\bullet
 in Olve

a journal of mathematics

The isoperimetric and Kazhdan constants associated to a Paley graph

Kevin Cramer, Mike Krebs, Nicole Shabazi, Anthony Shaheen and Edward Voskanian

The isoperimetric and Kazhdan constants associated to a Paley graph

Kevin Cramer, Mike Krebs, Nicole Shabazi, Anthony Shaheen and Edward Voskanian

(Communicated by Kenneth S. Berenhaut)

In this paper, we investigate the isoperimetric constant (or expansion constant) of a Paley graph, and the Kazhdan constant of the group and generating set associated with a Paley graph.

We give two new upper bounds for the isoperimetric constant $h\left(X_{p}\right)$ for the Paley graph X_{p}. These bounds improve previously known eigenvalue bounds on $h\left(X_{p}\right)$. Along with a known eigenvalue lower bound for $h\left(X_{p}\right)$, they provide a narrow strip in which $h\left(X_{p}\right)$ must live. More precisely, we show that $(p-\sqrt{p}) / 4 \leq h\left(X_{p}\right) \leq(p-1) / 4$, which implies that $\lim _{p \rightarrow \infty} h\left(X_{p}\right) / p=1 / 4$.

In addition, we show that the Kazhdan constant associated with the integers modulo p and the generating set for the Paley graph X_{p} approaches 2 as p tends to infinity, which is the best possible limit that the Kazhdan constant can be.

1. Introduction

Paley graphs are interesting because they allow one to use graph-theoretic tools to study the theory of quadratic residues. They also have interesting properties that make them useful in graph theory. For example, they are strongly regular, self-complementary, and their eigenvalues are essentially Gauss sums.

Let p be an odd prime with $p \equiv 1(\bmod 4)$. The Paley graph X_{p} is constructed as follows. The vertices of X_{p} consist of the integers modulo p, which we denote by \mathbb{Z}_{p}. Two vertices x and y from \mathbb{Z}_{p} are adjacent if and only if $x-y$ is an element of $\Gamma_{p}=\left\{\gamma^{2} \mid \gamma \in \mathbb{Z}_{p}\right.$ and $\left.\gamma \neq 0\right\}$. It is well known that -1 is in Γ_{p} since $p \equiv 1(\bmod 4)$. Hence the above definition is well-defined; that is, $x-y$ is in Γ_{p} if and only if $y-x$ is in Γ_{p}.

For example, if $p=13$, then $\Gamma_{13}=\{1,3,4,9,10,12\}$. Then 1 and 10 are adjacent since $10-1=9$, which is in Γ_{13}. A picture of X_{13} is given in Figure 1.

[^0]

Figure 1. The Paley graph on \mathbb{Z}_{13}.

A great reference for Paley graphs is [Elsawy 2009]. Note that one can define a Paley graph on a finite field of size p^{n}. However, we are sticking with $n=1$ in this paper.

We want to get approximations on two constants associated with the Paley graph: the isoperimetric constant and the Kazhdan constant. We first introduce the isoperimetric constant.

Let X be a graph with vertex set V. Let F be a subset of V. The boundary of F, denoted by ∂F, consists of the edges of X with one end in F and the other end in $V \backslash F$. The isoperimetric constant of X is defined to be

$$
h(X)=\min \left\{\left.\frac{|\partial F|}{|F|} \right\rvert\, F \subseteq V \text { and }|F| \leq \frac{|V|}{2}\right\} .
$$

In layman's terms, the isoperimetric constant of a graph X gives a rough estimate for how "good" a graph is as a communications network. It has been heavily studied by both computer scientists and mathematicians. One main topic of investigation in this area is that of expander families. A family of finite regular graphs, each with the same degree, whose order is unbounded, is said to be an expander family if there is a uniform positive lower bound for $h(X)$ for all X in the family. Recently it has been shown that every family of finite nonabelian simple groups yields an expander family via the Cayley graph construction. This was proven for all families except Suzuki groups by Kassabov, Lubotzky, and Nikolov [Kassabov et al. 2006], with the final case of Suzuki groups proven by Breuillard, Green, and Tao [Breuillard et al. 2011].

In general it is a difficult combinatorial problem to get an exact value for the isoperimetric constant of a graph. Some examples where the isoperimetric constant of a graph family is known are as follows. The isoperimetric constant for cycle graphs of order n is equal to $4 / n$ when n is even and $4 /(n-1)$ when n is odd. The isoperimetric constant of a complete graph of order n is equal to $n / 2$ when n is even and $(n+1) / 2$ when n is odd. See [Krebs and Shaheen 2011] for proofs. Rosenhouse
[2002] shows that $h\left(X_{n}\right)=4 / n$, where X_{n} is the Cayley graph constructed using the dihedral group $D_{2 n}$ with generators r, r^{-1}, and s. Lanphier and Rosenhouse [2004] derive approximations on the isoperimetric constants of Platonic graphs.

Instead of calculating $h(X)$ exactly, one must usually be satisfied with approximations. One way to approximate $h(X)$ is to use the eigenvalues of X. The eigenvalues of X are especially useful in finding a lower bound on $h(X)$.

Let $\lambda_{1}(X)$ be the second largest eigenvalue of a d-regular graph. A well-known inequality is

$$
\begin{equation*}
\frac{d-\lambda_{1}(X)}{2} \leq h(X) \leq \sqrt{2 d\left(d-\lambda_{1}(X)\right)} \tag{1}
\end{equation*}
$$

(see [Krebs and Shaheen 2011, p. 31]). One also has a tighter upper bound on $h(X)$ given by Mohar [1989]. It is

$$
\begin{equation*}
h(X) \leq \sqrt{\left(d+\lambda_{1}(X)\right)\left(d-\lambda_{1}(X)\right)} \tag{2}
\end{equation*}
$$

Let us see what (1) and (2) tell us about Paley graphs. Since Paley graphs are strongly regular graphs, one can find a quadratic polynomial that the adjacency matrix satisfies. This leads one to the eigenvalues of a Paley graph. (For the details, see [Gross et al. 2014, pp. 684-685]). The eigenvalues of X_{p} are $(p-1) / 2$ with multiplicity $1, \sqrt{p} / 2-1 / 2$ with multiplicity $(p-1) / 2$ and $-\sqrt{p} / 2-1 / 2$ with multiplicity $(p-1) / 2$. Thus $\lambda_{1}\left(X_{p}\right)=\sqrt{p} / 2-1 / 2$. Plugging this into (1) and using the fact that X_{p} is $(p-1) / 2$ regular, we get that

$$
\begin{equation*}
\frac{p-\sqrt{p}}{4} \leq h\left(X_{p}\right) \leq \sqrt{\frac{p^{2}-p \sqrt{p}-p+\sqrt{p}}{2}} . \tag{3}
\end{equation*}
$$

Using the Mohar bound, given in (2), one gets

$$
\begin{equation*}
h\left(X_{p}\right) \leq \frac{\sqrt{p^{2}-3 p+2 \sqrt{p}}}{2} \tag{4}
\end{equation*}
$$

which reduces the upper bound in (3) by a factor of $\sqrt{2}$ as p tends to infinity.
The lower bound in (3) seems optimal for Paley graphs. However, the two upper bounds given above are far from optimal. In this paper, we will give two new upper bounds. One we call the α-bound, which is the average of the first half of the elements of Γ_{p}, and the other is the simpler bound of $(p-1) / 4$. Both of these bounds give much better upper bounds than the eigenvalue bounds given above in (3) and (4). Consider Table 1. Note how close the eigenvalue lower bound is to both the α-bound and ($p-1$)/4, and how much better the two new upper bounds are. While $h\left(X_{p}\right)$ is still not known exactly, we have found a very narrow band in which it must exist. For example, we have $2,168,090 \leq h\left(X_{p}\right) \leq 2,168,277$ when $p=8,675,309$.

prime p	13	577	40,961	$8,675,309$
eigenvalue lower bound from (3)	2.35	138.24	10,189	$2,168,090$
α-bound (new upper bound)	2.67	139.29	10,201	$2,168,277$
$(p-1) / 4$ (new upper bound)	3	144	10,240	$2,168,827$
eigenvalue upper bound from (4)	5.86	287.77	20,479	$4,337,654$
eigenvalue upper bound from (3)	7.51	399.07	28,891	$6,133,328$

Table 1. Lower and upper bounds for $h\left(X_{p}\right)$.
Summarizing the above, we have our main result for the isoperimetric constant of a Paley graph.

Theorem 1. Let p be an odd prime with $p \equiv 1(\bmod 4)$. Then

$$
\frac{p-\sqrt{p}}{4} \leq h\left(X_{p}\right) \leq \frac{p-1}{4} .
$$

Note that inequalities (3) and (4) show that

$$
\frac{1}{4} \leq \liminf _{p \rightarrow \infty} \frac{h\left(X_{p}\right)}{p} \leq \limsup _{p \rightarrow \infty} \frac{h\left(X_{p}\right)}{p} \leq \frac{1}{2} .
$$

Theorem 1, however, shows more precisely that

$$
\lim _{p \rightarrow \infty} \frac{h\left(X_{p}\right)}{p}=\frac{1}{4} .
$$

Before moving on, we would like to note that we do not know if the α-bound is always smaller than $(p-1) / 4$, but from calculations it appears to be so.

The second result of this paper concerns the Kazhdan constant of the pair $\left(\mathbb{Z}_{p}, \Gamma_{p}\right)$ associated with the Paley graph X_{p}. We begin by giving the general definition of a Kazhdan constant for any finite group. The definition greatly simplifies when the group is the integers modulo p. The reader who has never encountered representation theory may skim the next paragraph to get the idea with no loss of understanding.

Let G be a finite group, and let Γ be a nonempty subset of G. Let ρ be a unitary representation of G acting on some vector space V_{ρ}. We define

$$
\kappa(G, \Gamma, \rho)=\min _{\substack{\|v\|=1 \\ v \in V_{\rho}}} \max _{\gamma \in \Gamma}\|\rho(\gamma) v-v\| .
$$

The Kazhdan constant of the pair (G, Γ) is defined to be

$$
\kappa(G, \Gamma)=\min _{\rho}\{\kappa(G, \Gamma, \rho)\},
$$

where the minimum is over all irreducible, nontrivial, unitary representations ρ of G. Question: why is one interested in computing such a constant? One answer
is because, when Γ is a symmetric subset of G, we know that $\kappa(G, \Gamma)$ is related to the isoperimetric constant of the Caley graph built from G and Γ. More specifically, suppose that Γ is a symmetric subset of the group G. That is, $\gamma \in \Gamma$ if and only if $\gamma^{-1} \in \Gamma$. Then one can build the Caley graph $X=\operatorname{Cay}(G, \Gamma)$, where the vertices of X are the elements of G and $x, y \in G$ are adjacent if and only if $y^{-1} x \in \Gamma$. (Note that if $G=\mathbb{Z}_{p}$, then $\Gamma=\Gamma_{p}$ gives the Paley graph.) Here X is a regular graph of degree $d=|\Gamma|$. In this case, we have the relationship $h(X) \geq \kappa(G, \Gamma)^{2} / 4 d$. Hence, by finding lower bounds on $\kappa(G, \Gamma)$, one can find lower bounds on $h(X)$. For more information on the above discussion, see [Krebs and Shaheen 2011, Chapter 8].

We would like to note that it is difficult to calculate $\kappa(G, \Gamma)$ in general. There are very few results in this area. As an example, Bacher and de la Harpe [1994] calculate $\kappa\left(\mathbb{Z}_{n}, \Gamma\right)$ for several very specific sets Γ, such as $\kappa\left(D_{2 n},\{r, s\}\right)$, where $D_{2 n}$ is the dihedral group and r and s are its generators, and $\kappa\left(S_{n}, \Gamma_{n}\right)$, where $\Gamma_{n}=\{(1,2), \ldots,(n-1, n)\}$.

We are interested in approximating the Kazhdan constant of the pair $\left(\mathbb{Z}_{p}, \Gamma_{p}\right)$. When $G=\mathbb{Z}_{p}$, the Kazhdan constant simplifies considerably. To simplify our notation, we set $\xi_{p}=e^{2 \pi i / p}$. The irreducible, nontrivial, unitary representations of \mathbb{Z}_{p} are given by the maps $\rho_{a}(\gamma): \mathbb{C} \rightarrow \mathbb{C}$, where $\rho_{a}(\gamma) z=\xi_{p}^{a \gamma} z, V_{a}=\mathbb{C}$, and $a=1,2, \ldots, p-1$. Hence,

$$
\begin{aligned}
\kappa\left(\mathbb{Z}_{p}, \Gamma_{p}\right) & =\min _{1 \leq a \leq p-1} \min _{\|v\|=1} \max _{\gamma \in \Gamma}\left\|\xi_{p}^{a \gamma} v-v\right\| \\
& =\min _{1 \leq a \leq p-1} \max _{\gamma \in \Gamma}\left\|\xi_{p}^{a \gamma}-1\right\|
\end{aligned}
$$

In words, $\kappa\left(\mathbb{Z}_{p}, \Gamma_{p}\right)$ is calculated by considering each a and finding the γ for which $\xi_{p}^{a \gamma}$ is the maximal distance away from 1, and then one finds the minimum of these maximums. Or another way of saying it is that for any $1 \leq a \leq p-1$, there exists a $\gamma \in \Gamma$ such that $\left\|\xi_{p}^{a \gamma}-1\right\| \geq \kappa\left(\mathbb{Z}_{p}, \Gamma_{p}\right)$.

Let $\mathbb{Z}_{p}^{\times}=\mathbb{Z}_{p} \backslash\{0\}$ and $\bar{\Gamma}_{p}=\mathbb{Z}_{p} \backslash\left(\Gamma_{p} \cup\{0\}\right)$. If $a \in \mathbb{Z}_{p}^{\times}$then it is easy to show that $a \Gamma_{p}=\Gamma_{p}$ if $a \in \Gamma_{p}$; otherwise, $a \Gamma_{p}=\bar{\Gamma}_{p}$ if $a \in \bar{\Gamma}_{p}$. (To see this note that Γ_{p} is a subgroup of \mathbb{Z}_{p}^{\times}under multiplication and there are only two cosets: Γ_{p} and $\bar{\Gamma}_{p}$.) Hence

$$
\begin{aligned}
\kappa\left(\mathbb{Z}_{p}, \Gamma_{p}\right) & =\min _{1 \leq a \leq p-1} \max _{\gamma \in \Gamma_{p}}\left\|\xi_{p}^{a \gamma}-1\right\| \\
& =\min \left\{\max _{\gamma \in \Gamma_{p}}\left\|\xi_{p}^{\gamma}-1\right\|, \max _{\gamma \in \bar{\Gamma}_{p}}\left\|\xi_{p}^{\gamma}-1\right\|\right\} .
\end{aligned}
$$

Thus to calculate $\kappa\left(\mathbb{Z}_{p}, \Gamma_{p}\right)$, one must find the square $\gamma_{1} \in \mathbb{Z}_{p}$, where $\xi_{p}^{\gamma_{1}}$ is as far away from 1 as possible, and the nonsquare $\gamma_{2} \in \mathbb{Z}_{p}$, where $\xi_{p}^{\gamma_{2}}$ is as far away from 1 as possible. Then one calculates the minimum of those two distances. For example, when $p=17$, we have that $\Gamma_{17}=\{1,2,4,8,9,13,15,16\}$ and $\bar{\Gamma}_{17}=\{3,5,6,7,10,11,12,14\}$; see Figure 2. We have labeled the elements ξ^{γ} by squares when γ is in Γ_{17} and by circles when γ is in $\bar{\Gamma}_{17}$. The element ξ^{γ} where

Figure 2. The Kazhdan constant $\kappa=\kappa\left(\mathbb{Z}_{17}, \Gamma_{17}\right)$.
γ is a square that is furthest from 1 is ξ^{8}. The element ξ^{γ} where γ is a nonsquare that is furthest from 1 is ξ^{7}. Therefore, $\kappa\left(\mathbb{Z}_{17}, \Gamma_{17}\right)=\left\|\xi_{17}^{7}-1\right\|$.

For specific congruency classes of primes, one can use arguments involving the Legendre symbol to explicitly calculate $\kappa\left(\mathbb{Z}_{p}, \Gamma_{p}\right)$. For example, arguments from [Voskanian 2013] show that if p is a prime with $p \equiv 17(\bmod 24)$, then

$$
\kappa\left(\mathbb{Z}_{p}, \Gamma_{p}\right)=\left\|e^{\pi i(1-3 / p)}-1\right\| .
$$

And when $p \equiv 97(\bmod 120)$,

$$
\kappa\left(\mathbb{Z}_{p}, \Gamma_{p}\right)=\left\|e^{\pi i(1-5 / p)}-1\right\| .
$$

However, it seems that one cannot generalize these arguments to give a formula for $\kappa\left(\mathbb{Z}_{p}, \Gamma_{p}\right)$ for all $p \equiv 1(\bmod 4)$.

Notice that $0<\kappa\left(\mathbb{Z}_{p}, \Gamma_{p}\right)<2$. We will not be able to explicitly calculate $\kappa\left(\mathbb{Z}_{p}, \Gamma_{p}\right)$; however, we will show the following theorem, which is our main result on the Kazhdan constant of a Paley graph.
Theorem 2. We have that

$$
\lim _{p \rightarrow \infty} \kappa\left(\mathbb{Z}_{p}, \Gamma_{p}\right)=2
$$

as p goes over the primes which are congruent to 1 modulo 4.

2. The isoperimetric constant of a Paley graph

We now give the proofs of the new upper bounds for the isoperimetric constant of X_{p} that were discussed in the introduction to this paper. We begin with the α-bound and then proceed to the $(p-1) / 4$ bound. Note that if $F \subseteq \mathbb{Z}_{p}$ with $0<|F| \leq \mathbb{Z}_{p} / 2$ then $h\left(X_{p}\right) \leq|\partial F| /|F|$. This is the technique that we will use in both proofs. That is, we will pick a specific F that will give an upper bound for $h\left(X_{p}\right)$.
2.1. The α-bound. The proof of the α-bound relies on a table that we call the adjacency table for X_{p}. The adjacency table for X_{p} is obtained by constructing the
group addition table for \mathbb{Z}_{p} (under the usual addition modulo p) with all the rows corresponding to any $\delta \notin \Gamma_{p}$ omitted.

For each $\alpha \in \Gamma_{p}$, we write the additive inverse of α as α^{-1}. Note that $\alpha^{-1}=p-\alpha$, and $\left|\Gamma_{p}\right|=(p-1) / 2$; hence we can arrange the elements of Γ_{p} in increasing order and we will write

$$
\Gamma_{p}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, \alpha_{k}^{-1}, \ldots, \alpha_{2}^{-1}, \alpha_{1}^{-1}\right\}
$$

where $k=(p-1) / 4$. Since 1 is the smallest element of Γ_{p}, we will always have $\alpha_{1}=1$ and $\alpha_{1}^{-1}=p-1$. Incorporating these considerations into our construction, we arrive at the following adjacency table:

0	1	2	\cdots	$p-1$
1	2	3	\cdots	0
α_{2}	$\alpha_{2}+1$	$\alpha_{2}+2$	\cdots	$\alpha_{2}-1$
α_{3}	$\alpha_{3}+1$	$\alpha_{3}+2$	\cdots	$\alpha_{3}-1$
\vdots	\vdots	\vdots	\vdots	\vdots
α_{k}	$\alpha_{k}+1$	$\alpha_{k}+2$	\cdots	$\alpha_{k}-1$
α_{k}^{-1}	$\alpha_{k}^{-1}+1$	$\alpha_{k}^{-1}+2$	\cdots	$\alpha_{k}^{-1}-1$
\vdots	\vdots	\vdots	\vdots	\vdots
α_{3}^{-1}	$\alpha_{3}^{-1}+1$	$\alpha_{3}^{-1}+2$	\cdots	$\alpha_{3}^{-1}-1$
α_{2}^{-1}	$\alpha_{2}^{-1}+1$	$\alpha_{2}^{-1}+2$	\cdots	$\alpha_{2}^{-1}-1$
$p-1$	0	1	\cdots	$p-2$

For example, when $p=13$ we have that $\Gamma_{13}=\{1,3,4,9,10,12\}$, which gives the following table:

0	1	2	3	4	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	8	9	10	11	12	0
3	4	5	6	7	8	9	10	11	12	0	1	2
4	5	6	7	8	9	10	11	12	0	1	2	3
9	10	11	12	0	1	2	3	4	5	6	7	8
10	11	12	0	1	2	3	4	5	6	7	8	9
12	0	1	2	3	4	5	6	7	8	9	10	11

To get the α-bound, we will be considering the set $F=\{0,1,2, \ldots,(p-3) / 2\}$. The following lemma and propositions will be useful when we tally the edges in ∂F row-wise.
Lemma 3. Let $\Gamma_{p}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, \alpha_{k}^{-1}, \ldots, \alpha_{2}^{-1}, \alpha_{1}^{-1}\right\}$. Then $1 \leq \alpha_{i} \leq(p-1) / 2$ for all $i=1, \ldots, k$.

Proof. We know $\alpha_{1}=1$ is the smallest element in Γ_{p}, so we have $1 \leq \alpha_{i}$. Now suppose that, for some i, we have $\alpha_{i}>(p-1) / 2$. Since α_{i} is an integer and p
is odd, the smallest α_{i} can be is $(p+1) / 2$. Thus, we see that $\alpha_{i} \geq(p+1) / 2$. Therefore, it follows that

$$
\alpha_{i}^{-1}=p-\alpha_{i} \leq p-\frac{p+1}{2}=\frac{p-1}{2} .
$$

In this case, we have $\alpha_{i} \geq(p+1) / 2$ and $\alpha_{i}^{-1} \leq(p-1) / 2$. In particular, $\alpha_{i}^{-1}<\alpha_{i}$. Since this contradicts the ordering of Γ_{p}, we see that $\alpha_{i} \leq(p-1) / 2$ for all $i=1,2, \ldots, k$.

Proposition 4. Let $F=\{0,1,2, \ldots,(p-3) / 2\}$ be a subset of vertices in X_{p}. Then row α_{i} of the adjacency table for X_{p} contributes exactly α_{i} edges to the boundary set ∂F.

Proof. By our choice of F, we only need to scan the entries in row α_{i} from column 0 to column $(p-3) / 2$, and any entry we encounter contributes an edge to ∂F if and only if it is greater than $(p-3) / 2$. Since $|F|=(p-1) / 2$, there are a total of $(p-1) / 2$ columns headed by elements of F, and thus $(p-1) / 2$ entries to consider. Also, we recall that for any entry γ in the table, the entry in the same row, one column to the right, is $\gamma+1$.

Let us tally the contributions made to ∂F by row α_{i} of the adjacency table. Starting at column 0 , we scan row α_{i} until we arrive at the entry $(p-3) / 2$ in some column β. In this case, all the entries encountered so far are less than or equal to $(p-3) / 2$, and thus contribute no edges to ∂F. Since $(p-3) / 2$ is the entry in row α_{i}, column β, we have $(p-3) / 2=\alpha_{i}+\beta$. Thus, $\beta=(p-3) / 2-\alpha_{i}$. Scanning from column 0 to column β, we have encountered $\beta+1$ entries. This means there are

$$
\frac{p-1}{2}-(\beta+1)=\frac{p-1}{2}-\left(\frac{p-3}{2}-\alpha_{i}+1\right)=\alpha_{i}
$$

entries remaining to consider in the columns headed by the entries from F. These entries increase in unit increments from $(p-3) / 2+1$ to $(p-3) / 2+\alpha_{i}$. By Lemma 3, we have that $1 \leq \alpha_{i} \leq(p-1) / 2$. This implies that $(p-3) / 2+\alpha_{i} \leq p-2$. This means the sequence of remaining entries never reaches p to revert to 0 modulo p. That is, each of the remaining α_{i} entries is strictly larger than $(p-3) / 2$, and thus contributes an edge to ∂F. So row α_{i} contributes exactly α_{i} edges to ∂F.

Proposition 5. Let $F=\{0,1,2, \ldots,(p-3) / 2\}$ be a subset of vertices in X_{p}. Then rows α_{i} and α_{i}^{-1} of the adjacency table each contribute the same number of edges to ∂F.
Proof. By our choice of F, we only need to scan the entries in row α_{i}^{-1} from column 0 to column $(p-3) / 2$, and any entry we encounter contributes an edge to ∂F if and only if it is greater than $(p-3) / 2$. This gives a total of $(p-1) / 2$ columns to scan through and, thus, $(p-1) / 2$ entries to consider.

Noting that the entries increase in unit increments as we scan from left to right, we begin with the entry α_{i}^{-1} in column 0 and scan to the right until we reach the entry $p-1$ in column β. By Lemma 3 , we have $1 \leq \alpha_{i} \leq(p-1) / 2$, so it follows that $(p+1) / 2 \leq \alpha_{i}^{-1} \leq p-1$. Thus, we see that every entry encountered so far, of which there are $\beta+1$, is greater than $(p-3) / 2$ and contributes an edge to ∂F. Since $p-1$ resides in row α_{i}^{-1}, column β, we have $p-1=\alpha_{i}^{-1}+\beta$, from which it follows that $\beta+1=p-\alpha_{i}^{-1}=\alpha_{i}$. That is, thus far we have encountered α_{i} entries in row α_{i}^{-1} contributing edges to ∂F.

Now, if $\alpha_{i}=(p-1) / 2$, then we must have already scanned through all the necessary columns. This means there are no more entries to consider, and row α_{i}^{-1} contributes exactly α_{i} edges to ∂F.

If $1 \leq \alpha_{i} \leq(p-3) / 2$, then there are $(p-1) / 2-\alpha_{i}$ entries, ranging from ($p-1$) $+1=0$ in column $\beta+1$ to

$$
(p-1)+\left(\frac{p-1}{2}-\alpha_{i}\right)=\frac{p-3}{2}-\alpha_{i}
$$

in column $(p-3) / 2$, remaining to consider. However, since α_{i} is at least 1 , $(p-3) / 2-\alpha_{i}$ is no greater than $(p-5) / 2$. So we see that the remaining entries range from 0 to at most $(p-5) / 2$, which means that none of them contribute edges to ∂F.

We have shown that, for all possible values of α_{i}, row α_{i}^{-1} contributes exactly α_{i} edges to ∂F. But that is how many edges row α_{i} contributes. Thus, we see rows α_{i} and α_{i}^{-1} each contribute the same number of edges to ∂F.
Proposition 6. Let $F=\{0,1,2, \ldots,(p-3) / 2\}$ be a subset of vertices in X_{p} and Γ_{p} be arranged in increasing order. Then

$$
|\partial F|=2 \sum_{i=1}^{k} \alpha_{i}
$$

where α_{i} is the i-th element of Γ_{p} and $k=(p-1) / 4$.
Proof. Recall that when arranged in increasing order, we have labeled

$$
\Gamma_{p}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, \alpha_{k}^{-1}, \ldots, \alpha_{2}^{-1}, \alpha_{1}^{-1}\right\}
$$

and that column 0 of the adjacency table is populated in increasing order from top to bottom by the elements of Γ_{p}. Since there are $2 k$ elements in Γ_{p} and $\left|\Gamma_{p}\right|=(p-1) / 2$, it follows that $k=(p-1) / 4$.

Since $F=\{0,1,2, \ldots,(p-3) / 2\}$, if we use the adjacency table to tally the edges in ∂F row-wise, by Proposition 5, rows α_{i} and α_{i}^{-1} each contribute exactly α_{i} edges to ∂F. Thus, we see rows α_{1} through α_{k} contribute a total of $\sum_{i=1}^{k} \alpha_{i}$ edges to ∂F; as do rows α_{k}^{-1} through α_{1}^{-1}.

Since there are no other rows to consider, we see there are exactly $2 \sum_{i=1}^{k} \alpha_{i}$ edges in ∂F, as required.

Proposition 7. The isoperimetric constant of a Paley graph satisfies the bound

$$
h\left(X_{p}\right) \leq \frac{1}{k} \sum_{i=1}^{k} \alpha_{i},
$$

where $\Gamma_{p}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, \alpha_{k}^{-1}, \ldots, \alpha_{2}^{-1}, \alpha_{1}^{-1}\right\}$ and $k=(p-1) / 4$ as above.
Proof. Let $F=\{0,1,2, \ldots,(p-3) / 2\}$. By Proposition 6, this choice gives $|\partial F|=2 \sum_{i=1}^{k} \alpha_{i}$. Noting that $|F|=(p-1) / 2$, we see that

$$
\frac{|\partial F|}{|F|}=\frac{2 \sum_{i=1}^{k} \alpha_{i}}{\frac{p-1}{2}}=\frac{1}{\frac{p-1}{4}} \sum_{i=1}^{k} \alpha_{i}=\frac{1}{k} \sum_{i=1}^{k} \alpha_{i} .
$$

2.2. The $((\boldsymbol{p}-\mathbf{1}) / 4)$-bound. We have the suspicion that the α-bound is smaller than $(p-1) / 4$ for all primes p congruent to 1 modulo 4 , though this has yet to be proven. In fact, early into our work, sample values for the α-bound supported this, and thus contributed to the plausibility for $(p-1) / 4$ as an upper bound for $h\left(X_{p}\right)$. Whether or not the α-bound is smaller in general than the ($(p-1) / 4)$-bound, they appear to be very close.

We begin the proof for the $((p-1) / 4)$-bound by introducing a key subset of vertices from the graph X_{p}. As above, let $\bar{\Gamma}_{p}=\mathbb{Z}_{p} \backslash\left(\Gamma_{p} \cup\{0\}\right)$. That is, $\bar{\Gamma}_{p}$ consists of the nonsquares in \mathbb{Z}_{p}. We will prove that $h\left(X_{p}\right) \leq(p-1) / 4$ by showing that

$$
\begin{equation*}
\frac{\left|\partial\left(\bar{\Gamma}_{p}\right)\right|}{\left|\bar{\Gamma}_{p}\right|}=\frac{p-1}{4} . \tag{5}
\end{equation*}
$$

Noting that $\bar{\Gamma}_{p}$ is the set of all nonzero nonsquares in \mathbb{Z}_{p}, two results follow that will contribute towards our goal: no element of $\bar{\Gamma}_{p}$ is adjacent to 0 , and $\left\{\Gamma_{p},\{0\}, \bar{\Gamma}_{p}\right\}$ is a partition of the vertices of X_{p}. From these two results, we can distill that $\partial\left(\bar{\Gamma}_{p}\right)$ contains only edges going between $\bar{\Gamma}_{p}$ and Γ_{p}. Therefore, we will determine $\left|\partial\left(\bar{\Gamma}_{p}\right)\right|$ by figuring out how many of the edges incident to vertices in Γ_{p} remain once the edges going between either an element of Γ_{p} and 0 or two elements of Γ_{p} are accounted for. We have that

$$
\begin{aligned}
\left|\Gamma_{p}\right| \cdot \frac{p-1}{2}= & \left(\# \text { of edges going between } \Gamma_{p} \text { and } \bar{\Gamma}_{p}\right) \\
& +\left(\# \text { of edges going between } \Gamma_{p} \text { and } 0\right) \\
& +2 \cdot\left(\# \text { of edges going between vertices in } \Gamma_{p}\right) .
\end{aligned}
$$

The first term on the right side is $\left|\partial\left(\bar{\Gamma}_{p}\right)\right|$. Also, $\left|\Gamma_{p}\right|=(p-1) / 2$, and every vertex in Γ_{p} is adjacent to 0 , so the first factor on the left-hand side and the second term on the right-hand side are both $(p-1) / 2$. Substituting these values and solving
for $\left|\partial\left(\bar{\Gamma}_{p}\right)\right|$, we get

$$
\begin{equation*}
\left|\partial\left(\bar{\Gamma}_{p}\right)\right|=\frac{p-1}{2} \cdot \frac{p-1}{2}-\frac{p-1}{2}-2 \cdot\left(\# \text { of edges between vertices in } \Gamma_{p}\right) . \tag{6}
\end{equation*}
$$

We now set our sights on determining the number of adjacencies between vertices in Γ_{p}. The way to do this is to count walks of length 3 that start and end at 0 within X_{p}. We use the following theorem to do this.
Theorem 8 [Stanley 2013]. Let G be a graph, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of G, and N_{k} be the number of closed walks in G of length k. Then

$$
N_{k}=\sum_{i=1}^{n} \lambda_{i}^{k}
$$

We noted in the introduction that the eigenvalues of the Paley graph X_{p} are $(p-1) / 2$, with multiplicity $1 ;(\sqrt{p}-1) / 2$, with multiplicity $(p-1) / 2$; and $(-\sqrt{p}-1) / 2$, with multiplicity $(p-1) / 2$. So the number of closed walks of length 3 in X_{p} is given by

$$
\left(\frac{p-1}{2}\right)^{3}+\left(\frac{p-1}{2}\right)\left(\frac{\sqrt{p}-1}{2}\right)^{3}+\left(\frac{p-1}{2}\right)\left(\frac{-\sqrt{p}-1}{2}\right)^{3}=\frac{p}{8}(p-5)(p-1)
$$

Paley graphs are Caley graphs, which have a nice property: vertex transitivity. More specifically, if x_{1} and x_{2} are both vertices of X_{p}, then the number of closed walks of length k beginning at x_{1} is equal to the number of closed walks of length k beginning at x_{2}. (One can see this by shifting the walks from x_{1} to x_{2} by adding $-x_{1}+x_{2}$ to all the vertices of the closed walk starting at x_{1}, and vice versa.). Since there are p vertices in X_{p}, we see that the number of closed walks of length 3 beginning at any one vertex of X_{p} is $\frac{1}{8}(p-5)(p-1)$. In particular, this is how many such walks begin at 0 .

Again, noting that 0 is adjacent to each element of Γ_{p} (and only to elements of Γ_{p}), it follows that if δ and β are nonzero elements of \mathbb{Z}_{p}, then $\left(0, \delta^{2}, \beta^{2}, 0\right)$ is a closed walk of length 3 beginning at zero if and only if $\left(0, \beta^{2}, \delta^{2}, 0\right)$ is a closed walk of length 3 beginning at zero if and only if δ^{2} and β^{2} are adjacent vertices of Γ_{p}. When viewed in this fashion, we see the number of closed walks of length 3 beginning at 0 double counts adjacencies between vertices in Γ_{p}. That is,

$$
\frac{1}{8}(p-5)(p-1)=2 \cdot\left(\# \text { of edges between vertices in } \Gamma_{p}\right) .
$$

It follows immediately from (6) that

$$
\begin{aligned}
\left|\partial\left(\bar{\Gamma}_{p}\right)\right| & =\frac{p-1}{2} \cdot \frac{p-1}{2}-\frac{p-1}{2}-\frac{1}{8}(p-5)(p-1) \\
& =\frac{p-1}{2} \cdot \frac{p-1}{4} .
\end{aligned}
$$

Dividing the above result by $\left|\bar{\Gamma}_{p}\right|=(p-1) / 2$ gives us (5). Hence, $h\left(X_{p}\right) \leq(p-1) / 4$.

3. The Kazhdan constant of the pair associated with a Paley graph

In this section, we prove Theorem 2. Recall that $\bar{\Gamma}_{p}=\mathbb{Z}_{p} \backslash\left(\Gamma_{p} \cup\{0\}\right), \xi_{p}=e^{2 \pi i / p}$ and

$$
\kappa\left(\mathbb{Z}_{p}, \Gamma_{p}\right)=\min \left\{\max _{\gamma \in \Gamma_{p}}\left\|\xi^{\gamma}-1\right\|, \max _{\gamma \in \bar{\Gamma}_{p}}\left\|\xi^{\gamma}-1\right\|\right\} .
$$

To attack the problem of approximating the Kazhdan constant of a Paley graph, we need to use facts about squares and nonsquares in \mathbb{Z}_{p}. For this we need the Legendre symbol. Recall that the Legendre symbol is defined as

$$
\left(\frac{a}{p}\right)=\left\{\begin{aligned}
0 & \text { if } p \text { divides } a \\
1 & \text { if } a \text { is a square modulo } p \\
-1 & \text { if } a \text { is a nonsquare modulo } p
\end{aligned}\right.
$$

One can show that $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$. Also, if $x \equiv y(\bmod p)$, then $\left(\frac{x}{p}\right)=\left(\frac{y}{p}\right)$. It can also be shown that $\left(\frac{-1}{p}\right)=1$ if and only if $p \equiv 1(\bmod 4)$. Likewise $\left(\frac{2}{p}\right)=1$ if and only if $p \equiv \pm 1(\bmod 8)$.These results can be found in any standard book on number theory. For example, see [Niven et al. 1991].

We now show that $\lim _{p \rightarrow \infty} \kappa\left(\mathbb{Z}_{p}, \Gamma_{p}\right)=2$, where the limit is over all primes with $p \equiv 1(\bmod 4)$. We break this into two cases: when $p \equiv 1(\bmod 8)$ and when $p \equiv 5(\bmod 8)$.

Let $\epsilon>0$ be an arbitrary small number.
Suppose that $p \equiv 5(\bmod 8)$. In this case we have that

$$
1=\left(\frac{-1}{p}\right)=\left(\frac{(p-1) / 2}{p}\right)\left(\frac{2}{p}\right)=-\left(\frac{(p-1) / 2}{p}\right) .
$$

Hence $(p-1) \cdot 2^{-1}$ is in $\bar{\Gamma}_{p}$. Let N_{1} be an integer such that if $p>N_{1}$ and $p \equiv 5(\bmod 8)$, then

$$
\left\|\xi_{p}^{(p-1) / 2}-1\right\|>2-\epsilon .
$$

This gives us a nonsquare $(p-1) \cdot 2^{-1}$ of \mathbb{Z}_{p}, where $\xi_{p}^{(p-1) / 2}$ is close to -1 in the complex plane. Now let α be a real number such that $1 / 2<\alpha<1$ and $\left\|e^{i \alpha \pi}-1\right\|>2-\epsilon$. Consider the interval $[\sqrt{\alpha p / 2}, \sqrt{p / 2}]$. Note that $\lim _{p \rightarrow \infty}(\sqrt{p / 2}-\sqrt{\alpha p / 2})=\infty$. Hence, there is a positive integer N_{2} such that if $p>N_{2}$, then there exists an integer x such that $\sqrt{\alpha p / 2}<x<\sqrt{p / 2}$, which is equivalent to $\alpha \pi<\left(2 \pi x^{2}\right) / p<\pi$. Hence if $p>N_{2}$ then there exists a square $\gamma \in \Gamma_{p}$ such that

$$
\left\|\xi_{p}^{\gamma}-1\right\|>\left\|e^{\alpha \pi i}-1\right\|>2-\epsilon .
$$

Combining the above, we have that if p is a prime with $p \equiv 5(\bmod 8)$ and $p>$ $\max \left\{N_{1}, N_{2}\right\}$ then $\kappa\left(\mathbb{Z}_{p}, \Gamma_{p}\right)>2-\epsilon$.

Now suppose that $p \equiv 1(\bmod 8)$. In this case we have that

$$
1=\left(\frac{-1}{p}\right)=\left(\frac{(p-1) / 2}{p}\right)\left(\frac{2}{p}\right)=\left(\frac{(p-1) / 2}{p}\right)
$$

Therefore $(p-1) \cdot 2^{-1}$ is in Γ_{p}. Let N_{3} be an integer such that if $p>N_{3}$ and $p \equiv 1(\bmod 8)$, then $\left\|\xi_{p}^{(p-1) / 2}-1\right\|>2-\epsilon$. Let $0<j_{p}<p$ be the smallest nonsquare in $\bar{\Gamma}_{p}$. Note that j_{p} must be odd since if it was even, then

$$
\left(\frac{j_{p} / 2}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{j_{p} / 2}{p}\right)=\left(\frac{j_{p}}{p}\right)=-1 .
$$

This would imply that $j_{p} \cdot 2^{-1}$ is a smaller nonsquare than j_{p} in $\bar{\Gamma}_{p}$, which is not true. We also have that

$$
\left(\frac{\left(p-j_{p}\right) / 2}{p}\right)=\left(\frac{\left(p-j_{p}\right) / 2}{p}\right)\left(\frac{2}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{j_{p}}{p}\right)=\left(\frac{j_{p}}{p}\right)=-1 .
$$

Thus, $\left(p-j_{p}\right) \cdot 2^{-1}$ is a nonsquare. We now introduce a lemma which is taken from [Pollack and Treviño 2014]. This lemma will give us a nice bound on j_{p}.

Lemma 9.

$$
0<j_{p}<\frac{1}{2}+\sqrt{p} .
$$

Proof. Note that $p<j_{p}\left\lceil p / j_{p}\right\rceil<p+j_{p}$. Hence the least nonnegative residue of $j_{p}\left\lceil p / j_{p}\right\rceil$ modulo p lies in the interval $\left(0, j_{p}\right)$. Therefore, $j_{p}\left\lceil p / j_{p}\right\rceil$ is a square modulo p. Since j_{p} is a nonsquare modulo p, we must have that $\left(j_{p}\left\lceil p / j_{p}\right\rceil\right) / j_{p}=\left\lceil p / j_{p}\right\rceil$ is a nonsquare. By the minimality of j_{p}, we have that $j_{p} \leq\left\lceil p / j_{p}\right\rceil \leq 1+p / j_{p}$. Therefore, $j_{p}^{2}-j_{p}<p$ and hence $j_{p}^{2}-j_{p}+1 \leq p$. This implies that $\left(j_{p}-1 / 2\right)^{2}<$ $j_{p}^{2}-j_{p}+1 \leq p$. So, $j_{p}<1 / 2+\sqrt{p}$.

By Lemma 9, we have that

$$
\frac{p}{2}>\frac{p-j_{p}}{2}>\frac{p}{2}-\frac{\sqrt{p}}{2}-\frac{1}{4} .
$$

Hence

$$
\left\|\xi_{p}^{\left(p-j_{p}\right) / 2}-1\right\|>\left\|\xi_{p}^{p / 2-\sqrt{p} / 2-1 / 4}-1\right\|=\left\|e^{\pi i-\pi i / \sqrt{p}-\pi i / 2 p}-1\right\| .
$$

Let N_{4} be a positive integer such that if $p>N_{4}$ and $p \equiv 1(\bmod 8)$, then

$$
\left\|\xi^{\left(p-j_{p}\right) / 2}-1\right\|>2-\epsilon
$$

Thus, if p is a prime with $p \equiv 1(\bmod 8)$ and $p>\max \left\{N_{3}, N_{4}\right\}$, then $\kappa\left(\mathbb{Z}_{p}, \Gamma_{p}\right)>$ $2-\epsilon$.

Combining all of the above results, we have that Theorem 2 has been proved.

References

[Bacher and de la Harpe 1994] R. Bacher and P. de la Harpe, "Exact values of Kazhdan constants for some finite groups", J. Algebra 163:2 (1994), 495-515. MR 95b:20018 Zbl 0842.20013
[Breuillard et al. 2011] E. Breuillard, B. Green, and T. Tao, "Suzuki groups as expanders", Groups Geom. Dyn. 5:2 (2011), 281-299. MR 2012c:20066 Zbl 1247.20017
[Elsawy 2009] A. N. Elsawy, Paley graphs and their generalizations, Master's thesis, Heinrich Heine University, Düsseldorf, 2009. arXiv 1203.1818
[Gross et al. 2014] J. L. Gross, J. Yellen, and P. Zhang (editors), Handbook of graph theory, 2nd ed., CRC Press, Boca Raton, FL, 2014. MR 3185588 Zbl 1278.05001
[Kassabov et al. 2006] M. Kassabov, A. Lubotzky, and N. Nikolov, "Finite simple groups as expanders", Proc. Natl. Acad. Sci. USA 103:16 (2006), 6116-6119. MR 2007d:20025 Zbl 1161.20010
[Krebs and Shaheen 2011] M. Krebs and A. Shaheen, Expander families and Cayley graphs: a beginner's guide, Oxford University Press, 2011. MR 3137611 Zbl 1238.05221
[Lanphier and Rosenhouse 2004] D. Lanphier and J. Rosenhouse, "Cheeger constants of Platonic graphs", Discrete Math. 277:1-3 (2004), 101-113. MR 2005c:05102 Zbl 1033.05055
[Mohar 1989] B. Mohar, "Isoperimetric numbers of graphs", J. Combin. Theory (B) 47:3 (1989), 274-291. MR 90m:05087 Zbl 0719.05042
[Niven et al. 1991] I. Niven, H. L. Montgomery, and H. S. Zuckerman, An introduction to the theory of numbers, 5th ed., Wiley, New York, 1991. MR 91i:11001 Zbl 0742.11001
[Pollack and Treviño 2014] P. Pollack and E. Treviño, "The primes that Euclid forgot", Amer. Math. Monthly 121:5 (2014), 433-437. MR 3193727 Zbl 06367526
[Rosenhouse 2002] J. Rosenhouse, "Isoperimetric numbers of Cayley graphs arising from generalized dihedral groups", J. Combin. Math. Combin. Comput. 42 (2002), 127-138. MR 2004d:05092 Zbl 1019.05030
[Stanley 2013] R. P. Stanley, Algebraic combinatorics: walks, trees, tableaux, and more, Springer, New York, 2013. MR 3097651 Zbl 1278.05002
[Voskanian 2013] E. Voskanian, Obtaining lower bounds for the Kazhdan constant, Master's thesis, California State University, Los Angeles, 2013.

Received: 2014-10-28	Revised: 2015-01-25 Accepted: 2015-02-02
kevinhcramer@gmail.com	Department of Mathematics, California State University, Los Angeles, Los Angeles, CA 90032, United States
mkrebs@calstatela.edu	Department of Mathematics, California State University, Los Angeles, Los Angeles, CA 90032, United States
linus108nicole@yahoo.com	Department of Mathematics, California State University, Los Angeles, Los Angeles, CA 90032, United States
ashahee@calstatela.edu	Department of Mathematics, California State University, Los Angeles, Los Angeles, 90032, United States
voskanian@math.ucr.edu	Department of Mathematics, University of California, Riverside, Riverside, CA 92521, United States

involve
 msp.org/involve

MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone@ latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian @ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyj@@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@ mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2016 is US $\$ 160 /$ year for the electronic version, and $\$ 215 /$ year $(+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

I. mathematical sciences publishers

nonprofit scientific publishing

involve 2016 vol. 9 no. 2

On the independence and domination numbers of replacement product graphs 181Jay Cummings and Christine A. Kelley
An optional unrelated question RRT model 195
Jeong S. Sihm, Anu Chhabra and Sat N. Gupta
On counting limited outdegree grid digraphs and greatest increase grid digraphs 211
Joshua Chester, Linnea Edlin, Jonah Galeota-Sprung, Bradley
Isom, Alexander Moore, Virginia Perkins, A. MalcolmCampbell, Todd T. Eckdahl, Laurie J. Heyer and Jeffrey L. Poet
Polygonal dissections and reversions of series 223
Alison Schuetz and Gwyn Whieldon
Factor posets of frames and dual frames in finite dimensions 237
Kileen Berry, Martin S. Copenhaver, Eric Evert, Yeon HyangKim, Troy Klingler, Sivaram K. Narayan and Son T. Nghiem
A variation on the game SET 249
David Clark, George Fisk and Nurullah Goren
The kernel of the matrix $[i j(\bmod n)]$ when n is prime 265
Maria I. Bueno, Susana Furtado, Jennifer Karkoska, KyanneMayfield, Robert Samalis and Adam Telatovich
Harnack's inequality for second order linear ordinary differential inequalities 281
Ahmed Mohammed and Hannah Turner
The isoperimetric and Kazhdan constants associated to a Paley graph 293Kevin Cramer, Mike Krebs, Nicole Shabazi, Anthony Shaheenand Edward Voskanian
Mutual estimates for the dyadic reverse Hölder and Muckenhoupt constants for the 307
dyadically doubling weightsOleksandra V. Beznosova and Temitope Ode
Radio number for fourth power paths 317Min-Lin Lo and Linda Victoria Alegria
On closed graphs, II333
David A. Cox and Andrew Erskine
Klein links and related torus links347Enrique Alvarado, Steven Beres, Vesta Coufal, KaiaHlavacek, Joel Pereira and Brandon Reeves

[^0]: MSC2010: 05C99.
 Keywords: isoperimetric constant, expansion constant, Paley graph, Kazhdan constant. This research was partially supported by NSF grant DMS-1247679.

