Enumeration of m-endomorphisms
Louis Rubin and Brian Rushton

Enumeration of m-endomorphisms

Louis Rubin and Brian Rushton
(Communicated by Vadim Ponomarenko)

Abstract

An m-endomorphism on a free semigroup is an endomorphism that sends every generator to a word of length $\leq m$. Two m-endomorphisms are combinatorially equivalent if they are conjugate under an automorphism of the semigroup. In this paper, we specialize an argument of N. G. de Bruijn to produce a formula for the number of combinatorial equivalence classes of m-endomorphisms on a rank- n semigroup. From this formula, we derive several little-known integer sequences.

1. Introduction

Let D be a nonempty set of symbols, and let D^{+}be the set of all finite strings of one or more elements of D. That is, $D^{+}=\left\{d_{1} \cdots d_{k}: k \in \mathbb{N}, d_{i} \in D\right\}$. Paired with the operation of string concatenation, D^{+}forms the free semigroup on D. If $d_{1}, \ldots, d_{k} \in D$, then we refer to the natural number k as the length of the string $d_{1} \cdots d_{k}$. Denote the length of $W \in D^{+}$by $|W|$.

By a semigroup endomorphism (or, simply, an endomorphism) on D^{+}, we mean a mapping $\phi: D^{+} \rightarrow D^{+}$satisfying $\phi\left(W_{1} W_{2}\right)=\phi\left(W_{1}\right) \phi\left(W_{2}\right)$ for all $W_{1}, W_{2} \in D^{+}$. Note that if ϕ is an endomorphism on D^{+}and $d_{1}, \ldots, d_{k} \in D$, then $\phi\left(d_{1} \cdots d_{k}\right)=$ $\phi\left(d_{1}\right) \cdots \phi\left(d_{k}\right)$; this shows that an endomorphism on D^{+}is determined by its action on the elements of D. On the other hand, any mapping $f: D \rightarrow D^{+}$extends uniquely to the endomorphism $\phi_{f}: D^{+} \rightarrow D^{+}$defined by $\phi_{f}\left(d_{1} \cdots d_{k}\right)=f\left(d_{1}\right) \cdots f\left(d_{k}\right)$, and it is straightforward to verify that ϕ_{f} is an automorphism (that is, a bijective endomorphism) precisely when f is a bijection on D.

Example 1. Let $D=\{a, b\}$, and let $f: D \rightarrow D^{+}$be defined by $f(a)=a b$ and $f(b)=a$. Then, for example,

$$
\phi_{f}(a b a b a)=f(a) f(b) f(a) f(b) f(a)=a b a a b a a b
$$

Let $\operatorname{End}\left(D^{+}\right)$be the collection of all endomorphisms on D^{+}, and let $m \in \mathbb{N}$. Then $\phi \in \operatorname{End}\left(D^{+}\right)$is called an m-endomorphism if and only if $|\phi(d)| \leq m$ for

[^0]Keywords: enumeration, free semigroup endomorphisms, semigroup.
all $d \in D$. Note that the mapping ϕ_{f} from Example 1 is an m-endomorphism for all $m \geq 2$. Now let Γ be the set of all m-endomorphisms on D^{+}. That is,

$$
\Gamma=\left\{\phi \in \operatorname{End}\left(D^{+}\right): \phi(D) \subseteq R\right\}
$$

where $R=\left\{W \in D^{+}:|W| \leq m\right\}$. Consider the set Ω consisting of all mappings $f: D \rightarrow R$. Then we may write

$$
\Gamma=\left\{\phi_{f}: f \in \Omega\right\}
$$

We can put the set Γ into one-to-one correspondence with Ω by sending each m-endomorphism to its restriction to D. Moreover, if $|D|=n \in \mathbb{N}$, then the size of these sets is easily evaluated in view of the fact that $|R|=\sum_{i=1}^{m} n^{i}$. In particular, if $n>1$, then $|R|=\left(n^{m+1}-n\right) /(n-1)$, and

$$
|\Gamma|=|\Omega|=\left(\frac{n^{m+1}-n}{n-1}\right)^{n}
$$

However, in this paper we are interested in counting the number of classes of m-endomorphisms under a particular equivalence relation. To motivate our definition of equivalence on Γ, we define a relation \sim on Ω as follows:

$$
f_{1} \sim f_{2} \Longleftrightarrow \text { there exists a bijection } g: D \rightarrow D \text { such that } f_{2} \circ g=\phi_{g} \circ f_{1}
$$

As an exercise, the reader may wish to verify that \sim satisfies the reflexive, symmetric, and transitive properties required of any equivalence relation. In Section 1.1, however, it will be shown that \sim is a specific instance of a well-known equivalence relation induced by a group acting on a nonempty set.
Example 2. Let f be as in Example 1 (with $D=\{a, b\}$). Consider the bijection $g: D \rightarrow D$ defined by $g(a)=b$ and $g(b)=a$. Now let $f_{1}: D \rightarrow D^{+}$be given by $f_{1}(a)=b$ and $f_{1}(b)=b a$. Then

$$
\begin{aligned}
& \left(f_{1} \circ g\right)(a)=f_{1}(g(a))=f_{1}(b)=b a=g(a) g(b)=\phi_{g}(a b)=\phi_{g}(f(a))=\left(\phi_{g} \circ f\right)(a), \\
& \left(f_{1} \circ g\right)(b)=f_{1}(g(b))=f_{1}(a)=b=g(a)=\phi_{g}(a)=\phi_{g}(f(b))=\left(\phi_{g} \circ f\right)(b),
\end{aligned}
$$

which shows that $f \sim f_{1}$.
Remark 3. Perhaps a more intuitive illustration of \sim is as follows. If we let f and f_{1} be as in Example 2, then the respective graphs of f and f_{1} are $\{(a, a b),(b, a)\}$ and $\{(a, b),(b, b a)\}$. But the graph of f_{1} can be obtained by applying the bijection g to each element of D that appears in the graph of f. In other words,

$$
\{(g(a), g(a) g(b)),(g(b), g(a))\}=\{(a, b),(b, b a)\}
$$

Since the graphs of f and f_{1} are "the same" up to a permutation of a and b, we wish to consider these mappings equivalent, and \sim provides the desired equivalence relation.

Extending \sim to an equivalence relation on Γ leads to the following definition. If $f, h \in \Omega$, then ϕ_{f} is combinatorially equivalent to ϕ_{h} if and only if there exists a bijection $g: D \rightarrow D$ such that $\phi_{h} \circ \phi_{g}=\phi_{g} \circ \phi_{f}$. To state precisely the aim of this paper: given a set of symbols D with $|D|=n$, we wish to produce a formula for the number of equivalence classes in Γ under the relation of combinatorial equivalence. To this end, we shall specialize an argument of N. G. de Bruijn [1972] (namely, that used for his Theorem 1) to produce a formula for the number of classes in Ω under the relation \sim. But it is easy to check that for all $f, h \in \Omega$, we have $f \sim h$ if and only if ϕ_{f} is combinatorially equivalent to ϕ_{h}. Hence, there is a well-defined correspondence given by

$$
[f] \leftrightarrow\left[\phi_{f}\right]
$$

between the equivalence classes in Ω and those in Γ, and it follows that our formula will also provide the number of m-endomorphisms on D^{+}up to combinatorial equivalence. Moreover, once this formula is obtained, we can fix one of the variables n, m and let the other run through the natural numbers in order to derive integer sequences, many of which appear to be little-known.
1.1. Group actions. For the reader's convenience, we review group actions. The following material (through Proposition 4) is paraphrased from [Malik et al. 1997]. Let G be a group and S a nonempty set. A left action of G on S is a function

$$
\cdot: G \times S \rightarrow S, \quad(g, s) \mapsto g \cdot s
$$

such that, for all $g_{1}, g_{2} \in G$ and for all $s \in S$,
(1) $\left(g_{1} g_{2}\right) \cdot s=g_{1} \cdot\left(g_{2} \cdot s\right)$, where $g_{1} g_{2}$ denotes the product of g_{1}, g_{2} in G, and
(2) $e \cdot s=s$, where e is the identity element of G.

A left action induces the well-known equivalence relation E on the set S given by

$$
(a, b) \in E \quad \Longleftrightarrow \quad g \cdot a=b \quad \text { for some } g \in G
$$

for all $a, b \in S$. We refer to the equivalence classes under this relation as the orbits of G on S. The following result (known as Burnside's lemma) gives an expression for the number of these, provided that G and S are finite.
Proposition 4 [Malik et al. 1997]. Let S be a finite, nonempty set, and suppose there is a left action of a finite group G on S. Then the number of orbits of G on S is

$$
\frac{1}{|G|} \sum_{g \in G}|\{s \in S: g \cdot s=s\}| .
$$

Thus, the number of orbits of G on S equals the average number of elements of S that are "fixed" by an element of G. We now show that the relation \sim from Section 1 is a specific instance of the relation E described above. To see this, let D
be a finite nonempty set, and let $\operatorname{Sym}(D)$ denote the symmetric group on D (i.e., the group of all bijections on D). Then $\operatorname{Sym}(D)$ acts on the set Ω according to the rule

$$
g \cdot f=\phi_{g} \circ f \circ g^{-1}
$$

for all $g \in \operatorname{Sym}(D), f \in \Omega$. (One can easily verify that • defined in this way is indeed a left action.) Now, for any $f_{1}, f_{2} \in \Omega$, we have

$$
\begin{aligned}
f_{1} \sim f_{2} & \Longleftrightarrow f_{2} \circ g=\phi_{g} \circ f_{1} \text { for some } g \in \operatorname{Sym}(D) \\
& \Longleftrightarrow f_{2}=\phi_{g} \circ f_{1} \circ g^{-1} \text { for some } g \in \operatorname{Sym}(D) \\
& \Longleftrightarrow g \cdot f_{1}=f_{2} \text { for some } g \in \operatorname{Sym}(D) \\
& \Longleftrightarrow\left(f_{1}, f_{2}\right) \in E .
\end{aligned}
$$

It follows that the equivalence classes in Ω under the relation \sim are just the orbits of $\operatorname{Sym}(D)$ on Ω. Enumerating the elements of $\operatorname{Sym}(D)$ by $g_{1}, \ldots, g_{n!}$, we find the number of orbits to be

$$
\begin{equation*}
\frac{1}{n!} \sum_{r=1}^{n!}\left|\left\{f \in \Omega: f \circ g_{r}=\phi_{g_{r}} \circ f\right\}\right| \tag{1}
\end{equation*}
$$

For any permutation g of a finite set, and for each natural number j, let $c(g, j)$ denote the number of cycles of length ${ }^{1} j$ occurring in the cycle decomposition of g. (This notation comes from [de Bruijn 1972].) The quantities $c(g, j)$ will play a role in the evaluation of $\left|\left\{f \in \Omega: f \circ g_{r}=\phi_{g_{r}} \circ f\right\}\right|$, which occurs in the next section. Our evaluation is a modification of de Bruijn's counting argument [1964, § 5.12].

2. Main results

We now produce a formula for the number of equivalence classes in Ω under the relation \sim. Let D be a finite set, and suppose that $g \in \operatorname{Sym}(D)$ is the product of disjoint cycles of lengths $k_{1}, k_{2}, \ldots, k_{\ell}$, where $k_{1} \leq k_{2} \leq \cdots \leq k_{\ell}$. Then the sequence $k_{1}, k_{2}, \ldots, k_{\ell}$ is called the cycle type of g. For example, if $D=\{a, b, c, d, e\}$, then the permutation $g=(a)(b, c)(d, e)$ has cycle type $1,2,2$. The following lemma will be useful.
Lemma 5. Let D be a finite set, and let $g \in \operatorname{Sym}(D)$ have cycle type $k_{1}, k_{2}, \ldots, k_{\ell}$. For each $1 \leq i \leq \ell$, select a single $d_{i} \in D$ from the cycle corresponding to k_{i}. (Thus, k_{i} is the smallest natural number such that $g^{k_{i}}\left(d_{i}\right)=d_{i}$.) Now suppose that $f \in \Omega$. Then $f \circ g=\phi_{g} \circ f$ if and only if for each $1 \leq i \leq \ell$,
(1) $\left(f \circ g^{j}\right)\left(d_{i}\right)=\left(\phi_{g}^{j} \circ f\right)\left(d_{i}\right)$ for all $j \in \mathbb{N}$,
(2) $f\left(d_{i}\right)$ is of the form $d_{1}^{\prime} \cdots d_{k \leq m}^{\prime}$, where $d_{1}^{\prime}, \ldots, d_{k}^{\prime} \in D$ each belong to a cycle in g whose length divides k_{i}.

[^1]Proof. First assume that $f \circ g=\phi_{g} \circ f$. Then condition (1) follows from an inductive argument. But $f\left(d_{i}\right)=f\left(g^{k_{i}}\left(d_{i}\right)\right)=\phi_{g}^{k_{i}}\left(f\left(d_{i}\right)\right)$. Write $f\left(d_{i}\right)=d_{1}^{\prime} \cdots d_{k}^{\prime}$, where $d_{1}^{\prime}, \ldots, d_{k}^{\prime} \in D$ and $k \leq m$. Then

$$
d_{1}^{\prime} \cdots d_{k}^{\prime}=\phi_{g}^{k_{i}}\left(d_{1}^{\prime} \cdots d_{k}^{\prime}\right)=g^{k_{i}}\left(d_{1}^{\prime}\right) \cdots g^{k_{i}}\left(d_{k}^{\prime}\right)
$$

In particular, for each $1 \leq t \leq k$, we have $d_{t}^{\prime}=g^{k_{i}}\left(d_{t}^{\prime}\right)$. This implies that

$$
\left(d_{t}^{\prime}, g\left(d_{t}^{\prime}\right), g^{2}\left(d_{t}^{\prime}\right), \ldots, g^{k_{i}-1}\left(d_{t}^{\prime}\right)\right)
$$

is a cycle whose length divides k_{i}. The conclusion follows.
Conversely, suppose that condition (1) holds. (Condition (2) is superfluous here.) Let $d \in D$. Then there exist $i, j \in \mathbb{N}$ such that $d=g^{j}\left(d_{i}\right)$. Now,

$$
\begin{aligned}
f(g(d))=f\left(g\left(g^{j}\left(d_{i}\right)\right)\right) & =f\left(g^{1+j}\left(d_{i}\right)\right) \\
& =\phi_{g}^{1+j}\left(f\left(d_{i}\right)\right)=\phi_{g}\left(\phi_{g}^{j}\left(f\left(d_{i}\right)\right)\right)=\phi_{g}\left(f\left(g^{j}\left(d_{i}\right)\right)\right)=\phi_{g}(f(d))
\end{aligned}
$$

Therefore, $f \circ g=\phi_{g} \circ f$, so the proof is complete.
Once again, suppose that $|D|=n$, and label the elements of $\operatorname{Sym}(D)$ by $g_{1}, \ldots, g_{n!}$. For each $1 \leq r \leq n!$, we can find the number of $f \in \Omega$ satisfying

$$
\begin{equation*}
f \circ g_{r}=\phi_{g_{r}} \circ f \tag{2}
\end{equation*}
$$

Suppose that g_{r} has cycle type $k_{r 1}, k_{r 2}, \ldots, k_{r \ell_{r}}$. For each $1 \leq i \leq \ell_{r}$, select a single element $d_{r i} \in D$ from the cycle corresponding to $k_{r i}$. Then Lemma 5 implies that any $f \in \Omega$ satisfying (2) is determined by its values on each $d_{r i}$. Hence, to find the number of f satisfying (2), we need only count the number of possible images of $d_{r i}$ under such an f, and then take the product over all i. But the m or fewer elements of D comprising the string $f\left(d_{r i}\right)$ must each belong to a cycle in the decomposition of g_{r} whose length divides $k_{r i}$. For each $1 \leq k \leq m$, there are

$$
\left(\sum_{j \mid k_{r i}} j c\left(g_{r}, j\right)\right)^{k}
$$

choices of $f\left(d_{r i}\right)$ such that $\left|f\left(d_{r i}\right)\right|=k$. Hence, there are

$$
\sum_{k=1}^{m}\left(\sum_{j \mid k_{r i}} j c\left(g_{r}, j\right)\right)^{k}
$$

total choices of $f\left(d_{r i}\right)$. Taking the product over all i, it follows that the number of f satisfying (2) is

$$
\begin{equation*}
\prod_{i=1}^{\ell_{r}}\left(\sum_{k=1}^{m}\left(\sum_{j \mid k_{r i}} j c\left(g_{r}, j\right)\right)^{k}\right) \tag{3}
\end{equation*}
$$

Thus, we've evaluated $\left|\left\{f \in \Omega: f \circ g_{r}=\phi_{g_{r}} \circ f\right\}\right|$, and putting together (1) and (3) gives an expression for the number of equivalence classes in Ω under the relation \sim. Recalling that these classes are in one-to-one correspondence with the classes in Γ under the relation of combinatorial equivalence, we obtain our main result:
Theorem 6. If $|D|=n$, then the number of m-endomorphisms on D^{+}, up to combinatorial equivalence, is the value of

$$
\begin{equation*}
\frac{1}{n!} \sum_{r=1}^{n!}\left(\prod_{i=1}^{\ell_{r}}\left(\sum_{k=1}^{m}\left(\sum_{j \mid k_{r i}} j c\left(g_{r}, j\right)\right)^{k}\right)\right) \tag{4}
\end{equation*}
$$

where $g_{1}, \ldots, g_{n!}$ are the elements of $\operatorname{Sym}(D)$, and $k_{r 1}, \ldots, k_{r \ell_{r}}$ is the cycle type of g_{r}.
Example 7. Let $D=\{a, b\}$. We find the number of classes of 1-endomorphisms on D^{+}. The elements of $\operatorname{Sym}(D)$ (in cycle notation) are $g_{1}=(a)(b)$ and $g_{2}=(a, b)$. Evidently, $c\left(g_{1}, 1\right)=2, c\left(g_{2}, 1\right)=0$, and $c\left(g_{2}, 2\right)=1$. Using Theorem 6, there are

$$
\frac{1}{2}\left(c\left(g_{1}, 1\right)^{2}+2 c\left(g_{2}, 2\right)\right)=\frac{1}{2}\left(2^{2}+2\right)=3
$$

classes of 1-endomorphisms on D^{+}. These are given by

$$
\left\{\begin{array}{l}
a \rightarrow a \\
b \rightarrow b
\end{array}\right\}, \quad\left\{\begin{array}{l}
a \rightarrow b \\
b \rightarrow a
\end{array}\right\} \quad \text { and } \quad\left\{\begin{array}{l}
a \rightarrow a \\
b \rightarrow a
\end{array} \equiv \begin{array}{l}
a \rightarrow b \\
b \rightarrow b
\end{array}\right\}
$$

We can extend the result of Example 7 by fixing $n=2$ and letting m be arbitrary. From (4), we find that the number of classes of m-endomorphisms on D^{+}, where $|D|=2$, is

$$
\frac{1}{2}\left(\left(2^{m+1}-2\right)^{2}+\left(2^{m+1}-2\right)\right)
$$

Running m through the natural numbers, we obtain values $3,21,105,465,1953, \ldots$ This is the sequence A134057 in the On-line Encyclopedia of Integers [OEIS 1996]. However, for $n=3$, the number of classes of m-endomorphisms becomes

$$
\frac{1}{6}\left(\left(\frac{3^{m+1}-3}{2}\right)^{3}+3 m \frac{3^{m+1}-3}{2}+2 \frac{3^{m+1}-3}{2}\right)
$$

Letting $m=1,2,3,4, \ldots$ gives values $7,304,9958,288280, \ldots$ This sequence appears to be little-known, and has been submitted by the authors to the OEIS.
2.1. An alternative formulation of Theorem 6. We now present a slight rewording of Theorem 6. In order to compute the number of equivalence classes of m-endomorphisms (where $|D|=n$), we need not, in practice, consider each element of $\operatorname{Sym}(D)$ individually. Rather, we need only consider the cycle types of these permutations. The following well-known result gives the number of permutations in $\operatorname{Sym}(D)$ of a given cycle type.

Proposition 8 [Dummit and Foote 2004]. Let $|D|=n$, and let $g \in \operatorname{Sym}(D)$. Suppose that $m_{1}, m_{2}, \ldots, m_{s}$ are the distinct integers appearing in the cycle type of g. For each $j \in\{1,2, \ldots, s\}$, abbreviate $c_{j}=c\left(g, m_{j}\right)$. Let C_{g} be the set of all permutations in $\operatorname{Sym}(D)$ whose cycle type is that of g. Then

$$
\begin{equation*}
\left|C_{g}\right|=\frac{n!}{\prod_{j=1}^{s} c_{j}!m_{j}^{c_{j}}} \tag{5}
\end{equation*}
$$

For convenience, we shall say that $g \in \operatorname{Sym}(D)$ fixes the mapping $f \in \Omega$ if and only if $f \circ g=\phi_{g} \circ f$. Now, two bijections in $\operatorname{Sym}(D)$ with the same cycle type must fix the same number of $f \in \Omega$. Therefore, in order to derive an expression for the number of classes of m-endomorphisms on D^{+}, we can select a single representative in $\operatorname{Sym}(D)$ of each possible cycle type, then determine the number of $f \in \Omega$ fixed by each representative using expression (3), multiply this number by the corresponding value of (5), and then sum up over all of our representatives and divide by n !. But the cycle types in $\operatorname{Sym}(D)$ are precisely the integer partitions of n, namely, the nondecreasing sequences of natural numbers whose sum is n. If $p(n)$ denotes the number of integer partitions of n, then we may restate Theorem 6 as follows.

Corollary 9. Let $|D|=n$, and suppose that $g_{1}, \ldots, g_{p(n)} \in \operatorname{Sym}(D)$ have distinct cycle types. Then the number of m-endomorphisms on D^{+}, up to combinatorial equivalence, is the value of

$$
\begin{equation*}
\frac{1}{n!} \sum_{r=1}^{p(n)}\left(\left|C_{g_{r}}\right| \prod_{i=1}^{\ell_{r}}\left(\sum_{k=1}^{m}\left(\sum_{j \mid k_{r i}} j c\left(g_{r}, j\right)\right)^{k}\right)\right) \tag{6}
\end{equation*}
$$

where $k_{r 1}, \ldots, k_{r \ell_{r}}$ is the cycle type of g_{r}, and $C_{g_{r}}$ is as in Proposition 8.
Example 10. To illustrate Corollary 9, we compute the number of classes of m-endomorphisms when $|D|=4$. Let $D=\{a, b, c, d\}$. As previously mentioned, the cycle types in $\operatorname{Sym}(D)$ are the integer partitions of 4:

$$
1+1+1+1, \quad 1+1+2, \quad 2+2, \quad 1+3, \quad 4
$$

Hence, the bijections

$$
\begin{gathered}
g_{1}=(a)(b)(c)(d), \quad g_{2}=(a)(b)(c, d), \quad g_{3}=(a, b)(c, d) \\
g_{4}=(a)(b, c, d), \quad g_{5}=(a, b, c, d)
\end{gathered}
$$

encompass all possible cycle types in $\operatorname{Sym}(D)$. Direct calculation using (5) yields

$$
\left|C_{g_{1}}\right|=1, \quad\left|C_{g_{2}}\right|=6, \quad\left|C_{g_{3}}\right|=3, \quad\left|C_{g_{4}}\right|=8, \quad\left|C_{g_{5}}\right|=6 .
$$

Thus, by Corollary 9 , the number of classes of m-endomorphisms when $n=4$ is

$$
\frac{1}{24}\left(\Lambda_{4}^{4}+6 \Lambda_{2}^{2} \Lambda_{4}+3 \Lambda_{4}^{2}+8 m \Lambda_{4}+6 \Lambda_{4}\right)
$$

where $\Lambda_{k}=\left(k^{m+1}-k\right) /(k-1)$.

	$n=1$	$n=2$	$n=3$	$n=4$
$m=1$	1	3	7	19
$m=2$	2	21	304	6,915
$m=3$	3	105	9,958	$2,079,567$
$m=4$	4	465	288,280	$556,898,155$
$m=5$	5	1,953	$7,973,053$	$144,228,436,231$
$m=6$	6	8,001	$217,032,088$	$37,030,504,349,475$

	$n=5$	$n=6$
$m=1$	47	130
$m=2$	207,258	$7,773,622$
$m=3$	$746,331,322$	$409,893,967,167$
$m=4$	$2,406,091,382,736$	$19,560,646,482,079,624$
$m=5$	$7,567,019,254,708,782$	$916,131,223,607,107,471,135$
$m=6$	$23,677,181,825,841,420,408$	$42,770,482,829,102,570,213,645,988$

Table 1. Values of (6) for $n, m \leq 6$.
Proceeding along the lines of Example 10, we find that there are

$$
\frac{1}{120}\left(\Lambda_{5}^{5}+10 \Lambda_{3}^{3} \Lambda_{5}+15 m \Lambda_{5}^{2}+20 \Lambda_{2}^{2} \Lambda_{5}+20 \Lambda_{2} \Lambda_{3}+30 m \Lambda_{5}+24 \Lambda_{5}\right)
$$

classes of m-endomorphisms when $n=5$, and

$$
\begin{aligned}
& \frac{1}{720}\left(\Lambda_{6}{ }^{6}+15 \Lambda_{4}^{4} \Lambda_{6}+45 \Lambda_{2}^{2} \Lambda_{6}^{2}+15 \Lambda_{6}^{3}+40 \Lambda_{3}^{3} \Lambda_{6}\right. \\
& \left.\quad+120 m \Lambda_{3} \Lambda_{4}+40 \Lambda_{6}^{2}+90 \Lambda_{2}^{2} \Lambda_{6}+90 \Lambda_{2} \Lambda_{6}+144 m \Lambda_{6}+120 \Lambda_{6}\right)
\end{aligned}
$$

classes of m-endomorphisms when $n=6$. Letting m run through \mathbb{N} in these cases, we again obtain sequences that are not well-known. Table 1 displays the values of (6) for $n, m \leq 6$.

Remark 11. The sequence $1,3,7,19,47,130, \ldots$ is sequence A001372 in [OEIS 1996].

3. Two natural variations

In this section, we highlight two natural variations of Corollary 9. First, we restrict our attention to endomorphisms on D^{+}that send each element of D to a string of length exactly m. We then consider m-endomorphisms of the so-called free monoid, which contains the empty string. Expressions analogous to those in Section 2 are derived in each case.
3.1. m-uniform endomorphisms. Fix $n, m \in \mathbb{N}$, and suppose that $|D|=n$. Then $\phi \in \operatorname{End}\left(D^{+}\right)$is called an m-uniform endomorphism if and only if $|\phi(d)|=m$ for
each $d \in D$. In this section, we produce a formula for the number of m-uniform endomorphisms on D^{+}up to combinatorial equivalence. To begin, let $g_{1}, \ldots, g_{p(n)} \in$ $\operatorname{Sym}(D)$ have distinct cycle types. We now put $R=\left\{W \in D^{+}:|W|=m\right\}$ and take Ω to be the set of all mappings of D into R. For each $1 \leq r \leq p(n)$, we ask for the number of $f \in \Omega$ satisfying

$$
f \circ g_{r}=\phi_{g_{r}} \circ f
$$

Once again, if g_{r} has cycle type $k_{r 1}, \ldots, k_{r \ell_{r}}$, then for each $1 \leq i \leq \ell_{r}$ we select an element $d_{r i}$ from the cycle corresponding to $k_{r i}$, and count the number of possible values of $f\left(d_{r i}\right)$. In this case, we must have $\left|f\left(d_{r i}\right)\right|=m$, where the elements of D comprising the string $f\left(d_{r i}\right)$ each belong to a cycle whose length divides $k_{r i}$. Hence, there are

$$
\left(\sum_{j \mid k_{r i}} j c\left(g_{r}, j\right)\right)^{m}
$$

choices of $f\left(d_{r i}\right)$, and multiplying over all i yields

$$
\prod_{i=1}^{\ell_{r}}\left(\sum_{j \mid k_{r i}} j c\left(g_{r}, j\right)\right)^{m}
$$

as the value of $\left|\left\{f \in \Omega: f \circ g_{r}=\phi_{g_{r}} \circ f\right\}\right|$. Noting that permutations in $\operatorname{Sym}(D)$ of the same cycle type fix the same number of $f \in \Omega$, we multiply by $\left|C_{g_{r}}\right|$, sum with respect to r, and divide by $n!$ to obtain the following.

Corollary 12. If $|D|=n$ and $g_{1}, \ldots, g_{p(n)} \in \operatorname{Sym}(D)$ have distinct cycle types, then the number of m-uniform endomorphisms on D^{+}, up to combinatorial equivalence, is the value of

$$
\begin{equation*}
\frac{1}{n!} \sum_{r=1}^{p(n)}\left(\left|C_{g_{r}}\right| \prod_{i=1}^{\ell_{r}}\left(\sum_{j \mid k_{r i}} j c\left(g_{r}, j\right)\right)^{m}\right) \tag{7}
\end{equation*}
$$

where $k_{r 1}, \ldots, k_{r \ell_{r}}$ is the cycle type of g_{r}, and $C_{g_{r}}$ is as in Proposition 8.
When $n=2$, the number of m-uniform endomorphisms on D^{+}, up to combinatorial equivalence, is

$$
\frac{1}{2}\left(2^{2 m}+2^{m}\right)
$$

Letting $m=1,2,3,4, \ldots$ gives values $3,10,36,136, \ldots$ This is the sequence A007582 from [OEIS 1996]. Moreover, when $n=3$ there are

$$
\frac{1}{6}\left(3^{3 m}+3 \cdot 3^{m}+2 \cdot 3^{m}\right)
$$

classes of m-uniform endomorphisms, and letting m run through \mathbb{N} gives the sequence $7,129,3303,88641, \ldots$, which is not well known. Continuing, the

	$n=1$	$n=2$	$n=3$	$n=4$
$m=1$	1	3	7	19
$m=2$	1	10	129	2,836
$m=3$	1	36	3,303	700,624
$m=4$	1	136	88,641	$178,981,696$
$m=5$	1	528	$7,973,053$	$45,813,378,304$
$m=6$	1	2,080	$64,570,689$	$11,728,130,323,456$

	$n=5$	$n=6$
$m=1$	47	130
$m=2$	83,061	$3,076,386$
$m=3$	$254,521,561$	$141,131,630,530$
$m=4$	$794,756,352,216$	$6,581,201,266,858,896$
$m=5$	$2,483,530,604,092,546$	$307,047,288,863,992,988,160$
$m=6$	$7,761,021,959,623,948,401$	$14,325,590,271,500,876,382,987,456$

Table 2. Values of (7) for $n, m \leq 6$.
expressions when $n=4,5,6$ are

$$
\begin{gathered}
\frac{1}{24}\left(4^{4 m}+6 \cdot 2^{2 m} \cdot 4^{m}+3 \cdot 4^{2 m}+8 \cdot 4^{m}+6 \cdot 4^{m}\right) \\
\frac{1}{120}\left(5^{5 m}+10 \cdot 3^{3 m} \cdot 5^{m}+15 \cdot 5^{2 m}+20 \cdot 2^{2 m} \cdot 5^{m}+20 \cdot 2^{m} \cdot 3^{m}+30 \cdot 5^{m}+24 \cdot 5^{m}\right) \\
\frac{1}{720}\left(6^{6 m}+15 \cdot 4^{4 m} \cdot 6^{m}+45 \cdot 2^{2 m} \cdot 6^{2 m}+15 \cdot 6^{3 m}+40 \cdot 3^{3 m} \cdot 6^{m}\right. \\
\left.+120 \cdot 3^{m} \cdot 4^{m}+40 \cdot 6^{2 m}+90 \cdot 2^{2 m} \cdot 6^{m}+90 \cdot 2^{m} \cdot 6^{m}+144 \cdot 6^{m}+120 \cdot 6^{m}\right)
\end{gathered}
$$

respectively. Table 2 displays the values of (7) for $n, m \leq 6$.
3.2. The free monoid. If we adjoin the unique string of length 0 (denoted by ϵ) to the set D^{+}, then we form the set D^{*}. Paired with the operation of string concatenation, D^{*} forms the free monoid on D. We refer to ϵ as the empty string, and it serves as the identity element in D^{*}. That is, for any $W \in D^{*}$,

$$
W \epsilon=W=\epsilon W .
$$

We define an endomorphism on D^{*} to be a mapping $\phi: D^{*} \rightarrow D^{*}$ such that $\phi\left(W_{1} W_{2}\right)=\phi\left(W_{1}\right) \phi\left(W_{2}\right)$ for all $W_{1}, W_{2} \in D^{*}$.
Remark 13. Note that if ϕ is an endomorphism on D^{*}, then $\phi(\epsilon)=\epsilon$. This follows since for any $W \in D^{*}$, we have

$$
\phi(W)=\phi(\epsilon W)=\phi(\epsilon) \phi(W)
$$

which implies that $\phi(\epsilon)$ has length 0 .

Now, an m-endomorphism on D^{*} is an endomorphism such that $|\phi(d)| \leq m$ for all $d \in D$. Thus, an m-endomorphism on D^{*} can map elements of D to ϵ. To determine the number of m-endomorphisms on D^{*} up to combinatorial equivalence, we put $R=\left\{W \in D^{*}:|W| \leq m\right\}$, and for each $g \in \operatorname{Sym}(D)$, we ask for the number of $f: D \rightarrow R$ that are fixed by g. Again, it suffices to count the number of possible images under such an f of a single $d \in D$ from each cycle in the decomposition of g, and then multiply over all the cycles. But there is now one additional possible value of $f(d)$: the empty string. Hence, if d belongs to a cycle of length k_{i}, then we have

$$
1+\sum_{k=1}^{m}\left(\sum_{j \mid k_{i}} j c\left(g_{r}, j\right)\right)^{k}=\sum_{k=0}^{m}\left(\sum_{j \mid k_{i}} j c\left(g_{r}, j\right)\right)^{k}
$$

choices of $f(d)$. From this observation, we deduce the following.
Corollary 14. Let $|D|=n$, and suppose that $g_{1}, \ldots, g_{p(n)} \in \operatorname{Sym}(D)$ have distinct cycle types. Then the number of m-endomorphisms on D^{*}, up to combinatorial equivalence, is the value of

$$
\begin{equation*}
\frac{1}{n!} \sum_{r=1}^{p(n)}\left(\left|C_{g_{r}}\right| \prod_{i=1}^{\ell_{r}}\left(\sum_{k=0}^{m}\left(\sum_{j \mid k_{r i}} j c\left(g_{r}, j\right)\right)^{k}\right)\right) \tag{8}
\end{equation*}
$$

where $k_{r 1}, \ldots, k_{r \ell_{r}}$ is the cycle type of g_{r}, and $C_{g_{r}}$ is as in Proposition 8.
When $n=2$, the number of m-endomorphisms on D^{*}, up to combinatorial equivalence, is

$$
\frac{1}{2}\left(\left(2^{m+1}-1\right)^{2}+\left(2^{m+1}-1\right)\right)
$$

This is sequence A006516 from [OEIS 1996]. The corresponding expressions for $n=3,4,5,6$ are

$$
\begin{gathered}
\frac{1}{6}\left(\Delta_{3}^{3}+3(m+1) \Delta_{3}+2 \Delta_{3}\right), \\
\frac{1}{24}\left(\Delta_{4}^{4}+6 \Delta_{2}^{2} \Delta_{4}+3 \Delta_{4}^{2}+8(m+1) \Delta_{4}+6 \Delta_{4}\right), \\
\frac{1}{120}\left(\Delta_{5}{ }^{5}+10 \Delta_{3}^{3} \Delta_{5}+15(m+1) \Delta_{5}^{2}+20 \Delta_{2}^{2} \Delta_{5}+20 \Delta_{2} \Delta_{3}+30(m+1) \Delta_{5}+24 \Delta_{5}\right), \\
\frac{1}{720}\left(\Delta_{6}{ }^{6}+15 \Delta_{4}{ }^{4} \Delta_{6}+45 \Delta_{2}^{2} \Delta_{6}^{2}+15 \Delta_{6}^{3}+40 \Delta_{3}{ }^{3} \Delta_{6}+120(m+1) \Delta_{3} \Delta_{4}\right. \\
\left.+40 \Delta_{6}^{2}+90 \Delta_{2}^{2} \Delta_{6}+90 \Delta_{2} \Delta_{6}+144(m+1) \Delta_{6}+120 \Delta_{6}\right),
\end{gathered}
$$

where $\Delta_{k}=\left(k^{m+1}-1\right) /(k-1)$. Once again, the sequences given by these expressions appear to be little-known. Table 3 gives the values of (8) for $n, m \leq 6$.

4. (χ, ζ)-patterns

In closing, we briefly place the relation \sim from Section 1 into a more general context. Let G be a finite group, and let N and M be finite nonempty sets. Suppose

	$n=1$	$n=2$	$n=3$	$n=4$
$m=1$	2	6	16	45
$m=2$	3	28	390	8,442
$m=3$	4	120	10,760	$2,180,845$
$m=4$	5	496	295,603	$563,483,404$
$m=5$	6	2,016	$8,039,304$	$144,651,898,755$
$m=6$	7	8,128	$217,629,416$	$37,057,640,711,850$

	$n=5$	$n=6$
$m=1$	121	338
$m=2$	244,910	$8,967,034$
$m=3$	$770,763,470$	$419,527,164,799$
$m=4$	$2,421,556,983,901$	$19,636,295,549,860,505$
$m=5$	$2,370,422,688,990,078$	$916,720,535,022,517,503,173$
$m=6$	$23,683,244,198,577,149,289$	$42,775,066,732,111,188,868,070,978$

Table 3. Values of (8) for $n, m \leq 6$.
that $\chi: G \rightarrow \operatorname{Sym}(N)$ and $\zeta: G \rightarrow \operatorname{Sym}(M)$ are group homomorphisms. Denote the set of all functions from N into M by M^{N}. This notation comes from de Bruijn [1972], who also introduced the equivalence relation $E_{\chi, \zeta}$ on M^{N} defined by

$$
\left(f_{1}, f_{2}\right) \in E_{\chi, \zeta} \Longleftrightarrow f_{2} \circ \chi(\gamma)=\zeta(\gamma) \circ f_{1} \text { for some } \gamma \in G
$$

Example 15 [de Bruijn 1972]. Suppose that N is a set of size $n \in \mathbb{N}$, and define an equivalence relation S on the set of all mappings of N into itself by

$$
\left(f_{1}, f_{2}\right) \in S \Longleftrightarrow f_{2} \circ \gamma=\gamma \circ f_{1} \text { for some } \gamma \in \operatorname{Sym}(N)
$$

Letting $G=\operatorname{Sym}(N), M=N$, and $\chi=\zeta$ be the identity homomorphism on $\operatorname{Sym}(N)$ shows that S is a special case of the relation $E_{\chi, \zeta}$. Moreover, the sequence in Remark 11 gives the number of equivalence classes under S for $n=1,2,3 \ldots$. (See [de Bruijn 1972, § 3].)

The relation $E_{\chi, \zeta}$ stems from the left action of G on M^{N} given by

$$
\gamma \cdot f=\zeta(\gamma) \circ f \circ \chi\left(\gamma^{-1}\right)
$$

for all $\gamma \in G, f \in M^{N}$. De Bruijn [1972] referred to the orbits of G on M^{N} as (χ, ζ)-patterns, and provided a formula for the number of these by applying Burnside's lemma, and then evaluating $\left|\left\{f \in M^{N}: \gamma \cdot f=f\right\}\right|$ for each $\gamma \in G$. But the relation \sim on the set $\Omega=$ \{mappings of D into $R\}$, where $0<|D|<\infty$ and $R=\left\{W \in D^{+}:|W| \leq m\right\}$, is a special instance of the relation $E_{\chi, \zeta}$. To see this,
take $N=D, M=R$, and $G=\operatorname{Sym}(D)$. Let χ be the identity homomorphism on $\operatorname{Sym}(D)$, and define $\zeta: G \rightarrow \operatorname{Sym}(R)$ by

$$
\zeta(g)=\left.\phi_{g}\right|_{R}
$$

for all $g \in \operatorname{Sym}(D)$. Then for any $g, g^{\prime} \in \operatorname{Sym}(D)$,

$$
\zeta\left(g \circ g^{\prime}\right)=\phi_{g \circ g^{\prime}}\left|R=\left(\phi_{g} \circ \phi_{g^{\prime}}\right)\right|_{R}=\left.\left.\phi_{g}\right|_{R} \circ \phi_{g^{\prime}}\right|_{R}=\zeta(g) \circ \zeta\left(g^{\prime}\right),
$$

so ζ is a group homomorphism. Now, for any $f_{1}, f_{2} \in \Omega$, we have

$$
\begin{aligned}
f_{1} \sim f_{2} & \Longleftrightarrow f_{2} \circ g=\phi_{g} \circ f_{1}=\left.\phi_{g}\right|_{R} \circ f_{1} \text { for some } g \in \operatorname{Sym}(D) \\
& \Longleftrightarrow f_{2} \circ \chi(g)=\zeta(g) \circ f_{1} \text { for some } g \in \operatorname{Sym}(D) \\
& \Longleftrightarrow\left(f_{1}, f_{2}\right) \in E_{\chi, \zeta} .
\end{aligned}
$$

It follows that the equivalence classes in Ω under the relation \sim are (χ, ζ)-patterns for χ, ζ chosen as above. In particular, our Theorem 6 is a special case of de Bruijn's formula.

Acknowledgments

We thank the anonymous referee, whose numerous observations and suggestions led to substantial revision. This research was supported by Temple University's Undergraduate Research Program.

References

[de Bruijn 1964] N. G. de Bruijn, "Pólya’s theory of counting", pp. 144-184 in Applied combinatorial mathematics, edited by E. F. Bechenbach, Wiley, New York, 1964. Zbl 0144.00601
[de Bruijn 1972] N. G. de Bruijn, "Enumeration of mapping patterns", J. Combinatorial Theory Ser. A 12:1 (1972), 14-20. MR 0284357 Zbl 0239.05007
[Dummit and Foote 2004] D. S. Dummit and R. M. Foote, Abstract algebra, 3rd ed., Wiley, Hoboken, NJ, 2004. MR 2286236 Zbl 1037.00003
[Malik et al. 1997] D. S. Malik, J. N. Mordeson, and M. Sen, Fundamentals of abstract algebra, McGraw-Hill, New York, 1997.
[OEIS 1996] OEIS, "The on-line encyclopedia of integer sequences", 1996, available at http:// oeis.org.

Received: 2015-02-06
Revised: 2015-07-14 Accepted: 2015-07-20

rubinlj@slu.edu	Department of Mathematics and Computer Science,
	St. Louis University, 220 North Grand Boulevard,
	St. Louis, MO 63103, United States
brirush@mathematics.byu.edu	Department of Mathematics, Brigham Young University, 268 TMCB, Provo, UT 84602, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor
Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2016 is US $\$ 160 /$ year for the electronic version, and $\$ 215 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
E. mathematical sciences publishers
A combinatorial proof of a decomposition property of reduced residue 361systemsYotsanan Meemark and Thanakorn Prinyasart
Strong depth and quasigeodesics in finitely generated groups 367Brian Gapinski, Matthew Horak and Tyler Weber
Generalized factorization in $\mathbb{Z} / m \mathbb{Z}$ 379Austin Mahlum and Christopher Park Mooney
Cocircular relative equilibria of four vortices 395
Jonathan Gomez, Alexander Gutierrez, John Little, Roberto Pelayo and Jesse Robert
On weak lattice point visibility 411Neil R. Nicholson and Rebecca Rachan
Connectivity of the zero-divisor graph for finite rings 415
Reza Akhtar and Lucas Lee
Enumeration of m-endomorphisms 423Louis Rubin and Brian Rushton
Quantum Schubert polynomials for the G_{2} flag manifold 437Rachel E. Elliott, Mark E. Lewers and Leonardo C.Mihalcea
The irreducibility of polynomials related to a question of Schur 453Lenny Jones and Alicia Lamarche
Oscillation of solutions to nonlinear first-order delay differential equations 465
James P. Dix and Julio G. Dix
A variational approach to a generalized elastica problem 483
C. Alex Safsten and Logan C. Tatham
When is a subgroup of a ring an ideal? 503
Sunil K. Chebolu and Christina L. HenryExplicit bounds for the pseudospectra of various classes of matrices and517operatorsFeixue Gong, Olivia Meyerson, Jeremy Meza, MihaiStoiciu and Abigail Ward

1944-4176(2016)9:3;1-2

[^0]: MSC2010: primary 05A99; secondary 20M15.

[^1]: ${ }^{1}$ There should be no confusion between the notions of "string length" and "cycle length".

