

Power values of the product of the Euler function and the sum of divisors function Luis Elesban Santos Cruz and Florian Luca

Power values of the product of the Euler function and the sum of divisors function

Luis Elesban Santos Cruz and Florian Luca

(Communicated by Filip Saidak)

We find examples of positive integers *n* such that $\phi(n^3)\sigma(n^3)$ is a perfect square.

1. Introduction

The Euler function $\phi(n)$ counts the number of positive integers $m \le n$ which are coprime to *n*, the sum of divisors function $\sigma(n)$ is equal to the sum of the positive proper divisors of *n*, and both of these functions have fascinated mathematicians for centuries. A lot of effort has been spent trying to find positive integers *n* such that $\phi(n)$ and $\sigma(n)$ have nice arithmetic properties.

It is easy to make $\phi(n)$ a square. Just take $n = 2^{2k+1}$ for some $k \ge 0$. Exactly half of all integers $m \le 2^{2k+1}$ are odd, and hence, coprime to n. Thus, $\phi(2^{2k+1}) = 2^{2k}$ is a perfect square. The situation for the sum of divisors function is harder. A nice presentation of this problem is in [Beukers et al. 2012]. Following that reference, we look at the factorizations

$$\begin{aligned}
 \sigma(2) &= 3, & \sigma(11) = 2^2 \times 3, \\
 \sigma(3) &= 2^2, & \sigma(13) = 2 \times 7, \\
 \sigma(5) &= 2 \times 3, & \sigma(17) = 2 \times 3^2, \\
 \sigma(7) &= 2^3, & \sigma(19) = 2^2 \times 5.
 \end{aligned}$$

There are many ways to multiply together some of the above numbers to get a perfect square. First let us notice that 13 and 19 are useless because $\sigma(13) = 2 \times 7$ and $\sigma(19) = 2^2 \times 5$, and neither 7 nor 5 ever appear again on the right-hand side of the above equations. Throw out 13 and 19 and group squares on the right-hand sides in the following way, where \Box represents a perfect square:

$$\sigma(2) = 3, \quad \sigma(3) = \Box, \quad \sigma(5) = 2 \times 3, \quad \sigma(7) = 2\Box, \quad \sigma(11) = 3\Box, \quad \sigma(17) = 2\Box.$$

MSC2010: 11B68, 11A25.

Keywords: sum of divisors, Euler function.

Santos Cruz worked on this paper during a summer project under of the supervision of Luca.

Note that all six inputs are prime numbers and all outputs have prime factorizations consisting of only 2 and 3. Let the primes 2, 3, 5, 7, 11, 17 correspond to the vectors v_1 , v_2 , v_3 , v_4 , v_5 , v_6 in the six-dimensional vector space \mathbb{F}_2^6 , where v_i has *i*-th component equal to 1 and all others equal to 0 for i = 1, ..., 6. In \mathbb{F}_2^2 we let w_1 and w_2 be the vectors $(1, 0)^{\top}$ and $(0, 1)^{\top}$ and think of them as corresponding to the primes 2 and 3 respectively. We define a linear map from $\mathbb{F}_2^6 \mapsto \mathbb{F}_2^2$ whose matrix is

$$T = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}.$$

This matrix has rank 2, so it has $2^4 = 16$ vectors in its nullspace, and any of these vectors gives us a solution. For example, the vector $(1, 1, 1, 1, 0, 0)^{\top}$, which is in Null(*T*), gives us the solution $n = 2 \times 3 \times 5 \times 7$, having $\sigma(n) = 2^6 \times 3^2$.

In [Beukers et al. 2012], the equation $\sigma(n^k) = m^l$ in positive integers *n* and *m* was studied for some exponents k > 1 and l > 1. On page 377, they conjecture that $\sigma(n^k) = m^l$ has only finitely many solutions if k > 3 and l > 1 are given. Here, we propose the following counterconjecture.

Conjecture 1. For every k > 1 and l > 1, there are infinitely many n such that $\sigma(n^k) = m^l$ for some positive integer m.

To give some evidence, we propose a different conjecture. Let P(n) denote the largest prime factor of the integer *n*, with the convention that $P(0) = P(\pm 1) = 1$.

Conjecture 2. Let $f(x) \in \mathbb{Z}[x]$ be a polynomial such that $f(0) \neq 0$. For every $\varepsilon > 0$, there exists $c := c(\varepsilon)$ and $x_0 := x_0(\varepsilon)$ such that

$$#\{p \le x : P(f(p)) < x^{\varepsilon}\} > cx/\log x \quad for \ all \quad x > x_0.$$
(1)

The substance of the above conjecture is the following. It is well known that the numbers *n* such that $P(n) < n^{\varepsilon}$ form a positive-density subset of \mathbb{N} . It is conjectured that the primes *p* such that $P(p-1) < p^{\varepsilon}$ form a positive-density subset of all primes. This is not known for small values of $\varepsilon > 0$. So, we venture even further and replace p-1 by any fixed polynomial f(p) such that $f(0) \neq 0$ (in order to make sure that *p* does not show up as a natural divisor of f(p)) and conjecture that, in fact, the set of primes *p* such that $P(f(p)) < p^{\varepsilon}$ is of positive density. This is known if all roots of f(x) are rational, with some $\varepsilon < 1$ (like $\varepsilon = 1 - 1/2d$, where *d* is the degree of f(x)), but it is not known for any $\varepsilon < 1$ once f(x) has an irreducible factor of degree at least 2. The quantity $x/\log x$ in the right-hand side of (1) arises from the prime number theorem, which asserts that, asymptotically, the function $\pi(x) = \#\{p \le x\}$ equals $x/\log x$ as $x \to \infty$.

Let us see how Conjecture 1 would follow from Conjecture 2. Let $k \ge 2$, $f(x) = (x^{k+1} - 1)/(x - 1)$ and suppose first that l = 2. Let x be large, put $\varepsilon = 1/2$

746

and let p_1, \ldots, p_t be such that $P(f(p_i)) < x^{1/2}$. Let $s = \pi(x^{1/2})$. Then we can write

$$f(p_i) = w_i \square, \quad i = 1, \dots, t,$$

where the w_i are square-free numbers with $P(w_i) \le x^{1/2}$. As before, we can identify the w_i with vectors in \mathbb{F}_2^s obtained by putting 1 or 0 in the *j*-th component according to whether the *j*-th prime divides w_i or not. In this way, we get a linear application from \mathbb{F}_2^t to \mathbb{F}_2^s whose nullspace has dimension at least t - s, where

$$t - s > c \frac{x}{\log x} - \pi(x^{1/2}) > c \frac{x}{\log x} - x^{1/2},$$

and this last function certainly tends to infinity with x. This is when l = 2. Assume now that l > 2. Then we write

$$f(p_i) = w_i u_i^l \quad \text{for all} \quad i = 1, \dots, t,$$

where the w_i are *l*-th power free and $P(w_i) \le x^{1/2}$. We attach to each w_i an element w_i in the group $(\mathbb{Z}/l\mathbb{Z})^s$ where in the *j*-th component we put the exponent of the *j*-th prime number in the factorization of w_i . Note that $\mathbb{Z}/l\mathbb{Z}$ is not a field unless *l* is a prime, and even if *l* is a prime, we only can multiply *distinct* primes p_i in attempts to create *n* such that $\sigma(n^k) = m^l$. Thus, we are only allowed to take sums of distinct w_i and get 0. There is a theorem (see [van Emde Boas and Kruyswijk 1967] and [Olson 1969, Theorem 1]) that says that if we have at least s(l-1) such distinct elements w_i , we can find some of them whose sum is 0. Thus, we can create at least $\lfloor t/(s(l-1)) \rfloor$ distinct (in fact, even disjoint) subsets of the w_i for $i = 1, \ldots, t$ simply by finding some 0-sum among the first s(l-1) of them, another 0-sum among the next s(l-1) of them and so on. Since

$$\frac{t}{s(l-1)} > \frac{c}{(l-1)} \frac{\sqrt{x}}{\log x}$$

and the right-hand side is a function that tends to infinity with x, we get Conjecture 1.

We can ask similar questions simultaneously for $\phi(n)$ and $\sigma(n)$, like making them simultaneously squares, or cubes, etc. This has already been treated in [Freiberg 2012]. There it is shown that the number of $n \le x$ such that both $\phi(n)$ and $\sigma(n)$ are perfect powers of an exponent *l* is less than $c_1 l x^{1/l} / (\log x)^{l+2}$, where $c_1 > 0$ is some positive constant. Square values of the product $\phi(n)\sigma(n)$ have been investigated in [Broughan et al. 2013]. In the next section, we present some computational examples of *n* such that $\phi(n^3)\sigma(n^3) = \Box$.

2. Computational examples

We wanted to find a positive integer *n* such that $\phi(n^3)\sigma(n^3) = \Box$. For a prime *p*, we have $\phi(p^3)\sigma(p^3) = p^2(p^4 - 1)$. So, we wrote $p^4 - 1 = w_p \Box$, where w_p is square-free for all $p \le 1000$. Then we searched for a subset S of cardinality *t* such

that the set of prime factors appearing in the factorizations of w_p for $p \in S$ has cardinality s < t. We found the subset

 $\{2, 3, 5, 7, 13, 17, 23, 31, 41, 43, 47, 73, 83, 191, 239, 307, 443, 499, 829\},\$

with t = 21 and s = 17. Thus, this set gives us $2^{21-17} = 16$ solutions. We wrote down the {0, 1} matrix with 17 rows and 21 columns, which ends up having rank 17 over \mathbb{F}_2 . The largest solution in the nullspace of this matrix is

 $n = 3 \times 7 \times 11 \times 13 \times 17 \times 23 \times 43 \times 47 \times 83 \times 239 \times 443 \times 499 \times 829,$

for which $\phi(n^3)\sigma(n^3) = m^2$, where

 $m = 2^{30} \times 3^7 \times 5^{10} \times 7^2 \times 11 \times 13^4 \times 17^3 \times 23 \times 29 \times 37 \times 41 \times 53 \times 61 \times 83 \times 157.$

Despite our efforts, we could not find an integer n > 1 such that $\sigma(n^5) = \Box$, and we leave finding such an example as a challenge to the reader.

References

- [Beukers et al. 2012] F. Beukers, F. Luca, and F. Oort, "Power values of divisor sums", *Amer. Math. Monthly* **119**:5 (2012), 373–380. MR 2916476 Zbl 1271.11088
- [Broughan et al. 2013] K. Broughan, K. Ford, and F. Luca, "On square values of the product of the Euler totient and sum of divisors functions", *Colloq. Math.* **130**:1 (2013), 127–137. MR 3034320 Zbl 1286.11005
- [van Emde Boas and Kruyswijk 1967] P. van Emde Boas and D. Kruyswijk, "A combinatorial problem on finite Abelian groups", *Math. Centrum Amsterdam Afd. Zuivere Wisk.* 1967:ZW-009 (1967), 27. MR 39 #2871 Zbl 0189.31703

[Freiberg 2012] T. Freiberg, "Products of shifted primes simultaneously taking perfect power values", *J. Aust. Math. Soc.* **92**:2 (2012), 145–154. MR 2999152 Zbl 06124076

[Olson 1969] J. E. Olson, "A combinatorial problem on finite abelian groups, II", *J. Number Theory* **1** (1969), 195–199. MR 39 #1552 Zbl 0167.28004

Received: 2013-10-19	Revised: 2014-08-29	Accepted: 2014-09-07
elesluis@gmail.com	Departamento de de Istmo, Ciudad Sección, Santo Do	Matemáticas Aplicadas, Universidad Universitaria S/N, Barrio Santa Cruz, 4a mingo, 70110 Tehuantepec, Oaxaca, Mexico
florian.luca@wits.ac.za	School of Mather P.O. Box Wits 20	natics, University of the Witwatersrand, 50, Johannesburg, 2000 South Africa

748

involve msp.org/involve

MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone@latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	YF. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US \$140/year for the electronic version, and \$190/year (+\$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

nonprofit scientific publishing http://msp.org/

© 2015 Mathematical Sciences Publishers

2015 vol. 8 no. 5

A simplification of grid equivalence NANCY SCHERICH	721
A permutation test for three-dimensional rotation data DANIEL BERO AND MELISSA BINGHAM	735
Power values of the product of the Euler function and the sum of divisors function LUIS ELESBAN SANTOS CRUZ AND FLORIAN LUCA	745
On the cardinality of infinite symmetric groups MATT GETZEN	749
Adjacency matrices of zero-divisor graphs of integers modulo <i>n</i> MATTHEW YOUNG	753
Expected maximum vertex valence in pairs of polygonal triangulations TIMOTHY CHU AND SEAN CLEARY	763
Generalizations of Pappus' centroid theorem via Stokes' theorem COLE ADAMS, STEPHEN LOVETT AND MATTHEW MCMILLAN	771
A numerical investigation of level sets of extremal Sobolev functions STEFAN JUHNKE AND JESSE RATZKIN	787
Coalitions and cliques in the school choice problem SINAN AKSOY, ADAM AZZAM, CHAYA COPPERSMITH, JULIE GLASS, GIZEM KARAALI, XUEYING ZHAO AND XINJING ZHU	801
The chromatic polynomials of signed Petersen graphs MATTHIAS BECK, ERIKA MEZA, BRYAN NEVAREZ, ALANA SHINE AND MICHAEL YOUNG	825
Domino tilings of Aztec diamonds, Baxter permutations, and snow leopard permutations BENJAMIN CAFFREY, ERIC S. EGGE, GREGORY MICHEL, KAILEE RUBIN AND JONATHAN VER STEEGH	833
The Weibull distribution and Benford's law VICTORIA CUFF, ALLISON LEWIS AND STEVEN J. MILLER	859
Differentiation properties of the perimeter-to-area ratio for finitely many overlapped unit squares PAUL D. HUMKE, CAMERON MARCOTT, BJORN MELLEM AND COLE	875
On the Levi graph of point-line configurations JESSICA HAUSCHILD, JAZMIN ORTIZ AND OSCAR VEGA	893

