0

 involve

 involve} a journal of mathematics

The chromatic polynomials of signed Petersen graphs Matthias Beck, Erika Meza, Bryan Nevarez,

Alana Shine and Michael Young

The chromatic polynomials of signed Petersen graphs

Matthias Beck, Erika Meza, Bryan Nevarez, Alana Shine and Michael Young

(Communicated by Kenneth S. Berenhaut)

Zaslavsky proved in 2012 that, up to switching isomorphism, there are six different signed Petersen graphs and that they can be told apart by their chromatic polynomials, by showing that the latter give distinct results when evaluated at 3 . He conjectured that the six different signed Petersen graphs also have distinct zero-free chromatic polynomials, and that both types of chromatic polynomials have distinct evaluations at any positive integer. We developed and executed a computer program (running in SAGE) that efficiently determines the number of proper k-colorings for a given signed graph; our computations for the signed Petersen graphs confirm Zaslavsky's conjecture. We also computed the chromatic polynomials of all signed complete graphs with up to five vertices.

Graph coloring problems are ubiquitous in many areas within and outside of mathematics. We are interested in certain enumerative questions about coloring signed graphs. A signed graph $\Sigma=(\Gamma, \sigma)$ consists of a graph $\Gamma=(V, E)$ and a signature $\sigma \in\{ \pm\}^{E}$. The underlying graph Γ may have multiple edges and, besides the usual links and loops, also half-edges (with only one endpoint) and loose edges (no endpoints); the last are irrelevant for coloring questions, and so we assume in this paper that Σ has no loose edges. An unsigned graph can be realized by a signed graph all of whose edges are labeled with + . Signed graphs originated in the social sciences and have found applications also in biology, physics, computer science, and economics; see [Zaslavsky 1998-2012] for a comprehensive bibliography.

[^0]The chromatic polynomial $c_{\Sigma}(2 k+1)$ counts the proper k-colorings

$$
\boldsymbol{x} \in\{0, \pm 1, \ldots, \pm k\}^{V}
$$

namely, those colorings that satisfy

$$
x_{v} \neq \sigma_{v w} x_{w}
$$

for any edge $v w \in E$ and $x_{v} \neq 0$ for any $v \in V$ incident with some half-edge. Zaslavsky [1982a] proved that $c_{\Sigma}(2 k+1)$ is indeed a polynomial in k. It comes with a companion, the zero-free chromatic polynomial $c_{\Sigma}^{*}(2 k)$, which counts all proper k-colorings $\boldsymbol{x} \in\{ \pm 1, \ldots, \pm k\}^{V}$.

The Petersen graph has served as a reference point for many proposed results in graph theory. Considering signed Petersen graphs, Zaslavsky [2012] showed that, while there are 2^{15} ways to assign a signature to the fifteen edges, only six of these are different up to switching isomorphism (a notion that we will make precise below), depicted in Figure 1. (In our figures we represent a positive edge with a solid line and a negative edge with a dashed line.)

Zaslavsky [2012] proved that these six signed Petersen graphs have distinct chromatic polynomials; thus they can be distinguished by this signed-graph invariant. He did not compute the chromatic polynomials but showed that they evaluate to distinct numbers at 3 [loc. cit., Table 9.2]. He conjectured that the six different signed Petersen graphs also have distinct zero-free chromatic polynomials, and that both types of chromatic polynomials have distinct evaluations at any positive integer [loc. cit., Conjecture 9.1]. Our first result confirms this conjecture.

Theorem 1. The chromatic polynomials of the signed Petersen graphs (denoted by P_{1}, \ldots, P_{6} in Figure 1) are

Figure 1. The six switching-distinct signed Petersen graphs.

$$
\begin{aligned}
& c_{P_{1}}(2 k+1)=1024 k^{10}-2560 k^{9}+3840 k^{8}-4480 k^{7}+3712 k^{6} \\
& -1792 k^{5}+160 k^{4}+480 k^{3}-336 k^{2}+72 k, \\
& c_{P_{2}}(2 k+1)=1024 k^{10}-2560 k^{9}+3840 k^{8}-4480 k^{7}+3968 k^{6} \\
& -2560 k^{5}+1184 k^{4}-352 k^{3}+48 k^{2}, \\
& c_{P_{3}}(2 k+1)=1024 k^{10}-2560 k^{9}+3840 k^{8}-4480 k^{7}+4096 k^{6} \\
& -2944 k^{5}+1696 k^{4}-760 k^{3}+236 k^{2}-40 k, \\
& c_{P_{4}}(2 k+1)=1024 k^{10}-2560 k^{9}+3840 k^{8}-4480 k^{7}+4224 k^{6} \\
& -3200 k^{5}+1984 k^{4}-952 k^{3}+308 k^{2}-52 k, \\
& c_{P_{5}}(2 k+1)=1024 k^{10}-2560 k^{9}+3840 k^{8}-4480 k^{7}+4096 k^{6} \\
& -3072 k^{5}+1920 k^{4}-960 k^{3}+320 k^{2}-48 k, \\
& c_{P_{6}}(2 k+1)=1024 k^{10}-2560 k^{9}+3840 k^{8}-4480 k^{7}+4480 k^{6} \\
& -3712 k^{5}+2560 k^{4}-1320 k^{3}+460 k^{2}-90 k .
\end{aligned}
$$

Their zero-free counterparts are

$$
\begin{gathered}
c_{P_{1}}^{*}(2 k)=1024 k^{10}-7680 k^{9}+26880 k^{8}-58240 k^{7}+86592 k^{6} \\
\\
\quad-91552 k^{5}+68400 k^{4}-34440 k^{3}+10424 k^{2}-1408 k, \\
c_{P_{2}}^{*}(2 k)=1024 k^{10}-7680 k^{9}+26880 k^{8}-58240 k^{7}+86848 k^{6} \\
\\
-93088 k^{5}+72304 k^{4}-39880 k^{3}+14792 k^{2}-3288 k, \\
c_{P_{3}}^{*}(2 k)=1024 k^{10}-7680 k^{9}+26880 k^{8}-58240 k^{7}+86976 k^{6} \\
\\
-93856 k^{5}+74256 k^{4}-42592 k^{3}+16960 k^{2}-4222 k, \\
c_{P_{4}}^{*}(2 k)=1024 k^{10}-7680 k^{9}+26880 k^{8}-58240 k^{7}+87104 k^{6} \\
\\
-94496 k^{5}+75664 k^{4}-44320 k^{3}+18192 k^{2}-4698 k, \\
c_{P_{5}}^{*}(2 k)=1024 k^{10}-7680 k^{9}+26880 k^{8}-58240 k^{7}+86976 k^{6} \\
\\
-93984 k^{5}+74800 k^{4}-43560 k^{3}+17840 k^{2}-4616 k, \\
c_{P_{6}}^{*}(2 k)=1024 k^{10}-7680 k^{9}+26880 k^{8}-58240 k^{7}+87360 k^{6} \\
\\
-95776 k^{5}+78480 k^{4}-47760 k^{3}+20640 k^{2}-5660 k .
\end{gathered}
$$

Consequently (as a quick computation with a computer algebra system shows), none of the difference polynomials $c_{P_{m}}(2 k+1)-c_{P_{n}}(2 k+1)$ and $c_{P_{m}}^{*}(2 k)-c_{P_{n}}^{*}(2 k)$, with $m \neq n$, have a positive integer root.

To compute the above polynomials, we developed and executed a computer program (running in SAGE [Stein et al. 2012]) that efficiently determines the number of proper k-colorings for any signed graph. This code can be downloaded from math.sfsu.edu/beck/papers/signedpetersen.sage or from the online supplement to this paper. The procedure chrom is the main method; it takes an incidence matrix and outputs the chromatic polynomial as an expression.

We also used our program to compute the chromatic polynomials of all signed complete graphs up to five vertices; up to switching isomorphism, there are two signed $K_{3} \mathrm{~s}$, three signed $K_{4} \mathrm{~s}$, and seven signed $K_{5} \mathrm{~s}$. As with the signed Petersen graphs, the chromatic polynomials distinguish these signed complete graphs:
Theorem 2. The chromatic polynomials of the signed complete graphs (denoted $K_{3}^{(1)}, K_{3}^{(2)}, \ldots, K_{5}^{(7)}$ in Figure 2) are

$$
\begin{aligned}
& c_{K_{3}^{(1)}}(2 k+1)=8 k^{3}-2 k, \\
& c_{K_{3}^{(2)}}(2 k+1)=8 k^{3} \\
& c_{K_{4}^{(1)}}^{(2 k+1)}=16 k^{4}-16 k^{3}-4 k^{2}+4 k, \\
& c_{K_{4}^{(2)}}(2 k+1)=16 k^{4}-16 k^{3}+4 k^{2} \\
& c_{K_{4}^{(3)}}(2 k+1)=16 k^{4}-16 k^{3}+12 k^{2}-2 k, \\
& c_{K_{5}^{(1)}}(2 k+1)=32 k^{5}-80 k^{4}+40 k^{3}+20 k^{2}-12 k \\
& c_{K_{5}^{(2)}}(2 k+1)=32 k^{5}-80 k^{4}+64 k^{3}-16 k^{2} \\
& c_{K_{5}^{(3)}}(2 k+1)=32 k^{5}-80 k^{4}+88 k^{3}-48 k^{2}+10 k \\
& c_{K_{5}^{(4)}}(2 k+1)=32 k^{5}-80 k^{4}+72 k^{3}-28 k^{2}+4 k \\
& c_{K_{5}^{(5)}}(2 k+1)=32 k^{5}-80 k^{4}+96 k^{3}-56 k^{2}+12 k \\
& c_{K_{5}^{(6)}}(2 k+1)=32 k^{5}-80 k^{4}+80 k^{3}-40 k^{2}+8 k \\
& c_{K_{5}^{(7)}}(2 k+1)=32 k^{5}-80 k^{4}+120 k^{3}-80 k^{2}+20 k
\end{aligned}
$$

The corresponding zero-free chromatic polynomials are

$$
\begin{aligned}
& c_{K_{3}^{(1)}}^{*}(2 k)=8 k^{3}-12 k^{2}+4 k, \\
& c_{K_{3}^{(2)}}^{*}(2 k)=8 k^{3}-12 k^{2}+6 k, \\
& c_{K_{4}^{(1)}}^{*}(2 k)=16 k^{4}-48 k^{3}+44 k^{2}-12 k, \\
& c_{K_{4}^{(2)}}^{*}(2 k)=16 k^{4}-48 k^{3}+52 k^{2}-24 k, \\
& c_{K_{4}^{(3)}}^{*}(2 k)=16 k^{4}-48 k^{3}+60 k^{2}-34 k, \\
& c_{K_{5}^{(1)}}^{*}(2 k)=32 k^{5}-160 k^{4}+280 k^{3}-200 k^{2}+48 k, \\
& c_{K_{5}^{(2)}}^{*}(2 k)=32 k^{5}-160 k^{4}+304 k^{3}-272 k^{2}+114 k, \\
& c_{K_{5}^{(3)}}^{*}(2 k)=32 k^{5}-160 k^{4}+328 k^{3}-340 k^{2}+174 k, \\
& c_{K_{5}^{(4)}}^{*}(2 k)=32 k^{5}-160 k^{4}+312 k^{3}-296 k^{2}+136 k, \\
& c_{K_{5}^{(5)}}^{*}(2 k)=32 k^{5}-160 k^{4}+336 k^{3}-360 k^{2}+190 k, \\
& c_{K_{5}^{(6)}}^{*}(2 k)=32 k^{5}-160 k^{4}+320 k^{3}-320 k^{2}+158 k, \\
& c_{K_{5}^{(7)}}^{*}(2 k)=32 k^{5}-160 k^{4}+360 k^{3}-420 k^{2}+240 k .
\end{aligned}
$$

Figure 2. The switching classes of signed complete graphs.

We now review a few constructs on a signed graph $\Sigma=(V, E, \sigma)$ and describe our implementation. The restriction of Σ to an edge set $F \subseteq E$ is the signed graph $\left(V, F,\left.\sigma\right|_{F}\right)$. For $e \in E$, we denote by $\Sigma-e$ (the deletion of e) the restriction of Σ to $E-\{e\}$. For $v \in V$, denote by $\Sigma-v$ the restriction of Σ to $E-F$, where F is the set of all edges incident to v. A component of the signed graph $\Sigma=(\Gamma, \sigma)$ is balanced if it contains no half-edges and each cycle has positive sign product.

Switching Σ by $s \in\{ \pm\}^{V}$ results in the new signed graph (V, E, σ^{s}), where $\sigma_{v w}^{s}=s_{v} \sigma_{v w} s_{w}$. Switching does not alter balance, and any balanced signed graph can be obtained from switching an all-positive graph [Zaslavsky 1982b]. We also note that there is a natural bijection of proper colorings of Σ and a switched version of it, and this bijection preserves the number of proper k-colorings. Thus the chromatic polynomials of Σ are invariant under switching.

The contraction of Σ by $F \subseteq E$, denoted by Σ / F, is defined as follows [Zaslavsky 1982b]: switch Σ so that every balanced component of F is all positive, coalesce all nodes of each balanced component, and discard the remaining nodes and all edges in F; note that this may produce half-edges. If $F=\{e\}$ for a link $e, \Sigma / e$ is obtained by switching Σ so that $\sigma(e)=+$ and then contracting e as in the case of unsigned graphs; that is, disregard e and identify its two endpoints. If e is a negative loop at v, then Σ / e has vertex set $V-\{v\}$ and edge set resulting from E
by deleting e and converting all edges incident with v to half-edges. The chromatic polynomial satisfies the deletion-contraction formula [Zaslavsky 1982a]

$$
\begin{equation*}
c_{\Sigma}(2 k+1)=c_{\Sigma-e}(2 k+1)-c_{\Sigma / e}(2 k+1) \tag{1}
\end{equation*}
$$

The zero-free chromatic polynomial $c_{\Sigma}^{*}(2 k)$ satisfies the same identity provided that e is not a half-edge or negative loop. We will use (1) repeatedly in our computations.

We encode a signed graph Σ by its incidence matrix as follows: first bidirect Σ; i.e., give each edge an independent orientation at each endpoint (which we think of as an arrow pointing towards or away from the endpoint), such that a positive edge has one arrow pointing towards one and away from the other endpoint, and a negative edge has both arrows pointing either towards or away from the endpoints. The incidence matrix has rows indexed by vertices, columns indexed by edges, and entries equal to ± 1 according to whether the edge points towards or away from the vertex (and 0 otherwise). Since half-edges and negative loops have the same effect on the chromatic polynomial of Σ, we may assume that Σ has no half-edge. See Figure 3 for an example.

Deletion-contraction can be easily managed by incidence matrices: deletion of an edge simply means deletion of the corresponding column; contraction of a positive edge $v w$ means replacing the rows corresponding to v and w by their sum and then deleting the column corresponding to the edge $v w$ (it is sufficient to only consider contraction of positive edges, since we can always switch one of its endpoints if necessary, which means negating the corresponding row). Note that this process works for both links and half-edges. Note also that we will constantly look for multiple edges (with the same sign) and replace them with a single edge.

	$a b$	$a c$	$a d$	$b c$	$b d$	$c d$
a	-1	-1	1	0	0	0
b	-1	0	0	1	1	0
c	0	1	0	-1	0	-1
d	0	0	-1	0	-1	-1

Figure 3. $K_{4}^{(3)}$ with one of its bidirections and corresponding incidence matrix.

Thus we can keep track of incidence matrices as we recursively apply deletioncontraction, leading to empty signed graphs or signed graphs that only have halfedges; both have easy chromatic polynomials.

References

[Stein et al. 2012] W. A. Stein et al., "Sage mathematics software", 2012, available at http:// www.sagemath.org. Version 5.1.
[Zaslavsky 1982a] T. Zaslavsky, "Signed graph coloring", Discrete Math. 39:2 (1982), 215-228. MR 84h:05050a Zbl 0487.05027
[Zaslavsky 1982b] T. Zaslavsky, "Signed graphs", Discrete Appl. Math. 4:1 (1982), 47-74. Erratum in 5:2 (1983), p. 248. MR 84e:05095a Zbl 0476.05080
[Zaslavsky 1998-2012] T. Zaslavsky, "A mathematical bibliography of signed and gain graphs and allied areas", Electron. J. Combin./Dyn. Surv. 8 (1998-2012). MR 2000m:05001a Zbl 0898.05001 [Zaslavsky 2012] T. Zaslavsky, "Six signed Petersen graphs, and their automorphisms", Discrete Math. 312:9 (2012), 1558-1583. MR 2899889 Zbl 1239.05086
mattbeck@sfsu.edu
emeza2@lion.Imu.edu
nebryan@umich.edu
ashine@usc.edu
myoung@iastate.edu

Received: 2014-04-18 Revised: 2014-12-18 Accepted: 2015-01-13
Department of Mathematics, San Francisco State University, San Francisco, CA 94132, United States
Department of Mathematics, Loyola Marymount University, Los Angeles, CA 90045, United States
Department of Mathematics, Queens College, CUNY, Flushing, NY 11367, United States
Department of Computer Science, University of Southern California, Los Angeles, CA 90089, United States

Department of Mathematics, lowa State University, Ames, IA 50011, United States

involve
 msp.org/involve

MANAGING EDITOR
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone@latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@ mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@ math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@ pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@ wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US $\$ 140 /$ year for the electronic version, and $\$ 190 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
E- mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2015 Mathematical Sciences Publishers
A simplification of grid equivalence 721
NANCY SCHERICH
A permutation test for three-dimensional rotation data 735
Daniel Bero and Melissa Bingham
Power values of the product of the Euler function and the sum of divisors function 745
Luis Elesban Santos Cruz and Florian Luca
On the cardinality of infinite symmetric groups 749
Matt Getzen
Adjacency matrices of zero-divisor graphs of integers modulo n 753
Matthew Young
Expected maximum vertex valence in pairs of polygonal triangulations 763Timothy Chu and Sean Cleary
Generalizations of Pappus' centroid theorem via Stokes' theorem 771
Cole Adams, Stephen Lovett and Matthew McMillan
A numerical investigation of level sets of extremal Sobolev functions 787
Stefan Juhnke and Jesse Ratzkin
Coalitions and cliques in the school choice problem 801Sinan Aksoy, Adam Azzam, Chaya Coppersmith, Julie Glass,Gizem Karaali, Xueying Zhao and Xinjing Zhu
The chromatic polynomials of signed Petersen graphs 825
Matthias Beck, Erika Meza, Bryan Nevarez, Alana Shine and Michael Young
Domino tilings of Aztec diamonds, Baxter permutations, and snow leopard 833
permutationsBenjamin Caffrey, Eric S. Egge, Gregory Michel, Kailee Rubinand Jonathan Ver Steegh
The Weibull distribution and Benford's law 859Victoria Cuff, Allison Lewis and Steven J. Miller
Differentiation properties of the perimeter-to-area ratio for finitely many 875overlapped unit squaresPaul D. Humke, Cameron Marcott, Bjorn Mellem and ColeStiegler
On the Levi graph of point-line configurations 893Jessica Hauschild, Jazmin Ortiz and Oscar Vega

[^0]: MSC2010: primary 05C22; secondary 05A15, 05C15.
 Keywords: signed graph, Petersen graph, complete graph, chromatic polynomial, zero-free chromatic polynomial.
 We are grateful to Thomas Zaslavsky and an anonymous referee for comments on an earlier version of this paper, and we thank Ricardo Cortez and the staff at MSRI for creating an ideal research environment at MSRI-UP. This research was partially supported by the NSF through the grants DMS-1162638 (Beck), DMS-0946431 (Young), and DMS-1156499 (MSRI-UP REU), and by the NSA through grant H98230-11-1-0213.

