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For a pair of random Gaussian integers chosen uniformly and independently
from the set of Gaussian integers of norm x or less as x goes to infinity, we find
asymptotics for the average norm of their greatest common divisor, with explicit
error terms. We also present results for higher moments along with computational
data which support the results for the second, third, fourth, and fifth moments.
The analogous question for integers is studied by Diaconis and Erdős.

1. Introduction

In this paper, we study questions related to the size of the greatest common divisor
of pairs of randomly chosen Gaussian integers. In particular, in Theorem 1, we first
calculate the probability that a pair of random Gaussian integers, chosen uniformly
and independently from the set of all Gaussian integers with norm x or less, has
greatest common divisor ±κ or ±iκ for a fixed Gaussian integer κ . The main term
for this probability in the case where κ=1 was first given by Collins and Johnson
[1989, Theorem 8]. We refine their results by providing the expression for the more
general case in addition to giving an explicit error term for all cases. In Theorem 2
we derive the expected norm of the greatest common divisor between a pair of
Gaussian integers with norm x or less. Finally, in Theorem 3 and Conjecture 4,
we present an expression for higher moments of the norm of the greatest common
divisor between a pair of Gaussian integers with norm x or less. We expect our
results to generalize to principal ideal domains without too much difficulty. More
generally, our results should hold for the ring of integers in an algebraic number field,
though our techniques will need to be modified to deal with class number greater
than one and infinite unit group. We expect the ideas in [Micheli and Ferraguti
2015] could help address this question and would be an interesting direction to
explore further. Of further interest are function field analogues. Some interesting
results in this direction may be found in [Micheli and Schnyder 2015].
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Similar questions have also been studied for the case of rational integers. Orig-
inally, Mertens [1874] proved that the probability that a pair of rational integers
chosen uniformly and independently at random from {1, 2, . . . , x} are relatively
prime is asymptotic to 1/ζ(2), as x tends to infinity, where ζ is the Riemann zeta
function. Christopher [1956, Theorem 1] generalized Mertens’ result by finding the
probability that two integers have greatest common divisor k for a fixed k larger
than 1. An asymptotic expression for the moments of the greatest common divisor
was first derived by Cesàro [1885], and Diaconis and Erdős [2004, Theorem 2]
later extended his work by explicitly calculating the error term. In particular, the
expected value for the greatest common divisor between a pair of random integers
chosen independently and uniformly from the set {1, 2, . . . , x} is

1
ζ(2)

log x + O(1), (1)

while the n-th moment is given by

xn−1

n+ 1

(
2ζ(n)
ζ(n+ 1)

− 1
)
+ O(xn−2 log x) for n ≥ 2. (2)

The goal of the present paper is to show that (1) has an analogous counterpart
in the ring of Gaussian integers as stated in Theorem 2 at the end of this section.
Further, we show that (2) also has an analogous form as presented in Theorem 3 and
Conjecture 4. Before proceeding, we first give the following preliminary definitions
and remark.

Definition. The norm of a Gaussian integer α= a+bi for rational integers a and b
is defined by N (α)= a2

+ b2.

Most of our results will be in terms of the norms of Gaussian integers and not
the integers themselves.

Remark. Given two Gaussian integers η and µ, a greatest common divisor, denoted
(η, µ), is defined to be a Gaussian integer κ such that κ is a divisor of both η and µ,
and if there is any other common factor between η and µ, then it must also be a
factor of κ . From this definition, it becomes clear that (η, µ) is unique only up
to its associates. In other words, (η, µ) = κ , −κ , iκ , and −iκ . Our calculations,
however, will be performed via ideals for reasons that will soon become apparent.
For a Gaussian integer η, we say n is the ideal such that

n= (η)= (−η)= (iη)= (−iη),

and the norm of n is defined by N (n)= N (η). Accordingly, the definition of the
greatest common divisor for a pair of ideals is this:
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Definition (greatest common divisor of two ideals). For a ring R, let n,m⊂ R be
ideals. The greatest common divisor (n,m) is defined to be the ideal K⊂ R which
satisfies the following:

(1) n⊂ K and m⊂ K.

(2) If there exists some ideal a⊂ R such that n⊂ a and m⊂ a, then K⊂ a.

In other words, (n,m) is the smallest ideal that contains all the elements of both
n and m. When applied to the ring of Gaussian integers, a Dedekind domain, it is
clear that (n,m) is unique.

Definition (the Dedekind zeta function of Q(i)). For the number field Q(i), the
complex-valued Dedekind zeta function is defined for Re(s) > 1 by

ζQ(i)(s)=
∑

a⊂Z[i]

1
N (a)s

=
1
4

∑
(a,b)∈Z

(a,b) 6=(0,0)

1
(a2+ b2)s

,

where the first summation is over the nonzero ideals a of the ring of Gaussian
integers Z[i].

In order to find the expression for the expected norm of a greatest common
divisor between a pair of Gaussian integers of norm x or less, we will first derive
the necessary probability distribution function of Theorem 1:

Theorem 1. Let n and m be nonzero ideals chosen independently and uniformly
at random from the set of ideals in Z[i] with norm x or less. The probability that
(n,m)= K is

1
ζQ(i)(2)N (K)2

+ O
(

1
x2/3 N (K)4/3

)
.

This probability will allow us to calculate the expected norm of the greatest
common divisor between a pair of ideals:

Theorem 2. Let n and m be nonzero ideals chosen independently and uniformly at
random from the set of ideals in Z[i] with norm x or less. The expected norm of the
greatest common divisor of n and m is

π

4ζQ(i)(2)
log x + O(1).

We will then prove the following result regarding the n-th moment for n > 2:

Theorem 3. Let n and m be nonzero ideals chosen independently and uniformly at
random from the set of ideals in Z[i] with norm x or less. For n > 2, there exists a
constant cn ∈ R such that

Ex{N (n,m)n} ∼ cnxn−1,

where Ex{N (n,m)n} denotes the n-th moment of the norm of the greatest common
divisor of n and m.
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Lastly, we will present numerical data which provide strong evidence for the
following conjecture regarding the constant of Theorem 3 for all n ≥ 2:

Conjecture 4. For n ≥ 2,

Ex{N (n,m)n} ∼
4

π(n+ 1)

(
2ζQ(i)(n)
ζQ(i)(n+ 1)

− 1
)

xn−1.

The proof of Theorem 1 will be given in Section 2 and that of Theorem 2 will
be given in Section 3. Finally, in Section 4, we prove Theorem 3 and present
Conjecture 4 along with computational data which support the conjecture for the
second, third, fourth, and fifth moments.

2. Probability distribution function

Before deriving the expression for the probability of Theorem 1, we first define the
following two functions:

Definition (the Möbius function). For an ideal n, the Möbius Function µ(n) is
defined by

µ(n)=


1 if n= (1),
(−1)t if n= p1p2 · · · pt for distinct prime ideals pi ,

0 otherwise.

We will use the following identity∑
d|n

µ(d)=

{
1 if n= (1),
0 if n 6= (1),

(3)

as well as the generating function∑
n⊂Z[i]

µ(n)

N (n)s
=

1
ζQ(i)(s)

for Re(s) > 1.

Definition (the sum-of-two-squares function). For n∈Z, let the sum-of-two-squares
function r(n, 2) represent the number of ways that n can be expressed as a sum of
two squares. Thus,

r(n, 2)= 1
4 #{a⊂ Z[i] : N (a)= n}.

We will need the result of Sierpiński [1906] (for a statement in English, see [Schinzel
1972, (1)])

x∑
n=1

r(n, 2)= πx + O(x1/3). (4)
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The error term O(x1/3) has been improved by Huxley [2003] to O(x131/416+ε), but
the former is sufficient for our purposes. We shall also use

x∑
n=1

r(n, 2)
n
= π(S+ log x)+ O(x−1/2) (5)

[Sierpiński 1907], where S denotes Sierpiński’s constant S ≈ 2.58/π . This also
has the alternate expressions

S =
1
π

lim
z→∞

(
4ζ(z)β(z)−

π

z− 1

)
= γ +

β ′(1)
β(1)

[Finch 2003, p. 123], where β(z) is the Dirichlet beta function and γ is the Euler–
Mascheroni constant.

With these functions at hand, we may now proceed to calculate the desired
probability. To do so, we will need two preliminary results. The first is the total
number of pairs of ideals generated by Gaussian integers with norm at most x . The
second result is the number of those pairs which have greatest common divisor K.
The expressions for each of these are derived in the following two lemmas.

Lemma 5. The total number of pairs of nonzero ideals n and m in Z[i] with norm x
or less is

π2x2

16
+ O(x4/3).

Proof. Let n and m be nonzero ideals. Then

#
{
n,m⊂ Z[i]2 : N (n), N (m)≤ x

}
=

∑
n⊂Z[i]
N (n)≤x

∑
m⊂Z[i]
N (m)≤x

1,

and we may rewrite this as

1
16

bxc∑
N (n)=1

r(N (n), 2)
bxc∑

N (m)=1

r(N (m), 2),

which by (4) equals
1
16(πx + O(bxc1/3))2.

Further, since O(bxc)= O(x), we may expand (πx+O(x1/3))2 and obtain π2x2
+

2πx O(x1/3)+O(x2/3), which reduces to π2x2
+O(x4/3). Thus, the total number

of n and m with norm at most x is

π2x2

16
+ O(x4/3). �
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Lemma 6. The total number of pairs of nonzero ideals n and m in Z[i] with norm x
or less having greatest common divisor K is

π2x2

16ζQ(i)(2)k2 + O
(

x4/3

k4/3

)
,

where k = N (K).

Proof. Let n and m be nonzero ideals. The number of pairs of n and m with norm x
or less which are relatively prime is

#
{
n,m⊂ Z[i]2 : N (n), N (m)≤ x and (n,m)= (1)

}
=

∑
n⊂Z[i]
N (n)≤x

∑
m⊂Z[i]
N (m)≤x
(n,m)=(1)

1

=

∑
n⊂Z[i]
N (n)≤x

∑
m⊂Z[i]
N (m)≤x

∑
d⊂Z[i]
d|(n,m)

µ(d),

where in the last line we used identity (3). Reindexing with n= dn′ and m= dm′,
where the norms of n′ and m′ range from 1 to x/N (d), we may rewrite this as∑
d⊂Z[i]
N (d)≤x

µ(d)
∑

n′⊂Z[i]
N (n′)≤x/N (d)

∑
m′⊂Z[i]

N (m′)≤x/N (d)

1

=
1
16

∑
d⊂Z[i]
N (d)≤x

µ(d)

bx/Ndc∑
Nn′=1

r(N (n′), 2)
bx/Ndc∑
Nm′=1

r(N (m′), 2).

As in Lemma 5, this reduces to

1
16

∑
d⊂Z[i]
N (d)≤x

µ(d)

(
π2x2

N (d)2
+ O

(
x

N (d)

)4/3 )
.

We then distribute the summation to obtain

π2x2

16

∑
d⊂Z[i]
N (d)≤x

µ(d)

N (d)2
+ O

( ∑
d⊂Z[i]
N (d)≤x

(
x

N (d)

)4/3 )
. (6)

To evaluate the main term, we call on the generating function
∑

n⊂Z[i] µ(n)/N (n)s=
1/ζQ(i)(s) for Re(s) > 1 to see that

∑
d⊂Z[i]
N (d)≤x

µ(d)

N (d)2
=

1
ζQ(i)(2)

−

∞∑
n=x+1

∑
d⊂Z[i]
N (d)=n

µ(d)

N (d)2
,
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which implies∣∣∣∣ 1
ζQ(i)(2)

−

∑
d⊂Z[i]
N (d)≤x

µ(d)

N (d)2

∣∣∣∣≤ ∞∑
n=x+1

1
n2

∑
d⊂Z[i]
N (d)=n

1=
1
4

∞∑
n=x+1

r(n, 2)
n2 .

Now we note that r(n, 2)≤ 4σ0(n)= o(nε) for all ε > 0, where σ0 represents the
number of divisors of n. Thus

1
4

∞∑
n=x+1

r(n, 2)
n2 ≤

∞∑
n=x+1

o(nε)
n2 = o(xε−1),

and so∣∣∣∣ 1
ζQ(i)(2)

−

∑
d⊂Z[i]
N (d)≤x

µ(d)

N (d)2

∣∣∣∣≤ o(xε−1) or
∑

d⊂Z[i]
N (d)≤x

µ(d)

N (d)2
=

1
ζQ(i)(2)

+ o(xε−1).

For the error term of (6), we have∑
d⊂Z[i]
N (d)≤x

(
1

N (d)

)4/3

=

x∑
n=1

1
n4/3

∑
d⊂Z[i]
N (d)=n

1=
1
4

x∑
n=1

r(n, 2)
n4/3

and again use the bound r(n, 2)≤ o(nε) to see that

1
4

x∑
n=1

r(n, 2)
n4/3 ≤

x∑
n=1

o(nε−4/3),

which equals o(xε−1/3)+ o(1). From this it is clear that

O
(

x4/3
x∑

n=1

r(n, 2)
n4/3

)
= O(o(x4/3))= O(x4/3).

Thus (6) becomes
π2x2

16ζQ(i)(2)
+ o(xε−1)+ O(x4/3),

which allows us to conclude

#
{
n,m⊂ Z[i]2 : N (n), N (m)≤ x and (n,m)= (1)

}
=

π2x2

16ζQ(i)(2)
+ O(x4/3).

Having counted the number of relatively prime n and m within a given norm, we can
now reindex to obtain the number of them which have (n,m)= K. Letting n= n′K

and m=m′K, we see that n′ and m′ are relatively prime if and only if n and m have
K as their greatest common divisor. Hence, the number of relatively prime pairs
n′ and m′ with norm y or less must be equivalent to the number of pairs n and m
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with norm yk or less (where k = N (K)) having greatest common divisor K. Thus,

#
{
n,m⊂ Z[i]2 : N (n), N (m)≤ x and (n,m)= K

}
= #

{
n′,m′ ⊂ Z[i]2 : N (n′), N (m′)≤ x/k and (n′,m′)= (1)

}
=

π2x2

16ζQ(i)(2)k2 + O
(

x4/3

k4/3

)
, �

Lastly, the probability that n and m, having norm at most x , will have greatest
common divisor K is defined to be the number of pairs of ideals of norm x or less
which have greatest common divisor K divided by the total number of pairs of
ideals of norm x or less. Thus, by Lemmas 5 and 6,

Px
{
n,m⊂ Z[i]2 : N (n), N (m)≤ x and (n,m)= K

}
=

(
π2x2

16
+ O(x4/3)

)−1(
π2x2

16ζQ(i)(2)k2 + O
(

x4/3

k4/3

))
. (7)

We can rewrite (π2x2/16+ O(x4/3))−1 as 16π−2x−2(1+ O(x−2/3))−1, which is
equal to 16π−2x−2(1+ O(x−2/3)) since (1+ f (x))−1

= 1+ O( f (x)) for f (x)
tending towards 0 as x approaches infinity.

Line (7) then becomes

π−2x−2(1+ O(x−2/3))

(
π2x2

ζQ(i)(2)k2 + O
(

x4/3

k4/3

))
= (1+ O(x−2/3))

(
1

ζQ(i)(2)k2 + O
(

1
x2/3k4/3

))
=

1
ζQ(i)(2)k2 + O

(
1

x2/3k4/3

)
+ O

(
1

x2/3k2

)
+ O

(
1

x4/3k4/3

)
,

or finally
1

ζQ(i)(2)k2 + O
(

1
x2/3k4/3

)
,

completing the proof of Theorem 1. The following corollary is a direct consequence
of Theorem 1 for the special case when K= (1).

Corollary 7. The probability that a pair of Gaussian integers with norm x or less
are relatively prime is

1
ζQ(i)(2)

+ O
(

1
x2/3

)
.

In effect, Corollary 7 tells us that for x large, the probability that two Gaussian
integers are relatively prime is asymptotic to (ζQ(i)(2))−1 as x tends towards infinity.
This is in agreement with the work of Collins and Johnson who state the probability
as (ζQ(i)(2))−1

= (ζ(2)L(2, χ))−1
≈ 0.6637, where L(2, χ) is a Dirichlet L-series

and χ the primitive Dirichlet character modulo 4.
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3. Expected value

Having derived the probability distribution function found in Theorem 1, we
are ready to find an expression for the expected value of our random variable,
N (n,m)= k, where the norm of n and m ranges from 1 to x . To do this, we must
express our probability in terms of k as well. The modification is simple, however.
Since the number of ideals with norm k is equivalent to r(k, 2)/4, the probability
that the greatest common divisor of n and m has norm k must be

Px{N (n,m)= k} =
r(k, 2)

4ζQ(i)(2)k2 + O
(

r(k, 2)
x2/3k4/3

)
.

Then, by definition of expected value

Ex{N (n,m)} =
x∑

k=1

k Px{N (n,m)= k}

=

x∑
k=1

k
(

r(k, 2)
4ζQ(i)(2)k2 + O

(
r(k, 2)
x2/3k4/3

))

=
1

4ζQ(i)(2)

x∑
k=1

r(k, 2)
k
+ O

(
1

x2/3

x∑
k=1

r(k, 2)
k1/3

)
. (8)

Using Stieltjes integration by parts to evaluate the error term, we obtain

x∑
k=1

r(k, 2)
k1/3 = x−1/3

x∑
k=1

r(k, 2)− 4−
∫ x

1
(πk+ O(k1/3))

(
−

1
3 k−4/3) dk

=
3π
2

x2/3
+ O(log x),

which implies

O
(

x−2/3
x∑

k=1

r(k, 2)
k1/3

)
= O(1+ x−2/3 log x)= O(1).

The main term of (8) can be rewritten using Sierpiński’s identity from (5). Thus
the expected value is equal to

1
4ζQ(i)(2)

(
π(S+ log x)+ O

(
1

x1/2

))
+ O(1)

or
π

4ζQ(i)(2)
log x + O(1).

This completes the proof of Theorem 2.
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4. Higher moments

Finally, we show that there exists some constant cn ∈R such that the main term of the
n-th moment of N (n,m)must be of the form cnxn−1 for n>2. Let N (n), N (m)≤ x
with (n,m)= K and restrict N (K) to the interval

(
x/( j + 1), x/j

]
. We may then

write n= n′K and m=m′K, where (n′,m′)= (1). The restriction on the norm of K
allows us to see that N (n′), N (m′) < x( j +1)/x , which implies N (n′), N (m′)≤ j .
Now define

f ( j)= #
{
(n′,m′)⊂ Z[i]2 : N (n′), N (m′)≤ j and (n′,m′)= (1)

}
for j ∈ N. By Lemma 6,

f ( j)=
π2 j2

16ζQ(i)(2)
+ O( j4/3)

= O( j2).

Our reindexing above shows that this expression for f ( j) also gives us the
number of pairs of ideals with norm x or less having greatest common divisor K,
where x/( j + 1) < N (K)≤ x/j . Thus the n-th moment of N (n,m) is given by

Ex{N (n,m)n} =
1

π2x2/16+ O(x4/3)

( x∑
j=1

f ( j)
∑

K⊂Z[i]
x/( j+1)<N (K)≤x/j

N (K)n
)
. (9)

We next turn our attention to the inner sum of (9). First note that

∑
K⊂Z[i]

x/( j+1)<N (K)≤x/j

N (K)n =
1
4

bx/jc∑
k=dx/( j+1)e

knr(k, 2),

where k = N (K). Then Stieltjes integration by parts yields

1
4

bx/jc∑
k=dx/( j+1)e

knr(k,2)=
⌊

x
j

⌋n bx/jc∑
k=1

r(k,2)−
⌈

x
j+1

⌉n dx/( j+1)e∑
k=1

r(k,2)

−

∫
bx/jc

dx/( j+1)e
ntn−1(π t+O(t1/3))dt

=
π

4(n+1)
xn+1

(
1

jn+1−
1

( j+1)n+1

)
+O

(
x
j

)n+1/3

.

The numerator of Ex{N (n,m)n} is now equal to

π

4(n+1)
xn+1

x∑
j=1

O( j2)

(
( j+1)n+1

− jn+1

jn+1( j+1)n+1

)
+xn+1/3

x∑
j=1

O( j2)O
(

1
jn+1/3

)
. (10)
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The sum on the left is

x∑
j=1

O( j2)O
(

1
j ( j + 1)n+1

)
=

x∑
j=1

O
(

1
j−1( j + 1)n+1

)
,

which is bounded above by
∑x

j=1 O(1/jn). For x tending toward infinity and n≥ 2,
this converges to some constant c′n ∈ R. A similar argument shows that the second
sum of (10) is likewise convergent for n > 2. We thus conclude that the main term
of Ex{N (n,m)n} is of the form c′nxn+1.

Finally, we divide this by the total number of pairs of ideals n,m with norm at
most x to obtain the main term of the n-th moment of N (n,m) for n > 2

c′nxn+1

π2x2/16+ O(x4/3)
= cnxn−1 1

1+ O(x−2/3)
,

where cn = 16c′n/π
2. Since

(1+ O(x−2/3))−1
= 1+ O(x−2/3),

it follows that for x tending to infinity

Ex{N (n,m)n} ∼ cnxn−1.

With this, we bring the proof of Theorem 3 to an end and close by restating our
conjecture regarding the constant of Ex{N (n,m)n} for all n ≥ 2. We also include
numerical evidence below which provides support for the conjecture in the cases
when n = 2, 3, 4 and 5.

Conjecture 4. For n ≥ 2,

Ex{N (n,m)n} ∼
4

π(n+ 1)

(
2ζQ(i)(n)
ζQ(i)(n+ 1)

− 1
)

xn−1.

Using Matlab, we first compiled a list of all pairs of Gaussian integers in the first
quadrant with norm x or less and used the Euclidean algorithm to find all possible
greatest common divisors. We determined the n-th moment by raising the norm of
each greatest common divisor to the n-th power, summed the terms together, and
then divided the result by the total number of pairs of Gaussian integers in the first
quadrant with norm x or less. We have graphed the results in Figures 1–4 below for
the cases when n = 2, 3, 4 and 5 with x = 50, 000. In Table 1, we have listed the
main term of the best fit curve corresponding to each graph as compared against
the conjectured main term for each value of n.
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Figure 1. The graph of Ex{N (n,m)2} for 1≤ x ≤ 50, 000. The best
fit curve is 0.63952x + 0.5753.
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Figure 2. The graph of Ex{N (n,m)3} for 1≤ x ≤ 50, 000. The best
fit curve is 0.37018x2

+ 0.69337x − 584.8498.
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Figure 3. The graph of Ex{N (n,m)4} for 1≤ x ≤ 50, 000. The best
fit curve is 0.27238x3

+ 0.80149x2
− 3723.1433x + 12324561.4508.
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Figure 4. The graph of Ex{N (n,m)5} for 1≤x≤50,000. The best fit
curve is 0.21914x4

+0.92436x3
−9773.8223x2

+92150266.2382x−
190551355734.3794.

moment (n) numerically derived term conjectured term

2 0.63952x 0.67364x
3 0.37018x2 0.37444x2

4 0.27238x3 0.27309x3

5 0.21914x4 0.21928x4

Table 1. The main term of the n-th moment of the norm of the
greatest common divisor of pairs of Gaussian integers with norm at
most x .
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[Schinzel 1972] A. Schinzel, “Wacław Sierpiński’s papers on the theory of numbers”, Acta Arith. 21
(1972), 7–13. (errata insert). MR 46 #9b Zbl 0243.01028
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