\bullet
 involve

 a journal of mathematicsOn the cardinality of infinite symmetric groups
Matt Getzen

On the cardinality of infinite symmetric groups

Matt Getzen
(Communicated by Kenneth S. Berenhaut)

Abstract

A new proof is given that the symmetric group of any set X with three or more elements, finite or infinite, has cardinality strictly greater than that of X. Use of the axiom of choice is avoided throughout.

John Dawson and Paul Howard [1976] proved that the symmetric group of any set X with three or more elements, finite or infinite, has cardinality strictly greater than that of X. Significantly, their proof does not rely upon the axiom of choice. However, it does rely upon Cantor's theorem that the power set of any set X, finite or infinite, has cardinality strictly greater than that of X. We give a new proof of Dawson and Howard's result that relies upon neither the axiom of choice nor Cantor's theorem.

Recall that $\operatorname{Sym}(X)$ is the symmetric group of X, that is the set of all bijections between a set X and itself under function composition. More specifically, we call each bijection between a set and itself a permutation, each element that is mapped to itself by a permutation a fixed point, each pair of elements that are mapped to one another by a permutation a transposition, and each permutation that is its own inverse an involution.

The following results can easily be obtained and are listed without proof: (i) every fixed point in a permutation is also a fixed point in that permutation's inverse; (ii) every transposition in a permutation is also a transposition in that permutation's inverse; (iii) every permutation is an involution if and only if it is made up entirely of fixed points and transpositions; (iv) for all sets X, there exists an injection from X into $\operatorname{Sym}(X)$; and (v) in the case of all sets X with three or more elements, $\operatorname{Sym}(X)$ contains at least three involutions.

Theorem. For any set X with three or more elements, finite or infinite, $\operatorname{Sym}(X)$ has cardinality strictly greater than that of X.

Proof. We proceed by contradiction. Assume that there does exist a bijection \mathcal{F} from X to $\operatorname{Sym}(X)$, and construct the permutation \star in $\operatorname{Sym}(X)$ as follows:

[^0](1) Let a, b, and c be three elements of X such that $\mathcal{F}(a), \mathcal{F}(b)$, and $\mathcal{F}(c)$ are all involutions in $\operatorname{Sym}(X)$ with
\[

$$
\begin{aligned}
\star(a) & =b, \\
\star(b) & =c, \\
\star(c) & =a .
\end{aligned}
$$
\]

(2) For every other element i of X such that $\mathcal{F}(i)$ is an involution in $\operatorname{Sym}(X)$, but i is not equal to a, b, or c, we have

$$
\star(i)=i .
$$

(3) For each pair of permutations σ and μ in $\operatorname{Sym}(X)$ that are one another's inverses, and for each pair of elements s and m of X such that $\mathcal{F}(s)=\sigma$ and $\mathcal{F}(m)=\mu$, if σ transposes s and m then we have $\star(s)=s$ and $\star(m)=m$, but if σ does not transpose s and m then we have $\star(s)=m$ and $\star(m)=s$. In other words,

$$
\begin{aligned}
& \star(s)= \begin{cases}s & \text { if } \sigma(s)=m \text { and } \sigma(m)=s, \\
m & \text { if } \sigma(s) \neq m \text { or } \sigma(m) \neq s,\end{cases} \\
& \star(m)= \begin{cases}m & \text { if } \sigma(s)=m \text { and } \sigma(m)=s, \\
s & \text { if } \sigma(s) \neq m \text { or } \sigma(m) \neq s .\end{cases}
\end{aligned}
$$

Note that \star is a permutation of X and therefore an element in $\operatorname{Sym}(X)$. Note also that \star is not an involution and therefore must have a distinct inverse, call it \star^{-1}. Thus, some element of X must be the preimage of \star under \mathcal{F}. Let n denote just such an element of X. Additionally, some element of X other than n must be the preimage of \star^{-1} under \mathcal{F}. Let w denote just such an element of X. That is, $\mathcal{F}(n)=\star$ and $\mathcal{F}(w)=\star^{-1}$. As \star and \star^{-1} are of the same general form as σ and μ above, it now follows that

$$
\begin{aligned}
& \star(n)= \begin{cases}n & \text { if } \star(n)=w \text { and } \star(w)=n, \\
w & \text { if } \star(n) \neq w \text { or } \star(w) \neq n,\end{cases} \\
& \star(w)= \begin{cases}w & \text { if } \star(n)=w \text { and } \star(w)=n, \\
n & \text { if } \star(n) \neq w \text { or } \star(w) \neq n .\end{cases}
\end{aligned}
$$

In other words, assuming that the bijection \mathcal{F} does in fact exist, n and w will be transposed with one another in \star if and only if n and w are not transposed with one another in \star, a contradiction! Therefore no such bijection exists between X and $\operatorname{Sym}(X)$. Conversely, as we already know that there does exist an injection from X into $\operatorname{Sym}(X)$, we conclude that $\operatorname{Sym}(X)$ must have cardinality strictly greater than that of X.

Through showing that the power set of any set X, finite or infinite, has cardinality strictly greater than that of X, Georg Cantor revolutionized mathematics and inspired the field of set theory. It is interesting to wonder how different the world might have been if mathematicians' first forays into the higher realms of the infinite had been inspired not by power sets, but by symmetric groups.

Acknowledgements

The author would like to thank John Dawson and Paul Howard for commenting on an earlier draft of this paper, and Rommy Marquez, Xizhong Zheng, Louis Friedler, Ned Wolff, and especially Carlos Ortiz for all their help and encouragement.

References

[Dawson and Howard 1976] J. W. Dawson, Jr. and P. E. Howard, "Factorials of infinite cardinals", Fund. Math. 93:3 (1976), 185-195. MR 55 \#7779 Zbl 0365.02050

Received: 2014-01-07 Accepted: 2014-07-12
mgetzen@arcadia.edu
Department of Mathematics \& Computer Science, Arcadia University, 450 South Easton Road, Glenside, PA 19038, United States

involve
 msp.org/involve

MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone@ latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian @ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyj@@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@ mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US $\$ 140 /$ year for the electronic version, and $\$ 190 /$ year $(+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

I. mathematical sciences publishers

nonprofit scientific publishing

involve 2015 vol. 8 no. 5

A simplification of grid equivalence 721
NANCY SCHERICH
A permutation test for three-dimensional rotation data 735
Daniel Bero and Melissa Bingham
Power values of the product of the Euler function and the sum of divisors function 745
Luis Elesban Santos Cruz and Florian Luca
On the cardinality of infinite symmetric groups 749
Matt Getzen
Adjacency matrices of zero-divisor graphs of integers modulo n 753
Matthew Young
Expected maximum vertex valence in pairs of polygonal triangulations 763
Timothy Chu and Sean Cleary
Generalizations of Pappus' centroid theorem via Stokes' theorem 771
Cole Adams, Stephen Lovett and Matthew McMillan
A numerical investigation of level sets of extremal Sobolev functions 787
Stefan Juhnke and Jesse Ratzkin
Coalitions and cliques in the school choice problem 801
Sinan Aksoy, Adam Azzam, Chaya Coppersmith, Julie Glass, Gizem Karaali, Xueying Zhao and Xinjing Zhu
The chromatic polynomials of signed Petersen graphs 825
Matthias Beck, Erika Meza, Bryan Nevarez, Alana Shine andMichael Young
Domino tilings of Aztec diamonds, Baxter permutations, and snow leopard 833
permutations
Benjamin Caffrey, Eric S. Egge, Gregory Michel, Kailee Rubin and Jonathan Ver Steegh
The Weibull distribution and Benford's law 859
Victoria Cuff, Allison Lewis and Steven J. Miller
Differentiation properties of the perimeter-to-area ratio for finitely many875overlapped unit squaresPaul D. Humke, Cameron Marcott, Bjorn Mellem and ColeStiegler
On the Levi graph of point-line configurations893Jessica Hauschild, Jazmin Ortiz and Oscar Vega

[^0]: MSC2010: primary 03E99; secondary 20B30, 03E25.
 Keywords: set theory, infinite symmetric groups, axiom of choice.

