant by expansion of minors along the first row. �

Corollary 5. The vector L(b1 ∧ · · · ∧ bn) is orthogonal to each of the b j .

We define an equivalence relation on Cn+1
\ {0} by declaring that two nonzero

vectors v and w in Cn+1 are equivalent if there exists a nonzero complex scalar c
such that v = cw. The set of all such equivalence classes is denoted by CPn

and is called the complex projective space of dimension n. A point in CPn is
an equivalence class of vectors in Cn+1 and by the definition of the equivalence
relation, we can always represent a point in CPn by a unit vector in Cn+1. The set
of equivalence classes associated with the vectors in a k+ 1 dimensional subspace
of Cn+1 is a k-dimensional subspace of CPn . When k = n− 1, such a subspace
is called a hyperplane in CPn . We say that n + 1 points in CPn are in general
position if they are not all contained in any one hyperplane. This is equivalent to
the vectors representing the points being linearly independent in Cn+1. Similarly,
we say that n+ 1 hyperplanes in CPn are in general position if there is no point in
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CPn contained in all the hyperplanes. Note that a nonzero vector v in Cn+1 can
be thought of as representing a hyperplane where the points in the hyperplane are
represented by the vectors x in Cn+1 such that v · x = 0.

If v and w are two unit vectors in Cn+1 representing points in CPn , then the
Fubini–Study distance between the two points is defined to be |v∧w|. Now let u
and v be unit vectors in Cn+1. We think of u as representing a point in CPn and v

as representing a hyperplane in CPn . Then, the Fubini–Study distance from the
point represented by u to the hyperplane represented by v is defined by

distance from the point u to the hyperplane v

=min{distance from u to x : v · x = 0 and |x| = 1}

=min{|u∧ x| : v · x = 0 and |x| = 1}.

Second perhaps only to hyperbolic geometry, projective geometry, which arose
out of the study of perspective in classical painting, is among the most ubiquitous
of the non-Euclidean geometries encountered in modern mathematics. See, for
instance, [Richter-Gebert 2011] for a recent accessible introduction.

Our first result is a convenient formula for the distance from a vertex of a
projective simplex to the hyperplane determined by the opposite face in the simplex.

Proposition 6. Let a, b1, . . . , bn be n+1 linearly independent unit vectors in Cn+1

representing n + 1 points in general position in CPn . Then, the Fubini–Study
distance d from the point a to the hyperplane in CPn spanned by b1, . . . , bn is
given by

d =
| det(a, b1, . . . , bn)|

|b1 ∧ · · · ∧ bn|
.

Proof. Without loss of generality, by making an orthogonal change of coordinates,
we may choose our standard basis vectors e0, . . . , en in Cn+1 so that e0 · b j = 0 for
j = 1, . . . , n. Let u be a unit vector in the span of {b1, . . . , bn}. Then,

u = u1e1+ · · ·+ unen, with |u1|
2
+ · · ·+ |un|

2
= 1.

Let a = a0e0+ · · ·+ anen . Then, the Fubini–Study distance from the point in CPn

represented by a to the point in CPn represented by u is given by |a∧u|. Note that

a∧ u = a0u1e0 ∧ e1+ · · ·+ a0une0 ∧ en +
∑

1≤i< j≤n

(ai u j − a j ui )ei ∧ e j . (2)

Hence,

|a∧ u|2 ≥ |a0u1|
2
+ · · ·+ |a0un|

2
= |a0|

2(|u1|
2
+ · · ·+ |un|

2)= |a0|
2. (3)

Now,
det(a, b1, . . . , bn)= a · L(b1 ∧ · · · ∧ bn)
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by Proposition 4. Of course, L(b1∧· · ·∧bn) is orthogonal to each of the b j . By our
choice of basis, e0 is also orthogonal to each of the b j . Since the b j form a set of n
linearly independent vectors in an (n+1)-dimensional vector space, there is only
one direction simultaneously orthogonal to all of the b j . Thus, L(b1 ∧ · · · ∧ bn) is
in the span of e0, and so

|a · L(b1 ∧ · · · ∧ bn)| = |a0| · |L(b1 ∧ · · · ∧ bn)|.

Thus, observing that

|L(b1 ∧ · · · ∧ bn)| = |b1 ∧ · · · ∧ bn|,

we see from (3) that

|a∧ u| ≥ |a0| =
|a0| · |L(b1 ∧ · · · ∧ bn)|

|b1 ∧ · · · ∧ bn|

=
|a · L(b1 ∧ · · · ∧ bn)|

|b1 ∧ · · · ∧ bn|

=
| det(a, b1, . . . , bn)|

|b1 ∧ · · · ∧ bn|
.

To complete the proof, we need to show that equality is obtained for some choice
of u. There are two cases. If a is the direction of e0, then equality holds for any
choice of u since a1 = · · · = an = 0. Otherwise, if we choose

u j =
a j√

|a1|2+ · · ·+ |an|
2

for j = 1, . . . , n,

we see that the terms in the sum on the far right of (2) are all zero, and so equality
holds in (3). �

Corollary 7. Let a, b1, . . . , bn and d be as in Proposition 6. Then,

d ≥ | det(a, b1, . . . , bn)|.

Equality holds if and only if bi · b̄ j = 0 for all i 6= j .

Example 8. When n = 3, let 0< s ≤ 1 and consider the projective triangle with
vertices represented by the unit vectors

a =

(√
1− s2

2
,

√
1− s2

2
, s

)
, b1 = (1, 0, 0), and b2 = (0, 1, 0).

Then, |b1∧b2| = 1, and so d = det(a, b1, b2)= s, and equality holds in Corollary 7.
We remark that geometrically, these triangles are isosceles with projective side
lengths

1,

√
1+ s2

2
,

√
1+ s2

2
.
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Proof of Corollary 7. By Corollary 3, we have

|b1 ∧ · · · ∧ bn| ≤ 1.

Hence, by the formula for d in Proposition 6,

d =
| det(a, b1, . . . , bn)|

|b1 ∧ · · · ∧ bn|
≥ | det(a, b1, . . . , bn)|.

Equality holds if and only if equality holds in Corollary 3. �

Proposition 9. Let v1, . . . , vn−1 be n−1 linearly independent vectors in Cn+1 and
let w1, . . . ,wn be n linearly independent vectors in Cn+1. If we let

a = L(w1 ∧ · · · ∧wn) and b= L(v1 ∧ · · · ∧ vn−1 ∧ a),

then

b= (−1)n det


w1 . . . wn

v1 ·w1 . . . v1 ·wn
...

...
...

vn−1 ·w1 . . . vn−1 ·wn

 .
Remark. Note that the matrix specified in the proposition has vector entries in
its first row, and hence its determinant results in a vector. This proposition is a
generalization of Lagrange’s formula for the vector triple product in R3. The proof
of this proposition was inspired by a discussion Cherry had with Charles Conley,
and we thank him for his interest. We suspect that Proposition 9 is reasonably
well-known, but we were unable to find a reference to it in the literature.

Proof. Let

b̃= det


w1 . . . wn

v1 ·w1 . . . v1 ·wn
...

...
...

vn−1 ·w1 . . . vn−1 ·wn

 .
We want to show that b = (−1)n b̃, and for this, it suffices to show that for all z
in Cn+1, we have z · b= (−1)n z · b̃. Clearly,

z · b̃= det


z ·w1 . . . z ·wn

v1 ·w1 . . . v1 ·wn
...

...
...

vn−1 ·w1 . . . vn−1 ·wn

 .
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On the other hand, by Proposition 4,

z · b= det(z, v1, . . . , vn−1, a)

= (−1)n det(a, z, v1, . . . , vn−1)

= (−1)n a · L(z∧ v1 ∧ · · · ∧ vn−1)

= (−1)n L(w1 ∧ · · · ∧wn) · L(z∧ v1 ∧ · · · ∧ vn−1)

= (−1)n(w1 ∧ · · · ∧wn) · (z∧ v1 ∧ · · · ∧ vn−1) (since L is an isometry)

= (−1)n(z∧ v1 ∧ · · · ∧ vn−1) · (w1 ∧ · · · ∧wn)

= (−1)n det


z ·w1 . . . z ·wn

v1 ·w1 . . . v1 ·wn
...

...
...

vn−1 ·w1 . . . vn−1 ·wn

 (by Proposition 1). �

Proposition 10. Let a, u1, . . . , un be n+ 1 linearly independent vectors in Cn+1.
For j = 1, . . . , n, let

v j = L(a∧ u1 ∧ · · · ∧ u j−1 ∧ u j+1 ∧ · · · ∧ un).

Then, L(v1 ∧ · · · ∧ vn)=±Dn−1a, where D = det(a, u1, . . . , un).

Remark. The unspecified sign depends only on n and can be explicitly determined
from the proof. Since the sign will not matter for our purpose, we did not bother to
record it here.

Proof. By Proposition 9, we get that

L(v1 ∧ · · · ∧ vn)= (−1)n det


a u1 . . . un−1

v1 · a v1 · u1 . . . v1 · un−1
...

...
...

...

vn−1 · a vn−1 · u1 . . . vn−1 · un−1

 .
If i 6= j , then

vi · u j = L(a∧ · · · ∧ ui−1 ∧ ui+1 ∧ · · · ∧ un) · u j = 0

since u j appears in the wedge product defining vi , and hence vi is orthogonal to u j .
Similarly, vi · a = 0. Moreover,

v j · u j = L(a∧ · · · ∧ u j−1 ∧ u j+1 ∧ · · · ∧ un) · u j = (−1) j D
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by Proposition 4. Hence,

L(v1 ∧ · · · ∧ vn)= (−1)n det


a u1 u2 . . . un−1

0 −D 0 . . . 0
0 0 D . . . 0
...

...
...

...
...

0 0 0 . . . (−1)n−1 D

=±Dn−1a. �

Theorem 11. Let u0, . . . , un be n + 1 linearly independent unit vectors in Cn+1

representing n + 1 points in general position in CPn , which we think of as the
vertices of a projective simplex. For each j from 0 to n, let d j denote the Fubini–
Study distance from the point represented by u j to the hyperplane containing the
opposite face of the simplex. Let dmin denote the minimum of the d j . Then,

dn
min ≤ | det(u0, . . . , un)|.

For equality to hold, at least n of the n+ 1 projective distances d j must equal dmin.

Proof. Let D = det(u0, . . . , un). Note that D 6= 0 by the linear independence
(general position) hypothesis. Without loss of generality, assume that dmin = dn .
Then, dn

min ≤ d1d2 · · · dn , and equality holds if and only if all of these distances are
equal. By Proposition 6,

d j =
|D|

|u0 ∧ · · · ∧ u j−1 ∧ u j+1 ∧ · · · ∧ un|
.

Thus,

dn
min ≤

|D|n∏n
j=1 |u0 ∧ · · · ∧ u j−1 ∧ u j+1 ∧ · · · ∧ un|

.

For j from 1 to n, let

v j = L(u0 ∧ · · · ∧ u j−1 ∧ u j+1 ∧ · · · ∧ un),

and we now consider L(v1 ∧ · · · ∧ vn). By Proposition 10,

L(v1 ∧ · · · ∧ vn)=±Dn−1u0.

Hence,

|L(v1 ∧ · · · ∧ vn)| = |D|n−1

since |u0| = 1. We also know that

|L(v1 ∧ · · · ∧ vn)| = |v1 ∧ · · · ∧ vn| ≤ |v1| · · · |vn|
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by Corollary 3. Moreover, the inequality is strict unless vi ·v̄ j = 0 for all i 6= j . Thus,
n∏

j=1

|u0 ∧ · · · ∧ u j−1 ∧ u j+1 ∧ un| =

n∏
j=1

|L(u0 ∧ · · · ∧ u j−1 ∧ u j+1 ∧ un)|

=

n∏
j=1

|v j |

≥ |L(v1 ∧ · · · ∧ vn)| = |D|n−1.

Hence,

dn
min ≤

|D|n∏n
j=1 |u0 ∧ · · · ∧ u j−1 ∧ u j+1 ∧ · · · ∧ un|

≤
|D|n

|D|n−1 = |D|,

as required, with strict inequality unless d1=· · ·= dn and vi ·v̄ j = 0 for all i 6= j . �

Remark. Equality of the n distances is not sufficient for equality to hold in
Theorem 11, but the proof of Theorem 11 suggests the following conjecture.

Conjecture 12. With notation as in Theorem 11, fix 0 < D ≤ 1 and consider all
configurations of u0, . . . , un such that D = | det(u0, . . . , un)|. Among all such
configurations, the configuration with the largest dmin will be a regular simplex.

Remark. When D< 1, equality will not hold in Theorem 11 for the regular simplex
with determinant D.

We now observe that if we like, we could just as easily work with vectors defining
the faces of the simplices, rather than the vertices.

Proposition 13. Let a, b1, . . . , bn be n+1 linearly independent unit vectors in Cn+1.
We think of the vectors as the coefficients of linear forms defining hyperplanes
in CPn . By linear independence, the hyperplanes are in general position and thus
determine a simplex. Let d denote the distance from the hyperplane determined
by a to the vertex of the simplex where the hyperplanes determined by b1, . . . , bn

intersect. Then,

d =
| det(a, b1, . . . , bn)|

|b1 ∧ · · · ∧ bn|
.

Remark. Observe that the distance formula here is identical to that in Proposition 6.
Thus, Theorem 11 and Corollary 7 immediately translate to the following corollary.

Corollary 14. Let u0, . . . , un be n+ 1 linearly independent unit vectors in Cn+1

representing n + 1 linear forms defining n + 1 hyperplanes in general position
in CPn , which we think of as the faces of a projective simplex. For each j from 0
to n, let d j denote the Fubini–Study distance from the hyperplane represented by u j

to the opposite vertex of the simplex. Let dmin denote the minimum of the d j . Then,

dn
min ≤ | det(u0, . . . , un)| ≤ dmin.
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|D| = d2
min

|D| = dmin

dmin

|D|

Figure 1. |D| versus dmin in the case of dimension n = 2.

Remark. Figure 1 illustrates the inequalities constraining the absolute value of the
determinant and the minimum distance in the case when n = 2, i.e., for the case of
projective triangles in the projective plane. The points marked as circles along the
line |D| = dmin illustrate isosceles triangles, as in Example 8. The points marked
as squares just above the curve |D| = d2

min are from equilateral triangles. The other
points are triangles with randomly generated vertices.

Proof of Proposition 13. Let

u =
L(b1 ∧ · · · ∧ bn)

|b1 ∧ · · · ∧ bn|
,

which is the unit vector representing the vertex of the simplex where the hyperplanes
determined by b1, . . . , bn intersect. For j = 1, . . . , n, let

v j = L(a∧ b1 ∧ · · · ∧ b j−1 ∧ b j+1 ∧ · · · ∧ bn).

Then, the vectors v j , which are not necessarily unit vectors, represent the n other
vertices of the simplex. By Proposition 6 and Proposition 4,

d =

∣∣∣det
(

u, v1
|v1|
, . . . , vn

|vn |

)∣∣∣∣∣∣ v1
|v1|
∧ · · · ∧

vn
|vn |

∣∣∣ =
|u · L(v1 ∧ · · · ∧ vn)|

|v1 ∧ · · · ∧ vn|
.
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By Proposition 10, L(v1 ∧ · · · ∧ vn) = ±Dn−1a, where D = det(a, b1, . . . , bn).
Thus,

d =
|u · L(v1 ∧ · · · ∧ vn)|

|v1 ∧ · · · ∧ vn|

=
|D|n−1

|u · a|
|D|n−1 (since a is a unit vector)

=
|L(b1 ∧ · · · ∧ bn) · a|
|b1 ∧ · · · ∧ bn|

(by the definition of u)

=
| det(a, b1, . . . , bn)|

|b1 ∧ · · · ∧ bn|
(by Proposition 4). �

We conclude by explaining some of the initial motivation coming from complex
function theory for this investigation. Let D denote the unit disc in the complex
plane. J. Dufresnoy [1944] studied complex analytic mappings f from D to CPn

such that the image of f omits at least 2n + 1 hyperplanes in general position
in CPn , where here general position means that the linear forms defining any n+ 1
of the hyperplanes will be linearly independent. As in [Cherry and Eremenko 2011],
we let f # denote the Fubini–Study derivative of f , which measures how much
the mapping f distorts length, where length in D is measured with respect to the
standard Euclidean metric and length in CPn is measured with respect to the Fubini–
Study metric. A consequence of Dufresnoy’s work is that f #(0) is bounded above
by a constant depending only on the dimension n and the set of omitted hyperplanes,
but Dufresnoy remarked in his 1944 paper that the constant depends on the omitted
hyperplanes in a “completely unknown” way. By making a portion (see [Eremenko
1999]) of the potential-theoretic method of Eremenko and Sodin [1991] effective,
Cherry and Eremenko [2011] were able to give an explicit and effective estimate
on how the constant depends on the omitted hyperplanes. Cherry and Eremenko’s
bound was expressed in terms of the singular values of the (n+1)×(n+1)matrices
formed by the coefficients of the normalized linear forms defining n+1 of the omitted
hyperplanes. Let P be a point in CPn where n of the 2n+ 1 omitted hyperplanes
intersect, and let Q be a point where a different n of the 2n+1 omitted hyperplanes
intersect. Then, the projective line connecting P with Q will intersect the 2n+ 1
omitted hyperplanes in only three points: it will intersect n of the hyperplanes at P ,
another n at Q and the last one at some third point R. Such a line is called a diagonal
line for the hyperplane configuration. In the event that the hyperplane configuration
is such that for some diagonal line, two of the three points P , Q, and R are very close
together, it is not hard to see that one can find a complex analytic map f from D into
the diagonal line omitting the three points such that f #(0) is very large. One is then
led to ask if this is the only way one can get a very large value of f #(0). One would
thus like to know how this minimum distance among the pairs of points in {P, Q, R}
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compares to the singular values appearing in Cherry and Eremenko’s bound. Rather
than look initially at collections of 2n+ 1 hyperplanes in CPn , we began with the
easier situation of n+ 1 hyperplanes in CPn and did some numerical experiments
comparing the singular values of the matrices formed by the coefficients of the
defining forms of the hyperplanes and the projective distances from the hyperplanes
to the opposite vertices of the simplex whose faces are contained in the given
hyperplanes. These opposite vertices would be the points determining the diagonal
lines in bigger configurations of hyperplanes. Although Cherry and Eremenko’s
bound is expressed only in terms of some of the singular values, we realized that we
could obtain prettier results for the determinant, whose absolute value is of course
the square root of the product of all the singular values. We therefore decided to
write this note focusing on the pure projective geometry of the simplices and leave
the possible application to complex function theory to another time.
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