

Mutual estimates for the dyadic reverse Hölder and Muckenhoupt constants for the dyadically doubling weights Oleksandra V. Beznosova and Temitope Ode

Mutual estimates for the dyadic reverse Hölder and Muckenhoupt constants for the dyadically doubling weights

Oleksandra V. Beznosova and Temitope Ode

(Communicated by Kenneth S. Berenhaut)

Muckenhoupt and reverse Hölder classes of weights play an important role in harmonic analysis, PDEs and quasiconformal mappings. In 1974, Coifman and Fefferman showed that a weight belongs to a Muckenhoupt class A_p for some $1 if and only if it belongs to a reverse Hölder class <math>RH_a$ for some $1 < q < \infty$. In 2009, Vasyunin found the exact dependence between p, q and the corresponding characteristic of the weight using the Bellman function method. The result of Coifman and Fefferman works for the dyadic classes of weights under an additional assumption that the weights are dyadically doubling. We extend Vasyunin's result to the dyadic reverse Hölder and Muckenhoupt classes and obtain the dependence between p, q, the doubling constant and the corresponding characteristic of the weight. More precisely, given a dyadically doubling weight in RH_p^d on a given dyadic interval I, we find an upper estimate on the average of the function w^q (with q < 0) over the interval I. From the bound on this average, we can conclude, for example, that w belongs to the corresponding $A_{q_1}^d$ -class or that w^p is in $A_{q_2}^d$ for some values of q_i . We obtain our results using the method of Bellman functions. The main novelty of this paper is how we use dyadic doubling in the Bellman function proof.

1. Definitions and main results

We will be dealing with a family of dyadic intervals on the real line,

$$D := \left\{ [n2^{-k}, (n+1)2^{-k}] : n, k \in \mathbb{Z} \right\}.$$

For an interval *J*, let D(J) stand for the family of all its dyadic subintervals, $D(J) := \{I \in D : I \subset J\}$ and let $D_n(J)$ stand for the family of all dyadic subintervals

MSC2010: 42B37.

Keywords: reverse Hölder, Muckenhoupt, weights, dyadic.

of J of length exactly $2^{-n}|J|$. For a locally integrable function f, let $\langle f \rangle_I$ stand for the average of f over the interval I,

$$\langle f \rangle_I := \frac{1}{|I|} \int_I f(x) \, dx$$

where |I| is the Lebesgue measure of I.

Let w be a weight; i.e., w is a locally integrable, almost everywhere nonnegative function which is not identically zero. Since we will be dealing mostly with averages, we define the dyadic doubling constant of the weight w to be

$$\mathrm{Db}^{d}(w) := \inf_{I \in D} \left\{ C : \langle w \rangle_{I^{*}} \leqslant C \langle w \rangle_{I} \right\} = \frac{1}{2} \inf_{I \in D} \left\{ C : \int_{I^{*}} w(x) \, dx \leqslant C \int_{I} w(x) \, dx \right\},$$

where I^* is the dyadic "parent" of the interval I, i.e., the smallest dyadic interval that strictly contains the interval I. If the dyadic doubling constant of the weight w is bounded by Q, we will say that $w \in Db^{d,Q}$. Note also that any weight is positive almost everywhere; therefore the dyadic doubling constant defined this way is always greater than $\frac{1}{2}$.

Our main assumption is that a weight w belongs to the dyadic reverse Hölder class on the interval J with the corresponding constant bounded by δ :

$$w \in RH_p^{\delta,d}(J) \quad \Longleftrightarrow \quad [w]_{RH_p^{\delta,d}(J)} := \sup_{I \in D(J)} \left\{ C : \langle w^p \rangle_I^{1/p} \leqslant C \langle w \rangle_I \right\} \leqslant \delta.$$

We define $A_q^{\delta,d}(J)$ to be the class of the dyadic Muckenhoupt weights on the interval J with the corresponding constant bounded by δ :

$$w \in A_q^{\delta,d}(J) \quad \Longleftrightarrow \quad [w]_{A_q^{\delta,d}(J)} := \sup_{I \in D(J)} \langle w \rangle_I \langle w^{-1/(q-1)} \rangle_I^{q-1} \leqslant \delta$$

Given a dyadically doubling weight $w \in RH_p^{\delta,d}(J)$, our goal in this paper is to bound the averages involved in the definitions of $w \in A_{q_1}^d$ and $w^p \in A_{q_2}^d$,

$$\langle w \rangle_J \langle w^{-1/(q_1-1)} \rangle_J^{q_1-1}$$
 and $\langle w^p \rangle_J \langle w^{-p/(q_2-1)} \rangle_J^{q_2-1}$.

Note that the quantities $\langle w \rangle_J$ and $\langle w^p \rangle_J$ are involved in the definition of $RH_p^{\delta,d}(J)$; therefore for our goals, it is enough to bound $\langle w^q \rangle_J$ from above for q < 0.

It is a well-known fact that $w \in A_q^d$ for some $1 < q < \infty$ implies that w is a dyadically doubling weight; it is also known that in the dyadic case, the reverse Hölder classes RH_p^d contain weights that are not dyadically doubling (see [Buckley 1990]). In fact, if $w \in RH_p^{\delta,d}(J)$, nothing prevents w from being close or even equal to 0 on, say, the left half of J; the local $RH_p^d(J)$ -constant can be defined for such weights. There is no way to define an $A_q^d(J)$ -constant for such a weight, and even the quantity $\langle w^q \rangle_J$ is undefined for q < 0, which is the case considered in this paper. What prevents this from happening is the doubling assumption that does not allow $\langle w \rangle_J$ to be too far from $\langle w \rangle_{J^{\pm}}$, and therefore if w is equal to 0 on any dyadic subinterval of J then w has to be identically 0 on the whole interval J (which is not permitted).

We are ready to define the Bellman function for our problem: for p > 1, q < 0 and Q > 2, let

$$\mathcal{B}(x_1, x_2; p, q, \delta, Q) := \sup_{w \in \mathcal{R}H_p^{\delta, d}(J), \operatorname{Db}^d(w) \leqslant Q} \{ \langle w^q \rangle_J : w \text{ is s.t. } \langle w \rangle_J = x_1, \langle w^p \rangle_J = x_2 \}.$$

The parameters p, q, δ and Q will be fixed throughout the paper, so we will skip them and write $\mathcal{B}(x_1, x_2)$. Note also that by a rescaling argument, \mathcal{B} does not depend on the interval J. The constant Q corresponds to the doubling constant of the weight w. We know that for any weight, we have $Db^d(w) > \frac{1}{2}$. We take Q > 2 for technical reasons (we need it in the proof), so one may think of Q as being the maximum of the doubling constant of the weight w and 2; that is, $Q := \max\{Db^d(w), 2\}$.

Then for the given p, q, δ , and Q, we have that \mathcal{B} is defined on the domain

$$U_{\delta} := \left\{ \vec{x} = (x_1, x_2) : \exists w \in RH_p^{\delta, d} \text{ s.t. } Db^d(w) \leqslant Q \text{ and } x_1 = \langle w \rangle_J, x_2 = \langle w^p \rangle_J \right\}.$$

In order to state the main theorem, we need to define functions $u_p^{\pm}(t)$. Let $u_p^{\pm}(t)$ be two solutions (positive and negative) of the equation

$$(1 - pu)^{1/p}(1 - u)^{-1} = t, \quad 0 \le t \le 1.$$
 (1-1)

For $Q \ge 2$, we define $\varepsilon(p, \delta, Q)$ as follows. Let

$$H := H(p, Q) = \frac{Q^p - 1}{Q - 1} \quad \text{and} \quad \varepsilon := \frac{H}{p} \left(\frac{p - 1}{H - 1}\right)^{(p-1)/p} \delta.$$

Then we can define

$$s^{\pm}(\varepsilon) := u^{\pm}\left(\frac{1}{\varepsilon}\right)$$
 and $r^{\pm} := u^{\pm}\left(\frac{y^{1/p}}{\varepsilon x}\right)$.

Note that since $u^+(t)$ is a decreasing function and in our domain

$$\frac{1}{\varepsilon} \leqslant \frac{y^{1/p}}{\varepsilon x},$$

we have that $r^+ \in [0, s^+]$. Similarly, since $u^-(t)$ is an increasing function, we have that $r^- \in [s^-, 0]$.

Theorem 1.1 (main theorem). Let p > 1, q < 0, $Q \ge 2$ and $\delta > 1$; let $s^- := s^-(\varepsilon)$ for $\varepsilon(p, \delta, Q)$ defined above. If $q \in (1/s^-, 0)$ then

$$\mathcal{B}(x_1, x_2; p, q, \delta) \leqslant x_1^q \frac{1 - qr^-}{1 - qs^-} \left(\frac{1 - s^-}{1 - r^-}\right)^q = x_2^{q/p} \frac{1 - qr^-}{1 - qs^-} \left(\frac{1 - ps^-}{1 - pr^-}\right)^{q/p}.$$

The proof of Theorem 1.1 can be found in Section 2.

Note that the result from [Vasyunin 2008] assumes that the reverse Hölder inequality for the weight w holds for any interval $I \subset J$, while our Theorem 1.1 only uses dyadic subintervals $I \in D(J)$ and the doubling constant. Therefore our result is more general (in the sense that if a weight is in the continuous reverse Hölder class, it has to be in the dyadic class and it has to be doubling, so our theorem applies). Unfortunately, we lose the sharpness. Note also that Theorem 1.1 is not a straight-forward extension of Vasyunin's result because it fails in the case when the weight w is not dyadically doubling. The latter is easy to see: in his thesis, Buckley gave examples of weights in RH_p -classes that are not dyadically doubling and therefore do not belong to any of the A_p^d .

Let us consider the following simple example. Let $w(x) = \chi_{J^+}(x)$. Then $w \in RH_p^{d,2^{1-1/p}}(J)$ for all $1 . At the same time, it is clearly impossible to bound <math>\langle w^q \rangle_J$ for q < 0. Note that this weight is not dyadically doubling, so the doubling assumption in Theorem 1.1 is necessary, and we have to find a way to use doubling in the Bellman function argument. Most of Vasyunin's proof works in the dyadic setting; it is Lemma 4 in his paper that fails and does not have a full size dyadic analogue. We replace Lemma 4 using a technique from [Pereyra 2009] to incorporate the doubling property of the weight in the Bellman function proof.

As a consequence of Theorem 1.1, we obtain the following corollary.

Corollary 1.2 (*RH*_p vs. *A*_q). Let w be a reverse Hölder dyadically doubling weight with $[w]_{RH_p^d} = \delta$ and $Q := \max\{Db^d(w), 2\}$. Let $\varepsilon(p, \delta, Q)$ be defined as above. Let $s^- = s^-(\varepsilon)$. Then:

(i) For every $q_1 > 1 - s^-$, we have $w \in A^d_{q_1}$, and moreover,

$$[w]_{A_{q_1}^d} \leqslant \left(\frac{q_1-1}{q_1-1+s^-}\right)^{q_1-1}$$

(ii) For every $q_2 > 1 - ps^-$, we have $w^p \in A^d_{q_2}$, and moreover,

$$[w^p]_{A^d_{q_2}} \leqslant \left(\frac{q_2 - 1}{q_2 - 1 + ps^-}\right)^{q_2 - 1}$$

Above, $s^{-}(\varepsilon)$ is the negative solution of the equation $(1 - ps^{-})^{1/p}(1 - s^{-})^{-1} = 1/\varepsilon$.

A result similar to the second part of the above corollary was used in [Beznosova et al. 2014] (without a proof) for the sharp norms of *t*-Haar multiplier operators. The difference is that in [loc. cit.], the ε was taken to be $\varepsilon_1 = Q\delta$, which is an upper bound for our $\varepsilon(p, \delta, Q)$.

The proof of Corollary 1.2 is very simple. Note that since $r^- \in [s^-, 0]$, we have $1 - r^- \leq 1 - s^-$; therefore

$$\frac{1-s^-}{1-r^-} \ge 1.$$

So, since q < 0, we have that

$$\left(\frac{1-s^-}{1-r^-}\right)^q \leqslant 1.$$

We also have that

$$\left(\frac{1-ps^-}{1-pr^-}\right)^{q/p} \leqslant 1$$

since p is positive. At the same time, since both q and r^- are negative, qr^- is positive and $1 - qr^- \le 1$. Therefore, for our choice of parameters, we have that

$$\left\langle w^q \right\rangle_J \leqslant \frac{\min\{\left\langle w \right\rangle_J^q, \left\langle w^p \right\rangle_J^{q/p}\}}{1-qs^-}.$$

Using this rough estimate in the definition of the corresponding Muckenhoupt constant, we get the desired bounds.

2. Proof of Theorem 1.1

In this section, we essentially follow the proof from [Vasyunin 2008]. Unfortunately, we cannot use the full proof from Vasyunin's paper since it relies on Lemma 4 from his paper, which fails in the dyadic case. We will sketch the proof, referring to Vasyunin's results whenever possible, and replace his Lemma 4 with our dyadically doubling analogue, Lemma 2.4.

We fix p > 1, q < 0, $Q \ge 2$, $\delta > 1$ and let

$$\mathcal{B}(x_1, x_2; p, q, \delta, Q) := \sup_{w \in RH_p^{\delta, d}(J), \operatorname{Db}^d(w) \leq Q} \left\{ \langle w^q \rangle_J : w \text{ is s.t. } \langle w \rangle_J = x_1, \langle w^p \rangle_J = x_2 \right\}$$

and

$$B_{\max} = B_{\max}(x_1, x_2; p, q, \delta, Q) := x_1^q \frac{1 - qr^-}{1 - qs^-} \left(\frac{1 - s^-}{1 - r^-}\right)^q$$

be defined on the domains

$$U_{\delta} = \left\{ \vec{x} = (x_1, x_2) : \exists w \in RH_p^{\delta, d} \text{ s.t. } Db^d(w) \leqslant Q \text{ and } x_1 = \langle w \rangle_J, x_2 = \langle w^p \rangle_J \right\}$$

and

$$\Omega_{\varepsilon} := \left\{ \vec{x} = (x_1, x_2) : x_i > 0, \ x_1^p \leq x_2 \leq \varepsilon^p x_1^p \right\}$$

respectively. Please note that U_{δ} and Ω_{ε} here are two domains defined in two different ways. In Lemma 2.4, we show that one is contained in the other and any line segment that connects points in U_{δ} that correspond to the same weight and dyadic interval has to lie inside the enlarged domain Ω_{ε} . This part is the main difference between the continuous and the dyadic case.

Note that

$$x_1^q \frac{1-qr^-}{1-qs^-} \left(\frac{1-s^-}{1-r^-}\right)^q = x_2^{q/p} \frac{1-qr^-}{1-qs^-} \left(\frac{1-ps^-}{1-pr^-}\right)^{q/p}$$

by the definitions of s^- and r^- .

Our goal is to show that $\mathcal{B} \leq B_{\text{max}}$. We will prove it using the Bellman function method. The proof consists of the following parts, which we will now state in the form of lemmata.

Lemma 2.1. If the function B_{max} , defined above, is concave on the domain Ω_{δ} , i.e.,

$$B_{\max}\left(\frac{x^{-}+x^{+}}{2}\right) \ge \frac{B_{\max}(x^{-})+B_{\max}(x^{+})}{2}$$
 (2-1)

for any x^+ and x^- such that there exists a weight $w \in RH_p^{\delta,d}$ with $Db^d(w) \leq Q$, where $x^+ = (\langle w \rangle_{J^+}, \langle w^p \rangle_{J^+})$ and $x^- = (\langle w \rangle_{J^-}, \langle w^p \rangle_{J^-})$, then Theorem 1.1 holds.

Lemma 2.2. The function B_{max} is locally concave on the domain Ω_{ε} ; i.e., its Hessian matrix

$$d^2 B_{\max} = \left\{ \frac{\partial^2 B_{\max}}{\partial x_1 \partial x_2} \right\}$$

is not positive definite.

Lemma 2.3. Let $x^o, x^+, x^- \in U_\delta$, where $x^o = \frac{1}{2}(x^+ + x^-)$ and the line segment connecting x^+ and x^- lies completely inside the larger domain Ω_{ε} . Suppose that the function B_{\max} is locally convex on Ω_{ε} ; i.e., on Ω_{ε} we have that the Hessian $d^2 B_{\max}$ is not positive definite. Then the inequality (2-1) holds.

Lemma 2.4. Let x^o , x^+ , and x^- be three points in Ω_{δ} with the property that $x^o = \frac{1}{2}(x^+ + x^-)$ such that there is a weight $w \in RH_p^{\delta,d}$ with $Db^d(w) \leq Q$ and a dyadic interval I such that

$$\begin{aligned} x_1^o &= \langle w \rangle_I, \quad x_2^o &= \langle w^p \rangle_I, \\ x_1^\pm &= \langle w \rangle_{I^\pm}, \quad x_2^\pm &= \langle w^p \rangle_{I^\pm}. \end{aligned}$$

Then the line segment connecting x^+ and x^- lies completely inside the larger domain Ω_{ε} .

Proof of Lemma 2.1. First, observe that if a weight w is constant on the interval J, say w = c, then $\langle w^q \rangle_J = \langle w \rangle_I^q = \langle w^p \rangle_I^{q/p}$; therefore in this case, $\mathcal{B} \leq B_{\text{max}}$.

Now let w be a step function. Note that for any dyadic interval I, we have that $\langle w \rangle_I = \frac{1}{2} (\langle w \rangle_{I^+} + \langle w \rangle_{I^-})$ and $\langle w^p \rangle_I = \frac{1}{2} (\langle w^p \rangle_{I^+} + \langle w^p \rangle_{I^-})$. This, together with

the concavity of B_{max} , gives

$$\begin{aligned} |J|B_{\max}(\langle w \rangle_{J}, \langle w^{p} \rangle_{J}) \\ & \geqslant |J^{-}|B_{\max}(\langle w \rangle_{J^{-}}, \langle w^{p} \rangle_{J^{-}}) + |J^{+}|B_{\max}(\langle w \rangle_{J^{+}}, \langle w^{p} \rangle_{J^{+}}) \\ & \geqslant |J^{--}|B_{\max}(\langle w \rangle_{J^{--}}, \langle w^{p} \rangle_{J^{--}}) + |J^{-+}|B_{\max}(\langle w \rangle_{J^{-+}}, \langle w^{p} \rangle_{J^{-+}}) \\ & + |J^{+-}|B_{\max}(\langle w \rangle_{J^{+-}}, \langle w^{p} \rangle_{J^{+-}}) + |J^{++}|B_{\max}(\langle w \rangle_{J^{++}}, \langle w^{p} \rangle_{J^{++}}) \\ & \geqslant \cdots \geqslant \sum_{I \in D_{n}(J)} |I|B_{\max}(\langle w \rangle_{I}, \langle w^{p} \rangle_{I}). \end{aligned}$$

Now note that since w is a step function, it has at most finitely many jumps. Let the number of jumps be m. For n large enough, in the last formula we have that wis constant on $2^n - m$ subintervals $I \in D_n(J)$ (we will call these subintervals "good") and has jump discontinuities on the other m subintervals (we will call these subintervals "bad"). On good subintervals, w is constant, so for such intervals, we have that $|I|B_{\max}(\langle w \rangle_I, \langle w^p \rangle_I) \ge |I| \langle w^q \rangle_I$. For the bad intervals, we know that B_{\max} is a continuous function and the set of points $\{x = (\langle w \rangle_I, \langle w^p \rangle_I) : I \in D(J)\}$ is a compact subset of Ω_{ε} , so $B_{\max}(\langle w \rangle_I, \langle w^p \rangle_I)$ for bad intervals $\{I_k\}_{k=1,...,m}$ are bounded by a uniform constant M. So the whole sum differs from $|J| \langle w^q \rangle_J$ by at most $M \sum_{I \text{ bad }} |I|$, which tends to 0 as $n \to \infty$.

This implies that $\langle w \rangle_I \leq B_{\max}(\langle w \rangle_I, \langle w^p \rangle_I)$ for all step functions w.

Next we extend this result to all weights w_m that are bounded from above and from below, say $m \le w \le M$. We take a sequence of step functions w_n that pointwise converge to w_m . By the Lebesgue dominated convergence theorem, Lemma 2.1 should hold for w_m .

The result of [Reznikov et al. 2010] extends our argument to an arbitrary weight w, which completes the proof of the Lemma 2.1.

Proof of Lemma 2.2. We want to show that the matrix of second derivatives of B_{max} is not positive definite. We will just refer to [Vasyunin 2008], where it is shown in a more general case.

Proof of Lemma 2.3. For the fixed points x^o , x^+ and x^- in the domain $U_{\delta} \subset \Omega_{\varepsilon}$ with $x^o = \frac{1}{2}(x^- + x^+)$ and such that the line segment connecting x^+ and x^- lies inside the domain Ω_{ε} , we introduce the function $b(t) := B(x_t)$, where $x_t := \frac{1}{2}(1+t)x^+ + \frac{1}{2}(1-t)x^-$. Note that defined this way, $B(x^o) = b(0)$, while $B(x^+) = b(1)$ and $B(x^-) = b(-1)$. Note also that

$$b''(t) = \begin{bmatrix} \frac{dx}{dt} & \frac{dy}{dt} \end{bmatrix} d^2 B_{\max} \begin{bmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{bmatrix}$$

So, since $-d^2 B_{\text{max}}$ is not negative definite, $-b''(t) \ge 0$ for all $-1 \le t \le 1$.

On the other hand,

$$B_{\max}(x^{o}) - \frac{B_{\max}(x^{+}) + B_{\max}(x^{-})}{2} = b(0) - \frac{b(1) + b(-1)}{2} = -\frac{1}{2} \int_{-1}^{1} (1 - |t|) b''(t) dt.$$

The second part of the above formula is a simple calculus exercise of integrating by parts twice.

Clearly, since -b''(t) is nonnegative,

$$B_{\max}(x^o) - \frac{B_{\max}(x^+) + B_{\max}(x^-)}{2} \ge 0,$$

which completes the proof of Lemma 2.3.

Proof of Lemma 2.4. Let x^o , x^+ and x^- be three points in

$$U_{\delta} := \left\{ \vec{x} = (x_1, x_2) : \exists w \in RH_p^{\delta, d} \cap Db^{Q, d} \text{ s.t. } x_1 = \langle w \rangle_J, x_2 = \langle w^p \rangle_J \right\}$$

that correspond to the same weight w and interval I; i.e., there is a weight $w \in RH_p^{\delta,d}$ with $Db^d(w) \leq Q$ and a dyadic interval I such that

$$\begin{split} x_1^o &= \langle w \rangle_I, \qquad x_2^o &= \langle w^p \rangle_I, \\ x_1^\pm &= \langle w \rangle_{I^\pm}, \quad x_2^\pm &= \langle w^p \rangle_{I^\pm}. \end{split}$$

Note that the reverse Hölder property for the weight w implies that $x_1^p \leq x_2 \leq \delta^p x_1^p$ for all three points x^{o} , x^{+} and x^{-} , and the fact that w is almost everywhere positive implies that $x_1, x_2 > 0$. At the same time, the fact that w is dyadically doubling with a doubling constant at most Q implies that

$$x_1^o \leq Q x_1^{\pm}, \quad x_1^{\pm} \leq 2 x_1^o, \quad \text{and} \quad x_1^{\mp} \leq (Q-1) x_1^{\pm}.$$

Without loss of generality, we will assume that $x_1^- < x_1^+$. Then we know that $x_1^o \leq Qx_1^-$, $x_1^+ \leq 2x_1^o$ and $x_1^+ \leq (Q-1)x_1^-$.

Therefore

$$U_{\delta} \subset \Omega_{\delta} := \left\{ \vec{x} = (x_1, x_2) : x_1^p \leqslant x_2 \leqslant \delta^p x_1^p \right\} \subset \Omega_{\varepsilon},$$

and the points x^o , x^+ and $x^- \in U_\delta$ are such that

$$x^{o} = \frac{1}{2}(x^{+} + x^{-}), \quad x_{1}^{-} < x_{1}^{o} < x_{1}^{+},$$

$$x_{1}^{o} \leq Qx_{1}^{-}, \quad x_{1}^{+} \leq 2x_{1}^{o}, \quad x_{1}^{+} \leq (Q - 1)x_{1}^{-}.$$

We need to show that the line interval connecting x^+ and x^- lies inside the domain Ω_{ε} .

First observe that the worst case scenario is when the central point x^{o} and one of the endpoints lie on the upper boundary of U_{δ} , $x_2 = \delta^p x_1^p$, while the other endpoint lies on the lower boundary of U_{δ} , $x_2 = x_1^p$. There are two possibilities, so let us consider the two cases separately.

Case 1: x^o and x^- are on the upper boundary and x^+ is on the lower boundary. This means that

$$x^{o} = (x_{1}^{o}, \delta^{p}(x_{1}^{o})^{p}), \quad x^{-} = (x_{1}^{-}, \delta^{p}(x_{1}^{-})^{p}), \quad x^{+} = (x_{1}^{+}, (x_{1}^{+})^{p}),$$

We need to minimize the function $f(x) = x_2^{1/p} x_1^{-1}$ over the line that passes through the points x^o , x^+ and x^- . We are not going to use all of the conditions on our points. To simplify the problem, we will drop the condition that the point x^+ is on the lower boundary. We will only be using the points x^o and x^- and we will use the fact that $x_1^o \leq Qx_1^-$.

Again, in the worst case, which may be unattainable, $x_1^o = Qx_1^-$. The line through the points $x^- = (x_1^-, \delta^p (x_1^-)^p)$ and $x^o = (Qx^-, Q^p \delta^p (x_1^-)^p)$ has slope

$$\frac{\delta^p(x_1^-)^p(Q^p-1)}{Q-1}.$$

Therefore the equation is

$$x_2 - \delta^p (x_1^-)^p - \delta^p (x_1^-)^{p-1} \frac{Q^p - 1}{Q - 1} (x_1 - x_1^-) = 0.$$

So we need to solve the optimization problem

$$\begin{cases} f(x) = x_2^{1/p} x_1^{-1} \to \max, \\ x_2 - \delta^p (x_1^{-})^p - \delta^p (x_1^{-})^{p-1} \frac{Q^p - 1}{Q - 1} (x_1 - x_1^{-}) = 0. \end{cases}$$

The problem can be solved, for example, using method of Lagrange multipliers. If we let $H := (Q^p - 1)/(Q - 1)$ then

$$f_{\max} = \left(\frac{p-1}{H-1}\right)^{(p-1)/p} \frac{H}{p} \delta$$

which is exactly our choice of ε .

Case 2: x^o and x^+ are on the upper boundary and x^- is on the lower boundary. In this case, we will drop the condition that x^- is on the lower boundary. Since the coordinates of our points are positive,

$$x_1^o = \frac{x_1^+ + x_1^-}{2} \ge \frac{x_1^+}{2},$$

so $x_1^+ \leq 2x_1^o$. Therefore this case is similar to Case 1 with Q = 2. Since $Q \geq 2$, this case is covered as well. This is the only place where we use that $Q \geq 2$.

This completes the proof of Lemma 2.4 and Theorem 1.1.

References

- [Beznosova et al. 2014] O. Beznosova, J. C. Moraes, and M. C. Pereyra, "Sharp bounds for *t*-Haar multipliers on L^2 ", pp. 45–64 in *Harmonic analysis and partial differential equations* (El Escorial, 2012), edited by P. Cifuentes et al., Contemp. Math. **612**, Amer. Math. Soc., Providence, RI, 2014. MR 3204856 Zbl 1304.42095
- [Buckley 1990] S. M. Buckley, *Harmonic analysis on weighted spaces*, Ph.D. thesis, University of Chicago, 1990, available at http://search.proquest.com/docview/275671193.
- [Pereyra 2009] M. C. Pereyra, "Haar multipliers meet Bellman functions", *Rev. Mat. Iberoam.* 25:3 (2009), 799–840. MR 2010m:42016 Zbl 1198.42007
- [Reznikov et al. 2010] A. Reznikov, V. Vasyunin, and A. Volberg, "An observation: cut-off of the weight w does not increase the A_{p_1, p_2} -norm of w", preprint, 2010. arXiv 1008.3635v1
- [Vasyunin 2008] V. I. Vasyunin, "Mutual estimates for L^p-norms and the Bellman function", Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) **355**:36 (2008), 81–138. In Russian; translated in J. of Math. Sci.**156**:5 (2009), 766–798. MR 2012b:42040 Zbl 1184.26009

Received: 2014-11-05	Revised: 2015-03-30	Accepted: 2015-04-16
ovbeznosova@ua.edu	1	Mathematics, Box 870350, University of oosa, AL 35487-0350, United States
temitope_ode@baylor.edu	Baylor University	, Waco, TX 76798, United States

MANAGING EDITOR

Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@wfu.edu

BOARD OF EDITORS

	BOARD O	FEDITORS	
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	La Trobe University, Australia P.Cerone@latrobe.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobriel@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	YF. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K.B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2016 is US \$160/year for the electronic version, and \$215/year (+\$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/

© 2016 Mathematical Sciences Publishers

2016 vol. 9 no. 2

On the independence and domination numbers of replacement product graphs	181			
JAY CUMMINGS AND CHRISTINE A. KELLEY	195			
An optional unrelated question RRT model				
JEONG S. SIHM, ANU CHHABRA AND SAT N. GUPTA	211			
On counting limited outdegree grid digraphs and greatest increase grid digraphs				
Joshua Chester, Linnea Edlin, Jonah Galeota-Sprung, Bradley				
ISOM, ALEXANDER MOORE, VIRGINIA PERKINS, A. MALCOLM				
CAMPBELL, TODD T. ECKDAHL, LAURIE J. HEYER AND JEFFREY L. POET				
Polygonal dissections and reversions of series				
ALISON SCHUETZ AND GWYN WHIELDON				
Factor posets of frames and dual frames in finite dimensions	237			
KILEEN BERRY, MARTIN S. COPENHAVER, ERIC EVERT, YEON HYANG				
Kim, Troy Klingler, Sivaram K. Narayan and Son T. Nghiem				
A variation on the game SET	249			
DAVID CLARK, GEORGE FISK AND NURULLAH GOREN				
The kernel of the matrix $[ij \pmod{n}]$ when n is prime				
MARIA I. BUENO, SUSANA FURTADO, JENNIFER KARKOSKA, KYANNE				
MAYFIELD, ROBERT SAMALIS AND ADAM TELATOVICH				
Harnack's inequality for second order linear ordinary differential inequalities				
AHMED MOHAMMED AND HANNAH TURNER				
The isoperimetric and Kazhdan constants associated to a Paley graph	293			
KEVIN CRAMER, MIKE KREBS, NICOLE SHABAZI, ANTHONY SHAHEEN				
AND EDWARD VOSKANIAN				
Mutual estimates for the dyadic reverse Hölder and Muckenhoupt constants for the	307			
dyadically doubling weights				
OLEKSANDRA V. BEZNOSOVA AND TEMITOPE ODE				
Radio number for fourth power paths	317			
Min-Lin Lo and Linda Victoria Alegria				
On closed graphs, II	333			
David A. Cox and Andrew Erskine				
Klein links and related torus links	347			
Enrique Alvarado, Steven Beres, Vesta Coufal, Kaia	2			
HLAVACEK, JOEL PEREIRA AND BRANDON REEVES				