Local well-posedness of a nonlocal Burgers' equation

Sam Goodchild and Hang Yang

Local well-posedness of a nonlocal Burgers' equation

Sam Goodchild and Hang Yang

(Communicated by Martin Bohner)

In this paper, we explore a nonlocal inviscid Burgers' equation. Fixing a parameter h, we prove existence and uniqueness of the local solution of the equation $u_{t}+(u(x+h, t) \pm u(x-h, t)) u_{x}=0$ with given periodic initial condition $u(x, 0)=u_{0}(x)$. We also explore the blow-up properties of the solutions to this Cauchy problem, and show that there exist initial data that lead to finite-time-blow-up solutions and others to globally regular solutions. This contrasts with the classical inviscid Burgers' equation, for which all nonconstant smooth periodic initial data lead to finite-time blow-up. Finally, we present results of simulations to illustrate our findings.

1. Introduction

Burgers' equation is a common equation that arises naturally in the study of fluid mechanics, traffic, and other fields. It is a relatively simple partial differential equation that has been extensively studied. In finite time, solutions to the inviscid Burgers' equation are known to develop shock waves and rarefactions for smooth initial data. It also serves as a basic example of conservation laws. Many different closed forms, series approximations, and numerical solutions are known for particular sets of boundary conditions.

The more general form of dissipative Burgers' equation is

$$
\begin{equation*}
\frac{\partial u}{\partial t}+u \cdot \nabla u=\gamma \Delta u \tag{1-1}
\end{equation*}
$$

where $u(x, t)$ represents the velocity at point $(x, t) \in \mathbb{R}^{d} \times \mathbb{R}^{+}, \gamma \in \mathbb{R}^{+}$, and the term on the right-hand side is the viscosity term which induces diffusion properties. For the inviscid one-dimensional case, Burgers' equation reduces to

$$
\begin{equation*}
\frac{\partial u}{\partial t}+u \cdot \frac{\partial u}{\partial x}=0 \tag{1-2}
\end{equation*}
$$

MSC2010: 35F20.
Keywords: nonlocal Burgers' equation, finite-time blow-up, global regularity.

The equation that we will be studying is

$$
\begin{equation*}
\frac{\partial u}{\partial t}(x, t)+(u(x+h, t) \pm u(x-h, t)) \frac{\partial u}{\partial x}(x, t)=0 \tag{1-3}
\end{equation*}
$$

with $h \geq 0$. As we can see in the equation, which is a generalized form of the usual one-dimensional Burgers' equation, it includes nonlocal factors. Unlike the local Burgers' equation, analytical solutions are extremely hard to discover for this kind of nonlocal equation. Also, the existence of solutions cannot be easily derived from the method of characteristics. If we look at the characteristics, which are defined by $d x / d t=u(x+h, t) \pm u(x-h, t)$, they are hard to analyze due to the nonlocality.

In Section 2, we prove the following two theorems, illustrating respectively the existence and uniqueness of classical local solutions for periodic initial data $u(x, 0)=u_{0}(x)$. First we introduce the norm which in the following part of the paper will facilitate our proof

Define the Sobolev norm as follows:
Definition 1.1 (Sobolev norm). Let $u(x, t) \in C^{\infty}(\mathbb{T})$ for some $m \in \mathbb{Z}^{+}$. Then the Sobolev norm is defined as

$$
\begin{aligned}
\|u(\cdot, t)\|_{H^{m}([0, L])}^{2} & =\int_{0}^{L} u(x, t)\left(\left(-\partial_{x x}\right)^{m} u(x, t)\right) \mathrm{d} x \\
& =\int_{0}^{L}\left|\partial_{x}^{m} u(x, t)\right|^{2} \mathrm{~d} x .
\end{aligned}
$$

Remark 1.2. Without loss of generality we can assume that the functions defined on torus have period L. The Sobolev space $H^{m}([0, L])$ is the closure of $C^{\infty}([0, L])$ with respect to this norm. Observe that we will work with what is usually called the homogeneous Sobolev space \dot{H}^{m}.

Theorem 1.3 (local existence). Suppose $u_{0} \in C^{\infty}(\mathbb{T})$. Then there exists a classical local solution $u(x, t)$ to (2-1) for $0 \leq t \leq T\left(u_{0}\right)$ for some $T\left(u_{0}\right)>0$.
Theorem 1.4 (uniqueness). The solution $u(x, t)$ to (2-1) which is in $C^{1}\left([0, T], H^{r}\right)$ for large enough r is unique.

We resort to functional analysis skills in Sobolev spaces. Basically, we use the original equation to generate a recursive sequence of functions and prove that in appropriately chosen Sobolev spaces, the sequence admits a unique limit that converges to a classical local solution, which turns out to be regular by the topological structure of the Sobolev spaces. In Section 3 we look at blow-up and non-blow-up of solutions in finite time, presenting examples of both cases and contrasting with the local Burgers' equation. Interestingly, owing to the nonlocality
factors introduced, the blow-up behaviors of (1-3) vary greatly from the local Burgers' equation (1-2). Finally, we use graphics to show simulations run on our equation in Section 4 to illustrate our results.

2. Existence and uniqueness of solution

Let us now consider the following nonlocal variation of Burgers' equation:

$$
\begin{equation*}
u_{t}+(u(x+h, t) \pm u(x-h, t)) u_{x}=0 \tag{2-1}
\end{equation*}
$$

We will prove Theorem 1.3 by justifying Proposition 2.2 and Lemma 2.7 below. To do this, we construct a sequence of functions $u_{n}(x, t)$ and show that $u_{n}(x, t)$ will be uniformly bounded in $C\left([0, T], H^{m}\right)$ with large m, while $d u_{n} / d t$ are also uniformly controlled. Thus, by a well-known compactness criterion, there exists a limit which we show solves the equation.

Remark 2.1. Throughout the rest of the paper, we will denote any universal constant by C, which does not depend on $u(x, t)$ and may vary from line to line.
Proposition 2.2. Define a recursive sequence of functions $\left\{u_{n}\right\}$ as

$$
\begin{equation*}
\partial_{t} u_{n}+\mathcal{L} u_{n-1} \partial_{x} u_{n}=0, \quad u_{n}(x, 0)=u_{0}(x) \in C^{\infty}(\mathbb{T}) \tag{2-2}
\end{equation*}
$$

where $u_{n}=u_{n}(x, t)$ for $n \geq 1, \mathcal{L} u_{n}=u_{n}(x+h, t) \pm u_{n}(x-h, t)$ is a shorthand notation, and $u_{0}(x, t)=u_{0}(x)$ is smooth. Then for all sufficiently large $m \in \mathbb{Z}^{+}$, there exists $T\left(\left\|u_{0}\right\|_{H^{m}}\right)$ such that $\left\|u_{n}(\cdot, t)\right\|_{C\left([0, T], H^{m}\right)}<C_{1}(T)$ and $\left\|d u_{n} / d t\right\|_{C\left([0, T], H^{m-1}\right)} \leq C_{2}(T)$ for all $0<t<T$. Moreover, there exists a subsequence n_{j} such that $u_{n_{j}}(x, t)$ converges to $u(x, t)$ in $C\left([0, T], H^{r}\right)$ for any $r<m$.
Remark 2.3. We should notice that (2-2) has unique solution in $C^{\infty}(\mathbb{T})$ for every n. To see this we apply an inductive argument to the method of characteristics. Since $u_{0} \in C^{\infty}(\mathbb{T})$, we inductively assume that $u_{n-1} \in C^{\infty}(\mathbb{T})$. In this case, denote $\mathcal{L} u_{n-1}$ by $f_{h}(x, t)$. The characteristics system is

$$
\begin{cases}\frac{d t}{d r}(r, s)=1, & t(s, 0)=0 \\ \frac{d x}{d r}(r, s)=f_{h}(x, t), & x(s, 0)=s \\ \frac{d z}{d r}(r, s)=0, & z(s, 0)=u_{0}(s)\end{cases}
$$

Solving the first we have $t=r$. Thus the second is nothing but $d x / d r=f_{h}(x, r)$. But $f_{h}(x, r)$ is smooth, which implies by ODE theory that we have a solution $x=g_{h}(r, s)$, where g_{h} is implicit and again smooth. Then the implicit function theorem suggests that we can write $s=k_{h}(x, r)=k_{h}(x, t)$. Solving the third, we get $u_{n}=u_{0}(s)=u_{0}\left(k_{h}(x, t)\right)$. By the smoothness of both u_{0} and k_{h}, the
smoothness of u_{n} is obtained. The uniqueness of each u_{n} is guaranteed by the method of characteristics. For more details about the method of characteristics, see [Evans 1998]. Next, since u_{0} has period L, an inductive argument will also show that u_{n} has period L for all n.

Then we move on to prove Proposition 2.2; notice that the above remark will justify the integration by parts in the following proof.
Proof. Let us multiply (2-2) by $\partial_{x}^{2 m} u_{n}$ and integrate with respect to x from 0 to L :

$$
\int_{0}^{L} \partial_{t} u_{n} \partial_{x}^{2 m} u_{n} \mathrm{~d} x=-\int_{0}^{L} \partial_{x}^{2 m} u_{n} \mathcal{L} u_{n-1} \partial_{x} u_{n} \mathrm{~d} x
$$

We can then integrate by parts m times and pull out the partial derivative with respect to time from the left-hand side:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|u_{n}(\cdot, t)\right\|_{H^{m}}^{2}=-\int_{0}^{L} \partial_{x}^{2 m} u_{n} \mathcal{L} u_{n-1} \partial_{x} u_{n} \mathrm{~d} x \leq\left|\int_{0}^{L} \partial_{x}^{2 m} u_{n} \mathcal{L} u_{n-1} \partial_{x} u_{n} \mathrm{~d} x\right|
$$

Integrating by parts m times on the right-hand side and noting that all of the boundary terms vanish due to periodicity, we get

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|u_{n}(\cdot, t)\right\|_{H^{m}}^{2} & \leq\left|\int_{0}^{L} \partial_{x}^{m}\left(\mathcal{L} u_{n-1} \partial_{x} u_{n}\right) \partial_{x}^{m} u_{n} \mathrm{~d} x\right| \\
& \leq\left|\int_{0}^{L} \sum_{l=0}^{m}\binom{m}{l} \partial_{x}^{l}\left(\mathcal{L} u_{n-1}\right) \partial_{x}^{m-l+1} u_{n} \partial_{x}^{m} u_{n} \mathrm{~d} x\right| \\
& \leq \sum_{l=0}^{m}\binom{m}{l}\left|\int_{0}^{L} \partial_{x}^{l}\left(\mathcal{L} u_{n-1}\right) \partial_{x}^{m-l+1} u_{n} \partial_{x}^{m} u_{n} \mathrm{~d} x\right| \tag{2-3}
\end{align*}
$$

Lemma 2.4. For all $0 \leq l \leq m$ and $m>3 / 2$,

$$
\left|\int_{0}^{L} \partial_{x}^{l}\left(\mathcal{L} u_{n-1}\right) \partial_{x}^{m-l+1} u_{n} \partial_{x}^{m} u_{n} \mathrm{~d} x\right| \leq C\left\|u_{n-1}\right\|_{H^{m}}\left\|u_{n}\right\|_{H^{m}}^{2}
$$

Proof. For the $l=0$ case, we can reduce this to the $l=1$ case using integration by parts:

$$
\left|\int_{0}^{L} \mathcal{L} u_{n-1} \partial_{x}^{m+1} u_{n} \partial_{x}^{m} u_{n} \mathrm{~d} x\right|=C\left|\int_{0}^{L} \partial_{x}\left(\mathcal{L} u_{n-1}\right)\left(\partial_{x}^{m} u_{n}\right)^{2} \mathrm{~d} x\right|
$$

When $l=1$, it is not hard to see that

$$
\begin{aligned}
\left|\int_{0}^{L} \partial_{x}\left(\mathcal{L} u_{n-1}\right)\left(\partial_{x}^{m} u_{n}\right)^{2} \mathrm{~d} x\right| & \leq\left\|\partial_{x}\left(\mathcal{L} u_{n-1}\right)\right\|_{L^{\infty}} \cdot\left|\int_{0}^{L}\left(\partial_{x}^{m} u_{n}\right)^{2} \mathrm{~d} x\right| \\
& \leq\left\|\partial_{x}\left(\mathcal{L} u_{n-1}\right)\right\|_{L^{\infty}} \cdot \int_{0}^{L}\left|\partial_{x}^{m} u_{n}\right|^{2} \mathrm{~d} x \\
& =\left\|\partial_{x}\left(\mathcal{L} u_{n-1}\right)\right\|_{L^{\infty}} \cdot\left\|u_{n}\right\|_{H^{m}}^{2}
\end{aligned}
$$

Applying the Sobolev embedding theorem, we have that for $m>3 / 2$,

$$
\begin{aligned}
\left\|\partial_{x}\left(\mathcal{L} u_{n-1}\right)\right\|_{L^{\infty}} & \leq C\left\|\partial_{x}\left(\mathcal{L} u_{n-1}\right)\right\|_{H^{m-1}} \leq C\left\|\mathcal{L} u_{n-1}\right\|_{H^{m}} \\
\left\|\mathcal{L} u_{n-1}\right\|_{H^{m}} & =\left\|u_{n-1}(x+h, t) \pm u_{n-1}(x-h, t)\right\|_{H^{m}} \\
& \leq 2\left\|u_{n-1}\right\|_{H^{m}}
\end{aligned}
$$

We can conclude

$$
\left|\int_{0}^{L} \partial_{x}\left(\mathcal{L} u_{n-1}\right)\left(\partial_{x}^{m} u_{n}\right)^{2} \mathrm{~d} x\right| \leq C \cdot\left\|u_{n-1}\right\|_{H^{m}} \cdot\left\|u_{n}\right\|_{H^{m}}^{2} \quad \text { for } m>\frac{3}{2}
$$

In general, by Hölder's inequality, terms on the right-hand side of (2-3), for $l \neq 1$, are estimated by

$$
\begin{align*}
& \left|\int_{0}^{L} \partial_{x}^{l}\left(\mathcal{L} u_{n-1}\right) \partial_{x}^{m-l+1} u_{n} \partial_{x}^{m} u_{n} \mathrm{~d} x\right| \\
& \leq\left\|\partial_{x}^{l}\left(\mathcal{L} u_{n-1}\right)\right\|_{L^{\frac{2(m-1)}{l-1}}} \cdot\left\|\partial_{x}^{m-l+1} u_{n}\right\|_{L^{\frac{2(m-1)}{m-l}}} \cdot\left\|\partial_{x}^{m} u_{n}\right\|_{L^{2}} . \tag{2-4}
\end{align*}
$$

Recall that Gagliardo-Nirenberg inequality (see, e.g., [Doering and Gibbon 1995]) has the form

$$
\begin{equation*}
\left\|\partial_{x}^{s} f\right\|_{L^{2 m / s}} \leq C\|f\|_{L^{\infty}}^{1-s / m}\|f\|_{H^{m}}^{s / m} \quad \text { for all } 1 \leq s \leq m \tag{2-5}
\end{equation*}
$$

Now by applying (2-5) and the Sobolev embedding theorem, we can conclude the following two facts:

$$
\begin{align*}
&\left\|\partial_{x}^{m-l+1} u_{n}\right\|_{L^{\frac{2(m-1)}{m-l}}}=\left\|\partial_{x}^{m-l}\left(\partial_{x} u_{n}\right)\right\|_{L^{\frac{2(m-1)}{m-l}}} \\
& \leq C \cdot\left\|\partial_{x} u_{n}\right\|_{L^{\infty^{2}} \frac{1-\frac{m-l}{m-1}}{} \cdot\left\|\partial_{x}^{m} u_{n}\right\|_{L^{2}}^{\frac{m-l}{m-1}}} \\
& \leq C \cdot\left\|\partial_{x} u_{n}\right\|_{H^{m-1}}^{1-\frac{m-l}{m-1}} \cdot\left\|\partial_{x} u_{n}\right\|_{H^{m-1}}^{\frac{m-l}{m-1}} \\
&=C \cdot\left\|\partial_{x} u_{n}\right\|_{H^{m-1}} \\
&=C \cdot\left\|u_{n}\right\|_{H^{m}} \tag{2-6}
\end{align*}
$$

$$
\begin{align*}
\left\|\partial_{x}^{l}\left(\mathcal{L} u_{n-1}\right)\right\|_{L^{\frac{2(m-1)}{l-1}}} & =\left\|\partial_{x}^{l-1}\left(\partial_{x}\left(\mathcal{L} u_{n-1}\right)\right)\right\|_{L^{\frac{2(m-1)}{l-1}}} \\
& \leq C \cdot\left\|\partial_{x}\left(\mathcal{L} u_{n-1}\right)\right\|_{L^{\infty^{1}}}^{1-\frac{l-1}{m-1}} \cdot\left\|\partial_{x}^{m}\left(\mathcal{L} u_{n-1}\right)\right\|_{L^{2}}^{\frac{l-1}{m-1}} \\
& \leq C \cdot\left\|\partial_{x}\left(\mathcal{L} u_{n-1}\right)\right\|_{H^{m-1}}^{1-\frac{l-1}{m-1}} \cdot\left\|\partial_{x}^{m}\left(\mathcal{L} u_{n-1}\right)\right\|_{H^{m-1}}^{\frac{l-1}{m-1}} \\
& =C \cdot\left\|\partial_{x}\left(\mathcal{L} u_{n-1}\right)\right\|_{H^{m-1}} \\
& =C \cdot\left\|\mathcal{L} u_{n-1}\right\|_{H^{m}} \\
& \leq C \cdot\left\|u_{n-1}\right\|_{H^{m}} . \tag{2-7}
\end{align*}
$$

Plugging (2-6) and (2-7) into (2-4), we get

$$
\left|\int_{0}^{L} \partial_{x}^{l}\left(\mathcal{L} u_{n-1}\right) \partial_{x}^{m-l+1} u_{n} \partial_{x}^{m} u_{n} \mathrm{~d} x\right| \leq C\left\|u_{n-1}\right\|_{H^{m}} \cdot\left\|u_{n}\right\|_{H^{m}}^{2},
$$

with constant C which depends only on m. So we have proved the lemma.
Now let

$$
f_{0}(t)=f_{n}(0)=\left\|u_{0}\right\|_{H^{m}}^{2} .
$$

Notice that

$$
\left\|u_{n}(\cdot, 0)\right\|_{H^{m}}=\left\|u_{0}\right\|_{H^{m}}
$$

Now we define $f_{n}(t)$ inductively by

$$
\begin{equation*}
f_{n}^{\prime}(t)=C(m) \sqrt{f_{n-1}(t)} f_{n}(t) \tag{2-8}
\end{equation*}
$$

where $C(m)$ is a constant depending only on m from proof above.
Observe that $f_{1}(t) \geq f_{0}(t)>0$ for all $t \geq 0$ since the right-hand side of (2-8) is always positive. Then inductively, we can obtain that $f_{n}(t) \geq f_{n-1}(t)$ for all $t \geq 0$.

Also, given

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|u_{n}(\cdot, t)\right\|_{H^{m}}^{2} \leq C(m)\left\|u_{n-1}(\cdot, t)\right\|_{H^{m}} \cdot\left\|u_{n}(\cdot, t)\right\|_{H^{m}}^{2}
$$

it follows that

$$
f_{n}(t) \geq\left\|u_{n}(\cdot, t)\right\|_{H^{m}}^{2} .
$$

Thus

$$
f_{n}^{\prime}(t)=C(m) \sqrt{f_{n-1}(t)} f_{n}(t) \leq C(m) f_{n}^{3 / 2}(t)
$$

Because $f_{n}(t) \neq 0$, we can divide by $f_{n}^{3 / 2}(t)$ to get

$$
\frac{f_{n}^{\prime}(t)}{f_{n}^{3 / 2}(t)} \leq C(m)
$$

We can then integrate from 0 to t, giving

$$
\begin{aligned}
\int_{0}^{t} \frac{f_{n}^{\prime}(s)}{f_{n}^{3 / 2}(s)} \mathrm{d} s & \leq \int_{0}^{t} C(m) \mathrm{d} t \\
-2 f_{n}^{-1 / 2}(t)+2\left(\left\|u_{0}\right\|_{H^{m}}\right)^{-1 / 2} & \leq C(m) t, \\
f_{n}^{1 / 2}(t) & \leq \frac{1}{\left\|u_{0}\right\|_{H^{m}}^{-1 / 2}-C(m) t / 2}
\end{aligned}
$$

If we let $T:=\left(C(m) \sqrt{\left\|u_{0}\right\|_{H^{m}}}\right)^{-1}$, we can conclude that for any $0 \leq t \leq T$, $\left\{f_{n}(t)\right\}$ will be uniformly bounded by some constant $C_{1}(T)$. But we know that $f_{n}(t) \geq\left\|u_{n}(\cdot, t)\right\|_{H^{m}}^{2}$. Therefore

$$
\sup _{t \in[0, T]}\left\|u_{n}(\cdot, t)\right\|_{H^{m}(\mathbb{R})} \leq C_{1}(T)
$$

Since u_{n} satisfies (2-2), and H^{s} in dimension one is an algebra for every $s>1 / 2$, this bound also implies

$$
\left\|\partial_{t} u_{n}(\cdot, t)\right\|_{H^{m-1}[0, L]} \leq C_{2}(T)
$$

if $m>3 / 2$. Now standard arguments (see, e.g., [Majda and Bertozzi 2002]) yield existence of a subsequence $u_{n_{j}}$ converging to a function $u(x, t)$ in $L^{\infty}\left([0, T], H^{r}\right)$ for any $r<m$. Namely, recall the following compactness criterion.

Proposition 2.5. Define a Banach space

$$
Y=\left\{v \in L^{\alpha_{0}}\left([0, T], H^{m}\right), \partial_{t} v \in L^{\alpha_{1}}\left([0, T], H^{s}\right)\right\}
$$

where $s \leq m$, and $1 \leq \alpha_{0,1} \leq \infty$. Define the norm on the space Y by

$$
\|v\|_{Y}=\|v\|_{L^{\alpha_{0}}\left([0, T], H^{m}\right)}+\left\|\partial_{t} v\right\|_{L^{\alpha_{1}}\left([0, T], H^{s}\right)} .
$$

Then Y imbeds compactly into any $L^{\alpha_{0}}\left([0, T], H^{r}\right)$ with $r<s$.
Remark 2.6. This criterion can be found, for example, in [Temam 1977, page 184] (see also [Constantin and Foias 1988]).

It follows that for any $r<m$, we can find $u_{n_{j}}$ converging to some u strongly in $L^{\infty}\left([0, T], H^{r}\right)$. This concludes the proof of Proposition 2.2.

Lemma 2.7. The function $u(x, t)$ from Proposition 2.2 is a classical solution of (2-1) and belongs to $C\left([0, T], H^{r}\right)$ for any $r<m$.

Remark 2.8. Since so far u has been defined only up to sets of measure zero in time, what we mean is that it can be fixed, if necessary, on a set of times of measure zero so that the claim of the lemma holds.

Proof. Pick m large enough; $m>7 / 2$ is sufficient for the argument below to work. Fix any $5 / 2<l<m$. We have the recursive formula for u_{n} in (2-2) and we proved in Proposition 2.2 that a subsequence $u_{n_{j}}$ (which we will for simplicity denote u_{n}) converges to u in $L^{\infty}\left([0, T], H^{l}\right)$. Take some s such that $l-1>s>3 / 2$. We have

$$
\begin{aligned}
\left\|\mathcal{L} u_{n-1} \partial_{x} u_{n}-\mathcal{L} u \partial_{x} u\right\|_{H^{s}} & \leq\left\|\left(\mathcal{L} u_{n-1}-\mathcal{L} u\right) \partial_{x} u_{n}\right\|_{H^{s}+\left\|\mathcal{L} u\left(\partial_{x} u_{n}-\partial_{x} u\right)\right\|_{H^{s}}} \\
& \leq\left\|\mathcal{L} u_{n-1}-\mathcal{L} u\right\|_{H^{s}}\left\|\partial_{x} u_{n}\right\|_{H^{s}}+\|\mathcal{L} u\|_{H^{s}}\left\|\partial_{x} u_{n}-\partial_{x} u\right\|_{H^{s}} \\
& \leq C\left\|u_{n-1}-u_{n}\right\|_{H^{s}}\left\|\partial_{x} u_{n}\right\|_{H^{s}}+C\|\mathcal{L} u\|_{H^{s}}\left\|u_{n}-u\right\|_{H^{s+1}}
\end{aligned}
$$

By our choice of l and s, we have

$$
\begin{aligned}
\left\|u_{n-1}-u_{n}\right\|_{H^{s}} & \rightarrow 0 \text { uniformly in } t \in[0, T] \text { as } n \rightarrow \infty \\
\left\|u_{n}-u\right\|_{H^{s+1}} & \rightarrow 0 \text { uniformly in } t \in[0, T] \text { as } n \rightarrow \infty
\end{aligned}
$$

Thus

$$
\left\|\mathcal{L} u_{n-1} \partial_{x} u_{n}-\mathcal{L} u \partial_{x} u\right\|_{H^{s}} \rightarrow 0 \text { uniformly in } t \in[0, T] \text { as } n \rightarrow \infty
$$

Now, integrating (2-2) from 0 to t, we have

$$
\begin{equation*}
u_{n}(x, t)=u_{n}(x, 0)-\int_{0}^{t} \mathcal{L} u_{n-1} \partial_{x} u_{n} \mathrm{~d} s=u_{0}(x)-\int_{0}^{t} \mathcal{L} u_{n-1} \partial_{x} u_{n} \mathrm{~d} s \tag{2-9}
\end{equation*}
$$

Note that by our choice of l and s the H^{l} - or H^{s}-convergence implies pointwise convergence, so $u_{n} \rightarrow u, \mathcal{L} u_{n-1} \partial_{x} u_{n} \rightarrow \mathcal{L} u \partial_{x} u$ pointwise for almost every t. Then from (2-9), as proved in Proposition 2.2, we conclude that for almost every t,

$$
u(x, t)=u_{0}(x)-\int_{0}^{t} \mathcal{L} u \partial_{x} u \mathrm{~d} s
$$

This means that $u(x, t)$ is Lipschitz in time with values in H^{s} (up to fixing it on a measure-zero set of times). We also have that $u \in L^{\infty}\left([0, T], H^{m}\right)$ since the approximating sequence satisfies uniform bound in this space. But then for every $s<r<m$, we have

$$
\left\|u\left(\cdot, t_{2}\right)-u\left(\cdot, t_{1}\right)\right\|_{H^{r}} \leq\left\|u\left(\cdot, t_{2}\right)-u\left(\cdot, t_{1}\right)\right\|_{H^{m}}^{\frac{r-s}{m-s}}\left\|u\left(\cdot, t_{2}\right)-u\left(\cdot, t_{1}\right)\right\|_{H^{s}}^{\frac{m-r}{m-s}}
$$

and so we obtain that $u \in C\left([0, T], H^{r}\right)$.
We have therefore proved that there exists a solution to our equation, (2-1). We now prove uniqueness by considering two different solutions of our equation, $\theta(x, t)$ and $\varphi(x, t)$, and showing that their difference $w(x, t)=\theta(x, t)-\varphi(x, t)$ is zero for all t and x.

Next, we prove that the classical solution is also unique, which is indicated in Theorem 1.4.

Proof. Let θ and φ be solutions to (2-1) with initial data $u(x, 0)=u_{0}(x)$. Then

$$
\begin{align*}
\theta_{t}+\mathcal{L} \theta \theta_{x} & =0 \tag{2-10}\\
\varphi_{t}+\mathcal{L} \varphi \varphi_{x} & =0 \tag{2-11}
\end{align*}
$$

Let $w=\theta-\varphi$. Subtracting (2-11) from (2-10), we get

$$
\begin{aligned}
\partial_{t} w & =-\left(\mathcal{L} \theta \theta_{x}-\mathcal{L} \varphi \varphi_{x}\right) \\
& =-\left(\mathcal{L} \theta \theta_{x}-\mathcal{L} \varphi \varphi_{x}\right)+\mathcal{L} \theta \varphi_{x}-\mathcal{L} \theta \varphi_{x}=-\mathcal{L} \theta w_{x}-\mathcal{L} w \varphi_{x}
\end{aligned}
$$

We multiply by $(-1)^{r} \partial_{x}^{2 r} w$, integrate from 0 to L, and integrate the left-hand side by parts r times, giving
$\frac{\mathrm{d}}{\mathrm{d} t} \int_{0}^{L}\left(\partial_{x}^{r} w\right)^{2} \mathrm{~d} x=(-1)^{r+1} \int_{0}^{L} \partial_{x}^{2 r} w \mathcal{L} \theta \partial_{x} w \mathrm{~d} x+(-1)^{r+1} \int_{0}^{L} \partial_{x}^{2 r} w \mathcal{L} w \partial_{x} \varphi \mathrm{~d} x$, so

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\|w\|_{H^{r}}^{2} \leq \underbrace{\left|\int_{0}^{L} \partial_{x}^{2 r} w \mathcal{L} \theta \partial_{x} w \mathrm{~d} x\right|}_{I_{1}}+\underbrace{\left|\int_{0}^{L} \partial_{x}^{2 r} w \mathcal{L} w \partial_{x} \varphi \mathrm{~d} x\right|}_{I_{2}} \tag{2-12}
\end{equation*}
$$

Integrating I_{1} by parts r times gives

$$
\left|\int_{0}^{L} \partial_{x}^{2 r} w \mathcal{L} \theta \partial_{x} w \mathrm{~d} x\right| \leq \sum_{l=0}^{r}\binom{m}{l}\left|\int_{0}^{L} \partial_{x}^{l}(\mathcal{L} \theta) \partial_{x}^{r-l+1} w \partial_{x}^{r} w \mathrm{~d} x\right|
$$

Again, when $l=0$, we can reduce this to the $l=1$ case using integration by parts. When $l=1$,

$$
\begin{aligned}
I_{1}=\left|\int_{0}^{L} \partial_{x}^{l}(\mathcal{L} \theta) \partial_{x}^{r-l+1} w \partial_{x}^{r} w \mathrm{~d} x\right| & =\left|\int_{0}^{L} \partial_{x}(\mathcal{L} \theta) \partial_{x}^{r} w \partial_{x}^{r} w \mathrm{~d} x\right| \\
& =\left|\int_{0}^{L} \partial_{x}(\mathcal{L} \theta)\left(\partial_{x}^{r} w\right)^{2} \mathrm{~d} x\right| \\
& \leq\left\|\partial_{x}(\mathcal{L} \theta)\right\|_{L^{\infty}} \cdot \int_{0}^{L}\left|\partial_{x}^{r} w\right|^{2} \mathrm{~d} x \\
& \leq C \cdot\left\|\partial_{x}(\mathcal{L} \theta)\right\|_{L^{\infty}} \cdot\|w\|_{H^{r}}^{2} \\
& \leq C \cdot\|\theta\|_{H^{r}} \cdot\|w\|_{H^{r}}^{2}
\end{aligned}
$$

if $r-1>1 / 2$. When $l \neq 1$,

$$
\begin{aligned}
I_{1}=\left|\int_{0}^{L} \partial_{x}^{l}(\mathcal{L} \theta) \partial_{x}^{r-l+1} w \partial_{x}^{r} w \mathrm{~d} x\right| & \leq\left\|\partial_{x}^{l}(\mathcal{L} \theta)\right\|_{L^{\frac{2(r-1)}{l-1}}} \cdot\left\|\partial_{x}^{r-l+1} w\right\|_{L^{\frac{2(r-1)}{r-l}}} \cdot\left\|\partial_{x}^{r} w\right\|_{L^{2}} \\
& \leq C\|\theta\|_{H^{r} \cdot\|w\|_{H^{r}}^{2}}
\end{aligned}
$$

as before. We can therefore conclude that

$$
I_{1}=\left|\int_{0}^{L} \partial_{x}^{2 r} w \mathcal{L} \theta \partial_{x} w \mathrm{~d} x\right| \leq C\|\theta\|_{H^{r}} \cdot\|w\|_{H^{r}}^{2}
$$

The same process can be done to I_{2} to determine a bound for the integral, giving the result

$$
I_{2}=\left|\int_{0}^{L} \partial_{x}^{2 r} w \mathcal{L} w \partial_{x} \varphi \mathrm{~d} x\right| \leq C\|\varphi\|_{H^{r}} \cdot\|w\|_{H^{r}}^{2}
$$

Thus, (2-12) becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\|w\|_{H^{r}}^{2} & \leq C\|\theta\|_{H^{r}} \cdot\|w\|_{H^{r}}^{2}+C\|\varphi\|_{H^{r}} \cdot\|w\|_{H^{r}}^{2} \\
& =\|w\|_{H^{r}}^{2}\left(C\|\theta\|_{H^{r}}+C\|\varphi\|_{H^{r}}\right) .
\end{aligned}
$$

Then by Grönwall's inequality, we have

$$
\|w(\cdot, t)\|_{H^{r}} \leq\|w(\cdot, 0)\|_{H^{r}} \exp \left(\int_{0}^{t}\left(C\|\theta(\cdot, s)\|_{H^{r}}+C\|\varphi(\cdot, s)\|_{H^{r}}\right) \mathrm{d} s\right)
$$

but $\|w(\cdot, 0)\|_{H^{r}}=0$ because θ and φ are solutions to the same Cauchy problem. Therefore, the difference $w=\theta-\varphi$ is zero a.e. Since θ and φ are sufficiently smooth, they must be equal everywhere.

3. Blow-up and non-blow-up properties

Let us consider the following two subcases of equation (2-1), where they both have initial data $u_{0}(x)$ of period L :

$$
\begin{gather*}
u_{t}+(u(x+h, t)+u(x-h, t)) u_{x}=0 \tag{3-1}\\
u_{t}+(u(x+h, t)-u(x-h, t)) u_{x}=0 . \tag{3-2}
\end{gather*}
$$

Remark 3.1. Let us introduce the following notation: denote $u^{h}(x, t)$ to be the solution of an equation with spatial shift h. Looking at (3-2), it can be shown using symmetry and uniqueness that if the smooth initial condition $u_{0}(x)$ is even, the solution, while it remains smooth, will stay even in x. Also, $u^{h}(x, t)=u^{L-h}(x, t)$
for all periodic initial data. Now consider (3-1). If $u_{0}(x)$ is odd, the solution will stay odd in x. Also, $u^{h}(x, t)=u^{L-h}(x, t)$ will hold for all even initial data $u_{0}(x)$.

These facts are deduced from the existence and uniqueness of solutions, definitions of evenness and oddness, and periodicity applied to our equation.

We now state the existence of solutions that blow up in finite time.
Theorem 3.2 (Existence of blow-up). There exists initial data $u_{0} \in C^{\infty}(\mathbb{R})$ such that the solution $u(x, t)$ to $(2-1)$ blows up in finite time.

We prove this result in Section 3. We first derive some properties of the solution.
Lemma 3.3. Suppose $u(x, t)$ is a periodic solution of (2-1) with period $L=2 h$. Let $u(0,0)=u(h, 0)=0$; then $u(0, t)=u(h, t)=0$, for all $t>0$.

We can prove this by considering both the plus and minus cases as follows:
Proof. Let us first consider the plus sign case, (3-1). Plugging $x=0, h$ into to the recursive formula (2-2) for the plus case, we get

$$
\begin{aligned}
& \partial_{t} u_{n}(0, t)=-2 u_{n-1}(h, t) \partial_{x} u_{n}(0, t), \\
& \partial_{t} u_{n}(h, t)=-2 u_{n-1}(0, t) \partial_{x} u_{n}(h, t) .
\end{aligned}
$$

Since $u(0,0)=u_{0}(0)=u(h, 0)=u_{0}(h)=0$, we easily see that $\partial_{t} u_{1}(0, t)=$ $\partial_{t} u_{1}(h, t)=0$; therefore u_{1} is constant at $x=0, h$. But $u_{1}(0,0)=u_{0}(0)=0$ and $u_{1}(h, 0)=u_{0}(h)=0$, so we have $u_{1}(0, t)=u_{1}(h, t)=0$. Then, inductively, assume $u_{n-1}(0, t)=u_{n-1}(h, t)=0$. Then, $\partial_{t} u_{n}(0, t)=\partial_{t} u_{n}(h, t)=0$ so they are both constant. By the same reasoning, $u_{n}(0,0)=u_{n}(h, 0)=0$; therefore they are identically zero for all time. But our solution is just the limit of a subsequence of u_{n}, so $u(0, t)=u(h, t)=0$

Now let us consider the minus sign case, (3-2). Plugging $x=0$ into (3-2), we get

$$
u_{t}(0, t)=(u(h, t)-u(h, t)) u_{x}(0, t)=0
$$

because $u(-h, t)=u(h, t)$ due to the period $L=2 h$. So $u(0, t)=C$, independent of time. Therefore, if we choose $u(0,0)=0$, then $u(0, t)=0$ for all $t>0$. The same may be done at $u(h, 0)$ to show that if $u(h, 0)=0$, then $u(h, t)=0$.

Corollary 3.4. Suppose $u_{0}(x) \in C^{\infty}(\mathbb{R})$ has period $L=k h$ for some $k \in \mathbb{Z}$ and $u_{0}(m h)=0$ for all $0 \leq m \leq k$. Then the solution to (2-1) satisfies $u(m h, t)=0$ for all $t \geq 0$ and $0 \leq m \leq k$.

The proof is similar to that from Lemma 3.3 extended for more general integers.

Blow-up. Now we investigate the cases where $u_{0}(x)$ has period $L=2 h$ and $u_{0}(0)=u_{0}(h)=0$, and derive the possibility of blow-up.

Lemma 3.5. Consider the equation $u_{t}+(u(x+h, t)+u(x-h, t)) u_{x}=0$ with $u(x, 0)=u_{0}(x) \in C^{\infty}(\mathbb{R})$, period $L=2 h$, and $u_{0}(0)=u_{0}(h)=0$. Assume $u_{x}(0,0)<0$ and $u_{x}(h, 0)<0$. Then the solution $u(x, t)$ blows up in finite time.

Proof. Note that in Proposition 2.2, we proved that if the initial data $u_{0}(x)$ has period $2 h$, then $u(x, t)$ will also have period $L=2 h$. Also, in this case, by (3-1), $u(0, t)=u(h, t)=0$.

Differentiating the equation with respect to x gives

$$
\begin{align*}
u_{t x}(x, t)+\left(u_{x}(x+h, t)+\right. & u_{x} \\
& (x-h, t)) u_{x}(x, t) \tag{3-3}\\
& +(u(x+h, t)+u(x-h, t)) u_{x x}(x, t)=0 .
\end{align*}
$$

Plug in $x=0, h$ respectively and define $F_{1}(t)=u_{x}(0, t)$ and $F_{2}(t)=u_{x}(h, t)$. Noting that the last terms in both cases vanish, we get

$$
\begin{align*}
& F_{1}^{\prime}+2 F_{1} F_{2}=0, \tag{3-4}\\
& F_{2}^{\prime}+2 F_{1} F_{2}=0 \tag{3-5}
\end{align*}
$$

It is easy to see that $F_{1}^{\prime}-F_{2}^{\prime}=0$; thus $F_{1}-F_{2}=A$, where A is a constant. Since we assume $F_{1}=F_{2}$, we get that $A=0$. Plugging this into (3-4) gives

$$
F_{1}^{\prime}+2 F_{1}^{2}=0
$$

The solution to this differential equation is

$$
F_{1}(t)=\frac{1}{\frac{1}{F_{1}(0)}+2 t}
$$

This blows up in finite time when

$$
t=-\frac{1}{2 F_{1}(0)}=-\frac{1}{2 u_{x}(0,0)}>0
$$

We can argue similarly for (3-5) to show that F_{2} also blows up in finite time under the same conditions.

Remark 3.6. For instance, we can take

$$
u(x, 0)=u_{0}(x)=x(x-h)(x-2 h)\left(-\frac{1}{2 h^{2}}+\frac{3}{h^{3}} x-\frac{3}{2 h^{4}} x^{2}\right)
$$

for $0 \leq x \leq 2 h$. This satisfies our assumptions in Lemma 3.5 and thus the corresponding solution blows up in finite time.

Remark 3.7. There is an obvious case of blow-up for the plus sign equation when the period L is just h. Equation (3-1) reduces to

$$
u_{t}+2 u \cdot u_{x}=0
$$

This is the typical Burgers' equation, which is known to blow up in finite time for any nonconstant periodic initial condition $u_{0}(x)$ [McOwen 2003].

Lemma 3.8. Suppose u_{0} has period $L=6 h$ and is even, and $u_{0}(k h)=0, u_{0}^{\prime}(3 k h)=0$ for all $k \in \mathbb{Z}$. Assume $u_{x}(2 h, 0)<0, u_{x}(h, 0)>0$ and

$$
\frac{\ln u_{x}(h, 0)-\ln \left(-u_{x}(2 h, 0)\right)}{u_{x}(h, 0)+u_{x}(2 h, 0)}>0 .
$$

Then the solution $u(x, t)$ to the Cauchy problem,

$$
\begin{gathered}
u_{t}+(u(x+h, t)-u(x-h, t)) u_{x}=0 \\
u(x, 0)=u_{0}(x)
\end{gathered}
$$

blows up in finite time.
Proof. By Lemma 3.3 and Corollary 3.4, we have $u(k h, t)=0$, for all $k \in \mathbb{Z}$ and $u(x, t)$ is even if $u_{0}(x)$ is even. Differentiating the equation with respect to x gives

$$
\begin{aligned}
u_{t x}(x, t)+\left(u_{x}(x+h, t)-u_{x}(x-h, t)\right) & u_{x}(x, t) \\
& +(u(x+h, t)-u(x-h, t)) u_{x x}(x, t)=0 .
\end{aligned}
$$

Observe that $u_{x}(3 k h, t)=0$ for all time by an argument similar to proof of Lemma 3.3. Plugging in $x=h, 2 h$ gives

$$
\begin{aligned}
F_{1}^{\prime}(t)+F_{1}(t) F_{2}(t) & =0, \\
F_{2}^{\prime}(t)-F_{1}(t) F_{2}(t) & =0,
\end{aligned}
$$

where $F_{1}(t)=u_{x}(h, t)$ and $F_{2}(t)=u_{x}(2 h, t)$. Solving this system of ordinary differential equations gives

$$
\begin{gathered}
F_{1}(t)+F_{2}(t)=F_{1}(0)+F_{2}(0)=A, \\
F_{1}^{\prime}(t)=F_{1}^{2}(t)-A F_{1}(t)
\end{gathered}
$$

for some constant A. Thus

$$
F_{1}(t)=\frac{A \exp (A B)}{\exp (A B)-\exp (A t)},
$$

where

$$
B=\frac{\ln F_{1}(0)-\ln \left(-F_{2}(0)\right)}{F_{1}(0)+F_{2}(0)}
$$

This blows up in finite time if $F_{2}(0)=u_{x}(2 h, 0)<0, F_{1}(0)=u_{x}(h, 0)>0$ and $B>0$.

Remark 3.9. To give an example, take $h=4 / 3$. Then we can take

$$
u(x, 0)=u_{0}(x)=\frac{16(x-4)^{2}(x+4)^{2} x^{2}(3 x-8)(3 x+8)(3 x+4)(3 x-4)}{3375\left(112+153 x^{2}\right)}
$$

This satisfies our assumptions in Lemma 3.8 and thus blows up in finite time. This may not be a very nicely manufactured example, but our point is that functions specified by Lemma 3.8 do exist.

Non-blow-up. We will now look for stationary solutions by taking specific initial data to (3-2) and showing that it cannot blow up in finite time. Let $u(x, t)=$ $\sin (\pi x k / h)$, where h is fixed and $k \in \mathbb{Z}$. Noting that $u_{t}=0$ and $u(x+h, t)-$ $u(x-h, t)=0$ (by trigonometric identities), we have that $u(x, t)$ solves the equation and never blows up.

Similarly, for (3-1), we will take $u(x, t)=\sin \left(\pi x\left(k-\frac{1}{2}\right) / h\right)$, where h is fixed and $k \in \mathbb{Z}$. Once again, noting that $u_{t}=0$ and $u(x+h, t)+u(x-h, t)=0$, we have that $u(x, t)$ solves the equation. We also know that $u(x, t)=\sin \left(\pi x\left(k-\frac{1}{2}\right) / h\right)$ never blows up. So we have found stationary solutions for both equations (3-1) and (3-2) that never blow up in finite time. So the nonlocal models are different from Burgers' equation where any nonconstant solution blows up in finite time: there exists nontrivial initial data for which solutions are globally regular for the nonlocal equation.

We can also construct a stationary solution to (3-2) by setting the period L to be h. The nonlocal terms become $u(x+h, t)=u(x-h, t)=u(x, t)$, so (3-2) reduces to $u_{t}=0$. This is constant in time. Therefore $u(x, t)=u_{0}(x)$ for all t, so given a smooth initial condition, $u(x, t)$ will not blow up.

4. Simulations

In this section, we compare our model with the well-known "local" Burgers' equation (1-2). We used Matlab v2013 to run all simulations, with a forward-in-time, centered-in-space scheme. We illustrate many of the results of this paper in the graphics we generate.

We first look at the "local" Burgers' equation, (1-2). We know that this leads to gradient catastrophe (i.e., blow-up in gradient) in finite time for all nonconstant smooth initial data. We use $u(x, 0)=\sin (\pi x)$ to generate Figure 1 (left).

As we can see, the slope of the graph in Figure 1 (left) at $x=0$ blows up in finite time. Now, considering our equation with the plus sign,

$$
u_{t}+(u(x+h, t)+u(x-h, t)) u_{x}=0
$$

notice that there is a translation parameter h in our equation which affects the location of blow-up. As we can see in Figure 1 (right) with $h=L / 8$, where L is the period of the initial data, blow-up does not occur at the origin, and two peaks

Figure 1. Local Burgers' equation with $h=0$ (left) and nonlocal Burgers' equation with $h=L / 8$ (right).

Figure 2. Nonlocal Burgers' equations with $h=L / 16$ (left) and $h=L / 32$ (right).

Figure 3. Nonlocal Burgers' equation minus case initial condition (left) and in finite time (right).
form instead of the usual one. We then varied the value of h to be $L / 16$ and $L / 32$ in Figure 2, which gives blow-up closer and closer to the origin.

Now we constructed initial data to fit Lemma 3.8 to get intuition on how it will blow up at $x= \pm L / 3, \pm 2 L / 3$ in the minus sign case. Figure 3 (left) shows the
initial data for our equation

$$
u_{t}+(u(x+h, t)-u(x-h, t)) u_{x}=0 .
$$

Note how $u(x, 0)=0$ at $x=k h$, where period $L=6 h$. Now in Figure 3 (right), we see that at $x= \pm L / 3, \pm 2 L / 3$, vertical lines form, causing blow-up in slope.

Acknowledgements

Our research was done during the 2013 University of Wisconsin-Madison REU, sponsored by NSF grants DMS-1056327 and DMS-1147523. We would like to thank Professor Alexander Kiselev for his introduction of the topic and guidance throughout. We would also like to thank Kyudong Choi and Tam Do for their help with the many issues we ran into.

References

[Constantin and Foias 1988] P. Constantin and C. Foias, Navier-Stokes equations, Univ. of Chicago Press, 1988. MR 90b:35190 Zbl 0687.35071
[Doering and Gibbon 1995] C. R. Doering and J. D. Gibbon, Applied analysis of the Navier-Stokes equations, Cambridge Univ. Press, 1995. MR 96a:76024 Zbl 0838.76016
[Evans 1998] L. C. Evans, Partial differential equations, Graduate Studies in Mathematics 19, Amer. Math. Soc., Providence, RI, 1998. MR 99e:35001 Zbl 0902.35002
[Majda and Bertozzi 2002] A. J. Majda and A. L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics 27, Cambridge Univ. Press, 2002. MR 2003a:76002 Zbl 0983.76001
[McOwen 2003] R. C. McOwen, Partial differential equations: Methods and applications, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 2003. Zbl 0849.35001
[Temam 1977] R. Temam, Navier-Stokes equations: Theory and numerical analysis, Studies in Mathematics and its Applications 2, North-Holland, Amsterdam, 1977. MR 58 \#29439 Zbl 0383.35057

Received: 2013-09-16 Revised: 2014-06-06 Accepted: 2014-06-08
sgoodchild11692@gmail.com University of Wisconsin-Madison, Madison, WI 53706, United States
hy18@rice.edu Department of Mathematics, Rice University, Houston, TX 77005, United States

involve
 msp.org/involve

MANAGING EDITOR
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone@latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@ mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@ math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@ pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@ wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION
Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2016 is US $\$ 160 /$ year for the electronic version, and $\$ 215 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

- mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2016 Mathematical Sciences PublishersUsing ciliate operations to construct chromosome phylogenies1
Jacob L. Herlin, Anna Nelson and MarionScheepers
On the distribution of the greatest common divisor of Gaussian 27 integers
Tai-Danae Bradley, Yin Choi Cheng and Yan Fei Luo
Proving the pressing game conjecture on linear graphs 41
Eliot Bixby, Toby Flint and István Miklós
Polygonal bicycle paths and the Darboux transformation 57
Ian Alevy and Emmanuel Tsukerman
Local well-posedness of a nonlocal Burgers' equation 67
Sam Goodchild and Hang Yang
Investigating cholera using an SIR model with age-class structure 83 and optimal controlK. Renee Fister, Holly Gaff, Elsa Schaefer,Glenna Buford and Bryce C. Norris
Completions of reduced local rings with prescribed minimal prime 101 idealsSusan Loepp and Byron Perpetua
Global regularity of chemotaxis equations with advection 119Saad Khan, Jay Johnson, Elliot Cartee and Yao Yao
On the ribbon graphs of links in real projective space 133
Iain Moffatt and Johanna Strömberg
Depths and Stanley depths of path ideals of spines 155
Daniel Campos, Ryan Gunderson, Susan Morey, Chelsey Paulsen and Thomas Polstra
Combinatorics of linked systems of quartet trees 171
Emili Moan and Joseph Rusinko

