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Statistical inference procedures that require no distributional assumptions make
up the area of nonparametric statistics. The permutation test is a common non-
parametric test that can be used to compare measures of center for two data sets,
but it is yet to be explored for three-dimensional rotation data. A permutation test
for such data is developed and the statistical power of this test is considered under
various scenarios. The test is then used in an application comparing movement
around joints in the foot and ankle for humans, chimpanzees, and baboons.

1. Introduction

Data in the form of three-dimensional rotations are common in the study of human
motion. As skeletal mammals move, the orientation of various joints can be tracked
by using infrared emitting diodes attached to bones on opposite ends of the joint.
Each joint orientation can be represented mathematically as a 3× 3 orthogonal
rotation matrix. Of interest here is comparing movement around various joints in
the ankle and foot for humans, chimpanzees, and baboons by comparing the central
rotation of each joint for the various species.

While other works have considered comparing sets of three-dimensional rotation
data, they rely on distributional assumptions [Rancourt et al. 2000; Hendriks and
Landsman 1998]. Further, existing work for studying three-dimensional rotations
is often in terms of manifold considerations. As such, it is often inaccessible
to practitioners outside the area. Our aim here is development of methodology
for comparing central rotations that is both nonparametric and does not rely on
special manifold theory, so that it can be used more broadly. The permutation
test is a commonly used nonparametric test, but it has yet to be implemented for
three-dimensional rotation data. We develop such a test in Section 2, explore the
statistical power of the test in Section 3, and apply the test to joint data in Section 4.
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2. Development of a three-dimensional permutation test

The permutation test is widely used in nonparametric statistics for determining if
two data sets are different in some way (e.g., comparing means, variances, shapes).
The most common example of a permutation test in one dimension is comparing
population means for data sets A and B by using the difference in sample means,
x̄A− x̄B , as a test statistic. To perform the permutation test, data sets A and B are
combined and permuted so that data points are randomly reassigned to either A
or B. The permuted test statistic is then calculated from this permuted data and this
process is repeated a large number of times. If the means of the populations from
which A and B come do in fact differ, then we expect the observed test statistic
x̄A− x̄B to be more extreme than the permuted test statistics. For this reason, the
p-value for a permutation test is defined to be the proportion of times that the
permuted test statistic is more extreme than the observed test statistic. See [Higgins
2004] for more details on permutation tests.

To translate the idea of the permutation test to three-dimensional rotation data,
we first need to define a sensible test statistic that could be used for comparing two
central rotations. For each set of three-dimensional rotations, we begin by finding a
measure of center as follows. Compute O = 1/n

∑n
i=1 Oi for O1, . . . , On ∈ SO(3),

where SO(3) represents the set of all 3× 3 orthogonal rotation matrices. Next, find
the matrix T = V W , where O = V6W is the singular value decomposition of O.
Using these components from the singular value decomposition is necessary since
O may not be an element of SO(3), but T is. This is a commonly used measure of
center [León et al. 2006; Bingham et al. 2009; Khatri and Mardia 1977], which we
refer to as the “mean” rotation.

Once we have found the mean rotation for each of our two data sets, a natural test
statistic is the difference between these mean rotations. One way of quantifying the
difference between two three-dimensional rotations is by using angles. A misorien-
tation angle is defined as the angle needed to rotate from one three-dimensional
rotation to another via a spin about some axis. For O, P ∈SO(3), the misorientation
angle between O and P is

mis(O, P)= arccos
(

tr(O ′P)− 1
2

)
, (1)

where tr is the trace of a matrix and O ′ is the transpose of O. We use the
misorientation angle between our two mean rotations as the test statistic for the
three-dimensional permutation test of Ho: There is no difference between the
population mean rotations versus Ha . There is a difference between the population
mean rotations. The steps of the permutation test are given below and R code for
implementing this test is provided in the Appendix.
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(a) (b)

Figure 1. Plots of two simulated three-dimensional rotation data
sets (each with n = 50) with mean rotations that (a) are not signifi-
cantly different and (b) are significantly different.

(1) Calculate the mean rotation for each data set and then find the misorientation
angle between these means. This serves as the observed test statistic, θobs.

(2) Permute the data a large number (say 10,000) of times, storing the misorienta-
tion angle between the permuted mean rotations, θperm, each time.

(3) Let the p-value be the fraction of times that the permuted misorientation angle
is greater than the observed misorientation angle; that is,

p-value=
# of times θperm > θobs

# of permutations
.

The three-dimensional permutation test outlined above is briefly illustrated in
two different examples. Figure 1 shows three-dimensional data sets plotted as
points on the sphere, with one observation represented by three points that would
correspond to three orthogonal axes. In Figure 1(a), the two simulated data sets (in
white and black, each of size 50) show considerable overlap. Under the permutation
test, these data sets resulted in a test statistic of 0.0546 and a p-value of 0.3101.
In Figure 1(b), the simulated data sets are more separated. These data sets gave a
test statistic of 0.6102 and a p-value of 0, indicating a significant difference in the
population mean rotations. These examples suggest that the p-value decreases as
expected when the data sets have mean rotations that increase in distance.

3. Power: a simulation study

To examine the effectiveness of the three-dimensional permutation test developed
in Section 2, we perform a simulation study to investigate statistical power. Power
is the probability of correctly rejecting a false null hypothesis. We simulate data
sets with centers that differ by a known misorientation angle, φ, (i.e., there is a
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Figure 2. Plots of power versus misorientation angle for the von
Mises version of the UARS distributions with κ = 5, 20, 50, 100.
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Figure 3. Plots of power versus misorientation angle for the sym-
metric matrix von Mises–Fisher distribution with κ=5,20,50,100.
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Figure 4. Plots of power versus misorientation angle for the vM-F
distribution with solid lines representing the permutation test and
dashed lines representing the parametric approach for κ =
5, 20, 50, 100.

difference between the population mean rotations and the null is false) from both
the von Mises version of the uniform axis-random spin (vM-UARS) distribution
[Bingham et al. 2009] and the symmetric version of the matrix von Mises–Fisher
(vM-F) distribution [Khatri and Mardia 1977] . A vM-UARS or vM-F distribution
can be specified by a central rotation S ∈ SO(3) and a spread parameter κ ∈ (0,∞),
where κ is best termed as a concentration parameter since larger values of κ indicate
rotations that are less spread about the center at S. Two samples, each of size n,
are generated from vM-UARS(S1, κ) and vM-UARS(S2, κ) distributions, where
φ =mis(S1, S2) as in (1). We consider κ values of 5, 20, 50, and 100, set n at 10,
50, and 100, and let the misorientation angle, φ, vary between 0 and π/5. The same
is done for the vM-F distribution.

For each combination of κ , n, and φ, the permutation test was conducted 1,000
times with 1,000 permutations per test. The power was then found as the proportion
of times (out of 1,000) that the test correctly rejected the null hypothesis of equal
means. Plots of the power against the misorientation angle, φ, for the various choices
of n and κ are provided in Figure 2 for the vM-UARS distribution and in Figure 3
for the vM-F distribution. It can be seen from all plots that as sample size increases,
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Figure 5. Plots of power versus misorientation angle for the vM-
UARS distribution with solid lines representing the permutation
test and dashed lines representing the parametric approach for
κ = 5, 20, 50, 100.

the power of the test increases. In addition, as the concentration parameter, κ ,
increases (i.e., data sets become more clustered around their mean rotation), the
power increases. Finally, as the misorientation angle increases and the true centers
become farther apart, the power increases. This mimics properties of power for
traditional hypothesis tests for differences in means (for nonrotational data), giving
evidence that the three-dimensional permutation test performs as desired.

The power of the three-dimensional permutation test was also compared to that
of the parametric approach presented in [Rancourt et al. 2000], which requires the
observations be distributed according to the matrix von Mises–Fisher distribution.
The plots in Figure 4 show power versus misorientation angle for the various choices
of n and κ using the matrix von Mises–Fisher distribution. The solid lines represent
power for the permutation test, with the dashed lines representing power for the
parametric approach. We see that the power of the permutation test is comparable
to the power of parametric approach in all cases. The permutation test was also
compared to the parametric approach for the vM-UARS distribution, with power
plots given in Figure 5. We see that the permutation test outperforms the parametric
approach in terms of resulting in a larger power, with this fact more visible when
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Figure 6. Bones in the ankle and foot (image taken from
http://www.ceuarmy.com/BSFAFpdf.pdf).

we have smaller sample sizes or data that is more spread (small κ). Thus, the
three-dimensional permutation test is comparable to the parametric approach when
the assumptions of the parametric test are met, and it performs better than the
parametric approach when the assumptions are not met.

4. Application to ankle joint rotation data

Now that we have verified that the three-dimensional permutation test performs as
expected with regard to power, we apply the test to ankle/foot joint rotation data
collected by Prof. Thomas Greiner of the Department of Physical Therapy at the
University of Wisconsin-La Crosse. Data was collected from humans, baboons, and
chimps during circumduction, which is the movement characterized by the foot being
placed flat on the floor and the leg rotating in a circular motion around it. Infrared
emitting diodes attached to bones on each side of a joint give the orientation of each
bone as the movement occurs. If the orientation of the first bone is represented as F
and the orientation of second bone is represented as G, then the resulting orientation
of the joint is defined as F′G. Because markers may not have been placed identically
on all subjects, the orientations of all joints under consideration were measured
with the tibia-talus joint as the reference to allow for comparison of species. Joints
considered were the cuboid-calcaneus, navicular-cuboid, navicular-talus, talus -
calcaneus, and fifth metatarsal-cuboid. (See Figure 6 for a diagram of the bones
in the foot and ankle region.) Orientations were collected for six human subjects,
four chimpanzee subjects, and seven baboon subjects, and the base alignment matrix

http://www.ceuarmy.com/BSFAFpdf.pdf
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corresponding to the primary rotational axis (see [Ball and Greiner 2012]) was used
in the three-dimensional permutation test to compare species.

Species were compared pairwise (human versus chimpanzee, human versus
baboon, and chimpanzee versus baboon) for each of the joints mentioned above,
and each test was done using 1,000 permutations. Out of all tests, there were four
significant differences found. There was significant evidence to suggest that the
orientation of the navicular-talus joint differs between the humans and chimpanzees
(p-value = 0.001) and humans and baboons (p-value ≈ 0). The orientation of
the talus-calcaneus joint was found to be significantly different between humans
and chimpanzees (p-value = 0.019) and humans and baboons (p-value = 0.001).
Therefore, it appears that movement for humans differs from baboons and chimps
when considering two specific joints.

5. Conclusion

The analysis of joint rotation data provided here is just one of many applications that
the three-dimensional permutation test could be used for. Given the abundance of
three-dimensional rotation data in the study of human motion, as well as in the other
fields like materials science, having methodology for comparing measures of center
for three-dimensional data is important. The three-dimensional permutation test
developed here provides that methodology without the need for any distributional
assumptions on where the data sets come from. It also does not require any theory on
special manifolds, making the three-dimensional permutation test an important addi-
tion to the field of statistics, as well as to practitioners who collect data in this form.

Appendix

The following gives an R function called PermTest for performing the three-
dimensional permutation test on data sets A (of size n A) and B (of size nB). The
argument A must be an array of dimension 3× 3× n A and B must be an array
of dimension 3 × 3 × nB . The argument nspec specifies the number of times
the data should be permuted. The function PermTest outputs the test statistic
(misorientation angle between the two sample mean rotations) and p-value.

PermTest=function(A,B,nspec){
##Loads functions needed for test
trace=function(M){sum(diag(M))}
Mis.Ang=function(C,D){acos((trace(t(C)%*%D)-1)/2)}

##Finds mean matrices for both sets of data
na=dim(A)[3]
Abar=matrix(rep(0,9),nrow=3)
for(i in 1:na){Abar=Abar+A[,,i]}
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Abar=Abar/na
M.A=svd(Abar)$u%*%t(svd(Abar)$v)
nb=dim(B)[3]
Bbar=matrix(rep(0,9),nrow=3)
for(i in 1:nb){Bbar=Bbar+B[,,i]}
Bbar=Bbar/nb
M.B=svd(Bbar)$u%*%t(svd(Bbar)$v)

##Finds the test statistic
Test.Stat=Mis.Ang(M.A,M.B)

##Puts data into one array
T=array(c(A,B),dim=c(3,3,(na+nb)))

##Performs the permutation test
nsim=nspec
ang=rep(0,nsim)
for(i in 1:nsim){

samp=sample(1:(na+nb))
O=T[,,samp[1:na]]
P=T[,,samp[(na+1):(na+nb)]]
Obar=matrix(rep(0,9),nrow=3)
for(j in 1:na){Obar=Obar+O[,,j]}
Obar=Obar/na
M.O=svd(Obar)$u%*%t(svd(Obar)$v)
Pbar=matrix(rep(0,9),nrow=3)
for(k in 1:nb){Pbar=Pbar+P[,,k]}
Pbar=Pbar/nb
M.P=svd(Pbar)$u%*%t(svd(Pbar)$v)
ang[i]=Mis.Ang(M.O,M.P)
}

p.value=sum(ang>Test.Stat)/nsim
list(Test.Statistic=Test.Stat,P.Value=p.value)

}
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