On weak lattice point visibility
Neil R. Nicholson and Rebecca Rachan

On weak lattice point visibility

Neil R. Nicholson and Rebecca Rachan
(Communicated by John C. Wierman)

Abstract

We say that a point Q in a specific rectangular array of lattice points is weakly visible from a lattice point P not in the array if no point in the array other than Q lies on the line connecting the external point P to Q. A necessary and sufficient condition for determining if a point in the array is weakly viewable by the external point, as well as the number of points that are weakly visible from the external point, is determined.

1. Introduction

Imagine a photographer attempting to capture a picture in which every member of a band in a rectangular array formation is visible, with all persons, including the photographer, standing on lattice points. The photographer must stand at a fixed position, and each band member must have a straight-line view of the photographer, unobstructed by all other band members. Laison and Schick [2007] describe this situation and prove that there are positions for the photographer to stand but these may be quite far away from the marching band. If the photographer decides to stand closer, how can we determine which band members she can see?

These are examples of the questions arising in lattice point visibility that have been investigated for decades. For example, another question that has gotten much attention considers two sets A and B of lattice points. When is every point in A visible from every point in B ? Are there relationships between the sizes of the sets when this is the case, and if so, as the set B grows does its size act predictably? Much work has been done looking at questions such as these [Adhikari and Granville 2009; Adhikari and Balasubramanian 1996; Adhikari and Chen 1999; 2002; Chen and Cheng 2003; Herzog and Stewart 1971].

Here, we fix this second set to be a single point P, playing the role of the photographer trying to see the members of the marching band, those points in set A. In [Nicholson and Sharp 2010], a lower bound was placed on the distance P must be from a rectangular array of lattice points to weakly view every point in the array.

[^0]Keywords: weak visibility, lattice point.

Our main result can be used to prove this result in an alternate manner and provides another tool to address one of the primary questions in weak visibility: is there a formula for this minimum distance only dependent upon the dimensions of the lattice points?

2. Definitions

In this paper, all points are assumed to be lattice points in the first quadrant. Let $m, n \in \mathbb{Z}^{+}$with $n \leq m$. Define $\Delta_{m, n}=\{1,2, \ldots, m\} \times\{1,2, \ldots, n\}$. We say $Q \in \Delta_{m, n}$ is weakly visible from a point $P \notin \Delta_{m, n}$ if no other point in $\Delta_{m, n}$ lies on the segment $P Q$.

It was proven in [Nicholson and Sharp 2010] that the $m \times m$ square of lattice points with its lower left-hand corner on (m, n) (that is, the square of lattice points with corners $(m, n),(m, n+m-1),(2 m-1, n)$, and $(2 m-1, n+m-1))$, called the adjacency square to $\Delta_{m, n}$ and denoted $\operatorname{Adj}_{m, n}$, contains no point that weakly views every point in $\Delta_{m, n}$. As a corollary to this, there is a lower bound that can be placed on how close a point viewing every point in $\Delta_{m, n}$ can be to $\Delta_{m, n}$:

Theorem 2.1 [Nicholson and Sharp 2010]. If a point P weakly views every point in $\Delta_{m, n}$, then P is at least $\sqrt{m^{2}+1}$ units from (m, n).

What follows is a complete classification of which points in $\Delta_{m, n}$ are weakly visible from a general point $P \notin \Delta_{m, n}$ as well as two corollaries that follow from that classification.

3. Determining weak visibility

We begin this section with our main result: necessary and sufficient conditions for a point $Q \in \Delta_{m, n}$ to be weakly visible from a point $P \notin \Delta_{m, n}$.

Theorem 3.1. The point $Q=\left(x_{0}, y_{0}\right) \in \Delta_{m, n}$ is not weakly visible by the point $P=(a, b)$ if and only if all of the following conditions hold:
(1) $\operatorname{gcd}\left(a-x_{0}, b-y_{0}\right)>1$.
(2) $m-x_{0} \geq\left(a-x_{0}\right) / \operatorname{gcd}\left(a-x_{0}, b-y_{0}\right)$.
(3) $n-y_{0} \geq\left(b-y_{0}\right) / \operatorname{gcd}\left(a-x_{0}, b-y_{0}\right)$.

Proof. Suppose Q is not weakly viewable by P. Then, there exist $t \geq 1$ points on the interior of the segment $P Q$, and let $R=\left(x_{1}, y_{1}\right)$ be the first of these points to the right of Q. Thus,

$$
\begin{align*}
& b-y_{0}=\left(y_{1}-y_{0}\right)(t+1), \\
& a-x_{0}=\left(x_{1}-x_{0}\right)(t+1), \tag{1}
\end{align*}
$$

implying that

$$
\begin{align*}
\operatorname{gcd}\left(a-x_{0}, b-y_{0}\right) & \geq t+1 \\
& >1 . \tag{2}
\end{align*}
$$

Moreover, in order to have $\left(x_{1}, y_{1}\right) \in \Delta_{m, n}$, we have

$$
\begin{align*}
m-x_{0} & \geq x_{1}-x_{0} \\
& =\frac{a-x_{0}}{t+1} \\
& \geq \frac{a-x_{0}}{\operatorname{gcd}\left(a-x_{0}, b-y_{0}\right)} \tag{3}
\end{align*}
$$

with the third property following similarly.
Now, assume the three properties hold and $d=\operatorname{gcd}\left(a-x_{0}, b-y_{0}\right)>1$, with

$$
\begin{align*}
a-x_{0} & =d p \\
b-y_{0} & =d q \tag{4}
\end{align*}
$$

We claim that $\left(x_{0}+p, y_{0}+q\right) \in \Delta_{m, n}$ lies on the segment $P Q$. To see this, note that the slope of $P Q$ is q / p, so that $P Q$ has equation

$$
\begin{equation*}
y-y_{0}=\frac{q}{p}\left(x-x_{0}\right) . \tag{5}
\end{equation*}
$$

The point $\left(x_{0}+p, y_{0}+q\right)$ satisfies this equation, and

$$
\begin{align*}
x_{0}+p & =x_{0}+\frac{a-x_{0}}{d} \\
& \leq x_{0}+m-x_{0} \\
& =m \tag{6}
\end{align*}
$$

Similarly, $y_{0}+q \leq n$, showing $\left(x_{0}+p, y_{0}+q\right) \in \Delta_{m, n}$ and consequently that Q is not weakly viewable by P.

What points then can a particularly chosen external point P weakly view? It is only natural to insist P lies strictly above the line $y=n$ and to the right of the line $x=m$. Thus, the closest such point (with distance measured to the nearest point, (m, n), in $\Delta_{m, n}$) would be $P=(m+1, n+1)$. The aforementioned result from [Nicholson and Sharp 2010] guarantees P cannot weakly view every point in $\Delta_{m, n}$ (for sufficiently large values of m and n). Which points then can P weakly view? Corollary 3.2 follows immediately from Theorem 3.1.

Corollary 3.2. The point $(x, 1) \in \Delta_{m, n}$ is weakly viewable by the point $P=$ $(m+1, n+1)$ if and only if $\operatorname{gcd}((m+1)-x, n)=1$.

This corollary states that the number of points in the first row of $\Delta_{m, n}$ that are weakly visible by P is the number of positive integers less than or equal to m that
are relatively prime to n. This is a variation of the Euler totient function (or Euler phi function, $\phi(m)$, defined on positive integers m as the number of positive integers less than or equal to m that are relatively prime to m). For $n \leq m$, call this $\phi(n, m)$, precisely the number of points in the first row of $\Delta_{m, n}$ weakly viewable by this particular point P. This allows us to count the total number of points in $\Delta_{m, n}$ that P weakly views:
Corollary 3.3. The number of points of $\Delta_{m, n}$ weakly viewable by the point $P=$ $(m+1, n+1)$ is $\sum_{i=1}^{n} \phi(i, m)$.
Proof. The number of points in the j-th row of $\Delta_{m, n}$ that are weakly viewable by P is $\phi(n-j+1, m)$.

We conclude by noting that the main question, amongst numerous other interesting questions, related to the results here remains open. Is there a formula dependent only upon m and n for the point closest to $\Delta_{m, n}$ that weakly views every point of $\Delta_{m, n}$? Such a formula would lend itself not only to deeper development in other lattice point visibility questions and graph theory but would potentially have applications in a multitude of fields [Ghosh and Goswami 2013].

References

[Adhikari and Balasubramanian 1996] S. D. Adhikari and R. Balasubramanian, "On a question regarding visibility of lattice points", Mathematika 43:1 (1996), 155-158. MR 97k:11105 Zbl 0855.11009
[Adhikari and Chen 1999] S. D. Adhikari and Y.-G. Chen, "On a question regarding visibility of lattice points, II", Acta Arith. 89:3 (1999), 279-282. MR 2000i:11152 Zbl 0936.11039
[Adhikari and Chen 2002] S. D. Adhikari and Y.-G. Chen, "On a question regarding visibility of lattice points, III", Discrete Math. 259:1-3 (2002), 251-256. MR 2004a:11107 Zbl 1033.11049
[Adhikari and Granville 2009] S. D. Adhikari and A. Granville, "Visibility in the plane", J. Number Theory 129:10 (2009), 2335-2345. MR 2010m:11117 Zbl 1176.11027
[Chen and Cheng 2003] Y.-G. Chen and L.-F. Cheng, "Visibility of lattice points", Acta Arith. 107:3 (2003), 203-207. MR 2004g:11053 Zbl 1116.11048
[Ghosh and Goswami 2013] S. K. Ghosh and P. P. Goswami, "Unsolved problems in visibility graphs of points, segments and polygons", ACM Comput. Surv. 46:2 (2013), 22:1-22:29. Zbl 1288.05056
[Herzog and Stewart 1971] F. Herzog and B. M. Stewart, "Patterns of visible and nonvisible lattice points", Amer. Math. Monthly 78 (1971), 487-496. MR 44 \#1630 Zbl 0217.03501
[Laison and Schick 2007] J. D. Laison and M. Schick, "Seeing dots: visibility of lattice points", Math. Mag. 80:4 (2007), 274-282. MR 2008j:11079 Zbl 1208.11082
[Nicholson and Sharp 2010] N. Nicholson and R. Sharp, "Weakly viewing lattice points", Involve J. of Math. 3:1 (2010), 9-16. Zbl 1269.11064
nrnicholson@noctrl.edu
rarachan@noctrl.edu

Received: 2014-12-01 Revised: 2015-03-20 Accepted: 2015-04-05
Department of Mathematics, North Central College, 30 North Brainard Street, Naperville, IL 60540, United States

Department of Mathematics, North Central College, 30 North Brainard Street, Naperville, IL 60540, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor
Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2016 is US $\$ 160 /$ year for the electronic version, and $\$ 215 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
E. mathematical sciences publishers
A combinatorial proof of a decomposition property of reduced residue 361systemsYotsanan Meemark and Thanakorn Prinyasart
Strong depth and quasigeodesics in finitely generated groups 367Brian Gapinski, Matthew Horak and Tyler Weber
Generalized factorization in $\mathbb{Z} / m \mathbb{Z}$ 379Austin Mahlum and Christopher Park Mooney
Cocircular relative equilibria of four vortices 395
Jonathan Gomez, Alexander Gutierrez, John Little, Roberto Pelayo and Jesse Robert
On weak lattice point visibility 411Neil R. Nicholson and Rebecca Rachan
Connectivity of the zero-divisor graph for finite rings 415
Reza Akhtar and Lucas Lee
Enumeration of m-endomorphisms 423Louis Rubin and Brian Rushton
Quantum Schubert polynomials for the G_{2} flag manifold 437Rachel E. Elliott, Mark E. Lewers and Leonardo C.Mihalcea
The irreducibility of polynomials related to a question of Schur 453Lenny Jones and Alicia Lamarche
Oscillation of solutions to nonlinear first-order delay differential equations 465
James P. Dix and Julio G. Dix
A variational approach to a generalized elastica problem 483
C. Alex Safsten and Logan C. Tatham
When is a subgroup of a ring an ideal? 503
Sunil K. Chebolu and Christina L. HenryExplicit bounds for the pseudospectra of various classes of matrices and517operatorsFeixue Gong, Olivia Meyerson, Jeremy Meza, MihaiStoiciu and Abigail Ward

1944-4176(2016)9:3;1-2

[^0]: MSC2010: 11H06.

