\bullet
 involve

 a journal of mathematicsGeneralized factorization in $\mathbb{Z} / m \mathbb{Z}$
Austin Mahlum and Christopher Park Mooney

Generalized factorization in $\mathbb{Z} / m \mathbb{Z}$

Austin Mahlum and Christopher Park Mooney
(Communicated by Vadim Ponomarenko)

Abstract

Generalized factorization theory for integral domains was initiated by D. D. Anderson and A. Frazier in 2011 and has received considerable attention in recent years. There has been significant progress made in studying the relation τ_{n} for the integers in previous undergraduate and graduate research projects. In 2013, the second author extended the general theory of factorization to commutative rings with zero-divisors. In this paper, we consider the same relation τ_{n} over the modular integers, $\mathbb{Z} / m \mathbb{Z}$. We are particularly interested in which choices of $m, n \in \mathbb{N}$ yield a ring which satisfies the various τ_{n}-atomicity properties. In certain circumstances, we are able to say more about these τ_{n}-finite factorization properties of $\mathbb{Z} / m \mathbb{Z}$.

1. Introduction and background

D. D. Anderson and A. Frazier [2011] introduced a concept called τ-factorization. This provided a general theory which unified much of the existing literature on factorization theory in integral domains into one general notion of factorization theory. Recently, the second author has used several methods to extend this τ-factorization to commutative rings with zero-divisors; see [Mooney 2015a, 2015b; 2015c; 2016].

There has been a fair amount of research done on a particular τ-relation of interest especially in the integers, \mathbb{Z}. We discuss this in more depth in the following section. In particular, the dissertation of S. M. Hamon [2007] answered the following question, among others: for what $n \in \mathbb{N}$ is $\mathbb{Z} \tau_{n}$-atomic? A. Florescu [2013] investigated reduced τ_{n}-factorizations over \mathbb{Z}. These studies helped to give a concrete basis for τ-factorization over the integers.

In this paper, we carry out a similar investigation of $\mathbb{Z} / m \mathbb{Z}$. We again are interested in the τ_{n}-finite factorization properties, especially the question of τ_{n}-atomicity. We use the definitions and methods established by D. D. Anderson and S. ValdezLeon [1996] and generalized by the second author [Mooney 2015a]. In Section 2, we present preliminary definitions and background information in a more rigorous

[^0]and thorough manner. In Section 3, we present several important properties of $\mathbb{Z} / m \mathbb{Z}$ which play a role in the τ_{n}-finite factorization properties. In Section 4, we present the main results concerning τ_{n}-finite factorization properties of $\mathbb{Z} / m \mathbb{Z}$ for various choices of m and n. Finally, in Section 5, we present further thoughts on the remaining questions which were not answered in the present article.

2. Preliminaries

We assume R is a commutative ring with $1 \neq 0$. Let $R^{*}=R-\{0\}, U(R)$ be the set of units of R, and $R^{\#}=R^{*}-U(R)$ be the nonzero nonunits of R. As in [Anderson and Valdes-Leon 1996], we let

- $a \sim b$ if $(a)=(b)$,
- $a \approx b$ if there exists $\lambda \in U(R)$ such that $a=\lambda b$,
- $a \cong b$ if (1) $a \sim b$ and (2) $a=b=0$ or if $a=r b$ for some $r \in R$ then $r \in U(R)$.

We say a and b are associates (resp. strong associates, very strong associates) if $a \sim b$ (resp. $a \approx b, a \cong b$). As in [Anderson et al. 2004], a ring R is said to be a strongly associate (resp. very strongly associate) ring if for any $a, b \in R$, $a \sim b$ implies $a \approx b$ (resp. $a \cong b$).

We leave the routine check that very strong associates are strong associates and strong associates are associates as an exercise for the reader. Both \sim and \approx are equivalence relations, while \cong fails only to be reflexive. It is interesting to see why, in rings with zero-divisors, these associate relations are no longer equivalent. Any nontrivial idempotent $e \in R$ provides an example of an element such that $e \approx e$, but $e \neq e$. We have $e=1 \cdot e$, yet $e \neq e$ because e is not a unit in $e=e \cdot e$. This also demonstrates why \cong need not be reflexive. Examples of elements which are associate, but not strongly associate are more difficult to come by. We provide an example first given in [Fletcher 1969] and restated in [Anderson and Valdes-Leon 1996, Example 2.3], where the details are provided. Let $R=F[X, Y, Z] /(X-X Y Z)$, where F is a field. Let x, y, and z be the images of X, Y, and Z respectively in R. Then $x=x y z$, so $x \sim x y$, but there is no unit $\lambda \in U(R)$ such that $x=\lambda x y$, so $x \not \approx x y$.

Let τ be a symmetric relation on $R^{\#}$; that is, $\tau \subseteq R^{\#} \times R^{\#}$ and if $(a, b) \in \tau$, then $(b, a) \in \tau$ and we will write $a \tau b$. For nonunits $a, a_{i} \in R$, and $\lambda \in U(R)$, $a=\lambda a_{1} \cdots a_{n}$ is said to be a τ-factorization if $a_{i} \tau a_{j}$ for all $i \neq j$. If $n=1$, then this is said to be a trivial τ-factorization. Given the above τ-factorization, we would say that a_{i} is a τ-factor of a or write $\left.a_{i}\right|_{\tau} a$. We note that 0 cannot appear as a τ-factor, except in the trivial factorization $0=\lambda 0$ for some $\lambda \in U(R)$.

We pause to provide some examples of τ-relations which have been of interest in the literature.

Example 2.1. Let R be a commutative ring with 1 .
(1) $\tau_{d}=R^{\#} \times R^{\#}$. This yields the usual factorizations in R and $\left.\right|_{\tau_{d}}$ is the same as the usual divides.
(2) $\tau=\varnothing$. For every $a \in R^{\#}$, there is only the trivial factorization and $\left.a\right|_{\tau} b \Longleftrightarrow$ $a=\lambda b$ for $\lambda \in U(R) \Longleftrightarrow a \approx b$.
(3) Let I be an ideal in R. Set $a \tau_{I} b$ if and only if $a-b \in I$.
(a) Let $R=\mathbb{Z}$ and $I=(n)$. Then this is τ_{n}, which was studied extensively in [Florescu 2013; Hamon 2007].
(b) In the present work, we are interested in the case when $R=\mathbb{Z} / m \mathbb{Z}$ and $I=(n)$. We note that $\tau_{(n)}$ is usually written as τ_{n} and this relation is indeed symmetric since $a-b \in I \Longleftrightarrow b-a \in I$.
(4) We obtain the comaximal factorizations studied in [McAdam and Swan 2004] by $a \tau b$ if and only if $(a, b)=R$. Furthermore, for any \star-operation, we obtain \star-comaximal factorizations, studied in [Juett 2012], by $a \tau_{\star} b$ if and only if $(a, b)^{\star}=R$.
(5) Lastly, for any set S, such as the collection of irreducible or prime elements in a ring R, we can study τ_{S}-factorizations to obtain the atomic or prime factorizations respectively by saying $a \tau_{S} b$ if and only if $a \in S$ and $b \in S$.

We now summarize several definitions given in [Mooney 2015a; 2016]. Let $a \in R$ be a nonunit. Then a is said to be τ-irreducible or τ-atomic if for any τ-factorization $a=\lambda a_{1} \cdots a_{n}$, we have $a \sim a_{i}$ for some i. We say a is τ-strongly irreducible or τ-strongly atomic if for any τ-factorization $a=\lambda a_{1} \cdots a_{n}$, we have $a \approx a_{i}$ for some a_{i}. We say that a is τ-m-irreducible or τ-m-atomic if for any τ-factorization $a=\lambda a_{1} \cdots a_{n}$, we have $a \sim a_{i}$ for all i. Note: the " m " is for "maximal" since such an a is maximal among principal ideals generated by elements which occur as τ-factors of a. As in [Mooney 2016], $a \in R$ is said to be a τ-unrefinable atom if a admits only trivial τ-factorizations. We say that a is τ-very strongly irreducible or τ-very strongly atomic if $a \cong a$ and a has no nontrivial τ-factorizations. We refer the reader to [Mooney 2015a; 2016] for a further discussion and more equivalent definitions of these various forms of τ-irreducibility.

We have the following relationship between the various types of τ-irreducibles, which is proved in [Mooney 2015a, Theorem 3.9] as well as [Mooney 2016].

Theorem 2.2. The following diagram illustrates the relationships between the various types of τ-irreducibility a might satisfy, where \approx represents R being a strongly associate ring:

Let e be a nontrivial idempotent in R. Let $\tau_{\varnothing}=\varnothing$. Then there are no nontrivial τ_{\varnothing}-factorizations. Thus every $a \in R^{\#}$ is τ_{\varnothing}-unrefinably atomic. However, $e \cdot e=e$ shows that $e \neq e$ and thus e is not τ_{\varnothing}-very strongly atomic. To see that none of the other reverse implications hold, we may set $\tau=R^{\#} \times R^{\#}$ to obtain the usual factorizations. Examples are provided in [Anderson and ValdesLeon 1996] which show that the other implications are not reversible in rings with zero-divisors.

We are now able to summarize various τ_{n}-finite factorization properties that a ring may have.

Definition 2.3. Let $\alpha \in\{$ atomic, strongly atomic, m-atomic, unrefinably atomic, very strongly atomic $\}$. Let $\beta \in\{$ associate, strongly associate, very strongly associate $\}$.
(1) R is said to be $\tau-\alpha$ if every nonunit has a τ-factorization into elements which are $\tau-\alpha$.
(2) R is said to satisfy $\tau_{n}-A C C P$ if for every nonunit $a_{0} \in R$, any ascending chain of principal ideals

$$
\left(a_{0}\right) \subseteq\left(a_{1}\right) \subseteq\left(a_{2}\right) \subseteq \cdots \subseteq\left(a_{i}\right) \subseteq\left(a_{i+1}\right) \subseteq \cdots
$$

such that $\left.a_{i+1}\right|_{\tau} a_{i}$ for each i becomes stationary.
(3) R is said to be a $\tau_{n}-\alpha-\beta$-unique factorization ring (UFR) if

- R is $\tau_{n}-\alpha$,
- every nonunit has a unique $\tau_{n}-\alpha$ factorization up to rearrangement and β.
(4) R is said to be a $\tau_{n}-\alpha$-halffactorial ring (HFR) if R is $\tau-\alpha$ and for each nonunit, the length of every $\tau_{n}-\alpha$ factorization is the same.
(5) R is said to be a τ_{n}-bounded factorization ring (BFR) if every nonunit has a finite bound on the length of any τ_{n}-factorization.
(6) R is said to be a $\tau_{n}-\beta$-finite factorization ring (FFR) if every nonunit has only a finite number of τ_{n}-factorizations up to rearrangement and β.
(7) R is said to be a $\tau_{n}-\beta$-weak finite factorization ring (WFFR) if every nonunit has only a finite number of τ_{n}-divisors up to β.
(8) R is said to be a $\tau_{n}-\alpha-\beta$-divisor finite ring (df ring) if every nonunit has only a finite number of $\tau_{n}-\alpha$-divisors up to β.

We include parts of the diagram from [Mooney 2016] to help the reader visualize the relationship between these τ-finite factorization properties. In the diagram below, ∇ represents τ being refinable and associate-preserving and we direct the reader to [Mooney 2016] for further details:

3. $\mathbb{Z} / m \mathbb{Z}$ is strongly associate

We begin by studying the ring we are interested in, $\mathbb{Z} / m \mathbb{Z}$. As seen in the previous section, the main issue with factorization in rings with zero-divisors is the number of types of irreducibility and atomicity. We find that this ring has several nice properties, which makes our work slightly more manageable. We find that $\mathbb{Z} / m \mathbb{Z}$ is a strongly associate ring and if p is a prime and $e \in \mathbb{N}$, then $\mathbb{Z} / p^{e} \mathbb{Z}$ is présimplifiable. Equivalently, $\mathbb{Z} / p^{e} \mathbb{Z}$ is a very strongly associate ring. So if m is a prime power, then for any $a \in R^{\#}$, all the associate relations and hence types of τ-irreducibility coincide. In general, even if m has multiple prime divisors, we will know that associate and strongly associate coincide; hence τ_{n}-atomic and τ_{n}-strongly atomic also coincide.

It was proved, in [Kaplansky 1949], that any Artinian or principal ideal ring is strongly associate. This immediately gives us that our finite (hence Artinian) principal ideal ring, $\mathbb{Z} / m \mathbb{Z}$, is strongly associate. We outline an elementary proof for $\mathbb{Z} / m \mathbb{Z}$ being strongly associate as well as present other useful results about $\mathbb{Z} / m \mathbb{Z}$. We hope this is helpful for the reader, both to become familiar with the ring we are working in and to see the relationships between the various types of associate relations. Many of these results and similar techniques are used later when we analyze the question of τ_{n}-atomicity of $\mathbb{Z} / m \mathbb{Z}$.

We begin with a remark about the units of a direct product of commutative rings. This is a routine result, which can be found in any modern algebra text, and will be left as an exercise to the reader.

Remark. Let R_{1} and R_{2} be commutative rings with unity and let $R=R_{1} \times R_{2}$. Then

$$
U(R)=\left\{\left(\lambda_{1}, \lambda_{2}\right) \mid \lambda_{1} \in U\left(R_{1}\right), \lambda_{2} \in U\left(R_{2}\right)\right\}=U\left(R_{1}\right) \times U\left(R_{2}\right):=S .
$$

That is, the units in a direct product of rings are the direct product of the collection of units in the individual rings.

Lemma 3.1. $R=R_{1} \times R_{2}$ is strongly associate if and only if R_{1} and R_{2} are both strongly associate.

Proof. (\Rightarrow) Let $R=R_{1} \times R_{2}$ be a strongly associate ring. Let (a), (b) be ideals in R_{1} such that $a \sim b$, i.e., $(a)=(b)$. Consider the ideals $(a) \times R_{2}=(a) \times(1)$ and $(b) \times R_{2}=(b) \times(1)$. Since $(a)=(b)$, we have

$$
((a, 1))=(a) \times(1)=(b) \times(1)=((b, 1)) .
$$

Now $R=R_{1} \times R_{2}$ is strongly associate, so there is a unit $\left(\lambda_{1}, \lambda_{2}\right) \in U(R)$ such that $(a, 1)=\left(\lambda_{1}, \lambda_{2}\right)(b, 1)$. Thus $a=\lambda_{1} b$. By the above remark, we have shown that $\lambda_{1} \in U\left(R_{1}\right)$. Hence $a \approx b$. A symmetric argument demonstrates that R_{2} is strongly associate.
(\Leftarrow) Now suppose R_{1} and R_{2} are strongly associate rings. Let $a, b \in R$ with $a \sim b$. Suppose $a=\left(a_{1}, a_{2}\right)$ and $b=\left(b_{1}, b_{2}\right)$. Now $a \sim b$ means $\left(\left(a_{1}, a_{2}\right)\right)=\left(\left(b_{1}, b_{2}\right)\right)$. We must prove that there exists a $\left(\lambda_{1}, \lambda_{2}\right) \in U(R)$ with $\left(a_{1}, a_{2}\right)=\left(\lambda_{1}, \lambda_{2}\right)\left(b_{1}, b_{2}\right)$. Now

$$
\left(a_{1}\right) \times\left(a_{2}\right)=\left(\left(a_{1}, a_{2}\right)\right)=\left(\left(b_{1}, b_{2}\right)\right)=\left(b_{1}\right) \times\left(b_{2}\right) .
$$

Thus a_{1} is associate with b_{1} and a_{2} is associate with b_{2}. Hence, R_{1} and R_{2} are strongly associate, so there exists $\lambda_{1} \in U\left(R_{1}\right)$ and $\lambda_{2} \in U\left(R_{2}\right)$ such that $a_{1}=\lambda_{1} b_{1}$ and $a_{2}=\lambda_{2} b_{2}$. Therefore $\left(\lambda_{1}, \lambda_{2}\right) \in U(R)$ with $\left(a_{1}, a_{2}\right)=\left(\lambda_{1}, \lambda_{2}\right)\left(b_{1}, b_{2}\right)$. This demonstrates R is strongly associate as desired.

A routine induction argument on n, the number of factors in the product, yields the following result since $R=\left(R_{1} \times R_{2} \times \cdots \times R_{n-1}\right) \times R_{n}=R_{1} \times R_{2} \times \cdots \times R_{n}$.

Lemma 3.2. $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ is strongly associate if and only if R_{i} is strongly associate for each $1 \leq i \leq n$.
Lemma 3.3. Let $a_{1}, \ldots, a_{n} \in R$. Then $\left(a_{1} a_{2} \cdots a_{n}\right)=\left(a_{1}\right)\left(a_{2}\right) \cdots\left(a_{n}\right)$.
Proof. Let $x \in\left(a_{1}\right)\left(a_{2}\right) \cdots\left(a_{n}\right)$. Then

$$
x=r_{11} a_{1} r_{12} a_{2} \cdots r_{1 n} a_{n}+r_{21} a_{1} r_{22} a_{2} \cdots r_{2 n} a_{n}+\cdots+r_{m 1} a_{1} r_{m 2} a_{2} \cdots r_{m n} a_{n}
$$

for some $r_{i j} \in R$, with $1 \leq i, j \leq m$, is a typical element of $\left(a_{1}\right)\left(a_{2}\right) \cdots\left(a_{n}\right)$. Notice that we can factor out $a_{1} a_{2} \cdots a_{n}$ from each term yielding

$$
\begin{equation*}
x=\left(r_{11} r_{12} \cdots r_{1 n}+r_{21} r_{22} \cdots r_{2 n}+\cdots+r_{m 1} r_{m 2} \cdots r_{m n}\right)\left(a_{1} a_{2} \cdots a_{n}\right) . \tag{1}
\end{equation*}
$$

The right-hand side of (1) demonstrates that $x \in\left(a_{1} a_{2} \cdots a_{n}\right)$. Thus $\left(a_{1} a_{2} \cdots a_{n}\right) \supseteq$ $\left(a_{1}\right)\left(a_{2}\right) \cdots\left(a_{n}\right)$.

Let $x \in\left(a_{1} a_{2} \cdots a_{n}\right)$. Then $x=r a_{1} a_{2} \cdots a_{n}$ for some $r \in R$. Then we can write $x=r a_{1} a_{2} \cdots a_{n}=\left(r a_{1}\right)\left(1 a_{2}\right) \cdots\left(1 a_{n}\right)$, demonstrating $x \in\left(a_{1}\right)\left(a_{2}\right) \cdots\left(a_{n}\right)$. Thus $\left(a_{1} a_{2} \cdots a_{n}\right) \subseteq\left(a_{1}\right)\left(a_{2}\right) \cdots\left(a_{n}\right)$.
Lemma 3.4. Let $p \in \mathbb{N}$ be a prime number and $e \in \mathbb{N}$. Then $R=\mathbb{Z} / p^{e} \mathbb{Z}$ is very strongly associate; equivalently, $\mathbb{Z} / p^{e} \mathbb{Z}$ is présimplifiable. Moreover, this means that $\mathbb{Z} / p^{e} \mathbb{Z}$ is a strongly associate ring.

Proof. Suppose $a \sim b$. We will show $a \cong b$. Since $a \sim b$, we have $(a)=(b)$ by definition. Thus we must prove that either $a=b=0$ or if $a=r b$ for some $r \in R$ then $r \in U(R)$.

If $a=0$ or $b=0$ we are done, so we may assume that neither a nor b is 0 . If a or b are units, then $(a)=(b)=R$ and $r=a b^{-1}$, which is a unit. Thus we may assume a and b are nonzero nonunits. Thus $p \mid a$ and $p \mid b$. Let e_{a} be the largest integer such that $p^{e_{a}}$ divides a, but no larger power still divides a. Define e_{b} similarly. Now $(a)=(b)$, so $a \mid b$ and $p^{e_{a}} \mid a$ and therefore $p^{e_{a}} \mid b$. This means $e_{a} \leq e_{b}$. Similarly, $b \mid a$ so $e_{b} \leq e_{a}$. This means $e_{a}=e_{b}$, but by comparing the number of factors of p in both sides of $a=r b$, we see that p cannot divide r. Thus $\operatorname{gcd}(r, p)=1$ and $r \in U\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)$. Hence, R has been shown to be a very strongly associate ring, which is equivalent to présimplifiable in the language of Bouvier [1971; 1972a; 1972b; 1974]. Every présimplifiable ring is certainly a strongly associate ring.

The following theorem now follows easily from the lemmas and the Chinese remainder theorem.

Theorem 3.5. Let $m \in \mathbb{N}$ with $m \geq 2$ and $m=p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}$. Then

$$
\mathbb{Z} / m \mathbb{Z} \cong \mathbb{Z} / p_{1}^{e_{1}} \mathbb{Z} \times \mathbb{Z} / p_{2}^{e_{2}} \mathbb{Z} \times \cdots \times \mathbb{Z} / p_{n}^{e_{n}} \mathbb{Z}
$$

is a strongly associate ring.
This means associate and strongly associate are always the same relation and hence τ_{n}-atomic and τ_{n}-strongly atomic coincide for our rings $\mathbb{Z} / m \mathbb{Z}$. We also needed R to be a strongly associate ring to conclude that τ_{n}-m-atomic implies τ_{n}-strongly atomic in Theorem 2.2. We find that this property of $\mathbb{Z} / m \mathbb{Z}$ greatly streamlines much of the research.

4. $\boldsymbol{\tau}_{\boldsymbol{n}}$-factorization properties of $\mathbb{Z} / m \mathbb{Z}$

Here we begin our analysis of which choices of $m, n \in \mathbb{N}$ yield a τ_{n}-atomic (or -strongly atomic, -m-atomic, -unrefinably atomic, -very strongly atomic) ring. Moreover, when possible, we indicate if the ring satisfies other nice τ_{n}-finite factorization properties.
$\mathbb{Z} / \boldsymbol{p} \mathbb{Z}$. We first consider the simplest case, $R=\mathbb{Z} / p \mathbb{Z}$ when p is prime.
Lemma 4.1. Let $p \in \mathbb{N}$ be a prime number. Then $R=\mathbb{Z} / p \mathbb{Z}$ is a field.
Proof. Let $a \in R^{*}$. Then $\operatorname{gcd}(a, p)=1$, so by the Euclidean algorithm, there are integers $s, t \in \mathbb{Z}$ such that $a s+p t=1$. When reduced modulo p, we see that as $\equiv 1(\bmod p)$. Thus $\mathbb{Z} / p \mathbb{Z}$ is a commutative ring with unity such that every nonzero element is a unit. Thus $\mathbb{Z} / p \mathbb{Z}$ is a field.

Theorem 4.2. Let $p \in \mathbb{N}$ be prime and set $R=\mathbb{Z} / p \mathbb{Z}$. Let $\alpha \in\{$ atomic, strongly atomic, m-atomic, unrefinably atomic, very strongly atomic $\}$. Let $\beta \in\{$ associate, strongly associate, very strongly associate $\}$. Then for any $n \in \mathbb{N}$, we have:
(1) R is $\tau_{n}-\alpha$.
(2) R satisfies $\tau_{n}-A C C P$.
(3) R is a $\tau_{n}-B F R$.
(4) R is a $\tau_{n}-\alpha-\beta-U F R$.
(5) R is a $\tau_{n}-\alpha-H F R$.
(6) R is a $\tau_{n}-\beta$-FFR.
(7) R is a $\tau_{n}-\beta$-WFFR.
(8) R is a $\tau_{n}-\alpha-\beta$-df ring.

Proof. (1) Let $a \in R$ with a a nonunit. Then by Lemma 4.1, $a=0$ since all nonzero elements are units in a field. The only τ_{n}-factorizations are $0=\lambda 0$ since there are no other nonzero nonunits. Furthermore, R is a field, so (0) is a maximal ideal and therefore 0 is m -irreducible and thus τ_{n} - m -irreducible. Fields are integral domains, which are présimplifiable, so all of the other forms of $\tau_{n}-\alpha$ coincide. Thus R is $\tau_{n}-\alpha$.
(2) The only proper ideal is (0) since R is a field, so it certainly satisfies ACCP and therefore τ_{n} - ACCP .
(3) There are no nonzero nonunits, so there can be no nontrivial τ_{n}-factorizations. Thus all τ_{n}-factorizations are trivial and have length 1 , making R a τ_{n}-BFR.
(4)-(6) We know R is $\tau_{n}-\alpha$ by (1). Moreover, 0 has only $0=\lambda 0$ as a τ_{n}-factorization. Since R is a field, $0 \cong 0$, so we see this is the only factorization up to rearrangement and β. Hence R is a $\tau_{n}-\alpha-\beta$-UFR and a $\tau_{n}-\alpha$-HFR. Again, this is the only τ_{n}-factorization, not just the only $\tau_{n}-\alpha$ factorization, so R is certainly a $\tau_{n}-\beta$-FFR. (7)-(8) R is a finite ring with p elements. Hence there are a finite number of τ_{n} - and $\tau_{n}-\alpha$-divisors in the whole ring. Thus R is a $\tau_{n}-\beta$-WFFR and a $\tau_{n}-\alpha-\beta$-df ring. \square
$\mathbb{Z} / \boldsymbol{p}^{e} \mathbb{Z}$, where $\boldsymbol{e}>\mathbf{1}$. For $\mathbb{Z} / m \mathbb{Z}$, with $m=p^{e}$ (where $e \in \mathbb{N}$ and p is prime), we found that $\mathbb{Z} / p^{e} \mathbb{Z}$ is présimplifiable, or equivalently very strongly associate. As in [Mooney 2016], we have the following, which we state without proof.
Lemma 4.3. Let R be a présimplifiable ring. Let $a \in R^{\#}$ be a nonzero nonunit. Then the following are equivalent:
(1) a is τ_{n}-atomic.
(2) a is τ_{n}-strongly atomic.
(3) a is τ_{n}-m-atomic.
(4) a is τ_{n}-unrefinably atomic.
(5) a is τ_{n}-very strongly atomic.

Lemma 4.4. Let $R=\mathbb{Z} / p^{e} \mathbb{Z}$, where $p, e, n \in \mathbb{N}$ and p is prime. Then p is τ_{n}-m-atomic and therefore p is τ_{n}-atomic (-strongly atomic, -m-atomic, -unrefinably atomic, -very strongly atomic).

Proof. Let $p \in R=\mathbb{Z} / p^{e} \mathbb{Z}$. We show that (p) is maximal. The following are equivalent:

- An element $a \in \mathbb{Z} / p^{e} \mathbb{Z}$ is a unit.
- $\operatorname{gcd}\left(a, p^{e}\right)=1$.
- $\operatorname{gcd}(a, p)=1$.
- p does not divide a.
- $a \notin(p)$.

Thus (p) is precisely the set of nonunits. If $J \supsetneq(p)$, then let $x \in J \backslash(p)$. Then p does not divide x, so $x \in J$ is a unit, and so $J=R$. This shows that (p) is a maximal ideal (not just among principal ideals). Thus p is m-atomic and therefore τ_{n}-m-atomic. Moreover, by Lemma 4.3 this means p is τ_{n}-atomic (-strongly atomic, -m-atomic, -unrefinably atomic, -very strongly atomic).

Proposition 4.5. Let $p, e, n \in \mathbb{N}$, where p is prime and $e>1$. The only τ_{n}-atomic (-strongly atomic, -m-atomic, -unrefinably atomic, -very strongly atomic) elements of $R=\mathbb{Z} / p^{e} \mathbb{Z}$ are p and unit multiples of p.

Proof. Let $a \in R$ be a τ_{n}-irreducible (equivalently, -strongly atomic, -m -atomic, -unrefinably atomic, -very strongly atomic) element. Since a must be a nonunit, we know $\operatorname{gcd}(a, p)=p>1$. Therefore, $p \mid a$. Let j be the largest number of factors of p that we can factor out of a. That is, let j be the integer such that p^{j} divides a, but p^{j+1} does not divide a. Write $a=\lambda p^{j}$. Then $\operatorname{gcd}(\lambda, p)=1$ or else $p^{j+1} \mid a$. This means $\lambda \in U(R)$. If $j>1$, then $a=\lambda \cdot p^{j}=\lambda \cdot p \cdots p$ is a τ_{n}-factorization of a such that $(a) \neq(p)$. This means a is not τ_{n}-atomic and therefore a is also not τ_{n}-strongly atomic (-m-atomic, -unrefinably atomic, -very strongly atomic). Thus, $j=1$ and $a=\lambda p$, showing any τ_{n}-atomic (or -strongly atomic, -m-atomic, -unrefinably atomic, -very strongly atomic) element of $R=\mathbb{Z} / p^{e} \mathbb{Z}$ must be a unit multiple of p.

Theorem 4.6. Let $R=\mathbb{Z} / p^{e} \mathbb{Z}$, where $p, e, n \in \mathbb{N}$ and p is prime. Then we have the following:
(1) R is τ_{n}-atomic.
(2) R is τ_{n}-strongly atomic.
(3) R is τ_{n}-m-atomic.
(4) R is τ_{n}-unrefinably atomic.
(5) R is τ_{n}-very strongly atomic.

Proof. Let $a \in R$ be a nonunit. If a is not a unit, then $\operatorname{gcd}(a, p)>1$; hence $p \mid a$. We let j represent the integer for which $p^{j} \mid a$, but p^{j+1} does not divide a. Thus $a=p^{j} \cdot \lambda$ for some $\lambda \in \mathbb{N}$. Moreover, p does not divide λ, so $\operatorname{gcd}(\lambda, p)=1$ and λ is a unit. Then $a=\lambda p \cdots p$, where p occurs j times. Certainly $p \tau_{n} p$ for any $n \in N$ since $p-p=0 \in(0) \subseteq I$ for any ideal I. Thus we have found a τ_{n}-atomic (-strongly atomic, -m-atomic, -unrefinably atomic, -very strongly atomic) factorization of a by Lemma 4.3.

Proposition 4.7. Let $R=\mathbb{Z} / p^{e} \mathbb{Z}$, where $p, e, n \in \mathbb{N}$ and p is prime. Let $\alpha \in\{$ atomic, strongly atomic, m-atomic, unrefinably atomic, very strongly atomic $\}$ and let $\beta \in$ \{associate, strongly associate, very strongly associate\}. Then we have the following:
(1) R is a $\tau_{n}-\beta$-WFFR.
(2) R is a $\tau_{n}-\alpha-\beta$-idf ring.
(3) R satisfies $\tau_{n}-A C C P$.

Proof. This is immediate again since R is a finite ring.
Remark. We note here that this ring nearly satisfies further τ_{n}-finite factorization properties; however, we have the following issue. For any $j \geq e$, we have $0=p \cdots p=p^{j}$ is a τ_{n}-atomic (-strongly atomic, -m-atomic, -unrefinably atomic, -very strongly atomic) factorization of 0 . This means that R fails to be a τ_{n}-BFR (or $-\alpha$-HFR, $-\alpha-\beta$-UFR, $-\beta$-FFR). We do, on the other hand, have some positive results for nonzero elements of $\mathbb{Z} / p^{e} \mathbb{Z}$.
Theorem 4.8. Let $p, e, n \in \mathbb{N}$, where p is prime. Let $\alpha \in\{$ atomic, strongly atomic, m-atomic, unrefinably atomic, very strongly atomic $\}$. Let $\beta \in\{$ associate, strongly associate, very strongly associate $\}$. Let $a \in \mathbb{Z} / p^{e} \mathbb{Z}$, a nonzero nonunit. Then we have the following:
(1) Any two $\tau_{n}-\alpha$ factorizations of a have the same length.
(2) The element a not only has a $\tau_{n}-\alpha$ factorization, but it is unique up to rearrangement and β.
(3) The element a has a finite number of τ_{n}-factorizations up to rearrangement and β.
(4) There is a bound on the length of any τ_{n}-factorization of a.

Proof. (1) Let $a \in R$ be a nonzero nonunit. We know by Theorem 4.6 that there is a $\tau_{n}-\alpha$ factorization of a. As Proposition 4.5 demonstrated, p and unit multiples of p are the only $\tau_{n}-\alpha$ elements in $\mathbb{Z} / p^{e} \mathbb{Z}$. Recall that from the construction of the $\tau_{n}-\alpha$ factorization in Theorem 4.6, j is the unique integer such that $p^{j} \mid a$, but p^{j+1} does not divide a. It is clear then that any $\tau_{n}-\alpha$ factorization of a must have precisely j factors, each being some unit multiple of p.
(2) By Proposition 4.5 , the only $\tau_{n}-\alpha$ elements are unit multiples of p. Now $\mathbb{Z} / p^{e} \mathbb{Z}$ is présimplifiable, so all choices of β are equivalent. Thus since all $\tau_{n}-\alpha$ factorizations have the same length and all $\tau_{n}-\alpha$ elements are β, it is clear that this $\tau_{n}-\alpha$ factorization of a is unique.
(3) Since any τ_{n}-factorization of a is certainly a factorization of a, it suffices to show that there are only finitely many factorizations of a up to β. Again, let j be as in (1). We claim that j is the largest number of nonunit factors that any factorization can have. If each factor is a nonunit, then it must be divisible by p. By the definition of j, we have $p^{j} \mid a$, but p^{j+1} does not divide a. Thus there can be no more than j factors in any given factorization of a. In this way, all factorizations of a must come as some grouping of the j factors of p or some unit multiple of p. Hence the number of distinct factorizations up to β is certainly bounded by 2^{j}. A better bound would be $P(j)$, where $P(n)$ is the number of partitions of a set with n elements.
(4) Since there are only a finite number of τ_{n}-factorizations up to β, we can simply take the maximum length of these factorizations as the bound on the length of τ_{n}-factorizations of a. Alternatively, it is clear that j, as defined in the unique factorization in (1), is the longest possible τ_{n}-factorization since any other τ_{n}-factorization could be refined into this $\tau_{n}-\alpha$ factorization and it would be at least as long.

The above theorem shows that 0 is the only element preventing $\mathbb{Z} / p^{e} \mathbb{Z}$ from being a $\tau_{n}-\alpha-\beta$-UFR (or $-\alpha$-HFR, $-\beta$-FFR, -BFR).
$\mathbb{Z} / \boldsymbol{m} \mathbb{Z}$. When m has multiple distinct prime divisors, matters become more complicated. There are now nontrivial idempotent elements. For instance, consider $\mathbb{Z} / 6 \mathbb{Z}$ and the element 3 . We can factor $3=3 \cdot 3=3 \cdot 3 \cdot 3=\cdots$. Often the solution to dealing with issues that arise from idempotents is using U -factorization, as in [Mooney 2015b]. We are still able to say a few things about certain finite factorization properties in the affirmative, but further research will need to be conducted to completely answer this question.

We begin with a known result which sheds some light on the situation. If $\operatorname{gcd}(n, m)=1$, then $(n)=R$ and we have the usual factorization since $\tau_{n}=\tau_{d}$, where $\tau_{d}=R^{\#} \times R^{\#}$ yields the usual factorizations. This situation was discussed in [Anderson and Valdes-Leon 1996] and we refer the reader here for the traditional case.
Proposition 4.9. Let $R=\mathbb{Z} / m \mathbb{Z}$, where $m, n \in \mathbb{N}$. Let $\alpha \in\{$ atomic, strongly atomic, m-atomic, unrefinably atomic, very strongly atomic $\}$. Let $\beta \in\{$ associate, strongly associate, very strongly associate $\}$. Then we have the following:
(1) R is a $\tau_{n}-\beta$-WFFR.
(2) R is a $\tau_{n}-\alpha$ - β-idf ring.
(3) R satisfies $\tau_{n}-A C C P$.

Proof. This is immediate again since R is a finite ring.

Theorem 4.10. Let $\alpha \in\{$ atomic, strongly atomic, m-atomic, unrefinably atomic, very strongly atomic $\}$ and $\beta \in\{$ associate, strongly associate, very strongly associate $\}$. Let $R=\mathbb{Z} / p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}} \mathbb{Z}$, where $p_{i}, e_{i}, n, k \in \mathbb{N}$ with p_{i} primes. Then we have the following:
(1) If $k=1$, then R is as in the previous subsection.
(2) If $e_{i} \neq 1$ for at least one i and $k>1$, then we have the following:
(a) R fails to be a $\tau_{n}-B F R$.
(b) R fails to be a $\tau_{n}-\beta-F F R$.
(c) R fails to be a $\tau_{n}-\alpha-H F R$.
(d) R fails to be a $\tau_{n}-\alpha-\beta-U F R$.
(3) If $e_{i}=1$ for all $1 \leq i \leq k$, then R is a direct product of fields and we have the following:
(a) R is not τ_{n}-unrefinably atomic (or-very strongly atomic).
(b) R fails to be a $\tau_{n}-B F R$.
(c) R fails to be a $\tau_{n}-\beta-F F R$.
(d) R fails to be a $\tau_{n}-\alpha-H F R$.
(e) R fails to be a $\tau_{n}-\alpha-\beta-U F R$.

Proof. (1) is immediate.
(2) After reordering the primes if necessary, we may assume that $e_{1}>1$. Then consider the element $(0,1, \ldots, 1)$ and the τ_{n}-factorizations

$$
(0,1, \ldots, 1)=(p, 1, \ldots, 1) \cdots(p, 1, \ldots, 1)=(p, 1, \ldots, 1)^{j}
$$

where $j \geq e_{1}$. We notice that this is indeed a τ_{n}-factorization for any choice of ideal (n) since $(p, 1, \ldots, 1)-(p, 1, \ldots, 1)=(0,0, \ldots, 0) \in(n)$. Furthermore, $(p, 1, \ldots, 1)$ is both regular (not a zero-divisor) and generates a principal ideal which is maximal. This means $(p, 1, \ldots, 1)$ is $\tau_{n}-\alpha$ and we have demonstrated arbitrarily long $\tau_{n}-\alpha$ factorizations of a nonunit. This proves R is not a $\tau_{n}-\mathrm{BFR}$ (or $-\beta$-FFR, $-\alpha$-HFR, $-\alpha-\beta$-UFR).
(3a) We observe that the element $e:=(0,1, \ldots, 1)$ is neither τ_{n}-unrefinably atomic nor τ_{n}-very strongly atomic. To see this, consider the τ_{n}-factorization

$$
e=(0,1, \ldots, 1)=(0,1, \ldots, 1)(0,1, \ldots, 1)
$$

This demonstrates that e is an idempotent and hence $e \neq e$. Thus we have found a nontrivial τ_{n}-factorization of e. We now consider any factorization of e. We have

$$
e=(0,1, \ldots, 1)=\left(a_{11}, a_{12}, \ldots, a_{1 k}\right)\left(a_{21}, a_{22}, \ldots, a_{2 k}\right) \cdots\left(a_{t 1}, a_{t 2}, \ldots, a_{t k}\right)
$$

We have $0=a_{11} a_{21} \cdots a_{t 1}$ in $\mathbb{Z} / p_{1}^{e_{1}} \mathbb{Z}$, which is a field, so $a_{f 1}=0$ for some $1 \leq f \leq t$. In the other coordinates, we have factorizations of 1 , and thus $a_{i j}$ must be a unit for
each i and $j \geq 2$. This tells us that any factorization of e must have a factor of the form $\left(0, \lambda_{2}, \ldots, \lambda_{k}\right)$, where $\lambda_{2}, \ldots, \lambda_{k}$ are units. But this means

$$
e=(0,1, \ldots, 1)=\left(1, \lambda_{2}^{-1}, \ldots, \lambda_{k}^{-1}\right)\left(0, \lambda_{2}, \ldots, \lambda_{k}\right) .
$$

This factor is a strong associate of e which is neither τ_{n}-unrefinably atomic nor τ_{n}-very strongly atomic. Thus there is no possible τ_{n}-unrefinably atomic or τ_{n}-very strongly atomic factorization of e. On the other hand, $R /(e) \cong \mathbb{Z} / p_{1} \mathbb{Z}$, which is a field, and R is a strongly associate ring, so e is τ_{n}-atomic (-strongly atomic, -m-atomic).
(3b-3e) We again consider $e:=(0,1, \ldots, 1)$. We observe that $e=e^{2}=e^{3}=$ $\cdots=e^{j}=\cdots$ yields τ_{n}-factorizations for any $j>1$. This demonstrates that R is neither a τ_{n}-FFR nor a τ_{n}-BFR. Furthermore, this gives τ_{n}-atomic (-strongly atomic, -m -atomic) factorizations of e of different lengths, proving R is not a τ_{n}-atomic-(-strongly atomic-, -m-atomic-) HFR or a τ_{n}-atomic- (-strongly atomic-, -m-atomic) β-UFR. Lastly, from (3a), we know R is not even τ_{n}-unrefinably atomic (or -very strongly atomic), so it is certainly not a τ_{n}-unrefinably atomic- (or -very strongly atomic-) HFR or a τ_{n}-unrefinably atomic- (or -very strongly atomic-) β-UFR.

5. Further thoughts on $\mathbb{Z} / m \mathbb{Z}$ with multiple prime factors

We have answered many questions regarding τ_{n}-finite factorization properties in the negative; however, there are certainly some remaining open questions. When there are multiple prime divisors, the question of whether $R=\mathbb{Z} / m \mathbb{Z}$ is τ_{n}-atomic (or -strongly atomic, -m -atomic) appears much more complicated and sensitive to the choice of the ideal picked. Further research would need to be done. Indeed, this question appears difficult even in the integers; see [Florescu 2013; Hamon 2007]. For fixed $n \in \mathbb{Z}, \tau_{n}$-atomicity and τ_{n}-finite factorization properties, even for small n, have been and continue to be studied in depth in \mathbb{Z}, especially by Reyes M. Ortiz Albino and many of his students at The University of Puerto Rico at Mayagüez. It seems fertile ground for future research.

The fact that $\mathbb{Z} / m \mathbb{Z}$ is strongly associate simplifies (or at least unifies) some of these questions to make it more tractable. The existence of idempotent elements when m has multiple prime divisors suggests that looking at τ-U-factorization, as in [Mooney 2015b], may be a better path to take. The τ-U-factorizations are particularly effective in dealing with direct products of rings. It was often idempotent elements that were preventing the ring from satisfying further τ_{n}-finite factorization properties. As initiated by C. R. Fletcher [1969; 1970] and studied extensively by M. Axtell, S. Forman, N. Roersma, and J. Stickles [Axtell 2002; Axtell et al. 2003], the method of U-factorizations is helpful for this. When using U-factorization, rings like $\mathbb{Z} / 6 \mathbb{Z}$ go from not being even bounded factorization rings ($3=3^{i}$ for all i) to being U-unique factorization rings.

Acknowledgments

The authors would like to thank Viterbo University, in particular, the Viterbo Summer Research Fellowship Program which provided the funding to carry out this research in the summer of 2014. Mooney would also like to acknowledge the work done at The University of Iowa with the VIGRE REU program under the supervision of Professor Daniel D. Anderson, which tackled this problem over \mathbb{Z} and provided the inspiration for this particular study over $\mathbb{Z} / m \mathbb{Z}$ as a possible project suitable for undergraduate research. The authors would also like to thank the referee for diligent work and careful reading of the article. Their suggestions have improved the quality of the article.

References

[Anderson and Frazier 2011] D. D. Anderson and A. M. Frazier, "On a general theory of factorization in integral domains", Rocky Mountain J. Math. 41:3 (2011), 663-705. MR 2012g:13003 Zbl 1228.13001
[Anderson and Valdes-Leon 1996] D. D. Anderson and S. Valdes-Leon, "Factorization in commutative rings with zero divisors", Rocky Mountain J. Math. 26:2 (1996), 439-480. MR 97h:13001 Zbl 0865.13001
[Anderson et al. 2004] D. D. Anderson, M. Axtell, S. J. Forman, and J. Stickles, "When are associates unit multiples?", Rocky Mountain J. Math. 34:3 (2004), 811-828. MR 2005k:13001 Zbl 1092.13002
[Axtell 2002] M. Axtell, "U-factorizations in commutative rings with zero divisors", Comm. Algebra 30:3 (2002), 1241-1255. MR 2003d:13001 Zbl 1046.13002
[Axtell et al. 2003] M. Axtell, S. Forman, N. Roersma, and J. Stickles, "Properties of U-factorizations", Int. J. Commut. Rings 2:2 (2003), 83-99. MR 2005j:13003 Zbl 1120.13001
[Bouvier 1971] A. Bouvier, "Sur les anneaux de fractions des anneaux atomiques présimplifiables", Bull. Sci. Math. (2) 95 (1971), 371-377. MR 45 \#6810 Zbl 0219.13020
[Bouvier 1972a] A. Bouvier, "Anneaux présimplifiables", C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A1605-A1607. MR 45 \#6797 Zbl 0244.13009
[Bouvier 1972b] A. Bouvier, "Résultats nouveaux sur les anneaux présimplifiables", C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A955-A957. MR 47 \#4982 Zbl 0242.13002
[Bouvier 1974] A. Bouvier, "Anneaux présimplifiables", Rev. Roumaine Math. Pures Appl. 19 (1974), 713-724. MR 52 \#13811 Zbl 0289.13010
[Fletcher 1969] C. R. Fletcher, "Unique factorization rings", Proc. Cambridge Philos. Soc. 65 (1969), 579-583. MR 39 \#189 Zbl 0174.33401
[Fletcher 1970] C. R. Fletcher, "The structure of unique factorization rings", Proc. Cambridge Philos. Soc. 67 (1970), 535-540. MR 40 \#5596 Zbl 0192.38401
[Florescu 2013] A. A. Florescu, Reduced $\tau_{(n)}$ factorizations in \mathbb{Z} and $\tau_{(n)}$-factorizations in \mathbb{N}, Ph.D. thesis, University of Iowa, 2013, available at http://search.proquest.com/docview/1444307443.
[Hamon 2007] S. M. Hamon, Some topics in τ-factorizations, Ph.D. thesis, University of Iowa, 2007, available at http://search.proquest.com/docview/304860971.
[Juett 2012] J. Juett, "Generalized comaximal factorization of ideals", J. Algebra 352 (2012), 141-166. MR 2862178 Zbl 1253.13005
[Kaplansky 1949] I. Kaplansky, "Elementary divisors and modules", Trans. Amer. Math. Soc. 66 (1949), 464-491. MR 11,155b Zbl 0036.01903
[McAdam and Swan 2004] S. McAdam and R. G. Swan, "Unique comaximal factorization", J. Algebra 276:1 (2004), 180-192. MR 2004m:13006 Zbl 1081.13008
[Mooney 2015a] C. P. Mooney, "Generalized factorization in commutative rings with zero-divisors", Houston J. Math. 41:1 (2015), 15-32. MR 3347935 Zbl 06522510
[Mooney 2015b] C. P. Mooney, "Generalized U-factorization in commutative rings with zerodivisors", Rocky Mountain J. Math. 45:2 (2015), 637-660. MR 3356632 Zbl 06475249
[Mooney 2015c] C. P. Mooney, " τ-regular factorization in commutative rings with zero-divisors", preprint, 2015, available at http://projecteuclid.org/euclid.rmjm/1411945723. To appear in Rocky Mountain J. Math.
[Mooney 2016] C. P. Mooney, " τ-complete factorization in commutative rings with zero-divisors", Houston J. Math. 42:1 (2016), 23-44.

Received: 2014-09-27 Revised: 2015-04-07 Accepted: 2015-06-06
amahlu04769@viterbo.edu Department of Mathematics, Viterbo University, La Crosse, WI 54601, United States
christopher.mooney@westminster-mo.edu
Department of Mathematics, Westminster College, Fulton, MO 65251, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2016 is US $\$ 160 /$ year for the electronic version, and $\$ 215 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
mathematical sciences publishers

involve 2016 vol. 9 no. 3

A combinatorial proof of a decomposition property of reduced residue systems 361Yotsanan Meemark and Thanakorn Prinyasart
Strong depth and quasigeodesics in finitely generated groups 367Brian Gapinski, Matthew Horak and Tyler Weber
Generalized factorization in $\mathbb{Z} / m \mathbb{Z}$ 379Austin Mahlum and Christopher Park Mooney
Cocircular relative equilibria of four vortices 395
Jonathan Gomez, Alexander Gutierrez, John Little, Roberto Pelayo and Jesse Robert
On weak lattice point visibility 411Neil R. Nicholson and Rebecca Rachan
Connectivity of the zero-divisor graph for finite rings 415
Reza Akhtar and Lucas Lee
Enumeration of m-endomorphisms 423
Louis Rubin and Brian Rushton
Quantum Schubert polynomials for the G_{2} flag manifold 437Rachel E. Elliott, Mark E. Lewers and Leonardo C.Mihalcea
The irreducibility of polynomials related to a question of Schur 453
Lenny Jones and Alicia Lamarche
Oscillation of solutions to nonlinear first-order delay differential equations 465
James P. Dix and Julio G. Dix
A variational approach to a generalized elastica problem 483
C. Alex Safsten and Logan C. Tatham
When is a subgroup of a ring an ideal? 503
Sunil K. Chebolu and Christina L. Henry
Explicit bounds for the pseudospectra of various classes of matrices and 517operators
Feixue Gong, Olivia Meyerson, Jeremy Meza, Mihai Stoiciu and Abigail Ward

[^0]: MSC2010: 13A05, 13E99, 13F15.
 Keywords: modular integers, generalized factorization, zero-divisors, commutative rings.

