

a journal of mathematics

Quantum Schubert polynomials for the G_2 flag manifold

Rachel E. Elliott, Mark E. Lewers and Leonardo C. Mihalcea

Quantum Schubert polynomials for the G_2 flag manifold

Rachel E. Elliott, Mark E. Lewers and Leonardo C. Mihalcea

(Communicated by Jim Haglund)

We study some combinatorial objects related to the flag manifold X of Lie type G_2 . Using the moment graph of X, we calculate all the curve neighborhoods for Schubert classes. We use this calculation to investigate the ordinary and quantum cohomology rings of X. As an application, we obtain positive Schubert polynomials for the cohomology ring of X and we find quantum Schubert polynomials which represent Schubert classes in the quantum cohomology ring of X.

1. Introduction

One of the major theorems in algebra is the classification of complex semisimple Lie algebras. There are four classical infinite series (of types A_n , B_n , C_n , D_n) and five exceptional finite series (of types E_6 , E_7 , E_8 , F_4 , G_2). To each algebra, one can associate a group and to each group a certain geometric object called a flag manifold. In type A_n , the points of this flag manifold are sequences $V_1 \subset V_2 \subset \cdots \subset \mathbb{C}^n$ of vector spaces V_i of dimension i. The algebra of type G_2 is considered the simplest among the exceptional series, and we denote by X the flag manifold for type G_2 . The study of flag manifolds has a long and rich history starting in the 1950s, and it lies at the intersection of algebraic geometry, combinatorics, topology and representation theory.

One can associate a ring to the flag manifold X called the cohomology ring $H^*(X)$. This ring has a distinguished basis given by Schubert classes σ_w , indexed by the elements w in the Weyl group W of type G_2 ; see Section 4 below. We recall that W is actually isomorphic to the dihedral group with 12 elements, although we will use a different realization of it which is more suitable for our purposes. This ring is generated by Schubert classes σ_{s_1} , σ_{s_2} for the simple reflections s_1 , s_2 in W. Therefore, at least in principle, the full multiplication table in the ring is determined by a formula to multiply one Schubert class by another for either s_1 or s_2 . This is called a *Chevalley formula*. There has been a substantial amount of work to find

MSC2010: primary 14N15; secondary 14M15, 14N35, 05E15.

Keywords: quantum cohomology, Schubert polynomial, G_2 flag manifold.

Mihalcea was supported in part by NSA Young Investigator Award H98230-13-1-0208.

Chevalley formulas for this ring, starting with Chevalley [1994] in the 1950s. This formula can be expressed combinatorially in terms of the root system and the Weyl group for type G_2 . Alternatively, the cohomology ring has a "Borel" presentation $H^*(X) = \mathbb{Q}[x_1, x_2]/I$, where I is the ideal generated by $x_1^2 - x_1x_2 + x_2^2$ and x_1^6 . A natural question is to find out what is the relation between this "algebraic" presentation and the "geometric" one which involves the Schubert basis. In other words, one needs to find a polynomial in $\mathbb{Q}[x_1, x_2]$ which represents a Schubert class σ_w under the isomorphism $H^*(X) = \mathbb{Q}[x_1, x_2]$. This is called a *Schubert polynomial*. Such polynomials are not unique, as their class in $\mathbb{Q}[x_1, x_2]/I$ is unchanged if one changes a polynomial by elements in I. In Section 5, we use the Chevalley rule to find Schubert polynomials for σ_w . Some of our polynomials coincide with similar Schubert polynomials found by D. Anderson [2011], via different methods. The polynomials we found are homogeneous and have *positive* coefficients. Given that the positivity of Schubert polynomial coefficients has geometric interpretations in type A_n (see the paper of A. Knutson and E. Miller [2005]), this is a desirable property.

The current paper also focuses on a deformation of the ring above called the *quantum cohomology ring* QH*(X). It is a deformation of H*(X) with the addition of quantum parameters $q^d = q_1^{d_1} q_2^{d_2}$ for degrees $d = (d_1, d_2)$. If d = (0, 0), or equivalently $q_1 = q_2 = 0$, the product reduces to the corresponding calculation in H*(X). More detail will be given in Section 4. See [Fulton and Pandharipande 1997] for more information about the background/history of this ring. Similar to the ring H*(X), the quantum cohomology ring has a $\mathbb{Z}[q]$ -basis consisting of Schubert classes σ_w (where $q = (q_1, q_2)$ are the quantum parameters), and it is generated as a ring by the classes σ_{s_1} and σ_{s_2} for the simple reflections s_1 and s_2 .

The *quantum Chevalley formula* is a formula for the quantum multiplication $\sigma_w \star \sigma_{s_i}$ (i=1,2). An explicit form of this formula, which uses combinatorics of the root system of Lie type G_2 , was obtained by Fulton and Woodward [2004]. In this paper, we use the "curve neighborhoods" method to write down the explicit Chevalley formula. This alternative method, obtained by Buch and Mihalcea [2015], involves an interesting graph associated to the flag manifold, called the *moment graph*. Its definition and properties are found in Section 3. It also has the advantage that it leads to a conjectural Chevalley formula in a further deformation of the quantum cohomology ring, called *quantum K-theory*. This will be addressed in a follow-up paper.

Our main application is to obtain a quantum version of the Schubert polynomials. More precisely, it is known [Fulton and Pandharipande 1997, Proposition 11] that $QH^*(X) = \mathbb{Q}[x_1, x_2, q_1, q_2]/\tilde{I}$, where \tilde{I} a certain ideal which deforms I. Then, as in the classical case, we would like to find the polynomials in $\mathbb{Q}[x_1, x_2, q_1, q_2]$ which represent each Schubert class σ_w via the isomorphism $QH^*(X) = \mathbb{Q}[x_1, x_2, q_1, q_2]/\tilde{I}$. These are called *quantum Schubert polynomials*. As before, these polynomials are not unique, but we can impose some natural

conditions that they satisfy, such as the fact that they deform the ordinary Schubert polynomials, and that they are homogeneous with respect to a certain grading. To our knowledge, such polynomials have not been explicitly calculated in the literature. As a byproduct, we also use the quantum Chevalley formula to recover the ideal \tilde{I} of quantum relations. This ideal has been, in principle, calculated by Kim [1999] using different techniques, but the explicit polynomials generating this ideal do not seem to appear in the literature. Our results are stated in Theorem 5.2 below.

2. Preliminaries: the root system and the Weyl group of type G_2

2A. The G_2 root system. Denote by R the root system of type G_2 . It consists of 12 roots, which are nonzero vectors in the hyperplane in \mathbb{R}^3 given by the equation $\xi_1 + \xi_2 + \xi_3 = 0$; our main reference is [Bourbaki 2002]. The roots are displayed in Table 1, in terms of the natural coordinates in \mathbb{R}^3 . Each root α can be written uniquely as $\alpha = c_1\alpha_1 + c_2\alpha_2$, where α_1 , α_2 are simple roots and $c_1c_2 \ge 0$. A root is positive (negative) if both c_1 , c_2 are nonnegative (resp. nonpositive). The set of simple roots is denoted by $\Delta = \{\alpha_1, \alpha_2\}$, where $\alpha_1 = \epsilon_1 - \epsilon_2$ and $\alpha_2 = -2\epsilon_1 + \epsilon_2 + \epsilon_3$. For later purposes, we need to expand each root in terms of the simple roots. The full results are shown in Table 1. The root vectors in the Δ -basis can be seen in Figure 1.

We also need the *dual* root system consisting of *coroots* α^{\vee} . The coroot α^{\vee} of a root α is defined as $\alpha^{\vee} = 2\alpha/(\alpha, \alpha)$, where (α, α) is the standard inner product in \mathbb{R}^3 . Note that the coroots satisfy the properties $(\alpha^{\vee})^{\vee} = \alpha$ and $(-\alpha)^{\vee} = -\alpha^{\vee}$. We denote the full set of coroots by R^{\vee} and define the set Δ^{\vee} , which holds the *simple coroots* α_1^{\vee} and α_2^{\vee} for R^{\vee} . Table 1 shows the values for each of the coroots.

2B. The Weyl group of G_2 . The Weyl group of G_2 , denoted W, is the group generated by reflections s_{α} , where $\alpha \in R$. Let $s_i := s_{\alpha_i}$. Geometrically, s_{α} is the reflection across the line perpendicular to the root α . For example, the reflection s_1

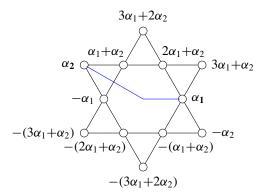


Figure 1. The root system for G_2 . Each node is a root. The blue lines represent the coordinate system using the Δ -basis.

natural coordinates <i>E</i> -basis	±	simple roots basis	coroot α^{\vee}
$(\epsilon_1, \epsilon_2, \epsilon_3)$		(α_1,α_2)	$\alpha^{\vee} = \lambda \alpha_1 + \mu \alpha_2$
$\epsilon_1 - \epsilon_2$	+	α_1	$\alpha_1^{\vee} = \alpha_1$
$\epsilon_3 - \epsilon_1$	+	$\alpha_1 + \alpha_2$	$(\alpha_1 + \alpha_2)^{\vee} = \alpha_1 + \alpha_2$
$\epsilon_3 - \epsilon_2$	+	$2\alpha_1+\alpha_2$	$(2\alpha_1 + \alpha_2)^{\vee} = 2\alpha_1 + \alpha_2$
$\epsilon_2 + \epsilon_3 - 2\epsilon_1$	+	$lpha_2$	$lpha_2^{\vee} = \frac{1}{3}lpha_2$
$\epsilon_1 + \epsilon_3 - 2\epsilon_2$	+	$3\alpha_1 + \alpha_2$	$(3\alpha_1 + \alpha_2)^{\vee} = \alpha_1 + \frac{1}{3}\alpha_2$
$-\epsilon_1$ - ϵ_2 + $2\epsilon_3$	+	$3\alpha_1+2\alpha_2$	$(3\alpha_1 + 2\alpha_2)^{\vee} = \alpha_1 + \frac{2}{3}\alpha_2$
$-(\epsilon_1-\epsilon_2)$	-	$-\alpha_1$	$(-\alpha_1)^{\vee} = -\alpha_1$
$-(\epsilon_3-\epsilon_1)$	_	$-(\alpha_1+\alpha_2)$	$(-\alpha_1 - \alpha_2)^{\vee} = -\alpha_1 - \alpha_2$
$-(\epsilon_3-\epsilon_2)$	_	$-(2\alpha_1+\alpha_2)$	$(-2\alpha_1 - \alpha_2)^{\vee} = -2\alpha_1 - \alpha_2$
$-(\epsilon_2+\epsilon_3-2\epsilon_1)$	_	$-\alpha_2$	$(-\alpha_2)^{\vee} = -\frac{1}{3}\alpha_2$
$-(\epsilon_1+\epsilon_3-2\epsilon_2)$	_	$-(3\alpha_1+\alpha_2)$	$(-3\alpha_1 - \alpha_2)^{\vee} = -\alpha_1 - \frac{1}{3}\alpha_2$
$-(-\epsilon_1-\epsilon_2+2\epsilon_3)$	_	$-(3\alpha_1+2\alpha_2)$	$(-3\alpha_1 - 2\alpha_2)^{\vee} = -\alpha_1 - \frac{2}{3}\alpha_2$

Table 1. The root system of type G_2 . For each root, we give its sign, the root in terms of Δ -basis, and the corresponding coroot.

(corresponding to s_{α_1}) is the reflection across the line perpendicular to the α_1 -axis (see Figure 2). As Figure 2 shows, for any root α , we have $s_{\alpha} = s_{-\alpha}$. Therefore only six unique reflections exist for the G_2 root system.

It is known (see, e.g., [Humphreys 1972]) that W has the presentation

$$W = \langle s_1, s_2 : s_1^2 = s_2^2 = 1, (s_1 s_2)^6 = 1 \rangle.$$

From this it follows easily that W is isomorphic to the dihedral group with 12 elements. In order to determine the reflections in W, we need the following definitions.

Definition 2.1. Consider $w \in W$. A reduced expression for w is one involving products of s_1 and s_2 in as short a way as possible (via the relations in the presentation). If $w \in W$, where w is a reduced expression, the *length* of w, denoted by $\ell(w)$, is the number of simple reflections $(s_1 \text{ and } s_2)$ that show up in the reduced expression.

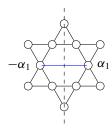


Figure 2. The reflection s_{α_1} (dashed line) which is perpendicular to the α_1 -axis (blue line).

root (in Δ-basis)	reflection $(w \in W)$
$\pm \alpha_1$	s_1
$\pm \alpha_2$	s_2
$\pm(3\alpha_1+\alpha_2)$	$s_1 s_2 s_1$
$\pm(\alpha_1+\alpha_2)$	$s_2 s_1 s_2$
$\pm(2\alpha_1+\alpha_2)$	$s_1 s_2 s_1 s_2 s_1$
$\pm(3\alpha_1+2\alpha_2)$	$s_2s_1s_2s_1s_2$

Table 2. The root reflection corresponding to each root in G_2 .

Example 2.2. Consider $w = s_1 s_1 s_1 s_2 s_1 s_2$. From the presentation of W, we know that $s_1^2 = s_1 s_1 = 1$ and so this expression is not reduced. However, $(s_1 s_1) s_1 s_2 s_1 s_2 = (1) s_1 s_2 s_1 s_2 = s_1 s_2 s_1 s_2$. The latter is a reduced expression and $\ell(w) = 4$.

The 12 reduced expressions of the elements in W are

$$W = \{1, s_1, s_2, s_1s_2, s_2s_1, s_1s_2s_1, s_2s_1s_2, s_1s_2s_1s_2, s_1s_2s_1s_2, s_1s_2s_1s_2s_1, s_1s_2s_1s_2s_1, s_1s_2s_1s_2s_1, s_2s_1s_2s_1s_2, s_1s_2s_1s_2s_1s_2\}.$$

We denote by w_0 the longest element $s_1s_2s_1s_2s_1s_2$. Notice that among the twelve elements, only six of them are the *root reflections* from the root system of G_2 . Because any reflection has order 2, it is easy to check that the root reflections correspond to the reduced expressions of odd length.

Since the reflections s_1 and s_2 generate W, every reflection s_α in the G_2 root system can be expressed as a reduced expression product of s_1s and s_2s . Consider the action of W on the root system R given by the natural action of reflections on vectors in \mathbb{R}^3 . Explicitly, this action is given by $s_\alpha \cdot \beta = s_\alpha(\beta) = \beta - (\beta, \alpha^\vee)\alpha$ (see [Humphreys 1972, p. 43]). The following lemma in proved in [loc. cit.].

Lemma 2.3. Let $w \in W$ and $\alpha \in R$. Then $ws_{\alpha}w^{-1} = s_{w\cdot\alpha}$.

Example 2.4. Consider $w = s_1 s_2 s_1$. We want to find a reflection s_{α} that corresponds to w. By Lemma 2.3, $s_1 s_2 s_1 = s_{s_1(\alpha_2)}$, where s_1 is its own inverse and the action is

$$s_1(\alpha_2) = \alpha_2 - (\alpha_2, \alpha_1^{\vee})\alpha_1 = \alpha_2 - \left(\alpha_2, \frac{2\alpha_1}{(\alpha_1, \alpha_1)}\right)\alpha_1.$$

We know $(\alpha_1, \alpha_1) = 2$, (see Table 1) so

$$\alpha_2 - \left(\alpha_2, \frac{2\alpha_1}{(\alpha_1, \alpha_1)}\right)\alpha_1 = \alpha_2 - \left(\alpha_2, \frac{2\alpha_1}{2}\right)\alpha_1 = \alpha_2 - (\alpha_2, \alpha_1)\alpha_1$$
$$= \alpha_2 - (-3)\alpha_1.$$

Thus $s_1(\alpha_2) = 3\alpha_1 + \alpha_2$. The reflection $s_1s_2s_1$ is the reflection $s_{3\alpha_1 + \alpha_2}$.

Table 2 shows the reflection across the line perpendicular to each root. Notice that roots α and $-\alpha$ have the same reflection and all reflections listed have *odd* length.

$\begin{array}{c} \text{coroot} \\ \alpha^{\vee} = d_1 \alpha_1^{\vee} + d_2 \alpha_2^{\vee} \end{array}$	degree d (d_1, d_2)
${\alpha_1}^\vee$	(1, 0)
$\alpha_2{}^\vee$	(0, 1)
$(3\alpha_1 + \alpha_2)^{\vee}$	(1, 1)
$(\alpha_1 + \alpha_2)^{\vee}$	(1, 3)
$(2\alpha_1+\alpha_2)^{\vee}$	(2,3)
$(3\alpha_1+2\alpha_2)^{\vee}$	(1, 2)

Table 3. The degree for each coroot in the moment graph.

3. The moment graph and curve neighborhoods

3A. *Finding the moment graph.* Using the properties of the elements in the Weyl group for G_2 , it is possible to define the following graph.

Definition 3.1. The *moment graph* is an oriented graph that consists of a pair (V, E), where V is the set of vertices and E is the set of edges. To each Weyl group element $v \in W$ there corresponds a vertex $v \in V$ in this graph. For $x, y \in V$, an edge exists from x to y, denoted by

$$x \xrightarrow{\alpha^{\vee}} y$$
,

if there exists a reflection s_{α} such that $y = x s_{\alpha}$ and $\ell(y) > \ell(x)$.

Definition 3.2. A *degree* d is a nonnegative combination $d_1\alpha_1^{\vee} + d_2\alpha_2^{\vee}$ of simple coroots. We will denote it as $d = (d_1, d_2)$.

Since any coroot α^{\vee} is a linear combination in terms of α_1^{\vee} and α_2^{\vee} , it determines a degree. These degrees are given in Table 3.

Example 3.3. An edge exists from s_1 to s_2s_1 . This is so because

$$\ell(s_2s_1) > \ell(s_1)$$
 and $s_2s_1 = s_1s_\alpha$, where $s_\alpha = s_1s_2s_1$.

Example 2.4 shows $s_1 s_2 s_1 = s_{3\alpha_1 + \alpha_2}$. The edge corresponding to these two edges has degree $(3\alpha_1 + \alpha_2)^{\vee}$; i.e.,

$$s_1 \xrightarrow{(3\alpha_1 + \alpha_2)^{\vee}} s_2 s_1.$$

Notice that $(3\alpha_1 + \alpha_2)^{\vee} = 1\alpha_1^{\vee} + 1\alpha_2^{\vee}$, so $\mathbf{d} = (1, 1)$. The edge from s_1 to s_2s_1 can be represented by the degree (1, 1).

We depict the moment graph as oriented upward, as in Figure 3. To help read the moment graph, a color code has been set up to represent the different edges. We review some of the relevant properties of the moment graph:

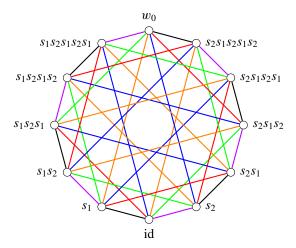


Figure 3. The moment graph for G_2 . The color code for the degrees is black = (1, 0), violet = (0, 1), red = (1, 1), green = (1, 3), blue = (2, 3), orange = (1, 2).

- The vertices correspond to the 12 Weyl group elements.
- The edges represent the root reflections associated to the G_2 root system. There are six different types of edges (different degree values) because there are exactly six reflections in the G_2 root system. Note that edges exist between Weyl group elements if the difference between lengths is odd.
- The bottom vertex is the element with the smallest length (id, where $\ell(id) = 0$). The vertices in the next "row" have length 1 (s_1 and s_2). The length of these elements increases by one as you travel up the graph. The top vertex is the element with the largest length, w_0 , where $\ell(w_0) = 6$.
- For any vertex, there are six edges connected to it, corresponding to the six different coroots in R[∨].
- For any $w_1, w_2 \in W$, where $\ell(w_1) = \ell(w_2)$, both w_1 and w_2 will have edges connecting to the same six vertices.

3B. *Curve neighborhoods.* In Section 3A, we defined the degree *d* to help simplify the moment graph for use in future calculations. The importance of the moment graph can be realized with the following concept defined by A. Buch and L. Mihalcea [2015]:

Definition 3.4. Fix a degree $d = (d_1, d_2)$ and an element u of the Weyl group W. The *curve neighborhood*, $\Gamma_d(u)$, is a subset of W which consists of the maximal elements in the moment graph which can be reached from u with a path of total degree at most d.

Example 3.5. Consider w = id and d = (1, 1). We want to determine the "highest" path (starting at the identity) where the total degree traveled is at most (1, 1). By inspecting the moment graph, we see that there are three initial paths starting from id:

- path d = (1, 0), which goes from id to s_1 . Upon reaching s_1 , one is not allowed to travel more than d' = (0, 1) upwards. Further inspection of the moment graph shows that a path exists with degree (0, 1) from s_1 to s_1s_2 . We now have traveled a total degree of (1,1). Thus we are done and s_1s_2 is the largest element on this path.
- path d = (0, 1) which goes from id to s_2 . Upon reaching s_2 , one is not allowed to travel more than d' = (1, 0) upwards. Further inspection gives a path with degree (1, 0) from s_2 to s_2s_1 . We now have traveled a total degree of (1, 1). Thus we are done and s_2s_1 is the largest element on this path.
- path d = (1, 1) which goes from id to $s_1 s_2 s_1$. Since we traveled a total degree of (1, 1), we are done, and $s_1 s_2 s_1$ is the largest element on this path.

We now take the maximal element that can be reached from id with degree (1, 1). The largest of the three elements above is $s_1s_2s_1$; thus $\Gamma_{(1,1)}(id) = \{s_1s_2s_1\}$.

It is clear that for any $w \in W$, there exists some degree (a, b) where $\Gamma_{(a,b)}(w) = w_0$. Then for any larger degree (a', b'), where $a' \ge a$ and $b' \ge b$, we have $\Gamma_{(a',b')}(w) = w_0$. Table 6 in the Appendix shows the curve neighborhoods for every element of the Weyl group. For all the examples given, the curve neighborhood for some degree d at $u \in W$ is always unique, a fact which was initially proved in [Buch and Mihalcea 2015] for all Lie types.

4. Quantum cohomology ring for flag manifold X

Recall that X denotes the flag manifold of type G_2 . The cohomology ring, denoted by $H^*(X)$, consists of elements that can each be written uniquely as finite sums $\sum_{w \in W} a_w \sigma_w$, where $a_w \in \mathbb{Z}$ and σ_w is a (geometrically defined) *Schubert class*. Addition in this ring is given by

$$\sum_{w \in W} a_w \sigma_w + \sum_{w \in W} b_w \sigma_w = \sum_{w \in W} (a_w + b_w) \sigma_w.$$

The quantum cohomology ring QH*(X) is a deformation of H*(X) by adding quantum parameters, $q^d = q_1^{d_1}q_2^{d_2}$ for degrees $d = (d_1, d_2)$. If d = (0, 0) for any calculation in QH*(X), we reduce down to the corresponding calculation in H*(X). Similarly to H*(X), the elements of QH*(X) can each be written uniquely as finite sums $\sum_{w \in W} a_w(d)q^d\sigma_w$, where $a_w(d) \in \mathbb{Z}$. The addition in this ring is also straightforward:

$$\sum_{w \in W} a_w(\boldsymbol{d}) q^{\boldsymbol{d}} \sigma_w + \sum_{w \in W} b_w(\boldsymbol{d}) q^{\boldsymbol{d}} \sigma_w = \sum_{w \in W} (a_w(\boldsymbol{d}) + b_w(\boldsymbol{d})) q^{\boldsymbol{d}} \sigma_w.$$

The multiplication in this ring is given by certain integers $c_{u,v}^{w,d}$ called the *Gromov–Witten invariants*:

$$\sigma_u \star \sigma_v = \sum_{w,d} c_{u,v}^{w,d} q^d \sigma_w,$$

where the sum is over $w \in W$ and degrees d which have nonnegative components. The (quantum) cohomology ring has two generators, namely σ_{s_1} and σ_{s_2} , corresponding to the simple reflections $s_1, s_2 \in W$. As a result, every element is a sum of monomials in the σ_{s_i} , and the quantum multiplication $\sigma_u \star \sigma_{s_i}$ by generators σ_{s_i} determines the entire ring multiplication. The formula for $\sigma_w \star \sigma_{s_i}$, the (quantum) Chevalley rule, is illustrated in Section 4A. We list below a few properties that will help to understand this ring and we refer, e.g., to [Fulton and Pandharipande 1997] for full details.

- (1) The multiplication of quantum parameters is given by $q_i^{d_s} q_i^{d_s'} = q_i^{d_s + d_s'}$.
- (2) The quantum multiplication \star is associative, commutative and has unit $1 = \sigma_{id}$.
- (3) The quantum multiplication is graded by imposing $\deg(\sigma_w) = \ell(w)$ and for $\mathbf{d} = (d_1, d_2)$, we have $\deg q^{\mathbf{d}} = 2(d_1 + d_2)$. This implies that $\deg(\sigma_u \star \sigma_v) = \deg(\sigma_u) + \deg(\sigma_v)$ and that $c_{u,v}^{w,\mathbf{d}} = 0$ unless $\ell(u) + \ell(v) = \ell(w) + \deg q^{\mathbf{d}}$.
- (4) If we impose the substitution $q_1 = q_2 = 0$ in $\sigma_u \star \sigma_v$ then we obtain the multiplication $\sigma_u \cdot \sigma_v$ in the ordinary cohomology ring $H^*(X)$.

4A. Quantum Chevalley rule via curve neighborhoods. Recall that each coroot α^{\vee} can be written as a linear combination $\alpha^{\vee} = d_1 \alpha_1^{\vee} + d_2 \alpha_2^{\vee}$, where α_1^{\vee} , α_2^{\vee} are the simple coroots and $d_1, d_2 \in \mathbb{Z}$. It follows that each α^{\vee} can be identified with the unique degree $\mathbf{d} = (d_1, d_2)$. Let $\mathbf{d}[i]$ denote the i-th component of the degree \mathbf{d} in the decomposition $\mathbf{d} = \mathbf{d}[1]\alpha_1^{\vee} + \mathbf{d}[2]\alpha_2^{\vee}$. In other words, $\mathbf{d}[i] = d_i$. Note that $\alpha^{\vee}[i]$ means the same thing as $\mathbf{d}[i]$.

The classical *Chevalley rule* [1994] (see also [Fulton and Woodward 2004]) is a formula for the products $\sigma_u \cdot \sigma_{s_i} \in H^*(X)$:

$$\sigma_u \cdot \sigma_{s_i} = \sum_{\alpha} (\alpha^{\vee}[i]) \sigma_{us_{\alpha}}, \tag{1}$$

where the sum is over positive roots α such that $\ell(us_{\alpha}) = \ell(u) + 1$.

The quantum Chevalley formula for $\sigma_u \star \sigma_{s_i} = \sum_{w,d} c_{u,s_i}^{w,d} q^d \sigma_w$ was first proved by Fulton and Woodward [2004]. See Theorem 4.3 below. We follow here an approach based on curve neighborhoods, recently proved by Buch and Mihalcea [2015]. If d = (0,0) then the coefficients $c_{u,s_i}^{w,d}$ are those from identity (1) above. If $d \neq (0,0)$ then the quantum coefficient $c_{u,s_i}^{w,d}$ can be calculated as follows. First, let $w[d] \in W$ be the curve neighborhood $\Gamma_d(w)$. Then

$$c_{u,s_i}^{w,d} = d[i] \cdot \delta_{u,w[d]}, \tag{2}$$

where δ_{v_1,v_2} is the Kronecker symbol and w satisfies $\ell(w) + \deg q^d = \ell(u) + 1$.

Remark 4.1. Although it is not clear from the definition, it turns out that if $d[i] \neq 0$ then u = w[d] only if $d = \alpha^{\vee}$ for some α such that $\ell(s_{\alpha}) = \deg q^{\alpha^{\vee}} - 1$. This recovers the original quantum Chevalley rule from [Fulton and Woodward 2004].

Example 4.2. Consider $\sigma_{s_1} \star \sigma_{s_1}$.

• Assume d = (0, 0). We need to determine roots α such that $\ell(s_1s_\alpha) = \ell(s_1) + 1 = 2$. The only possible Weyl group elements to represent s_α are s_2 and $s_1s_2s_1$. If $s_\alpha = s_2$ then $\alpha = \alpha_2$. This implies $\alpha^\vee = (0, 1)$, so $\alpha^\vee[1] = 0$. If $s_\alpha = s_1s_2s_1$ then $\alpha = 3\alpha_1 + \alpha_2$. This implies $\alpha^\vee = (1, 1)$, so $\alpha^\vee[1] = 1$. Thus

$$\sum_{\alpha} (\alpha^{\vee}[i]) \sigma_{us_{\alpha}} = 0 \cdot \sigma_{s_1 s_2} + 1 \cdot \sigma_{s_1 s_1 s_2 s_1} = \sigma_{s_2 s_1}.$$

• Assume $d \neq (0, 0)$. We need to determine $w \in W$ such that $w[d] = \Gamma_d(w) = s_1$. According to the curve neighborhood results table in the Appendix, the only possible $w \in W$ are id and s_1 . For both elements, the possible nondegrees are (N, 0), where $N \in \mathbb{N}$. Note that we also need to choose w and d such that $\ell(w) + \deg q^d = \ell(s_1) + 1 = 2$. Since $\deg q^d$ is never odd, $\ell(w)$ must be even. This eliminates s_1 . As for id, $\ell(\mathrm{id}) = 0$ so then $\deg q^d = 2$, where d = (N, 0). This implies N = 1. Therefore $c_{s_1,s_1}^{\mathrm{id},(1,0)} = d[1] \cdot \delta_{s_1,s_1} = 1 \cdot 1 = 1$ and this represents the only nonzero quantum term. Thus for $d \neq (0,0)$,

$$\sum_{w \in W, d} c_{u, s_i}^{w, d} q^d \sigma_w = 1 \cdot q^{(1,0)} \cdot \sigma_{id} = 1 \cdot q_1 \cdot 1 = q_1.$$

Combining the classical (i.e., from $H^*(X)$) and pure quantum terms gives us $\sigma_{s_1} \star \sigma_{s_1} = \sigma_{s_2s_1} + q_1$.

Table 4 shows the results of our quantum Chevalley computations.

Theorem 4.3 (the quantum Chevalley rule [Fulton and Woodward 2004; Buch and Mihalcea 2015]). *The following holds in* $QH^*(X)$:

$$\sigma_u \star \sigma_{s_i} = \sum_{\alpha} (\alpha^{\vee}[i]) \sigma_{us_{\alpha}} + \sum_{\beta} (\beta^{\vee}[i]) q^{\beta^{\vee}} \sigma_{us_{\beta}}. \tag{3}$$

The first sum is over positive roots α such that $\ell(us_{\alpha}) = \ell(u) + 1$ and the second sum is over positive roots β such that $\ell(us_{\beta}) = \ell(u) + 1 - \deg(q^{\beta^{\vee}})$.

5. Quantum Schubert polynomials

We know that QH*(X) is generated as a $\mathbb{Q}[q] = \mathbb{Q}[q_1, q_2]$ -algebra by the classes σ_{s_1} and σ_{s_2} . (This means that every element in QH*(X) can be written as a sum of monomials in the σ_{s_i} with coefficients in $\mathbb{Q}[q]$.) Then there exists a *surjective* homomorphism of $\mathbb{Q}[q]$ -algebras $\Psi : \mathbb{Q}[x_1, x_2; q_1, q_2] \to \mathrm{QH}^*(X)$ sending

$$\Psi(q_i) = q_i, \quad \Psi(x_1) = \sigma_{s_1}, \quad \Psi(x_1 + x_2) = \sigma_{s_2}.$$

w	$\sigma_w \star \sigma_{s_1}$	$\sigma_w \star \sigma_{s_2}$
s_1	$\sigma_{s_2s_1}+q_1$	$\sigma_{s_1s_2}+\sigma_{s_2s_1}$
s_2	$\sigma_{s_1s_2}+\sigma_{s_2s_1}$	$3\sigma_{s_1s_2} + q_2$
s_1s_2	$\sigma_{s_1s_2s_1} + \sigma_{s_2s_1s_2}$	$2\sigma_{s_2s_1s_2} + q_2\sigma_{s_1}$
s_2s_1	$2\sigma_{s_1s_2s_1} + q_1\sigma_{s_2}$	$3\sigma_{s_1s_2s_1} + \sigma_{s_2s_1s_2}$
$s_1s_2s_1$	$\sigma_{s_2s_1s_2s_1} + q_1\sigma_{s_1s_2} + q_1q_2$	$\sigma_{s_1s_2s_1s_2} + 2\sigma_{s_2s_1s_2s_1} + q_1q_2$
$s_2s_1s_2$	$\sigma_{s_2s_1s_2s_1} + 2\sigma_{s_1s_2s_1s_2}$	$3\sigma_{s_1s_2s_1s_2} + q_2\sigma_{s_2s_1}$
$s_1 s_2 s_1 s_2$	$\sigma_{s_1s_2s_1s_2s_1} + \sigma_{s_2s_1s_2s_1s_2}$	$\sigma_{s_2s_1s_2s_1s_2} + q_2\sigma_{s_1s_2s_1}$
$s_2s_1s_2s_1$	$\sigma_{s_1s_2s_1s_2s_1} + q_1\sigma_{s_2s_1s_2} + q_1q_2\sigma_{s_2}$	$\sigma_{s_2s_1s_2s_1s_2} + 3\sigma_{s_1s_2s_1s_2s_1} + q_1q_2\sigma_{s_2}$
$s_1 s_2 s_1 s_2 s_1$	$q_1\sigma_{s_1s_2s_1s_2} + q_1q_2\sigma_{s_1s_2}$	$\sigma_{w_0} + q_1q_2\sigma_{s_1s_2}$
$s_2s_1s_2s_1s_2$	$\sigma_{w_0} + q_1 q_2^2$	$q_2\sigma_{s_2s_1s_2s_1} + 2q_1q_2^2$
$w_0 = (s_1 s_2)^3$	$q_1\sigma_{s_2s_1s_2s_1s_2} + q_1q_2\sigma_{s_2s_1s_2} + q_1q_2^2\sigma_{s_1}$	$q_2\sigma_{s_1s_2s_1s_2s_1} + q_1q_2\sigma_{s_2s_1s_2} + 2q_1q_2^2\sigma_{s_1}$

Table 4. The quantum Chevalley table.

Note that for any $P, P' \in \mathbb{Q}[x_1, x_2, q_1, q_2]$, we have $\Psi(P \cdot P') = \Psi(P) \star \Psi(P')$. We call Ψ the *quantization map*. Let \tilde{I} be the kernel of this homomorphism. By the first isomorphism theorem, we have an isomorphism

$$\overline{\Psi}: \mathbb{Q}[x_1, x_2, q_1, q_2]/\widetilde{I} \to \mathrm{QH}^*(X),$$

and this gives the presentation of the quantum cohomology ring. A *quantum Schubert polynomial* for the Schubert class σ_w is any polynomial $P_w \in \mathbb{Q}[x_1, x_2, q_1, q_2]$ such that the image of P_w under Ψ gives the class σ_w . Equivalently $\overline{\Psi}(P_w + \tilde{I}) = \sigma_w$.

To find a quantum Schubert polynomial P_w , we proceed by induction on $\ell(w)$, using the quantum Chevalley formula from Table 4, and starting from the "initial conditions" $P_{s_1} = x_1$ and $P_{s_2} = x_1 + x_2$. To obtain the corresponding classical Schubert polynomials for cohomology, set $q_1 = q_2 = 0$.

Example 5.1. In order to calculate $P_{s_2s_1}$, we use the identity $\sigma_{s_1} \star \sigma_{s_1} = \sigma_{s_2s_1} + q_1$ (taken from Table 4). Using that Ψ is an algebra homomorphism, we know that

$$\Psi(x_1^2) = \Psi(x_1) \star \Psi(x_1) = \sigma_{s_1} \star \sigma_{s_1}$$
 and $\Psi(q_1) = q_1$.

Since $\Psi(x_1^2 - q_1) = \Psi(x_1^2) - \Psi(q_1)$, it follows that $\Psi(x_1^2 - q_1) = \sigma_{s_2s_1}$. This shows that $x_1^2 - q_1$ is a quantum Schubert polynomial for $\sigma_{s_2s_1}$. The corresponding ordinary Schubert polynomial is x_1^2 , obtained by making $q_1 = 0$.

Computations of ordinary Schubert polynomials were done for the ordinary cohomology ring $H^*(X)$ of the G_2 flag manifold in a paper by Anderson [2011]. A classical result of Borel [1953] shows that $H^*(X) = \mathbb{Q}[x_1, x_2]/I$, where $I = \langle x_1^2 - x_1 x_2 + x_2^2, x_1^6 \rangle$. (This can also be deduced from the classical Chevalley formula.) Anderson used this presentation and a different method to obtain different Schubert

σ_{s_lpha}	our calculation	Anderson's calculation [2011]
w_0	$\frac{1}{2}(x_1^6 + x_1^5 x_2)$	$\frac{1}{2}x_1^5x_2$
$s_1s_2s_1s_2s_1$	$\frac{1}{2}x_1^5$	$\frac{1}{2}x_1^5$
$s_2s_1s_2s_1s_2$	$\frac{1}{6}(x_1+x_2)^3x_1x_2$	$\frac{1}{2}(x_1^3 + x_2x_1^2 + x_2^2x_1 + x_2^3)x_1x_2$
$s_2s_1s_2s_1$	$\frac{1}{2}x_1^4$	$\frac{1}{2}(4x_1^2 - 3x_1x_2 + 3x_2^2)x_1^2$
$s_1s_2s_1s_2$	$\frac{1}{6}(x_1+x_2)^2x_1x_2$	$\frac{1}{2}(x_1^4 + x_1^3x_2 + x_1^2x_2^2 + x_1x_2^3 + x_2^4)$
$s_1s_2s_1$	$\frac{1}{2}x_1^3$	$\frac{1}{2}(4x_1^2 - 3x_1x_1 + 3x_2^2)x_1$
$s_2s_1s_2$	$\frac{1}{2}(x_1 + x_2)x_1x_2$	$2x_1^3 + \frac{1}{2}x_1^2x_2 + \frac{1}{2}x_1x_2^2 + 2x_2^3$
s_2s_1	x_1^2	$3x_1^2 - 2x_1x_2 + 2x_2^2$
s_1s_2	x_1x_2	$2x_1^2 - x_1x_2 + 2x_2^2$
s_2	$x_1 + x_2$	$x_1 + x_2$
<i>s</i> ₁	x_1	x_1
id	1	1

Table 5. Classical Schubert polynomials.

polynomials, but our answers and his must be equal modulo the ideal I. The classical Schubert polynomials we found are shown alongside Anderson's in Table 5. In order to check if our results are equal, we verified that the difference between our resulting classical polynomials was a multiple of one of the elements of the ideal.

We used our quantum Schubert polynomial results, found in Theorem 5.2 below, to compute the ideal \tilde{I} of the quantum cohomology ring QH*(X). This ideal is a deformation of the ideal I of H*(X). As an example, we will derive the degree-2 relation in \tilde{I} . From the quantum Chevalley table on page 447, we know the identities

- $\sigma_{s_1} \star \sigma_{s_1} = \sigma_{s_2s_1} + q_1$,
- $\sigma_{s_1} \star \sigma_{s_2} = \sigma_{s_1 s_2} + \sigma_{s_2 s_1}$, and
- $\sigma_{s_2} \star \sigma_{s_2} = 3\sigma_{s_1s_2} + q_2$.

These three equalities can be combined to obtain

$$3(\sigma_{s_1} \star \sigma_{s_1}) + (\sigma_{s_2} \star \sigma_{s_2}) = 3(\sigma_{s_1} \star \sigma_{s_2}) + 3q_1 + q_2.$$

Now apply the transformation under $\overline{\Psi}$ to get

$$3(x_1 \cdot x_1) + ((x_1 + x_2) \cdot (x_2 + x_2)) \equiv (3(x_1(x_1 + x_2)) + 3q_1 + q_2) + \tilde{I},$$
 which is

$$3x_1^2 + x_1^2 + 2x_1x_2 + x_2^2 \equiv (3x_1^2 + 3x_1x_2 + 3q_1 + q_2) + \tilde{I}.$$

Their difference belongs to $\tilde{I} = \ker \Psi$, so (after simplification) we get

$$x_1^2 - x_1 x_2 + x_2^2 - (3q_1 + q_2) \in \tilde{I}.$$

This is the degree-2 relation in \tilde{I} . Notice that this is clearly a deformation of the ideal term $x_1^2 - x_1x_2 + x^2$ in I. To get the degree-6 relation, one does a similar manipulation but using the higher-degree terms in the quantum Chevalley table on page 447. The following is the main result of this paper.

Theorem 5.2. The quantum cohomology ring of the flag manifold of type G_2 is

$$QH^*(X) = \mathbb{Q}[q_1, q_2, x_1, x_2]/\langle R_2, R_6 \rangle,$$
where $R_2 := x_1^2 - x_1x_2 + x_2^2 - (3q_1 + q_2)$ and
$$R_6 := x_1^6 + q_1\left(-2x_1^4 - \frac{13}{3}x_2^3x_2 - \frac{5}{3}x_1^2x_2^2 - \frac{1}{3}x_1x_2^3\right) + q_1^2\left(-\frac{10}{3}x_1^2 - \frac{5}{3}x_1x_2 - \frac{1}{3}x_2^2\right) + q_1q_2\left(-2x_1^2 - \frac{11}{2}x_1x_2\right) - \frac{8}{2}q_1^2q_2.$$

Under this presentation, the corresponding quantum Schubert polynomials are

$$\begin{split} w_0 &= (s_1 s_2)^3 \colon \ \frac{1}{2} (x_1^6 + x_1^5 x_2) + \frac{1}{2} (-2 x_1^4 - 6 x_1^3 x_2 - 5 x_1^2 x_2^2 - x_1 x_2^3) q_1, \\ &\quad + \frac{1}{2} (-3 x_1^2 - 7 x_1 x_2 - 2 x_2^2) q_1 q_2 + \frac{1}{2} (-3 x_1^2 - 4 x_1 x_2 - x_2^2) q_1^2 - q_1^2 q_2, \\ s_2 s_1 s_2 s_1 s_2 \colon \ \frac{1}{6} \left((x_1 + x_2)^3 x_1 x_2 \right) + \frac{1}{6} \left((x_1 + x_2)^3 q_1, \right. \\ &\quad + (-6 x_1^3 - 4 x_1^2 x_2 - x_1 x_2^2) q_2 + (8 x_1 + 5 x_2) q_1 q_2 \right), \\ s_1 s_2 s_1 s_2 s_1 \colon \ \frac{1}{2} x_1^5 + \frac{1}{2} \left((-2 x_1^3 - 4 x_1^2 x_2 - x_1 x_2^2) q_1 + (-3 x_1 - 2 x_2) q_1 q_2 + (-3 x_1 - x_2) q_1^2 \right), \\ s_1 s_2 s_1 s_2 \colon \ \frac{1}{6} \left((x_1 + x_2)^2 x_1 x_2 \right) + \frac{1}{6} \left((x_1 + x_2)^2 q_1 + (-3 x_1^2 - x_1 x_2) q_2 + 2 q_1 q_2 \right), \\ s_2 s_1 s_2 s_1 \colon \ \frac{1}{2} x_1^4 + \frac{1}{2} \left((-2 x_1^2 - 3 x_1 x_2) q_1 - 2 q_1 q_2 - 2 q_1^2 \right), \\ s_2 s_1 s_2 \colon \ \frac{1}{2} \left((x_1 + x_2) x_1 x_2 \right) + \frac{1}{2} \left((x_1 + x_2) q_1 - x_1 q_2 \right), \\ s_1 s_2 s_1 \colon \ \frac{1}{2} x_1^3 + \frac{1}{2} \left((-2 x_1 - x_2) q_1 \right), \\ s_1 s_2 \colon \ x_1 x_2 + q_1, \\ s_2 \colon \ x_1 + x_2, \\ s_1 \colon \ x_1, \\ \text{id} \colon \ 1. \end{split}$$

Appendix: Table of curve neighborhood calculations

This appendix contains the curve neighborhoods for all the Weyl group elements. In order to list them as concisely as possible, we need to define

- ℓ , $m = 0, 1, 2, 3, \dots$
- N. M = 1, 2, 3, ...
- N'. M' = 2, 3, 4, ...

If $w \in W$ then $\Gamma_{(0,0)}(w) = w$, so we won't include that condition in the table.

id	s_1	<i>s</i> ₂
$\Gamma_{(N,0)}(\mathrm{id}) = s_1$	$\Gamma_{(N,0)}(s_1) = s_1$	$\Gamma_{(N,0)}(s_2) = s_2 s_1$
$\Gamma_{(0,N)}(\mathrm{id}) = s_2$	$\Gamma_{(0,N)}(s_1) = s_1 s_2$	$\Gamma_{(0,N)}(s_2) = s_2$
$\Gamma_{(N,1)}(\mathrm{id}) = s_1 s_2 s_1$	$\Gamma_{(N,1)}(s_1) = s_1 s_2 s_1$	$\Gamma_{(N,1)}(s_2) = s_2 s_1 s_2 s_1$
$\Gamma_{(1,N')}(id) = s_2 s_1 s_2 s_1 s_2$	$\Gamma_{(N,N')}(s_1) = w_0$	$\Gamma_{(1,N')}(s_2) = s_2 s_1 s_2 s_1 s_2$
$\Gamma_{(N',M')}(\mathrm{id}) = w_0$		$\Gamma_{(N',M')}(s_2) = w_0$
s_1s_2	s_2s_1	$s_1 s_2 s_1$
$\Gamma_{(N,0)}(s_1s_2) = s_1s_2s_1$	$\Gamma_{(N,0)}(s_2s_1) = s_2s_1$	$\Gamma_{(N,0)}(s_1s_2s_1) = s_1s_2s_1$
$\Gamma_{(0,N)}(s_1s_2) = s_1s_2$	$\Gamma_{(0,N)}(s_2s_1) = s_2s_1s_2$	$\Gamma_{(0,N)}(s_1s_2s_1) = s_1s_2s_1s_2$
$\Gamma_{(N,1)}(s_1s_2) = s_1s_2s_1s_2s_1$	$\Gamma_{(N,1)}(s_2s_1) = s_2s_1s_2s_1$	$\Gamma_{(N,1)}(s_1s_2s_1) = s_1s_2s_1s_2s_1$
$\Gamma_{(N,N')}(s_1s_2) = w_0$	$\Gamma_{(N,N')}(s_2s_1) = w_0$	$\Gamma_{(N,N')}(s_1s_2s_1)=w_0$
$s_2s_1s_2$	$s_1 s_2 s_1 s_2$	$s_2s_1s_2s_1$
$\Gamma_{(N,0)}(s_2s_1s_2) = s_2s_1s_2s_1$	$\Gamma_{(N,0)}(s_1s_2s_1s_2) = s_1s_2s_1s_2s_1$	$\Gamma_{(N,0)}(s_2s_1s_2s_1) = s_2s_1s_2s_1$
$\Gamma_{(0,N)}(s_2s_1s_2) = s_2s_1s_2$	$\Gamma_{(0,N)}(s_1s_2s_1s_2) = s_1s_2s_1s_2$	$\Gamma_{(0,N)}(s_2s_1s_2s_1) = s_2s_1s_2s_1s_2$
$\Gamma_{(N,M)}(s_2s_1s_2) = w_0$	$\Gamma_{(N,M)}(s_1s_2s_1s_2)=w_0$	$\Gamma_{(N,M)}(s_2s_1s_2s_1)=w_0$
$s_1 s_2 s_1 s_2 s_1$	$s_2s_1s_2s_1s_2$	w_0
$\Gamma_{(N,0)}(s_1s_2s_1s_2s_1) = s_1s_2s_1s_2s_1$	$\Gamma_{(0,N)}(s_2s_1s_2s_1s_2) = s_2s_1s_2s_1s_2$	$\Gamma_{(\ell,m)}(w_0) = w_0$
$\Gamma_{(\ell,N)}(s_1s_2s_1s_2s_1) = w_0$	$\Gamma_{(N,\ell)}(s_2s_1s_2s_1s_2) = w_0$	

Table 6. The curve neighborhoods for every degree at every $w \in W$.

Acknowledgement

This work is part of an undergraduate research project conducted under the guidance of Prof. Leonardo C. Mihalcea.

References

[Anderson 2011] D. Anderson, "Chern class formulas for G_2 Schubert loci", *Trans. Amer. Math. Soc.* **363**:12 (2011), 6615–6646. MR 2833570 Zbl 1234.14037

[Borel 1953] A. Borel, "Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts", *Ann. of Math.* (2) **57** (1953), 115–207. MR 0051508 Zbl 0052.40001

[Bourbaki 2002] N. Bourbaki, *Lie groups and Lie algebras: Chapters 4–6*, Springer, Berlin, 2002. MR 1890629 Zbl 0983.17001

[Buch and Mihalcea 2015] A. S. Buch and L. C. Mihalcea, "Curve neighborhoods of Schubert varieties", *J. Differential Geom.* **99**:2 (2015), 255–283. MR 3302040 Zbl 06423472

[Chevalley 1994] C. Chevalley, "Sur les décompositions cellulaires des espaces G/B", pp. 1–23 in *Algebraic groups and their generalizations: classical methods* (University Park, PA, 1991), edited by W. J. Haboush and B. J. Parshall, Proc. Sympos. Pure Math. **56**, Amer. Math. Soc., Providence, RI, 1994. MR 1278698 Zbl 0824.14042

[Fulton and Pandharipande 1997] W. Fulton and R. Pandharipande, "Notes on stable maps and quantum cohomology", pp. 45–96 in *Algebraic geometry* (Santa Cruz, CA 1995), edited by J.

Kollár et al., Proc. Sympos. Pure Math. **62**, Amer. Math. Soc., Providence, RI, 1997. MR 1492534 Zbl 0898.14018

[Fulton and Woodward 2004] W. Fulton and C. Woodward, "On the quantum product of Schubert classes", *J. Algebraic Geom.* **13**:4 (2004), 641–661. MR 2072765 Zbl 1081.14076

[Humphreys 1972] J. E. Humphreys, *Introduction to Lie algebras and representation theory*, Graduate Texts in Mathematics **9**, Springer, New York, 1972. MR 0323842 Zbl 0254.17004

[Kim 1999] B. Kim, "Quantum cohomology of flag manifolds G/B and quantum Toda lattices", *Ann. of Math.* (2) **149**:1 (1999), 129–148. MR 1680543 Zbl 1054.14533

[Knutson and Miller 2005] A. Knutson and E. Miller, "Gröbner geometry of Schubert polynomials", *Ann. of Math.* (2) **161**:3 (2005), 1245–1318. MR 2180402 Zbl 1089.14007

rae1313@vt.edu Department of Physics, Virginia Tech University,

306 Robeson Hall, Blacksburg, VA 24061, United States

mel3jp@virginia.edu Department of Mathematics, University of Virginia, 141 Cabell

Drive, Kerchof Hall, Charlottesville, VA 22904, United States

lmihalce@math.vt.edu Department of Mathematics, Virginia Tech University,

460 McBryde Hall, Blacksburg, VA 24060, United States

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	YF. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University, USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2016 is US \$160/year for the electronic version, and \$215/year (+\$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/

© 2016 Mathematical Sciences Publishers

A combinatorial proof of a decomposition property of reduced residue	361
systems	
Yotsanan Meemark and Thanakorn Prinyasart	
Strong depth and quasigeodesics in finitely generated groups	367
Brian Gapinski, Matthew Horak and Tyler Weber	
Generalized factorization in $\mathbb{Z}/m\mathbb{Z}$	379
AUSTIN MAHLUM AND CHRISTOPHER PARK MOONEY	
Cocircular relative equilibria of four vortices	395
JONATHAN GOMEZ, ALEXANDER GUTIERREZ, JOHN LITTLE,	
ROBERTO PELAYO AND JESSE ROBERT	
On weak lattice point visibility	411
NEIL R. NICHOLSON AND REBECCA RACHAN	
Connectivity of the zero-divisor graph for finite rings	415
REZA AKHTAR AND LUCAS LEE	
Enumeration of <i>m</i> -endomorphisms	423
Louis Rubin and Brian Rushton	
Quantum Schubert polynomials for the G_2 flag manifold	437
RACHEL E. ELLIOTT, MARK E. LEWERS AND LEONARDO C.	
MIHALCEA	
The irreducibility of polynomials related to a question of Schur	453
LENNY JONES AND ALICIA LAMARCHE	
Oscillation of solutions to nonlinear first-order delay differential equations	465
James P. Dix and Julio G. Dix	
A variational approach to a generalized elastica problem	483
C. ALEX SAFSTEN AND LOGAN C. TATHAM	
When is a subgroup of a ring an ideal?	503
SUNIL K. CHEBOLU AND CHRISTINA L. HENRY	
Explicit bounds for the pseudospectra of various classes of matrices and	517
operators	
Feixue Gong, Olivia Meyerson, Jeremy Meza, Mihai	
STOICH AND ARIGAL WARD	

