0

 involve

 involve} a journal of mathematics

On the Levi graph of point-line configurations
Jessica Hauschild, Jazmin Ortiz and Oscar Vega

On the Levi graph of point-line configurations

Jessica Hauschild, Jazmin Ortiz and Oscar Vega
(Communicated by Joseph A. Gallian)

Abstract

We prove that the well-covered dimension of the Levi graph of a point-line configuration with v points, b lines, r lines incident with each point, and every line containing k points is equal to 0 , whenever $r>2$.

1. Introduction

The concept of the well-covered space of a graph was first introduced by Caro, Ellingham, Ramey, and Yuster [Caro et al. 1998; Caro and Yuster 1999] as an effort to generalize the study of well-covered graphs. Brown and Nowakowski [2005] continued the study of this object and, among other things, provided several examples of graphs featuring odd behaviors regarding their well-covered spaces. One of these special situations occurs when the well-covered space of the graph is trivial, i.e., when the graph is anti-well-covered. In this work, we prove that almost all Levi graphs of configurations in the family of the so-called (v_{r}, b_{k})configurations (see Definition 3) are anti-well-covered.

We start our exposition by providing the following definitions and previously known results. Any introductory concepts we do not present here may be found in the books by Bondy and Murty [1976] and Grünbaum [2009].

We consider only simple and undirected graphs. A graph will be denoted by $G=(V(G), E(G))$, as is customary, where $V(G)$ is the set of vertices of the graph and $E(G)$ is the set of edges of the graph. We think of $E(G)$ as an irreflexive symmetric relation on $V(G)$. Two vertices of a graph are said to be adjacent if they are connected by an edge. An independent set of vertices is one in which no two vertices in the set are adjacent. If an independent set, M, of a graph G is not a proper subset of any other independent set of G, then M is a maximal independent set of G.

Definition 1. Let G be a graph and F a field.
(1) A function $f: V(G) \rightarrow F$ is said to be a weighting of G. If the sum of all weights is constant for all maximal independent sets of G, then the weighting is a well-covered weighting of G.

MSC2010: primary 05B30; secondary 51E05, 51E30.
Keywords: Levi graph, maximal independent sets, configurations.
(2) The F-vector space consisting of all well-covered weightings of G is called the well-covered space of G (relative to F).
(3) The dimension of this vector space is called the well-covered dimension of G, denoted wcdim (G, F).

Remark 1. For some graphs, the characteristic of the field F makes a difference when calculating the well-covered dimension (see [Birnbaum et al. 2014] and [Brown and Nowakowski 2005]). If $\operatorname{char}(F)$ does not cause a change in the wellcovered dimension, then the well-covered dimension is denoted as wcdim (G).

In order to calculate the well-covered dimension of a graph, G, one would generally need to find all possible maximal independent sets of G. However, finding all maximal independent sets is not always an easy task, as this is a known NP-complete problem.

Despite the NP-complete nature of this problem, let us assume that we have found all possible maximal independent sets of G. We will denote these maximal independent sets as M_{i} for $i=0,1, \ldots, k-1$. The well-covered weightings of G are determined by solving a system of linear equations that arise from considering all equations of the form $M_{0}=M_{i}$ for $i=1, \ldots, k-1$. We replace this system with the equivalent homogeneous one via standard operations and create an associated matrix A_{G}. Observe that the dimension of the nullspace of A_{G} is equal to the dimension of the well-covered space of G. Thus,

$$
\operatorname{wcdim}(G, F)=|V(G)|-\operatorname{rank}\left(A_{G}\right)
$$

We now move onto another component of our work: configurations.
Definition 2. A (point-line) configuration is a triple ($\mathcal{P}, \mathcal{L}, \mathcal{I}$), where \mathcal{P} is set of points, \mathcal{L} is a set of lines, and \mathcal{I} is an incidence relation between \mathcal{P} and \mathcal{L}, that has the following properties:
(1) Any two points are incident with at most one line.
(2) Any two lines are incident with at most one point.

Next, there is some notation for configurations that needs to be set, as well as specific parameters that need to be established for the main result of this work.
Definition 3. We define a $\left(v_{r}, b_{k}\right)$-configuration as a configuration such that
(1) $|\mathcal{P}|=v$, and $v \geq 4$.
(2) $|\mathcal{L}|=b$, and $b \geq 4$.
(3) There are exactly k points incident with each line, and $k \geq 2$.
(4) There are exactly r lines incident with each point, and $r \geq 2$.

When $v=b$ and $r=k$, the configuration will be denoted by $\left(v_{r}\right)$.

Figure 1. $\left(13_{4}\right)=P G(2,3)$ and $\operatorname{Levi}_{\left(13_{4}\right)}$.

Example 1. Several well-known geometric structures fall into the category of (v_{r}, b_{k})-configurations. For instance:
(1) A projective plane of order q is a $\left(q^{2}+q+1_{(q+1)}\right)$-configuration, where q is the power of a prime. See Figure 1 for a representation of $\operatorname{PG}(2,3)=\left(13_{4}\right)$.
(2) The Pappus configuration is a (9_{3})-configuration, and the Desargues configuration is a $\left(10_{3}\right)$-configuration.
(3) $P G(n, q)$ is a

$$
\left({\frac{q^{n+1}-1}{q-1}}_{(q+1)},{\frac{\left(q^{n+1}-1\right)\left(q^{n}-1\right)}{\left(q^{2}-1\right)(q-1)}}_{\left(q^{2}+q+1\right)}\right) \text {-configuration, }
$$

where q is the power of a prime.
(4) A generalized quadrangle $G(s, t)$ is a $\left((1+s)(s t+1)_{(1+s)},(1+t)(s t+1)_{(1+t)}\right)-$ configuration.

The reader is referred to the book by Batten [1997] for more information about these important geometric objects.

Finally, we define Levi graphs, which will connect configurations and graphs.
Definition 4. The Levi graph of a $\left(v_{r}, b_{k}\right)$-configuration $(\mathcal{P}, \mathcal{L}, \mathcal{I})$ is the bipartite graph G with $V(G)=\mathcal{P} \cup \mathcal{L}$ and $E(G)=\mathcal{I}$. That is, $p \in \mathcal{P}$ is adjacent to $\ell \in \mathcal{L}$ if and only if $p \mathcal{I} \ell$. We will denote this graph $\operatorname{Levi}_{\left(v_{r}, b_{k}\right)}$.
Note that \mathcal{P} and \mathcal{L} are independent sets - the partite sets - in G.
Our main result, which will be proven in the following section, combines all of these objects as follows:

Theorem 1. If r is a positive integer greater than 2 , then $\operatorname{wcdim}\left(\operatorname{Levi}_{\left(v_{r}, b_{k}\right)}\right)=0$.
We would like to remark that Theorem 1 says is that almost all Levi graphs of (v_{r}, b_{k})-configurations are anti-well-covered.

Figure 2. A maximal independent set M_{P} in $\operatorname{Levi}_{\left(13_{4}\right)}$.

2. The well-covered dimension of $\operatorname{Levi}_{\left(v_{r}, b_{k}\right)}$

We will prove Theorem 1 by first proving a technical lemma that introduces a family of maximal independent sets that will prove to be useful later on.

Lemma 1. A Levi graph of a configuration (v_{r}, b_{k}), where $r>2$, has at least $v+b+2$ maximal independent sets.

Proof. Let P be a fixed point in $\left(v_{r}, b_{k}\right)$. We consider the set, M_{P}, of vertices of $\operatorname{Levi}_{\left(v_{r}, b_{k}\right)}$ given by P and all the lines not incident to P. This is an independent set of $\operatorname{Levi}_{\left(v_{r}, b_{k}\right)}$ because there is no incidence between vertices in the set. Moreover, note that if we included another point-vertex to M_{P}, then that vertex would be adjacent to one of the line-vertices in M_{P} (because of condition (2) in Definition 2, and the fact that $r>2$). Also, if another line-vertex were to be added to M_{P}, then this line would have to be incident with P. It follows that M_{P} is a maximal independent set of $\operatorname{Levi}_{\left(v_{r}, b_{k}\right)}$. See Figure 2 for an example.

Repeating this construction for all v points in $\left(v_{r}, b_{k}\right)$, we get v distinct maximal independent sets of $\operatorname{Levi}_{\left(v_{r}, b_{k}\right)}$.

We will now construct another b distinct maximal independent sets of $\operatorname{Levi}{ }_{\left(v_{r}, b_{k}\right)}$. We start by fixing a line ℓ in $\left(v_{r}, b_{k}\right)$ and then any two distinct points $P_{1}, P_{2} \in \ell$ (recall that $k \geq 2$). We consider the set, $M_{P_{1}, P_{2}}$ of vertices of $\mathrm{Levi}_{\left(v_{r}, b_{k}\right)}$ given by P_{1}, P_{2} and all the lines not incident to either of these points. Note that this forms an independent set since adjacency in Levi ${ }_{\left(v_{r}, b_{k}\right)}$ only occurs if incidence occurs in $\left(v_{r}, b_{k}\right)$. If we try to add in another vertex-point to $M_{P_{1}, P_{2}}$, since $r>2$, this point will be incident to one of the lines not through P_{1} or P_{2} and will therefore be adjacent to the vertex-lines in $M_{P_{1}, P_{2}}$. If we try to add another vertex-line to $M_{P_{1}, P_{2}}$, then this line will be incident to one or both of P_{1} and P_{2}. Therefore, $M_{P_{1}, P_{2}}$ is a maximal independent set of $\operatorname{Levi}_{\left(v_{r}, b_{k}\right)}$. See Figure 3 for an example.

Repeating this construction for all b lines in (v_{r}, b_{k}) (it does not matter what pair of points one picks on any given line), we get b distinct maximal independent sets of $\operatorname{Levi}_{\left(v_{r}, b_{k}\right)}$.

Figure 3. A maximal independent set $M_{P_{1}, P_{2}}$ in $\operatorname{Levi}_{\left(13_{4}\right)}$.
Finally, note that the set of all point-vertices in $\operatorname{Levi}_{\left(v_{r}, b_{k}\right)}$ is a maximal independent set and the set of all line-vertices in Levi ${ }_{\left(v_{r}, b_{k}\right)}$ is as well. Hence, we have constructed $v+b+2$ distinct maximal independent sets in $\operatorname{Levi}_{\left(v_{r}, b_{k}\right)}$.

Next, we proceed to prove our main result.
Proof of Theorem 1. We denote by F the field of scalars of the well-covered space of $G=\operatorname{Levi}_{\left(v_{r}, b_{k}\right)}$, where $r>2$. Let A_{G} be the associated matrix of G, and note that A_{G} has $v+b$ columns. In order to prove that A_{G} has $v+b$ linearly independent rows we will consider the $v+b+2$ maximal independent sets in Lemma 1.

We create the first v rows of A_{G} by equating the weight of each of the maximal independent sets M_{P} to the weight of the maximal independent set consisting of all the lines of G. After subtracting, we obtain v equations of the form

$$
\begin{equation*}
f(P)-f\left(\ell_{1}\right)-f\left(\ell_{2}\right)-\cdots-f\left(\ell_{r}\right)=0 \tag{1}
\end{equation*}
$$

where each ℓ_{i} is incident with P. It follows that, after organizing the columns of A_{G} by putting point-vertices first and then line-vertices, the "first" v rows of A_{G} are

$$
\left[\begin{array}{ll}
I_{v} & -C
\end{array}\right]
$$

where C is the incidence matrix of $\operatorname{Levi}_{\left(v_{r}, b_{k}\right)}$.
In order to obtain the next b rows of A_{G}, we will consider maximal independent sets of the form $M_{P, Q}$. For any given line ℓ of (v_{r}, b_{k}), we choose (any) two points on it. We will denote these two points as P_{1} and P_{2}. We then consider the maximal independent set $M_{P_{1}, P_{2}}$ and equate its weight to the weight of the maximal independent set $M_{P_{1}}$. After subtracting, we obtain an equation of the form

$$
\begin{equation*}
f\left(P_{2}\right)-f\left(\ell_{1}\right)-f\left(\ell_{2}\right)-\cdots-f\left(\ell_{r}\right)+f(\ell)=0 \tag{2}
\end{equation*}
$$

where each ℓ_{i} is incident with P_{2}.
Note that subtracting (1) (with $P=P_{2}$) from (2) yields $f(\ell)=0$. Since ℓ was arbitrary, we get $f(\ell)=0$ for every line in (v_{r}, b_{k}). It follows that since subtracting
equations is just a different way to describe row operations in A_{G}, we get that the "first" $v+b$ rows of A_{G} (after a few row operations) are

$$
\left[\begin{array}{rr}
I_{v} & -C \\
\mathbf{0} & I_{b}
\end{array}\right]
$$

Note that addition and subtraction were the only two (row) operations needed to obtain the matrix above. Hence, the first $v+b$ rows of A_{G} do not change depending on the characteristic of F.

Since the determinant of the matrix above is nonzero, the rank of A_{G} is maximal, and thus $\operatorname{wcdim}\left(\operatorname{Levi}_{\left(v_{r}, b_{k}\right)}\right)=0$.

3. Possible generalizations

In this section, we study possible generalizations of Theorem 1 . This will be done by providing a few results and by introducing objects to which this theorem could be extended. We begin by proving that Theorem 1 cannot be extended to configurations having exactly two lines being incident with every point. This will be done by an example that considers (v_{2})-configurations.

We first notice that a (v_{2})-configuration is a disjoint union of polygons/cycles. This is convenient because disjoint unions of graphs behave well with respect to the well-covered dimension. In fact, Lemma 5 in [Brown and Nowakowski 2005] says

$$
\operatorname{wcdim}(G \cup H)=\operatorname{wcdim}(G)+\operatorname{wcdim}(H),
$$

where \cup stands for disjoint union.
Since we know that $\operatorname{Levi}_{C_{n}}=C_{2 n}$, we get the following lemma.
Lemma 2. Let \mathcal{C} be a $\left(v_{2}\right)$-configuration. Then,

$$
\mathcal{C}=\bigcup_{i=1}^{t} C_{n_{i}}
$$

where $n_{i}>2$, for all $1 \leq i \leq t$. Moreover,

$$
\operatorname{wcdim}\left(\operatorname{Levi}_{\mathcal{C}}\right)=\sum_{i=1}^{t} \operatorname{wcdim}\left(C_{2 n_{i}}\right)
$$

Finally, we notice that Theorem 5 in [Birnbaum et al. 2014] implies

$$
\operatorname{wcdim}\left(C_{2 n}\right)= \begin{cases}2 & \text { if } n=3 \\ 0 & \text { if } n \geq 4\end{cases}
$$

Next is an immediate corollary of that same theorem, together with our Lemma 2.

Corollary 1. The well-covered dimension of $\operatorname{Levi}_{\mathcal{C}}$ is even for all $\left(v_{2}\right)$-configurations \mathcal{C}. Moreover, for every $n \in \mathbb{N}$, there is a $\left(v_{2}\right)$-configuration, \mathcal{C}_{n}, such that

$$
\operatorname{wcdim}\left(\operatorname{Levi}_{\mathcal{C}_{n}}\right)=2 n .
$$

In particular, the sequence $\left\{\operatorname{wcdim}\left(\operatorname{Levi}_{\mathcal{C}_{n}}\right)\right\}_{n=1}^{\infty}$ is unbounded.
We conclude that Theorem 1 cannot be expanded to the case $r=2$. However, it is still an open problem to find the well-covered dimension of all Levi graphs of $\left(v_{2}, b_{k}\right)$-configurations.

Of course, the study of the well-covered dimension of Levi graphs of configurations not of the form (v_{r}, b_{k}) is also an interesting open problem.

Block designs are another family of objects that could be studied to attempt a generalization of Theorem 1. These objects can be much less "geometric" than (v_{r}, b_{k})-configurations, given that they are obtained after relaxing items (3) and (4) in Definition 2. In order to be more precise, we provide the following definition.
Definition 5. Let $\lambda, t \geq 1$. A $t-(v, k, \lambda)$-design (or t-design), is an incidence structure of points and blocks with the following properties:
(1) There are v points.
(2) Each block is incident with k points.
(3) Any t points are incident with λ common blocks.

It is easy to see that a $1-(v, k, \lambda)$-design is a $\left(v_{\lambda}, b_{k}\right)$-configuration, where $b=v \lambda / k$. Moreover, a 2- $(v, k, 1)$-design is a configuration in which every pair of points are "collinear". For $t>1$ and $\lambda>1$, the obvious definition of the Levi graph of a t-design would yield a multigraph. This apparent setback is not so much of a problem since having one edge or multiple edges between two vertices would mean the same thing when looking for maximal independent sets. We claim that the ideas used to prove Theorem 1 can be generalized to be applicable to block designs.

Finally, in this work, we studied the well-covered space of the Levi graph of a (v_{r}, b_{k})-configuration. We propose, as an interesting open problem, the study of configurations via understanding the well-covered spaces of their collinearity graphs (in which points in a configuration are defined as vertices, and adjacency occurs if and only if the points are collinear). The third author is currently working on a particular case of this problem: generalized quadrangles.

Acknowledgments

The authors would like to thank the referee for his/her suggestions. We believe they greatly improved the exposition in this article. We gratefully acknowledge the NSF for their financial support (Grant \#DMS-1156273), and the REU program at California State University, Fresno.

References

[Batten 1997] L. M. Batten, Combinatorics of finite geometries, 2nd ed., Cambridge University Press, 1997. MR 99c:51001 Zbl 0885.51012
[Birnbaum et al. 2014] I. Birnbaum, M. Kuneli, R. McDonald, K. Urabe, and O. Vega, "The wellcovered dimension of products of graphs", Discuss. Math. Graph Theory 34:4 (2014), 811-827. MR 3268692 Zbl 1303.05164
[Bondy and Murty 1976] J. A. Bondy and U. S. R. Murty, Graph theory with applications, Elsevier, New York, 1976. MR 54 \#117 Zbl 1226.05083
[Brown and Nowakowski 2005] J. I. Brown and R. J. Nowakowski, "Well-covered vector spaces of graphs", SIAM J. Discrete Math. 19:4 (2005), 952-965. MR 2006j:05155 Zbl 1104.05052
[Caro and Yuster 1999] Y. Caro and R. Yuster, "The uniformity space of hypergraphs and its applications", Discrete Math. 202:1-3 (1999), 1-19. MR 2000b:05100 Zbl 0932.05069
[Caro et al. 1998] Y. Caro, M. N. Ellingham, and J. E. Ramey, "Local structure when all maximal independent sets have equal weight", SIAM J. Discrete Math. 11:4 (1998), 644-654. MR 99g:05161 Zbl 0914.05061
[Grünbaum 2009] B. Grünbaum, Configurations of points and lines, Graduate Studies in Mathematics 103, Amer. Math. Soc., Providence, RI, 2009. MR 2011j:52001 Zbl 1205.51003

Received: 2014-10-04 Revised: 2014-12-28 Accepted: 2015-01-02
jessica.hauschild@kwu.edu Department of Math and Physics, Kansas Wesleyan University, 100 East Claflin Avenue, Salina, KS 91711-5901, United States
jortiz@g.hmc.edu Department of Mathematics, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711-5901, United States
ovega@csufresno.edu Department of Mathematics, California State University, Fresno, Peters Business Building, 5245 North Backer Avenue M/S PB108, Fresno, CA 93740-8001, United States

involve
 msp.org/involve

MANAGING EDITOR
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone@latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@ mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@ math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@ pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@ wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2015 is US $\$ 140 /$ year for the electronic version, and $\$ 190 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
E- mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2015 Mathematical Sciences Publishers
A simplification of grid equivalence 721
NANCY SCHERICH
A permutation test for three-dimensional rotation data 735
Daniel Bero and Melissa Bingham
Power values of the product of the Euler function and the sum of divisors function 745
Luis Elesban Santos Cruz and Florian Luca
On the cardinality of infinite symmetric groups 749
Matt Getzen
Adjacency matrices of zero-divisor graphs of integers modulo n 753
Matthew Young
Expected maximum vertex valence in pairs of polygonal triangulations 763Timothy Chu and Sean Cleary
Generalizations of Pappus' centroid theorem via Stokes' theorem 771
Cole Adams, Stephen Lovett and Matthew McMillan
A numerical investigation of level sets of extremal Sobolev functions 787
Stefan Juhnke and Jesse Ratzkin
Coalitions and cliques in the school choice problem 801Sinan Aksoy, Adam Azzam, Chaya Coppersmith, Julie Glass,Gizem Karaali, Xueying Zhao and Xinjing Zhu
The chromatic polynomials of signed Petersen graphs 825
Matthias Beck, Erika Meza, Bryan Nevarez, Alana Shine and Michael Young
Domino tilings of Aztec diamonds, Baxter permutations, and snow leopard 833
permutationsBenjamin Caffrey, Eric S. Egge, Gregory Michel, Kailee Rubinand Jonathan Ver Steegh
The Weibull distribution and Benford's law 859Victoria Cuff, Allison Lewis and Steven J. Miller
Differentiation properties of the perimeter-to-area ratio for finitely many 875overlapped unit squaresPaul D. Humke, Cameron Marcott, Bjorn Mellem and ColeStiegler
On the Levi graph of point-line configurations 893Jessica Hauschild, Jazmin Ortiz and Oscar Vega

