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In this paper we examine finite unions of unit squares in same plane and consider
the ratio of perimeter to area of these unions. In 1998, T. Keleti published
the conjecture that this ratio never exceeds 4. Here we study the continuity
and differentiability of functions derived from the geometry of the union of
those squares. Specifically we show that if there is a counterexample to Keleti’s
conjecture, there is also one where the associated ratio function is differentiable.

1. Introduction

The purpose of this paper is to introduce several functions associated with the
perimeter-to-area conjecture (PAC) of Tamás Keleti [1998] and to investigate the
smoothness properties of those functions.

Keleti’s perimeter-to-area conjecture (PAC). The perimeter-to-area ratio of the
union of finitely many unit squares in a plane does not exceed 4.

The problem of showing such a ratio is bounded first seems to have appeared
as Problem 6 in the 1998 edition of the famous Miklós Schweitzer Competition in
Hungary [Competition 1998]. Later that same year, Keleti published his perimeter-
to-area conjecture that this bound is actually 4. To date, the best known bound is
slightly less than 5.6. This bound was achieved by Keleti’s student Zoltán Gyenes
[2005] in his master’s thesis. A special case of the theorem, where all of the squares
are axis oriented, is known to be true; Gyenes also presents a proof of this case
in the above work, and the authors present two additional proofs in [Humke et al.
2015]. The PAC is particularly intriguing as some of its obvious generalizations are
false. Gyenes [2005] showed that the corresponding ratio for unions of congruent
convex sets need not be bounded by the ratio for a single copy of the set.
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Figure 1. A convex set counterexample to the PAC for general
convex sets.

Gyenes’s example. There exist congruent convex sets E1 ∼= E2 ⊂ R2 such that the
perimeter-to-area ratio for E1 ∪ E2 exceeds the perimeter-to-area ratio for either
one of them.

The Gyenes example is disarmingly straightforward. The convex set template is
an origin-centered unit square with one judiciously chosen isosceles corner triangle
removed. That corner triangle is chosen so that the perimeter-to-area ratio of the re-
sulting figure is less than 4. But the union of this template with a rotated copy is sim-
ply the original unit square whose perimeter-to-area ratio is exactly 4. See Figure 1.

In this paper, we build machinery for analyzing the PAC, showing that for almost
all finite unions of squares, the perimeter to area ratio is differentiable in the usual
Euclidean sense. If a counterexample exists, then there exists a counterexample
where the derivative exists. These results provide inroads toward understanding the
PAC by potentially relating it to large body of discrete geometric work, including the
Kneser–Poulsen theorem and results by Ho-Lun Cheng and Herbert Edelsbrunner
[2003] on derivatives when translating circles in the plane.

2. Notation and setting

Let H =
⋃n

i=1 Hi be the finite union of unit squares Hi in R2. Let the perimeter
and area functions, p( · ) and α( · ) respectively, take a closed, bounded polygonal
figure in the plane as input and return that figure’s perimeter and area respectively.
If S is a set, we denote the boundary of S by bd S. Throughout we will be interested
in the boundary of polygonal regions, and one focus of our attention will be the
(maximal) segments comprising that boundary. We refer to these maximal segments
as component segments of the boundary. The ε-ball about a set S will be denoted by
Bε(S) and the convex hull of a set of points {pi : i = 1, 2, . . . , k} ⊂ R2 is denoted
by [p1, p2, . . . , pk].

Any point (si , ti , φi )
n
i=1 ∈ R3n may be mapped to an ordered union of n squares

by taking (si , ti ) to be the rectangular coordinates of the center of the i-th square Hi

and φi to be the smallest angle between the horizontal and a side of Hi . For
notational convenience, we will also denote a single component square Hi by its
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coordinates, i.e., Hi = (si , ti , φi ). This correspondence between R3n and ordered
unions of n squares is surjective and throughout this paper will serve as the domain
for corresponding perimeter and area functions. As a general convention, when we
refer to a figure H ⊂R3n , we shall mean that H is the ordered union of n unit squares
determined according to the correspondence described above. Define the function

r : R3n
→ R, r(H)=

p(H)
α(H)

.

That is, r takes an ordered 3n-tuple of identifiers as input and returns the ratio
we’ve been examining for the figure identified by H . We’ll refer to the vector
(φ1, φ2, . . . , φn)∈Rn as the rotational displacement of H . A figure H ⊂R2 is said
to have distinct rotational displacement if φi 6=φ j when i 6= j , is vertex-free if no ver-
tex of Hi lies on the boundary of H j whenever i 6= j , and is triple-free if no point lies
on the boundaries of three distinct Hi . H is said to be in standard position provided:

(1) H has distinct rotational displacement,

(2) H is vertex-free, and

(3) H is triple-free.

The set of points in R3n that do not have distinct rotational displacement lie on
finitely many linear curves of the form φi = φ j+kπ/2, where i 6= j and k = 1, 2, 3.
Points which are not vertex-free lie on finitely many curves that are quadratic in the
variables {si , ti , sinφi , cosφi : i = 1, 2, . . . , n}, and points which are not triple-free
lie on finitely many quartic curves in the same variables. It follows that the set of
points which are in standard position is the complement of a sparse set in the sense
that they are the complement of a countable union of monotonic curves and so are
both residual and of full measure in R3n .

3. Continuity of perimeter and area

Here we give elementary geometric proofs that both the perimeter and area functions
as we’ve defined them are continuous at configurations that are in standard position.

Lemma 1. The perimeter function p is continuous at every point H ∈ R3n which is
in standard position.

Proof. To show that perimeter is continuous, let [a, b] ⊂ bd H be a segment
of maximal length on bd H . As H has distinct rotational displacement there
is a unique component square, say Hio , such that [a, b] ⊂ bd Hio . To simplify
notation, we assume φio = sio = tio = 0, a = (x1,−1/2) and b= (x2,−1/2), where
−1/2≤ x1 < x2 ≤ 1/2. We’ll examine in some detail the case where neither a nor
b are vertices of Hio ; the other cases are similar.
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a

Hio

H j
Hk

b

φa φb

Figure 2. Since H is in standard position, a and b are uniquely
determined by two additional component squares H j and Hk .

Since H is in standard position, a and b are uniquely determined by two additional
component squares H j and Hk in the sense that a = bd Hio ∩ bd H j and b =
bd Hio ∩ bd Hk . Let φa denote the angle determined by the intersection of the
boundaries of Hio and H j at a measured counterclockwise from the boundary of
Hio to that of H j ; the angle φb is defined analogously. See Figure 2.

As φio = 0, either φ j = φa or φ j = φa −π/2. Also, φk = φb or φk = φb−π/2.
For definiteness we’ve supposed that φ j = φa and φk = φb−π/2 so that a is the
intersection of the line ` given by y=−1/2 and `a given by y= tanφa(x−x1)+1/2.
Similarly, b is the intersection of ` with the line `b given by y= tanφb(x−x2)+1/2.
Using the fact that H is in standard position, there is an ε > 0 such that Bε([a, b])
intersects no component square of H except Hio , H j , and Hk .

Our immediate aim is to show that small perturbations of H result in small
local perturbations of bd H . To this end, suppose δ > 0 and d = (ui , vi , wi )

n
i=1

is a unit vector in R3n . Let H∗ = H + δ · d and denote its component squares by
H∗i = Hi + δ · (ui , vi , wi ). Then, for δ sufficiently small, Bε([a, b])∩ H∗i 6= ∅ if
and only if i = io, j or k. Let

(1) `∗ denote the line ` rotated bywio about the center of Hio , (0, 0), then translated
by (ui0, vi0),

(2) `∗a denote the line `a rotated by w j about the center of H j , (s j , t j ), then
translated by (u j , v j ),

(3) `∗b denote the line `b rotated by wk about the center of Hk , (sk, tk), then
translated by (uk, vk).

Finally, let a∗ = `∗ ∩ `∗a and b∗ = `∗ ∩ `∗b. Then [a∗, b∗] is a maximal segment
on bd H∗ and is the sole portion of bd H∗ in Bε([a, b]). An elementary estimate
shows that

∣∣|[a∗, b∗]| − |[a, b]|
∣∣< 6δ.

As there are only finitely many such segments [a, b] ⊂ bd Hi comprising the
boundary of H , and for δ sufficiently small, there is a one-to-one correspondence



DIFFERENTIATION PROPERTIES OF THE PERIMETER-TO-AREA RATIO 879

between these segments and those comprising the boundary of H∗, it follows that p
is continuous at each point of standard position. �

The actual situation is that the perimeter function is continuous at a much
larger set of points than those in standard position. The proof given above can
be easily adapted to show that p is continuous at points having distinct rotational
displacement; however, p is also continuous at most points that do not have distinct
rotational displacement. Typical of points at which p is discontinuous is the point
H = (0, 0, 0, 1, .5, 0), where the perimeter is 7. If Hn = (0, 0, 0, 1+ 1/n, .5, 1/n),
then for every n ∈ N, p(Hn)= 8 and yet {Hn} → H .

A bit more can be said about the continuity of p at all points whether in standard
position or not.

Proposition 2. The function p : R3n
→ R is lower semicontinuous.

Proof. To see this, suppose H =
⋃n

i=1 Hi is an arbitrary configuration with compo-
nent squares Hi . A segment [a, b] ⊂ bd H is called proper if [a, b] is of maximal
length under the restriction that no vertex of a component square of H lies on
[a, b]\{a, b}. The fact that H is the finite union of squares means that the boundary
of H can be uniquely written as the nonoverlapping union of proper boundary
segments. Suppose now that .1> ε > 0 is given and that S = [a, b] is any proper
segment on the boundary of H . Let a∗, b∗ ∈ S such that both |a− a∗| = ε|b− a|
and |b− b∗| = ε|b− a| and set S∗ = [a∗, b∗]. Let U be a ball about S∗ such that
U ∩bd H ⊂ S and the radius of the ball is less than ε/2. For small 1H , we wish to
use p(H) to estimate p(H +1H). First note that if S lies on a unique component
square, then S∗+1H ⊂ (S+1H)∩U ⊂ bd(H+1H), and if all proper boundary
segments have this property, we obtain an easy estimate of p(H +1H). However,
should S be common to several component squares of H , then S+1H is the union of
several segments and bd(H+1H)∩U is a piecewise linear selection from S+1H .
We handle this situation as follows. Let Na∗ denote the line segment in U that con-
tains a∗ and is normal to S; Nb∗ is defined analogously for b∗. Let a∗∗= (a+a∗)/2,
b∗∗ = (b+b∗)/2 and S∗∗ = [a∗∗, b∗∗]. We may take 1H sufficiently small so that:

(1) S∗∗+1H ⊂U ,

(2) (S∗∗+1H)∩ Na∗ 6=∅ 6= (S∗∗+1H)∩ Nb∗ , and

(3) if T ∗∗ is analogous to S∗∗, but derived from another proper boundary segment,
then (T ∗∗+1H)∩U =∅.

These conditions imply that a proper boundary segment for H yields a portion,
but not necessarily a segment, of the boundary of H +1H that extends from Na∗

to Nb∗ . As such, its length is at least (1− 2ε)|b− a|. Moreover, it follows from (3)
above that distinct proper boundary segments of H yield disjoint boundary portions
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of H +1H . Hence,

p(bd H +1H)≥ p(bd H)(1− 2ε).

Since ε is arbitrary, it follows that

lim inf
1H→0

p(bd H +1H)≥ p(bd H),

or that p : R3n
→ R is lower semicontinuous. �

The minimizer for p is 4, occurring when all component squares of H coincide.
The fact that p is lower semicontinuous, coupled with the continuity of the area func-
tion α, implies that the ratio p/α is lower semicontinuous and so has a minimizer. Es-
tablishing the minimizer for the ratio p/α and minimizers of similar configurations
is interesting, but uses completely different methods from those of the current paper
and is the topic of a separate study. It is not known if a maximizer of p/α exists.

We turn now to consider the area function.

Lemma 3. The area function α is continuous at every point in R3n .

Proof. As the area of each component square Hi is 1, it follows that the area function
α : R3

→ R is Lipschitz in each coordinate with a Lipschitz constant of 1. Hence,
α itself is Lipschitz with Lipschitz constant

√
3n. �

The following theorem now follows immediately from Lemmas 1 and 3.

Theorem 4. The function r is continuous at every point H ∈ R3n which is in
standard position.

4. A derivative computation for perimeter

Next, we investigate the differentiability of the perimeter and area functions. Our
goal is to prove the following theorem.

Theorem 5. The perimeter function p : R3n
→ R+ is differentiable at every point

H ∈ R3n in standard position.

Proof. We show the partial derivatives of p exist and are continuous at each point of
standard position. Fix 0≤ io ≤ n and consider the three partial derivatives ∂p/∂sio ,
∂p/∂tio and, initially, ∂p/∂φio .

Part 1: ∂p/∂φio . As in Lemma 1, we take a particular component segment [a, b]
on the boundary of H and again note that [a, b] must lie on the boundary of a
single H j . There are two cases depending on whether H j = Hio .

Case 1a: [a, b] lies on the boundary of Hio . We adopt the notation of Lemma 1 in
its entirety so that φio = sio = tio = 0, a = (x1,−1/2) and b = (x2,−1/2), where
−1/2≤ x1 < x2 ≤ 1/2. The lines `, `a and `b are also as before. However, the unit
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Hio

Hio + (0, 0, δ)

a
ba∗

b∗

Figure 3. [a, b] and [a∗, b∗] in the case that [a, b] lies on the
boundary of Hio .

vector we consider is more specific in this case; d ∈ R3n is the vector with wio = 1
and all remaining components 0. The set H∗ = H + δ · d is comprised of precisely
the same component squares as H with the exception of Hio , which is replaced by
Hio + (0, 0, δ), a rotation of Hio about its center by an angle of δ. The segment on
bd H∗ corresponding to [a, b] is [a∗, b∗], where a∗ = `∗ ∩ `a and b∗ = `∗ ∩ `b∗

since `a = `
∗
a and `b = `

∗

b. See Figure 3.
A computation yields

a∗ =
(

x1 tanφa

tanφa − tan δ
,

x1 tanφa tan δ
tanφa − tan δ

−
1
2

)
,

b∗ =
(

x2 tanφb

tanφb+ tan δ
,

x2 tanφb tan δ
tanφb+ tan δ

−
1
2

)
.

(1)

Consequently, the x-coordinate of b∗− a∗ is

x(b∗− a∗)=
(x2− x1) tanφa tanφb− tan δ(x2 tanφb+ x1 tanφa)

(tanφa − tan δ)(tanφb+ tan δ)
.

However, x(b∗− a∗)/|b∗− a∗| = cos δ and so

|b∗− a∗| =
(x2− x1) tanφa tanφb− tan δ(x2 tanφb+ x1 tanφa)

(tanφa − tan δ)(tanφb+ tan δ) cos δ
. (2)

We’re now in a position to complete the computation of the contribution of [a, b]
to ∂p/∂φio at Hio :

lim
δ→0

|b∗− a∗| − |b− a|
δ

= (x2− x1)(cotφb− cotφa). (3)

Case 1b: [a, b] lies on the boundary of H j with io 6= j . If [a, b] ∩ Hio =∅, then
the partial derivative of that portion of p with respect to φio is 0. Hence, we may
assume that [a, b] ∩ Hio 6=∅. As [a, b] ⊂ bd H is maximal, it follows that either
[a, b] ∩ Hio = {a} or [a, b] ∩ Hio = {b}. We suppose the former and for purposes
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Hio

H j

φa

a

b

Figure 4. [a, b] 6⊂ bd Hio .

of computation, we again adopt some of the notation of Lemma 1. Specifically we
suppose that Hio = (0, 0, 0), a = (x1,−1/2), φa , `a , ` and `∗ are as before. Then
the segment [a, b] lies on the line `a . See Figure 4 where a lies to the right of the
center of Hio (or 0≤ x1 ≤ 1/2).

In this case, the change in perimeter due to [a, b] is
∣∣|[a∗, b∗]|−|[a, b]|

∣∣=|a∗−a|.
Then according to the law of sines,

|a∗− a| =
|c− a| sin δ

sin(φδ)
=

|c− a| sin δ
sinφa cos δ− cosφa sin δ

,

where c = `∩ `∗. See Figure 5.
Hence, in this case, the contribution of [a, b] to ∂p/∂φio at Hio is

lim
δ→0

|a∗− a|
δ
= lim
δ→0

|c− a|(sin δ)/δ
sinφa cos δ− cosφa sin δ

=
x1

sinφa
.

Since H is in standard position, this is well-defined and continuous. The case
in which a lies to the left of the center of Hio is the same, but is negative since
−1/2≤ x1 < 0 in that case.

To summarize, we have shown that the rate of change of each component segment
of bd H with respect to φio is continuous. As bd H is comprised of finitely many

`

`a

a∗
`∗

δ
c

π −φa

φa − δ

a

Figure 5.
∣∣|[a∗, b∗]| − |[a, b]|

∣∣= |a∗− a| in the case that [a, b] 6⊂ bd Hio .
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Hio

1s φio

Hio + (0,1s, 0)

φb

b

a

1p a∗

Figure 6. Translating Hio by (0,1s, 0).

such segments, it follows that ∂p/∂φio exists and is continuous at each point in
standard position.

Part 2: ∂p/∂si . For notational convenience, we denote 1sio simply by 1s. As in
the previous case, we take a particular segment [a, b] on the boundary of H and
consider three cases:

(a) [a, b] does not lie on bd Hio ,

(b) [a, b] lies on bd Hio and contains a vertex of Hio , and

(c) [a, b] lies on bd Hio and neither a nor b are vertices of Hio .

Case 2a: Suppose that [a, b] 6⊂ bd Hio . If [a, b] ∩ Hio = ∅, a sufficiently small
translation of Hio will leave [a, b] unchanged. Suppose then that [a, b]∩Hio 6=∅. As
H is in standard position, it follows that either [a, b]∩Hio ={a} or [a, b]∩Hio ={b}.
Suppose bd Hi∩[a, b]={a}. If1s is sufficiently small, the point b remains on bd H
when translating Hio by 1s. Because a lies on the intersection of two component
squares and H is in standard position, a is not the vertex of any square. Hence,
bd(Hio + (0,1s, 0)) ∩ [a, b] 6= ∅. Let bd(Hio + (0,1s, 0)) ∩ [a, b] = a∗. The
segments [a∗, b] and [a, b] differ by a length of 1p and it is this distance we wish
to compute. See Figure 6.

We consider two cases depending on if φio < φb or φio > φb. Supposing that
φio < φb, the relevant triangle is illustrated in Figure 7.

Using the law of sines, we compute 1p/1s = sinφio/sin(φb−φio). If φio > φb,
a similar computation yields1p/1s=− sinφio/sin(φb−φio). As H is in standard
position, φio 6= φb, so these are the only cases.

Case 2b: Suppose that [a, b] ⊂ bd Hio and that a is a vertex of Hio . If b is also a
vertex of Hio , then as H is in standard position, neither a nor b lie on the boundary
of another component square. Consequently, [a+1s, b+1s]⊂bd(H+(0,1s, 0)),
given a sufficiently small translation 1s.
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1s

a

1p

φio π −φb a∗

Figure 7. The relevant triangle in the case that φio < φb.

Suppose then that b is not a vertex of Hio . Then, given a sufficiently small
translation 1s, the segment [a+1s, b+1s] will intersect bd H at point b∗ and
[b, b∗] ⊂ bd H . See Figure 8.

At this point the geometry and subsequent computation of 1p/1s are anal-
ogous to that found in Figure 7. In the case illustrated in Figure 8, 1p/1s =
cosφio − sinφio tanφb.

Case 2c: Finally, suppose that [a, b] lies on bd Hio and neither a nor b are vertices
of Hio . Then the endpoints a and b of this boundary segment lie on uniquely
determined segments on bd H that lie on the boundaries of component squares other
than Hio . This is similar to the analysis done in Case 1a above. As H is in standard
position, if 1s is sufficiently small, then as Hio is translated to Hio + (0,1s, 0),
the boundary segment [a, b] is translated to a new boundary segment [a∗, b∗].
Moreover, a∗ lies on the same boundary segment of H as does a, and b∗ lies on
the same boundary segment of H as does b. See Figure 9.

In order to facilitate the required computation, we establish the notation found
in Figure 10.

Hio Hio + (0,1s, 0)

a a∗

b

b∗

1s

Figure 8. The case in which b is not a vertex of Hio .
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Hio Hio + (0,1s, 0)

a

a∗

b

b∗

1s

Figure 9. The case in which [a, b] lies on bd Hio and neither a
nor b are vertices of Hio .

Applying the law of sines to triangles [a, a∗, c] and [a, a∗, d], we find

|a− a∗|
sinφ

=
1s

sin(π −φ−φio)
,

|a− a∗|
sin(φ+φb)

=
1p

sin(φio −φb)
.

Hence,
1p
1s
=

sinφ sin(φio −φb)

sin(φ+φio) sin(φ+φb)
.

In the case illustrated in Figure 10, φ = π/2−φio . As H is in standard position,
this quantity is well-defined and indeed constant.

To obtain ∂p/∂si , sum 1p/1s for every component segment [a, b] ⊂ bd H .
Since there are finitely many partitioning segments and 1p/1s is continuous for
each of them, ∂p/∂si exists and is continuous at every point in standard position.

Part 3: ∂p/∂ yi . Rotating the whole figure by 90◦, this case becomes exactly the
same as the previous one.

a

a∗

b

b∗

c1p

φio φb a

a∗ 1p

1s

c

dφφb

Figure 10. The same case with added detail and notation.
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a
ba∗

b∗

γ

c

Figure 11. When the segment [a, b] contains the vertex of a new
square, the derivative of perimeter changes discontinuously.

Finally, because all of the partial derivatives exist and are continuous at each
point in standard position, the perimeter function is differentiable at every point
H ∈ R3n of standard position, as desired. �

The situation for points that are not in standard position is mixed. For example,
at some of these points the perimeter is differentiable; if the configuration H is not
vertex-free, but the vertices that lie on edges of remote squares are all interior to H ,
then the fact that H is not vertex-free has no bearing on the differentiability of perime-
ter at H . However, if a segment on the boundary of H contains a vertex, then p is not
differentiable at H . Figure 11 is a portion of Figure 3 with an additional square added
in such a way that a new vertex, c resides on the segment [a, b]. The angle this new
square makes with the segment [a, b] is important and labeled γ . Also important is
the distance |c−a| this vertex is from the endpoint a. In the next paragraph, we adopt
the notation established earlier in Lemma 1 and Part 1 in the proof of Theorem 5.

In such a case, several of the partial derivatives do not exist. In particular, both one-
sided partial derivatives, ∂p/∂φ+io

and ∂p/∂φ−io
exist, but differ. The latter, ∂p/∂φ−io

is as computed in Part 1 of the proof of Theorem 5. However, a computation similar
to this shows that ∂p/∂φ+io

differs from ∂p/∂φ−io
by |c− a| tan(γ ). See Figure 11.

To summarize,

∂p
∂s−io

= (x2− x1)(cotφb− cotφa),

∂p
∂s+io

= (x2− x1)(cotφb− cotφa)+ |c− a| tanα.

5. A derivative computation for area

To show r is differentiable at every point in standard position, it remains to show
that the area function is differentiable at every point in standard position and to
show how that derivative can be computed.
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Hio

Figure 12. The change in area after rotating Hio .

Theorem 6. The area function α :R3n
→R+ is differentiable at every point H ∈R3n

in standard position.

Proof. Again we show the partial derivatives of α exist and are continuous at each
point of standard position. Fix 0 ≤ io ≤ n. If Hio ⊂ int(H), then ∂a/∂sio(H) =
∂a/∂tio(H) = ∂a/∂φio(H) = 0, so we may assume that a portion of bd Hio is
contained in bd H ; since H is in standard position, bd Hio ∩ bd H is the union of
closed nonoverlapping intervals.

Part 1: ∂α/∂φio . There may be several segments common to bd Hio and bd H , and
for a fixed δ =1φio , each such segment contributes to a corresponding 1α. See
Figure 12 where those segments common to both bd Hio and bd H are darkened and
the components of 1α are hatched, northeast for gain and northwest for loss. The
gray regions are portions of the other component squares of H that intersect Hio .

The area change,1α is simply the sum total of the signed area changes at each of
the line segment components of bd Hio ∩ bd H . There are several cases to consider
depending on the relative location of a boundary segment of bd Hio ∩ bd H , but in
any case, for purposes of this computation, we may assume Hio =

[
−

1
2 ,

1
2

]2 and
that the boundary segment [a, b] lies on the line y =− 1

2 .

Case 1a: a =
(
x1,−

1
2

)
and b =

(
x2,−

1
2

)
with −1

2 < x1 < x2 ≤ 0. Then the
additional area determined by [a, b] is a net gain (or +) and is the area of the
quadrilateral [a, p, q, b]. See Figure 13 where the notation is the same as in the
Lemma 1 except for a new value of d = (0, . . . , 0,1φio, 0, . . . , 0). Using the
coordinates of a∗ and b∗ computed in (1), we find the area of the quadrilateral
[a, a∗, b∗, b] to be

1α([a, b])=
(x2

1 − x2
2) tanφa tanφb tan δ+ tan2 δ(x2

2 tanφb+ x2
1 tanφa)

2(tanφa − tan δ)(tanφb+ tan δ)
. (4)
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`a `b

`

`∗

a b

a∗
b∗

Figure 13. 1α at [a, b] in Case 1a.

To find the contribution to ∂α/φio at [a, b], we divide the quantity found in (4)
by δ and take the limit as δ→ 0 to obtain

∂α

φio

∣∣∣∣
[a,b]
= lim
δ→0

1α([a, b])
δ

=
x2

1 − x2
2

2
.

Case 1b: a =
(
x1,−

1
2

)
and b =

(
x2,−

1
2

)
with 0 ≤ x1 < x2 ≤

1
2 . This case is

symmetric to Case 1a, but since 0≤ x1 < x2, the contribution to ∂α/φio is negative:

∂α

φio

∣∣∣∣
[a,b]
=

x2
1 − x2

2

2
.

Case 1c: a =
(
x1,−

1
2

)
and b =

(
x2,−

1
2

)
with − 1

2 ≤ x1 ≤ 0≤ x2 ≤
1
2 . Once again

∂α

φio

∣∣∣∣
[a,b]
=

x2
1 − x2

2

2
.

To see this, introduce x3 = 0 and add the corresponding amounts computed using
the formula from Cases 1a and 1b.

Part 2: ∂α/∂sio . The analysis of this case is much the same as Part 1. Again there
may be several segments common to bd Hio and bd H , and for a fixed δ = 1sio ,
each such segment contributes to a corresponding 1α. See Figure 14 where those
segments common to both bd Hio and bd H are darkened and the components of
1α are hatched, northeast for gain and northwest for loss. The gray regions are
portions of the other component squares of H that intersect Hio .

There are two basic cases to consider here. The first concerns a component
segment [a, b] ⊂ bd Hio ∩ bd H that lies on either the bottom or top of Hio and the
second is when that segment lies on one of the other two sides. In both cases we
let 1sio =1s be sufficiently small.

Case 2a: [a, b] lies on the bottom of Hio . For definiteness, we again suppose that
neither a nor b is a vertex of Hio , as the cases when they are vertices can be handled



DIFFERENTIATION PROPERTIES OF THE PERIMETER-TO-AREA RATIO 889

Hio

Figure 14. The change in area after translating Hio .

in much the same manner. As before, there are uniquely defined H j and Hk such
that a ∈ bd H j ∩bd Hio and b ∈ bd Hk∩bd Hio . Also let ` denote the line containing
[a, b], so that the segment [a, b] is that portion of ` between H j and Hk . Similarly,
let `∗ be the line `+(0,1s, 0), and let [a∗, b∗] denote that segment on `∗ extending
between H j and Hk . See Figure 15 where the trapezoidal region whose area is 1α
at [a, b] is shaded and the rotation displacement φio as well as 1s are labeled.

Then

1α|[a,b] =
|b− a| + |b∗− a∗|

2
sinφio ·1s.

From this it follows that
∂α

∂sio

∣∣∣∣
[a,b]
= lim
1s→0

|b− a| + |b∗− a∗|
2

sinφio = |b− a| sinφio .

The case in which [a, b] lies on the top of Hio is identical with the exception that
the sign is negative.

`a `b

`

`∗

a

b

a∗

b∗

1s

φio

Figure 15. 1α at [a, b] in Case 2a.
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Case 2b: [a, b] lies on the right (or left) side of Hio . The right side case is much the
same as described in Case 2a above, but with the angle φio replaced by φio +π/2.
The resulting derivative formula becomes

∂α

∂sio

∣∣∣∣
[a,b]
= lim
1s→0

|b− a| + |b∗− a∗|
2

cosφio = |b− a| cosφio .

As above, the left side case is identical with the exception that the sign is negative.

Part 3: ∂α/∂tio . As with the analysis of perimeter, the translation cases are com-
pletely analogous.

As each of the partial derivatives is defined and continuous at each point H in
standard position, the proof of Theorem 6 is complete. �

Because the perimeter and area functions are differentiable at every point in
standard position (and a 6= 0), their ratio r : R3n

→ R+ is differentiable and our
main result now follows immediately.

Theorem 7. The function r : R3n
→ R+ is differentiable at every point H ∈ R3n in

standard position.

The idea of studying the variation of p(H)/a(H) allows us to consider a vast
body of discrete geometric literature to help study the problem. However, nearly all
of this literature concerns itself with studying disks in the plane, rather than squares
or arbitrary shapes. An example is the famous Kneser–Poulsen theorem concerning
disks in the plane. See [Bezdek and Connelly 2002] and [Bollobás 1968] for details.

Kneser–Poulsen theorem. If a set of disks in the plane are rearranged so that the
distance between the centers of any pair of discs decreases, then the area and the
perimeter of the union of the discs also decreases.
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