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In 1992, Elkies, Kuperberg, Larsen, and Propp introduced a bijection between
domino tilings of Aztec diamonds and certain pairs of alternating-sign matrices
whose sizes differ by one. In this paper we first study those smaller permutations
which, when viewed as matrices, are paired with the matrices for doubly alternating
Baxter permutations. We call these permutations snow leopard permutations, and
we use a recursive decomposition to show they are counted by the Catalan numbers.
This decomposition induces a natural map from Catalan paths to snow leopard
permutations; we give a simple combinatorial description of the inverse of this map.
Finally, we also give a set of transpositions which generates these permutations.

1. Introduction and background

An Aztec diamond of order n is a two-dimensional array of unit squares with
2i squares in rows i ≤ n and 2(2n− i + 1) squares in rows n < i ≤ 2n, in which
the squares are centered in each row. In the figure below (left) we have the Aztec
diamond of order 3. We will be interested in the vertices of an Aztec diamond,
which we prefer to arrange in rows and columns, so we will orient all of our Aztec
diamonds as in the figure on the right.
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Aztec diamonds can be tiled using 2× 1 domino rectangles, which is to say they
can be completely covered by disjoint dominoes whose union is the entire diamond.
We call a tiling of an Aztec diamond with dominoes a TOAD for short.

In [Elkies et al. 1992], Elkies, Kuperberg, Larsen, and Propp describe how to
construct, for each TOAD T of order n, a pair of matrices SASM(T ) and LASM(T )
of sizes n × n and (n + 1)× (n + 1), respectively. Each of these matrices is an
alternating-sign matrix (ASM), which is a matrix with entries in {0, 1,−1} whose
nonzero entries in each row and in each column alternate in sign and sum to 1.
(For an introduction to ASMs and a variety of related combinatorial objects, see
[Robbins 1991; Bressoud 1999; Propp 2001].) To carry out this construction, first
note that in Figure 1 the vertices that compose the tiled Aztec diamond fall naturally
into two matrices: the red vertices form an (n + 1)× (n + 1) matrix while the
blue vertices form an n× n matrix. We construct LASM(T ) on the red vertices by
labeling each vertex of degree 4 with a 1, labeling each vertex of degree 3 with
a 0, and labeling each vertex of degree 2 with a −1. We construct SASM(T ) on the
blue vertices in the same way, except the degree 4 and degree 2 rules are reversed.
Note that the TOAD T in Figure 1 has

LASM(T )=


0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

 and SASM(T )=

0 0 1
1 0 0
0 1 0

 .
Following [Elkies et al. 1992] and [Canary 2010], we say an (n+1)×(n+1) ASM

A and an n × n ASM B are compatible whenever there is a TOAD T such that
A=LASM(T ) and B=SASM(T ). Elkies et al. showed that an (n+1)×(n+1)ASM
with k entries equal to −1 is compatible with 2k n×n ASMs, while an n×n ASM
with j entries equal to 1 is compatible with 2 j (n+ 1)× (n+ 1) ASMs. In general,
then, the compatibility relation is not one-to-one. However, each (n+ 1)× (n+ 1)
ASM with no −1 entries (that is, each (n + 1)× (n + 1) permutation matrix) is

Figure 1. A domino tiling of the Aztec diamond of order 3.
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compatible with exactly one n × n ASM. In this case, Canary [2010] gives an
algorithm to construct the unique smaller ASM compatible with a given larger
permutation matrix. (Asinowski [2014] gives a different formulation of the same
algorithm, in which he first reconstructs the underlying TOAD.) To implement
Canary’s algorithm for an (n+1)× (n+1) permutation matrix A, first label the red
vertices in a diagram for an Aztec diamond of the appropriate size with the entries
of A. For each blue vertex, if the two red vertices immediately to the left, and all
of the red vertices left of those, are labeled with 0, then label the blue vertex 0.
Now repeat this process in each of the other three directions (up, right, and down).
Canary shows that each row and column of blue vertices will now contain an odd
number of unlabeled vertices, and there is a unique way to label these vertices with
1s and −1s to create an ASM.

Canary proves that the n× n ASM compatible with a given (n+ 1)× (n+ 1)
permutation matrix A will also be a permutation matrix if and only if A is the matrix
of a Baxter permutation. To understand the definition of a Baxter permutation,
first note that we can interpret each permutation matrix A as the permutation π in
one-line notation for which Ai j = δ jπ(i). That is, the 1 in the first row of A is in
position π(1), the 1 in the second row is in position π(2), and in general the 1 in
the j th row is in position π( j). For example, if T is the TOAD in Figure 1, then
the permutation for LASM(T ) is 4132 and the permutation for SASM(T ) is 312.
We will often identify a permutation matrix with its corresponding permutation in
one-line notation. With this convention, a Baxter permutation is a permutation that
avoids 2–41–3 and 3–14–2. In other words, π is a Baxter permutation whenever
there are no indices i < j < j+1< k such that π( j+1) < π(i) < π(k) < π( j) (for
2–41–3) or π( j)<π(k)<π(i)<π( j+1) (for 3–14–2). For example, 174962835
is not Baxter because the subsequence 4625 is an instance of 2–41–3. In contrast,
879164325 is Baxter because it contains no instances of 2–41–3 or 3–14–2. Note
that the compatibility relation is still not one-to-one when we restrict it to Baxter
permutations. For example, 12 is compatible with the Baxter permutations 123,
132, and 213. On the other hand, as suggested in [Asinowski et al. 2013], for every
permutation π of length n which is compatible with a Baxter permutation of length
n+1, the number of Baxter permutations of length n+1 compatible with π appears
to be a product of Fibonacci numbers.

Baxter permutations first arose in connection with the question of whether two
commuting continuous functions from the closed interval [0, 1] to itself must have
a common fixed point [Baxter 1964; Boyce 1967]. Since their introduction they
have been studied by many authors; some relevant references are [Chung et al.
1978; Mallows 1979; Cori et al. 1986; Dulucq and Guibert 1996; 1998; Guibert and
Linusson 2000; Ouchterlony 2006; Ackerman et al. 2006; Asinowski et al. 2013].

Our work involves a particular class of Baxter permutations, which are known
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as doubly alternating Baxter permutations. We call a permutation π alternating
whenever π(i) < π(i + 1) if i is odd and π(i) > π(i + 1) if i is even. That is, π is
alternating whenever it begins with an ascent, and its ascents and descents alternate.
A doubly alternating permutation is an alternating permutation whose inverse is
also alternating, and we call permutations that are both doubly alternating and
Baxter doubly alternating Baxter permutations (DABPs). Guibert and Linusson
[2000] show that the Catalan number Cn = 1/(n+1)

(2n
n

)
counts both the DABPs of

length 2n and the DABPs of length 2n+1. The Catalan numbers are known to count
many other combinatorial objects (see [Stanley 1999, Exercise 6.19] and [Stanley
2013]), including lattice paths from (0, 0) to (n, n) using only north (0, 1) and
east (1, 0) steps which do not pass below the line y= x ; we call these paths Catalan
paths. In addition to the explicit definition of Cn in terms of binomial coefficients,
the Catalan numbers also satisfy the recurrence relation Cn =

∑n
j=1 C j−1Cn− j

for n ≥ 0, with initial condition C0 = 1.
In this paper, we introduce the snow leopard permutations (SLPs), which are the

permutations that are compatible with the doubly alternating Baxter permutations.
More formally, we write Sn to denote the set of permutations of length n, and we
make the following definition.

Definition 1.1. We say a permutation π ∈ Sn is a snow leopard permutation when-
ever there is a TOAD T of order n such that LASM(T ) is a DABP and SASM(T )=π .

In Section 2, we characterize these permutations recursively, and we use this
recursive characterization to show that in this case the compatibility relation is
one-to-one. This implies that the snow leopard permutations of length 2n are also
counted by Cn , as are the snow leopard permutations of length 2n+ 1. Matching
our recursive description of the snow leopard permutations with the first-return
decomposition of a Catalan path gives us a recursively defined bijection from Catalan
paths from (0, 0) to (n, n) to snow leopard permutations of length 2n. In Section 3
we give a simple combinatorial description of the inverse of this map. Finally, in
Section 4 we describe how to generate all of the snow leopard permutations from
the decreasing permutation with a specific set of transpositions.

2. Recursive decompositions of DABPs, TOADs, and
snow leopard permutations

In this section we describe how to construct snow leopard permutations recursively,
and we use our recursive decomposition to show that there are Cn snow leopard
permutations of length 2n, as well as Cn snow leopard permutations of length 2n+1.
Our snow leopard permutation decomposition is induced by similar decompositions
of the associated TOADs and DABPs, so we first describe how to decompose these
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objects. We begin with a recursive decomposition of a DABP, for which it will be
helpful to use several common operations on permutations.

Permutation tools. Throughout we write Sn to denote the set of all permutations
of length n, and for any permutation π , we write |π | to denote the length of π . The
following four operations on permutations will be especially useful for us.

Definition 2.1. For any permutation π ∈ Sn , we write π c to denote the complement
of π , which is the permutation in Sn with

π c( j)= n+ 1−π( j)

for all j , 1 ≤ j ≤ n, and we write πr to denote the reverse of π , which is the
permutation in Sn with

πr ( j)= π(n+ 1− j)

for all j , 1≤ j ≤ n. For any permutations π ∈ Sn and σ ∈ Sk , we write π ⊕ σ to
denote the permutation in Sn+k with

(π ⊕ σ)( j)=
{
π( j) if 1≤ j ≤ n,
n+ σ( j − n) if n < j ≤ n+ k

for all j , 1≤ j ≤ n, and we write π 	 σ to denote the permutation in Sn+k with

(π 	 σ)( j)=
{

k+π( j) if 1≤ j ≤ n,
σ ( j − n) if n < j ≤ n+ k

for all j , 1≤ j ≤ n.

Note that on matrices the complement is a reflection over a vertical line, while
the reverse is a reflection over a horizontal line. In addition, one can also show that
for any permutations π and σ , we have (π⊕σ)−1

= π−1
⊕σ−1, (πr )−1

= (π−1)c,
and (π c)−1

= (π−1)r . We sometimes write i to denote the inverse map on Sn; with
this notation, our last two equations are equivalent to i ◦ r = c ◦ i and i ◦ c = r ◦ i ,
respectively.

Example 2.2. If π = 32154 and σ = 3124 then π c
= 34512, σ r

= 4213, π ⊕ σ =
321548679, and π 	 σ = 765983124.

In some situations our permutations will naturally have length 0 or −1. To
incorporate these cases into our results, we use the following notation.

Definition 2.3. We write ∅ to denote the empty permutation, which is the unique
permutation of length 0, and we write @ to denote the antipermutation, which
is the unique permutation of length −1. We have @c

= @r
= @−1

= @, and
1⊕@=@⊕ 1= 1	@=@	 1=∅.

As we show next, the set of Baxter permutations is closed under ⊕, 	, taking
complements, and taking the reverse of a permutation.
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Lemma 2.4. The following are equivalent for any permutation π .

(i) π is Baxter.

(ii) π c is Baxter.

(iii) πr is Baxter.

(iv) π−1 is Baxter.

Proof. (i) ⇒ (ii) If π c contains a subsequence of type 2–41–3, then the corre-
sponding subsequence of π will have type 3–14–2. Similarly, if π c contains a
subsequence of type 3–14–2 then the corresponding subsequence of π will have
type 2–41–3. If π is Baxter then π avoids 2–41–3 and 3–14–2, so π c avoids
3–14–2 and 2–41–3, which means π c is Baxter.

(ii)⇒ (i) This is immediate from (i)⇒ (ii), since (π c)c = π .

(i)⇔ (iii) This is similar to the proof of (i)⇔ (ii).

(i)⇔ (iv) Since (π−1)−1
=π , it’s sufficient to show that if π contains a subsequence

of type 2–41–3 or a subsequence of type 3–14–2 then π−1 does, as well. With this
in mind, suppose abcd is a subsequence of π of type 2–41–3 for which d − a is
minimal. If d = a+1 then the corresponding subsequence in π−1 has type 3–14–2.
Otherwise, a + 1 is either to the left of b or to the right of c, since b and c are
adjacent. If a+ 1 is to the left of b, then we can replace a with a+ 1, so d−a was
not minimal, which is a contradiction. On the other hand, if a+ 1 is to the right of
c then we can replace d with a+ 1, so d − a was not minimal in this case, either.

The proof that if π contains a subsequence of type 3–14–2 then π−1 contains
a subsequence of type 2–41–3 or 3–14–2 is similar. �

Lemma 2.5. The following are equivalent for permutations π and σ .

(i) π and σ are Baxter.

(ii) π ⊕ σ is Baxter.

(iii) π 	 σ is Baxter.

Proof. (i)⇒ (ii) Suppose to the contrary that π and σ are Baxter permutations but
π ⊕ σ is not Baxter. Call the first |π | entries of π ⊕ σ the front of π ⊕ σ , and call
the last |σ | entries the back. Note that every entry in the front is less than every
entry in the back.

If π ⊕ σ contains a subsequence α of type 2–41–3, then α cannot be entirely
contained in the front or in the back, since π and σ are Baxter. Therefore α(1)
is in the front and α(4) is in the back. Now α(2) must be in the back, since it is
greater than α(4), so α(3) must also be in the back. But this contradicts the fact
that α(1) > α(3).
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If π ⊕ σ contains a subsequence α of type 3–14–2, then α cannot be entirely
contained in the front or in the back, since π and σ are Baxter. But this contradicts
the fact that α(1) > α(4).

(ii)⇒ (i) If π or σ contains a subsequence of type 2–41–3 or 3–14–2 then so
does π ⊕ σ , and the result follows.

(i)⇔ (iii) This is similar to the proof of (i)⇔ (ii). �

Note that if π is alternating then π c is not alternating in general, and πr is
alternating if and only if π has odd length. Similarly, if π and σ are alternating,
then π ⊕ σ is not alternating in general, while π 	 σ is alternating if and only
if π has even length. As a result, the set of DABPs is not closed under ⊕, 	,
complements, or reverses.

The DABP decompositions. As we will see, snow leopard permutations inherit
their recursive structure from DABPs, so our first goal is to describe how to decom-
pose DABPs into smaller DABPs. Several of these results are not new, so we will
refer to the work of others, especially [Dulucq and Guibert 1998] and [Ouchterlony
2006], as needed.

Lemma 2.6 [Ouchterlony 2006, Lemma 4.1(i)]. If π is a DABP of odd length then
π(1)= 1.

Ouchterlony uses Lemma 2.6 to conclude that π is a DABP of length 2n + 1
if and only if π = 1⊕ (σ r )−1 for some DABP σ of length 2n [Ouchterlony 2006,
Corollary 4.2(i)], and that this correspondence is a bijection between the set of
DABPs of length 2n+ 1 and the set of DABPs of length 2n. However, as we show
next, more is true.

Proposition 2.7. Suppose f is any of the functions r , c, i ◦ r , and i ◦ c on permu-
tations. For any nonnegative integer n and any π ∈ S2n+1, π is a DABP if and
only if there is a DABP σ ∈ S2n such that π = 1⊕ σ f . Moreover, for each f , this
correspondence is a bijection between the set of DABPs π of length 2n+ 1 and the
set of DABPs σ of length 2n.

Proof. By [Ouchterlony 2006, Corollary 4.2(i)], the result holds for f = i ◦ r .
To prove the result for f = c, first note that σ is a DABP if and only if σ−1 is a
DABP by Lemma 2.4. Now the result follows by replacing σ with σ−1 in [loc. cit.,
Corollary 4.2(i)] and using the fact that i ◦ r ◦ i = c.

The proofs when f = r and f = i ◦ c are similar. �

With Proposition 2.7 in mind, we will focus our attention on DABPs of even
length. In this case, Guibert and Linusson [2000] and Ouchterlony [2006] have
found the following DABP decomposition.
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Figure 2. The TOAD of order 0.

Proposition 2.8 [Ouchterlony 2006, Corollary 4.2(ii)] and [Guibert and Linusson
2000, proof of Theorem 3]. For any nonnegative integer n and any permutation
π ∈ S2n , π is a DABP if and only if there are DABPs π1 and π2 of even length
such that π = (1⊕ (πr

1 )
−1
⊕ 1)	π2. Moreover, this correspondence is a bijection

between the set of DABPs π of length 2n and the set of ordered pairs (π1, π2) of
DABPs of lengths 2k and 2l, where n = k+ l + 1.

As was the case for DABPs of odd length, more is true.

Proposition 2.9. Suppose f is any of the functions r , c, i ◦ r , and i ◦ c on permuta-
tions. For any nonnegative integer n and any permutation π ∈ S2n , π is a DABP if
and only if there are DABPs π1 and π2 of even length such that π = (1⊕π f

1 ⊕1)	π2.
Moreover, for each f , this correspondence is a bijection between the set of DABPs π
of length 2n and the set of ordered pairs (π1, π2) of DABPs of lengths 2k and 2l,
where n = k+ l + 1.

Proof. This is similar to the proof of Proposition 2.7, using Proposition 2.8. �

The Aztec diamond decompositions. It is not difficult to show [Asinowski 2014;
Canary 2010] that each Baxter permutation π of length n+ 1 determines a unique
TOAD T (π) of order n, and that T and LASM are inverse bijections when LASM
is restricted to those TOADS whose LASM is a Baxter permutation. Computing
T (π) when π has length 2 or more is routine, but some care is required when π
has length 0 or 1. In particular, T (1) is the TOAD of order 0, which we show in
Figure 2. Going a bit smaller still, we write @ to denote the TOAD T (∅), which
has order −1. Since the Aztec diamond of order −1 has no edges at all, we can’t
even draw it, but it will still play a role in our snow leopard decomposition.

The fact that we have the maps T and LASM means our DABP decompositions
induce similar TOAD decompositions. To describe these TOAD decompositions,
it’s useful to introduce several ways of transforming and combining TOADs.

Definition 2.10. For any TOAD T , we write T c to denote the complement of T ,
which is the reflection of T over a vertical line, we write T r to denote the reverse
of T , which is the reflection of T over a horizontal line, and we write T−1 to denote
the inverse of T , which is the reflection of T over a diagonal line from upper left to
lower right.

As we did for permutations, we sometimes write i to denote the inverse map on
TOADs.
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Figure 3. The construction of T1 ⊕ T2 (left) and T1 	 T2 (right)
from T1 and T2.

Definition 2.11. For any TOADs T1 and T2, we write T1⊕ T2 to denote the TOAD
we obtain by identifying the lower right vertex of T1 with the upper left vertex of T2,
taking the smallest Aztec diamond D which contains both T1 and T2, and tiling the
part of D outside of T1 and T2 with dominoes whose long sides are oriented from
upper left to lower right. If T1 has order n and T2 has order k, then T1⊕ T2 has
order n+ k+ 1.

In Figure 3 (left) we see how TOADs T1 (in red) and T2 (in blue) are combined
to produce T1⊕ T2. Note that the only way to tile the areas outside of T1 and T2 is
to use dominoes whose long sides are oriented from upper left to lower right, as in
the construction of T1⊕ T2.

Definition 2.12. For any TOADs T1 and T2, we write T1	 T2 to denote the TOAD
we obtain by identifying the lower left vertex of T1 with the upper right vertex of T2,
taking the smallest Aztec diamond D which contains both T1 and T2, and tiling the
part of D outside of T1 and T2 with dominoes whose long sides are oriented from
upper right to lower left. If T1 has order n and T2 has order k, then T1	 T2 has
order n+ k+ 1.

In Figure 3 (right) we see how TOADs T1 (in red) and T2 (in blue) are combined
to produce T1	 T2. Note that the only way to tile the areas outside of T1 and T2 is
to use dominoes whose long sides are oriented from upper right to lower left, as in
the construction of T1	 T2.

Our next result, which follows immediately from our definitions, justifies our
multiple uses of the notations c, r , −1, ⊕, and 	.

Proposition 2.13. For any Baxter permutations π and σ , the following hold.

(i) T (π c)= T (π)c.

(ii) T (πr )= T (π)r .

(iii) T (π−1)= T (π)−1.
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1

Figure 4. The DAAD corresponding to the DABP 37564812 and
its compatible SLP 3654721.

(iv) T (π ⊕ σ)= T (π)⊕ T (σ ).
(v) T (π 	 σ)= T (π)	 T (σ ).

We now turn our attention to those TOADs which come from DABPs.

Definition 2.14. We call a TOAD T a doubly alternating Aztec diamond (DAAD)
whenever LASM(T ) is a DABP. Note that a TOAD T is a DAAD if and only if
there is a DABP π such that T (π)= T . Indeed, π = LASM(T ).

In Figure 4 we have a DAAD with its DABP and its corresponding snow leopard
permutation.

We saw in Proposition 2.7 that it’s easy to construct DABPs of odd length from
DABPs of even length. As we see next, this means it’s easy to construct DAADs of
even order from DAADs of odd order.

Proposition 2.15. Suppose f is any of the functions r , c, i ◦ r , and i ◦ c on DAADs.
For any nonnegative integer n and any TOAD T of order 2n, T is a DAAD if and
only if there is a DAAD D of order 2n− 1 such that T = T (1)⊕ D f . Moreover,
for each f this correspondence is a bijection between the set of DAADs of order 2n
and the set of DAADs of order 2n− 1.

Proof. (⇒) Since T is a DAAD of order 2n, there is a DABP π of length 2n+ 1
with T (π) = T . By Proposition 2.7, there is a DABP σ of length 2n such that
π = 1⊕ σ f . If we apply T to our expression for π and use Proposition 2.13 to
simplify the result, we find T = T (1)⊕ T (σ ) f . Now the result follows, since
D = T (σ ) is a DAAD of order 2n− 1.

(⇐) Since D is a DAAD of order 2n−1, there is a DABP σ of length 2n such that
T (σ )= D. By Proposition 2.7, we have T (1⊕ σ f )= T , so T is a DAAD.

The fact that this correspondence is a bijection follows from the last statement
of Proposition 2.7 and the fact that T is a bijection. �
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Proposition 2.15 says that we can understand all DAADs if we understand
DAADs of odd order. With this in mind, we now describe how to decompose a
DAAD of odd order into a combination of two smaller DAADs of odd order.

Theorem 2.16. Suppose f is any of the functions r , c, i ◦ r , or i ◦ c on TOADs.
For any TOAD T of odd order, T is a DAAD if and only if there are DAADs T1

and T2 of odd order such that T = (T (1)⊕T f
1 ⊕T (1))	T2. Moreover, for each f ,

this correspondence is a bijection between the set of DAADs T of order 2n − 1
and the set of ordered pairs (T1, T2) of DAADs of orders 2k− 1 and 2l − 1, where
n = k+ l + 1.

Proof. (⇒) Since T is a DAAD or order 2n− 1, we know that π = LASM(T ) is
a DABP of length 2n with T = T (π). By Proposition 2.9, there are DABPs π1

and π2 of lengths 2k and 2l, respectively, such that π = (1⊕ π f
1 ⊕ 1)	 π2 and

n = k+ l + 1. If we apply T to our expression for π and use Proposition 2.13 to
simplify the result, we find

T = T (π)=
(
T (1)⊕ T (π1)

f
⊕ T (1)

)
	 T (π2).

Now the result follows, since T1= T (π1) and T2= T (π2) are DAADs by definition.

(⇐) Since T1 and T2 are DAADs, we know that π1=LASM(T1) and π2=LASM(T2)

are DABPs of lengths k and l respectively such that T (π1)= T1 and T (π2)= T2.
Moreover, n= k+l+1. By Proposition 2.9, the permutation (1⊕π f

1 ⊕1)	π2 is also
a DABP, so its image under T is a DAAD. But if we apply T to (1⊕π f

1 ⊕ 1)	π2

and use Proposition 2.13 to simplify the result, we find that

T ((1⊕π f
1 ⊕ 1)	π2)= (T (1)⊕ T f

1 ⊕ T (1))	 T2.

Therefore (T (1)⊕ T f
1 ⊕ T (1))	 T2 is a DAAD.

The fact that this correspondence is a bijection follows from the last statement
of Proposition 2.9 and the fact that T is a bijection. �

When we consider how our DAAD decomposition gives us a decomposition of
the associated snow leopard permutation, we will be especially interested in pairs
of dominoes that share a long side. With this in mind, we sometimes think of the
process of building T (1)⊕ T ⊕ T (1) from a TOAD T in terms of adding a “hat”
and pair of “shoes” to T . In Figure 5 we add a hat (in blue) and shoes (in Wizard of
Oz ruby red) to T (1324)c.

When we construct (T (1)⊕T1⊕T (1))	T2 from T (1)⊕T1⊕T (1) and T2, we
add one more pair of dominoes which are adjacent along long sides; we call this
pair the “connector”. In Figure 6(d) we outline the connector in red.

The snow leopard permutation decompositions. In the Introduction we described
the function SASM, which maps DAADs of order n to snow leopard permutations
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1

1

(a) T (1324). (b) T (1324)c.

1 1

(c) Making room for the hat and shoes. (d) A stylish blue hat and red shoes.

Figure 5. An illustration of the computation of T (1)⊕T (1324)c⊕
T (1), also known as the “hat and shoes” process.

of length n. In this section we use SASM and our DAAD decomposition to obtain
our snow leopard permutation decomposition. To make this easier, we first describe
a simple relationship between certain domino configurations in a DAAD T and the
1s in the matrix for SASM(T ).

Definition 2.17. A block in a TOAD T is a pair of two dominoes in T which are
adjacent along a long edge, forming a 2-by-2 box.

The DAAD shown in Figure 4 contains 7 blocks.

Lemma 2.18. The vertices in a DAAD T which correspond to the 1s in SASM(T )
are exactly those vertices in the center of a block. As a result, the blocks of a DAAD
are in bijection with the 1s in its SASM.

Proof. Let T be a DAAD of order n that contains a block B. By Canary’s algorithm,
this point may correspond to a 1 in SASM(T ) or a −1 in LASM(T ). However,
because LASM(T ) is a permutation, it cannot contain a −1. Thus, a block must
correspond to a 1 in SASM(T ).

Conversely, a 1 in SASM(T ) must label a vertex of degree 2, which creates a
block in T . �

Next we describe how the map SASM interacts with our operations on TOADs.
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1

(a) T1. (b) T2.

1 1

(c) T (1)⊕ T c
1 ⊕ T (1) and T2 in a (d) Putting the rest of the dominoes

a larger diamond. in, with the connector in red.

Figure 6. An illustration of the composition of DAADs T1 and T2,
using the complement map. We outline the connector in red.

Proposition 2.19. For any TOADs T1 and T2, the following hold:

(i) SASM(T c
1 )= SASM(T1)

c.

(ii) SASM(T r
1 )= SASM(T1)

r .

(iii) SASM(T−1
1 )= SASM(T1)

−1.

(iv) SASM(T1⊕ T2)= SASM(T1)⊕ 1⊕ SASM(T2).

(v) SASM(T1	 T2)= SASM(T1)	 1	 SASM(T2).

Proof. (i), (ii), (iii) These are clear from Lemma 2.18 and our construction of SASM,
since each of c, r , and i is a reflection over a particular line.

(iv) First observe that if T1 (resp. T2) is the TOAD of order−1 then T1⊕T2 is equal to
T1 (resp. T2). But in this case SASM(T1) (resp. SASM(T2)) is the antipermutation @,
and the result holds.

Now suppose T1 and T2 have nonnegative orders. Then in the construction of
T1⊕ T2 we create one block which is not in T1 or T2, where the lower right edge of
T1 meets the upper left edge of T2. Now the result follows from Lemma 2.18.

(v) This is similar to the proof of (iv). �

We can now describe our snow leopard permutation decomposition.
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Theorem 2.20. Suppose f is any of the functions r , c, i ◦r , or i ◦c on permutations.
For any permutation π of odd length, π is a snow leopard permutation if and
only if there are snow leopard permutations π1 and π2 of odd length such that
π = (1⊕π f

1 ⊕1)	1	π2. Moreover, for each f , this correspondence is a bijection
between the set of snow leopard permutations π of length 2n − 1 and the set of
ordered pairs (π1, π2) of snow leopard permutations of lengths 2k− 1 and 2l − 1,
where n = k+ l + 1.

Proof. (⇒) If π is a snow leopard permutation of length 2n− 1, then by definition
there is a DAAD T of order 2n− 1 such that SASM(T ) = π . By Theorem 2.16,
there are DAADs T1 and T2 of orders 2k− 1 and 2l − 1, where n = k+ l + 1, such
that T = (T (1)⊕ T f

1 ⊕ T (1))	 T2. Using Proposition 2.19, we find

π = SASM(T )

= SASM
(
(T (1)⊕ T f

1 ⊕ T (1))	 T2
)

=
(
SASM(T (1))⊕ 1⊕ SASM(T1)

f
⊕ 1⊕ SASM(T (1))

)
	 1	 SASM(T2)

= (1⊕ SASM(T1)
f
⊕ 1)	 1	 SASM(T2),

where the last step follows from the fact that SASM(T (1)) = ∅. Now the result
follows, since π1 = SASM(T1) is a snow leopard permutation of length 2k− 1 and
π2 = SASM(T2) is snow leopard permutation of length 2l− 1, where n = k+ l+ 1.

(⇐) If π1 and π2 are snow leopard permutations of lengths 2k − 1 and 2l − 1,
respectively, where n = k+ l+ 1, then by definition there are DAADs T1 and T2 of
orders 2k−1 and 2l−1, respectively, such that π1= SASM(T1) and π2= SASM(T2).
By Theorem 2.16, we know that (T (1)⊕ T f

1 ⊕ T (1))	 T2 is a DAAD of order
2n− 1. But if we apply SASM to this DAAD and use Proposition 2.19 as in the
proof of the other direction, we find (1⊕ π f

1 ⊕ 1)	 1	 π2 is a snow leopard
permutation of length 2n− 1.

To see that the map (π1, π2) 7→ (1⊕πr
1⊕1)	1	π2 is a bijection, first note that

it is onto the set of snow leopard permutations by the first part of the theorem. To
see it is one-to-one, suppose there are ordered pairs (π1, π2) and (σ1, σ2) of snow
leopard permutations such that (1⊕π f

1 ⊕1)	1	π2 = (1⊕σ
f

1 ⊕1)	1	σ2, and
let π denote this common permutation. Then the hat (the second 1 in 1⊕π f

1 ⊕ 1
and 1⊕σ f

1 ⊕1) corresponds to the largest entry in π . Therefore π f
1 is a shift of the

entries between the first entry of π and the largest entry of π , as is σ f
1 , so π f

1 = σ
f

1 .
But f is invertible, so π1 = σ1. Similarly, π2 and σ2 are both equal to the sequence
of entries of π to the right of the largest entry of π , so π2 = σ2. �

It’s worth noting that in small cases the permutation (1⊕ π f
1 ⊕ 1)	 1	 π2

is not as long as it looks. For example, the antipermutation @ of length −1 is a
snow leopard permutation corresponding to the TOAD of order −1. As a result,
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the snow leopard permutation 1 corresponds to the ordered pair (@,@), since
1= (1⊕@⊕ 1)	 1	@. Similarly, for any snow leopard permutation π of odd
length, 1⊕π ⊕ 1 and 1	 1	π are also snow leopard permutations of odd length,
corresponding to the ordered pairs (π,@) and (@, π), respectively.

We can now use Theorem 2.20 to count the snow leopard permutations of each
length.

Corollary 2.21. For each n ≥ 0, the number of snow leopard permutations of
length 2n− 1 is Cn .

Proof. For each n ≥ 0, let an be the number of snow leopard permutations of
length 2n − 1. There is just one snow leopard permutation of length −1, so
a0= 1=C0 and the result holds for n= 0. Now fix n ≥ 1 and suppose by induction
that a j =C j for all j , 0≤ j ≤ n−1. By Theorem 2.20 and our induction hypothesis,
we have

an =

n−1∑
j=0

a j an−1− j=

n−1∑
j=0

C j Cn−1− j =

n∑
j=1

C j−1Cn− j= Cn. �

We can also use Theorem 2.20 and Proposition 2.7 to count the snow leopard
permutations of even length.

Proposition 2.22. Suppose f is any of the functions r , c, i ◦ r , or i ◦ c on permuta-
tions. Then for any n≥ 0, the map π 7→ 1⊕π f is a bijection between the set of snow
leopard permutations of length 2n− 1 and the set of snow leopard permutations of
length 2n.

Proof. We first show that π is a snow leopard permutation of length 2n− 1 if and
only if 1⊕π f is a snow leopard permutation of length 2n.

If π is a snow leopard permutation of length 2n − 1, then by definition there
is a DAAD T of order 2n− 1 such that SASM(T )= π . By Proposition 2.15, the
TOAD T (1)⊕ D f is a DAAD of order 2n. Now by Proposition 2.19, we have
SASM(T (1)⊕D f )= 1⊕π f , since SASM(T (1))=∅. Therefore 1⊕π f is a snow
leopard permutation of length 2n.

Conversely, if 1 ⊕ π f is a snow leopard permutation of length 2n, then by
definition there is a DAAD T of order 2n such that SASM(T )= 1⊕π f . Now by
Proposition 2.15, there is a DAAD D of order 2n− 1 such that T = T (1)⊕ D f ,
and by Proposition 2.19, we have SASM(T ) = 1⊕ SASM(D) f . Since π f can be
obtained from 1⊕π f and f is invertible, we must have π = SASM(D), so π is a
snow leopard permutation.

Finally, it is routine to check that the map π 7→1⊕π f is a bijection between S2n−1

and the set of permutations in S2n whose first entry is 1, so the restriction of this map
to the set of snow leopard permutations of length 2n−1 must also be a bijection. �
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Corollary 2.23. For each n ≥ 0, the compatibility correspondence is a bijection
between the set of DABPs of length n and the set of snow leopard permutations of
length n− 1.

Proof. By definition the compatibility correspondence maps DABPs of length n
onto snow leopard permutations of length n− 1. Since each of these sets has the
same number of elements, this correspondence must be a bijection. �

Theorem 2.20 also gives us useful structural information about snow leopard
permutations. For instance, we have the following result concerning the parities of
the entries of a snow leopard permutation.

Corollary 2.24. Snow leopard permutations preserve parity. That is, if π is a snow
leopard permutation of length n, then for all j with 1 ≤ j ≤ n, the entry π( j) is
even if and only if j is even.

Proof. We first consider the case in which n is odd.
The result is vacuously true for π =@, and trivial for π = 1, so suppose by

induction that n ≥ 0 is odd and the result holds for all snow leopard permutations
of odd length less than n.

In general, if σ is a permutation of odd length which preserves parity, then σ c,
1⊕ σ , and 1⊕ σ ⊕ 1 also preserve parity. Similarly, if σ is a parity-preserving
permutation of odd length then 1	 σ is a parity-reversing permutation. Finally,
if σ1 is a parity-preserving permutation of odd length and σ2 is a parity-reversing
permutation of even length, then σ1	 σ2 is a parity-preserving permutation.

By Theorem 2.20, if π is a snow leopard permutation of odd length then there are
snow leopard permutations π1 and π2 of odd length such that π = (1⊕π c

1 ⊕ 1)	
1	π2. By induction and our observations above, 1⊕π c

1 ⊕ 1 is a parity-preserving
permutation of odd length and 1	 π2 is a parity-reversing permutation of even
length, so π preserves parity.

Now suppose π is a snow leopard permutation of even length. By Proposition 2.22,
we have π = 1⊕ σ c for some snow leopard permutation σ of odd length. By our
observations above, σ c preserves parity, so π = 1⊕ σ c also preserves parity. �

Theorem 2.20 also gives us pattern-avoidance properties of snow leopard per-
mutations. In particular, we can use it to show that snow leopard permutations are
anti-Baxter, which means they avoid 2–14–3 and 3–41–2.

Corollary 2.25. If π is a snow leopard permutation then π avoids 2–14–3 and
3–41–2.

Proof. We first consider the case in which |π | = n is odd.
The result is clear for π =@, π = 1, π = 123, and π = 321, so suppose by

induction that n ≥ 0 is odd and the result holds for all snow leopard permutations of
odd length less than n. By Theorem 2.20, if π is a snow leopard permutation of odd
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length then there are snow leopard permutations π1 and π2 of odd length such that
π = (1⊕π c

1 ⊕1)	1	π2. For convenience, we call the entries of π corresponding
to 1⊕π c

1 ⊕ 1 the front of π , and we call the remaining entries of π the back of π .
Note that every entry in the front of π is greater than every entry in the back of π .

Now suppose π contains a subsequence abcd of type 2–14–3. If a is in the
front of π , then d is also in the front of π , since d > a. Moreover, a cannot be the
first entry of the front of π and d cannot be the last, since the first and last entries
are the smallest and largest entries of the front of π , and we have b < a and c > d .
Therefore our subsequence is entirely contained in the entries of π corresponding
to π c

1 , and the corresponding subsequence of π1 has type 3–41–2. This contradicts
our induction hypothesis.

On the other hand, if a is not in the front of π then every entry of our subsequence
is in the back of π . The first entry of the back of π is the largest, but c > a, so in
fact our subsequence is contained in π2, which contradicts our induction hypothesis.

The proof that π has no subsequence of type 3–41–2 is similar.
Now suppose π is a snow leopard permutation of even length. By Proposition 2.22,

we have π = 1⊕ σ c for some snow leopard permutation σ of odd length. Arguing
as above, if π has a subsequence of type 2–14–3 (resp. 3–41–2) then σ has a
subsequence of type 3–41–2 (resp. 2–14–3), so the result follows by induction. �

One can show that this result holds more generally: if π is a Baxter permutation
of length n+1 and σ is a compatible permutation of length n, then σ is anti-Baxter
[Asinowski et al. 2013].

3. A bijection from snow leopard permutations to Catalan paths

Like the snow leopard permutations, Catalan paths have a natural recursive decom-
position. In particular, every nonempty Catalan path with 2n steps has the form
N p1 Ep2, where p1 and p2 are Catalan paths with 2k and 2l steps, respectively, and
n= k+l−1. In fact, this decomposition gives a bijection between the set of Catalan
paths p with 2n steps and ordered pairs (p1, p2) of Catalan paths with 2k and 2l
steps, where n = k + l − 1. Matching this decomposition with our snow leopard
permutation decomposition gives us a natural bijection from the set of Catalan paths
with 2n steps to the set of snow leopard permutations of length 2n− 1.

Proposition 3.1. Suppose f is any of the functions r , c, i ◦ r , and i ◦ c. Then for
each nonnegative integer n, there is a unique bijection 0f from the set of Catalan
paths with 2n steps to the set of snow leopard permutations of length 2n− 1 such
that 0f (∅)=@ and

0f (N p1 Ep2)=
(
1⊕0f (p1)

f
⊕ 1

)
	 1	0f (p2)

for any Catalan paths p1 and p2.
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p 0c(p)

∅ @

NE 1

NNEE 123
NENE 321

NNNEEE 14325
NNENEE 12345
NNEENE 34521
NENNEE 54123
NENENE 54321

p 0c(p)

NNNNEEEE 1634527
NNNENEEE 1654327
NNNEENEE 1432567
NNNEEENE 3654721
NNENNEEE 1236547
NNENENEE 1234567
NNENEENE 3456721
NNEENENE 5674321
NNEENNEE 5674123
NENNNEEE 7614325
NENNENEE 7612345
NENNEENE 7634521
NENENNEE 7654123
NENENENE 7654321

Table 1. Values of 0c(p) for short Catalan paths p.

Proof. Since each nonempty Catalan path can be written uniquely in the form
N p1 Ep2, where p1 and p2 are Catalan paths, 0f is well-defined and unique.

To show that 0f (p) is a snow leopard permutation for every Catalan path p, first
note that this is true for p =∅ and p = NE . Now suppose by induction that p is a
Catalan path with at least 4 steps, and that the result holds for all Catalan paths with
fewer steps. Then there are unique Catalan paths p1 and p2 such that p= N p1 Ep2,
and by definition we have 0f (p)=

(
1⊕0f (p1)

f
⊕ 1

)
	 1	0f (p2). By induction

0f (p1) and 0f (p2) are snow leopard permutations, so by Theorem 2.20 we see that
0f (p) is also a snow leopard permutation.

To show that 0f is onto, first note that this is true for n = 0 and n = 1, so
fix n ≥ 2 and suppose by induction that the result holds for all smaller values
of n. If π is a snow leopard permutation of length 2n− 1, then by Theorem 2.20
there are shorter snow leopard permutations π1 and π2 of odd length such that
π = (1 ⊕ π f

1 ⊕ 1) 	 1 	 π2. By induction there are Catalan paths p1 and p2

such that 0f (p1) = π1 and 0f (p2) = π2, and by the definition of 0f , we have
0f (N p1 Ep2)= π .

Since the set of Catalan paths with 2n steps and the set of snow leopard permu-
tations of length 2n− 1 are equinumerous by Corollary 2.21, the map 0f must be a
bijection. �

Although all four maps 0f are bijections, we will be particularly interested in 0c.
In Table 1 we have the values of 0c for all Catalan paths with 8 or fewer steps.
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π κ(π)

@ ∅

1 NE

123 NNEE
321 NENE

14325 NNNEEE
12345 NNENEE
34521 NNEENE
54123 NENNEE
54321 NENENE

π κ(π)

1634527 NNNNEEEE
1654327 NNNENEEE
1432567 NNNEENEE
3654721 NNNEEENE
1236547 NNENNEEE
1234567 NNENENEE
3456721 NNENEENE
5674321 NNEENENE
5674123 NNEENNEE
7614325 NENNNEEE
7612345 NENNENEE
7634521 NENNEENE
7654123 NENENNEE
7654321 NENENENE

Table 2. Values of κ(π) for short snow leopard permutations π .

While it is not obvious from these data, it turns out that 0−1
c has a simple, direct

description in terms of ascents and descents.

Definition 3.2. For any snow leopard permutation π of length 2n−1, we write κ(π)
to denote the lattice path with 2n steps whose i-th step κ(π)i is given by

κ(π)i =



π(i) < π(i + 1) and i is odd
N or

π(i) > π(i + 1) and i is even,

π(i) < π(i + 1) and i is even
E or

π(i) > π(i + 1) and i is odd

for 0≤ i ≤ 2n− 1. By convention, we treat the empty entries π(0) and π(2n) as
2n and 0, respectively.

Example 3.3. Consider the permutation π = 789634521, which has ascent/descent
sequence DAADDAADDD. Thus we have κ(π)= NNEENNEENE .

In Table 2 we have the values of κ(π) for all snow leopard permutations π of
length 7 or less.

It is not immediately obvious that κ maps every snow leopard permutation to a
Catalan path, so we prove this next.

Proposition 3.4. Suppose π is a snow leopard permutation of length 2n− 1. Then
κ(π) is a Catalan path of length 2n.
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Proof. It is routine to check this when π has length 3 or less, since κ(@) = ∅,
κ(1)= NE , κ(123)= NNEE , and κ(321)= NENE . Now suppose the result holds
for all snow leopard permutations of odd length less than 2n−1, where 2n−1≥ 5,
and that π is a snow leopard permutation of length 2n− 1. By Theorem 2.20, there
are snow leopard permutations π1 and π2 of lengths 2k−1 and 2l−1, respectively,
such that n= k+ l+1 and π = (1⊕π c

1⊕1)	1	π2. We now consider three cases.

Case One: If π1=@ then π = 1	1	π2. In this case the ascent/descent sequence
for π consists of two descents, followed by the ascent/descent sequence for π2. By
the definition of κ , this means κ(π)= NEκ(π2). Since κ(π2) is a Catalan path by
induction, so is κ(π).

Case Two: If π2=@ then π=1⊕π c
1⊕1. Since the complement operation on permu-

tations turns ascents into descents and vice versa, the ascent/descent sequence for π
consists of a descent, followed by the complement of the ascent/descent sequence
for π1, followed by a descent. By the definition of κ , this means κ(π)= Nκ(π1)E .
Since κ(π1) is a Catalan path by induction, so is κ(π).

Case Three: Suppose π1 6=@ and π2 6=@. Reasoning as in the previous cases, we
find that the ascent/descent sequence for π consists of a descent, followed by the
complement of the ascent/descent sequence for π1, followed by an E , followed by
the ascent/descent sequence for π2. By the definition of κ , κ(π)= Nκ(π1)Eκ(π2).
Since κ(π1) and κ(π2) are Catalan paths by induction, so is κ(π). �

The data in Tables 1 and 2, along with a close examination of the proof of
Proposition 3.4, suggest that 0c and κ are inverses of one another; we prove this next.

Theorem 3.5. 0c and κ are inverse functions.

Proof. By Proposition 3.1 we know that 0c maps Catalan paths with 2n steps to
snow leopard permutations of length 2n− 1, and by Proposition 3.4, the function κ
maps snow leopard permutations of length 2n− 1 to Catalan paths with 2n steps.
Since 0c is invertible, it’s sufficient to show that 0c(κ(π)) = π for every snow
leopard permutation π .

The result is routine to check for π =@ and π = 1, so suppose π has length
2n − 1 > 1 and the result holds for all shorter snow leopard permutations. By
Theorem 2.20, there are snow leopard permutations π1 and π2 such that π =
(1⊕π c

1⊕1)	1	π2. Reasoning as in the proof of Proposition 3.4, we see that κ(π)=
Nκ(π1)Eκ(π2). Now by the definition of 0c and our induction hypothesis, we have

0c(κ(π))= 0c(Nκ(π1)Eκ(π2))

= N (0c(κ(π1)))
c E0c(κ(π2))

= Nπ c
1 Eπ2

= π. �
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4. Using transpositions to generate snow leopard permutations

It is well known that every permutation is a product of adjacent transpositions, so
the adjacent transpositions generate Sn . In this section we introduce a simple set of
transpositions, and we show that the snow leopard permutations of odd length are
exactly the permutations one can construct from the decreasing permutation using
sequences of our transpositions. We begin with the transpositions themselves.

Definition 4.1. Suppose that π is a permutation with consecutive entries π(i),
π(i + 1), . . . , π( j).

(1) If π(i) and π( j) are odd and either π(i − 1), π(i), . . . , π( j), π( j + 1) or
π(i − 1), π( j), . . . , π(i), π( j + 1) is a decreasing sequence of consecutive
integers, and σ is the permutation we obtain from π by interchanging π(i)
and π( j), then we say π and σ are related by τ1.

(2) If π(i) and π( j) are even and either π(i − 1), π(i), . . . , π( j), π( j + 1) or
π(i − 1), π( j), . . . , π(i), π( j + 1) is an increasing sequence of consecutive
integers, and σ is the permutation we obtain from π by interchanging π(i)
and π( j), then we say π and σ are related by τ2.

By convention, if π(i) or π( j) occurs at either end of π , then we waive any
requirement for the behavior of π beyond that point.

Example 4.2. The permutations π = 983654721 and σ = 983456721 are related
by τ2, since 36547 can be replaced with 34567.

Example 4.3. The permutations π = 567894321 and σ = 567894123 are related
by τ1, since 4321 can be replaced with 4123.

In Figure 7 we have graphs showing how the snow leopard permutations of
lengths 3, 5, and 7 are related to one another by τ1 and τ2.

Although we don’t do it here, one can study the parity of the number of inver-
sions in a snow leopard permutation of odd length to show that these graphs are
always bipartite.

As we show next, snow leopard permutations are only related to other snow
leopard permutations by τ1 and τ2. We begin with a lemma concerning snow leopard
permutations which begin with a decreasing sequence of consecutive integers.

Lemma 4.4. If π is a snow leopard permutation of odd length, and there is a
permutation σ of odd length with π = 1	1	· · ·	1	σ , then σ is a snow leopard
permutation.

Proof. We argue by induction on |π | − |σ |.
If |π | = |σ | then π = σ , and the result is clear. If |π | − |σ | = 2 then π =

1	 1	 σ = (1⊕@⊕ 1)	 1	 σ must be the snow leopard decomposition of π
guaranteed by Theorem 2.20, so σ is a snow leopard permutation.
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τ1

τ1
τ1

τ1

τ1 τ1

τ1 τ1 τ1
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τ1

τ1

τ1

τ2

τ2 τ2

τ2

τ2 τ2

Figure 7. Graphs showing how the snow leopard permutations of
lengths 3, 5, and 7 are related by τ1 and τ2.

Now suppose |π | − |σ | ≥ 4. By Theorem 2.20, there are snow leopard permuta-
tions π1 and π2 such that π = (1⊕π c

1 ⊕ 1)	 1	π2. But π begins with its largest
element, so we must have π1=@ and π=1	1	π2. Therefore π2 has the same form
as π , but with two fewer 1s, so by induction σ is a snow leopard permutation. �

Theorem 4.5. Suppose π is a snow leopard permutation of odd length and σ is a
permutation.

(i) If π and σ are related by τ1, then σ is a snow leopard permutation.

(ii) If π and σ are related by τ2, then σ is a snow leopard permutation.

Proof. It turns out that (i) and (ii) depend on each other, so we prove them together.
It’s routine to check that (i) and (ii) hold when π and σ have lengths −1, 1, or 3,

so suppose |π | = |σ | ≥ 5; we argue by induction on |π |.

Case One: π and σ are related by τ1. By Theorem 2.20, there are snow leopard
permutations π1 and π2 such that π = (1⊕π c

1 ⊕ 1)	 1	π2.
First suppose π1 =@, so that π = 1	 1	 π2. In this case, if i ≥ 3 then our

swap takes place inside π2, so there is a permutation σ2 which is related to π2 by τ1

such that σ = 1	 1	 σ2. By induction, σ2 is a snow leopard permutation, so σ is
also a snow leopard permutation by Theorem 2.20. On the other hand, if i ≤ 2 then
i = 1, since the first entry of π is odd and the second is even. In this case there is a
permutation β of odd length such that π = 1	 1	 · · · 	 1	 β, and β is a snow
leopard permutation by Lemma 4.4. Now σ = (1⊕αc

⊕ 1)	 1	β, where α is an
identity permutation of odd length. Since α and β are snow leopard permutations,
σ is also a snow leopard permutation by Theorem 2.20.
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Now suppose π1 6=@. In this case our decreasing sequence must be entirely
contained in either π c

1 or 1	π2. Since the 1	π2 part of π begins with an even
number, any decreasing sequence beginning with an odd number in this part of π
must be contained in π2. Therefore there is a permutation σ2 which is related to
π2 by τ1 such that σ = (1⊕π c

1 ⊕ 1)	 1	 σ2. By induction, σ2 is a snow leopard
permutation, so σ is a snow leopard permutation by Theorem 2.20.

On the other hand, if our decreasing sequence is contained in π c
1 , then it cor-

responds to an increasing sequence in π1 which begins with an even number.
Therefore, there is a permutation σ1 which is related to π1 by τ2, for which
σ = (1 ⊕ σ c

1 ⊕ 1) 	 1 	 π2. By induction, σ1 is a snow leopard permutation,
so σ is also a snow leopard permutation by Theorem 2.20.

Case Two: π and σ are related by τ2. By Theorem 2.20, there are snow leopard
permutations π1 and π2 such that π = (1⊕ π c

1 ⊕ 1)	 1	 π2. In addition, any
increasing sequence in π must be entirely contained in the 1⊕π c

1⊕1 part of π , or in
the π2 part of π . If our increasing sequence is contained in the π2 part of π , then there
is a permutation σ2 which is related to π2 by τ2, such that σ = (1⊕π c

1⊕1)	1	σ2.
By induction, σ2 is a snow leopard permutation, so σ is also a snow leopard
permutation by Theorem 2.20.

On the other hand, if our increasing sequence is contained in the 1⊕ π c
1 ⊕ 1

part of π , then we must have i ≥ 2 and i ≤ |π1| + 1, since this part of π begins
and ends with odd numbers. That is, our increasing sequence must be entirely
contained in π c

1 . Therefore, this increasing sequence corresponds to a decreasing
sequence in π1, all of whose entries have opposite parity with the corresponding
entries in π . This means there is a permutation σ1 which is related to π1 by τ1 such
that σ = (1⊕ σ c

1 ⊕ 1)	 1	π2. By induction, σ1 is a snow leopard permutation,
so σ is also a snow leopard permutation by Theorem 2.20. �

We are interested in permutations which are connected by chains of permutations
in which consecutive permutations are related by τ1 or τ2, so we make the following
definition.

Definition 4.6. We say permutations π and σ are τ -related whenever there is a
sequence α1, . . . , αn of permutations such that π = α1, σ = αn , and for each j , the
permutations α j and α j−1 are related by τ1 or related by τ2.

We can now show that the snow leopard permutations of odd length are exactly
those permutations that are τ -related to the reverse identity.

Theorem 4.7. A permutation π of length 2n− 1 is a snow leopard permutation if
and only if it is τ -related to the decreasing permutation of length 2n− 1.

Proof. (⇒) It is routine to verify this result when π has length −1, 1, or 3, so
suppose |π | ≥ 5; we argue by induction on |π |. By Theorem 2.20, there are snow
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length 1 3 5 7 9

SLP-like permutations 1 2 7 32 175
SLPs 1 2 5 14 42

Table 3. The number of SLPs compared with the number of per-
mutations with some properties of SLPs.

leopard permutations π1 and π2 of odd length such that π = (1⊕π c
1 ⊕ 1)	 1	π2.

By induction, there is a sequence s1 (resp. s2) of moves of types τ1 and τ2 which,
when applied to the decreasing permutation of the appropriate length, produces π1

(resp. π2). To obtain π from the decreasing permutation of length 2n−1, first apply
a move of type τ1 to swap the entries in positions 1 and |π1| + 2. Now apply the
sequence s2 of moves to the entries to the right of position |π1|+3. Finally, for each
move in s1 of type τ1, apply the corresponding move of type τ2 to the subsequence
in positions 2 through |π1| + 1, and vice versa. Since we have constructed each of
the pieces of π individually, the resulting permutation is π itself.

(⇐) It is routine to check that the decreasing permutation of length 2n−1 is a snow
leopard permutation, so this part is immediate from Theorem 4.5. �

Corollary 4.8. Suppose π and σ are τ -related permutations of odd length. Then π
is a snow leopard permutation if and only if σ is a snow leopard permutation.

Proof. This is immediate from Theorem 4.7, since π and σ are snow leopard
permutations if and only if they are τ -related to the decreasing permutation of
length |π |, and this relationship is transitive. �

5. Questions and open problems

It should be possible to build on this work in a variety of directions. For example,
it may be fruitful to study the distributions of various permutation statistics on
snow leopard permutations, and to look for connections between these statistics
and statistics on Catalan paths, or on other Catalan objects. In addition, both κ and
the compatibility relation deserve more attention. Finally, we have the following
more specific questions.

(1) Can we characterize the snow leopard permutations nonrecursively?
We have given a recursive decomposition of the snow leopard permutations, so

in principle we can recognize these permutations in the wild using this decomposi-
tion. Similarly, we have also characterized the snow leopard permutations as the
permutations generated by a particular set of transpositions. While these points of
view are useful, we would also like to have a short list of simple conditions we can
check to determine whether a given permutation is an SLP. For example, we know
that if π is a snow leopard permutation of odd length then π preserves parity, π
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avoids 2–14–3 and 3–41–2, and κ(π) is a Catalan path. These conditions rule
out many permutations, but there are still permutations with all of these properties
which are not SLPs. In fact, in Table 3 we see how the number of permutations
with these three properties compares with the number of snow leopard permutations
for small lengths.

(2) What permutations of length n are compatible with alternating Baxter permuta-
tions of length n+ 1?

Cori, Dulucq, and Viennot [Cori et al. 1986] have used bijections with binary
trees to prove that the alternating Baxter permutations of lengths 2n and 2n + 1
are counted by the products C2

n and CnCn+1 of Catalan numbers, respectively. We
conjecture that the smaller permutations which are compatible with the alternating
Baxter permutations are counted by the same products of Catalan numbers. Our
preliminary explorations suggest that we can extend either the work of Cori, Dulucq,
and Viennot or the work of Dulucq and Guibert [1998] to prove this conjecture, but
it might also be possible to extend or modify κ to give a proof.
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