\bullet
 involve

 a journal of mathematicsOscillation of solutions to nonlinear first-order delay differential equations

James P. Dix and Julio G. Dix

Oscillation of solutions to nonlinear first-order delay differential equations

James P. Dix and Julio G. Dix
(Communicated by Kenneth S. Berenhaut)

In this article, we present sufficient conditions for the oscillation of all solutions to the delay differential equation

$$
x^{\prime}(t)+\sum_{i=1}^{n} f_{i}\left(t, x\left(\tau_{i}(t)\right)\right)=0, \quad t \geq t_{0}
$$

In particular, we extend known results from linear to nonlinear equations, and improve the bounds of previous criteria.

1. Introduction

In this article, we study the delay differential equation

$$
\begin{equation*}
x^{\prime}(t)+\sum_{i=1}^{n} f_{i}\left(t, x\left(\tau_{i}(t)\right)\right)=0, \quad t \geq t_{0} \tag{1-1}
\end{equation*}
$$

where $f_{i}:\left[t_{0}, \infty\right) \times \mathbb{R} \rightarrow \mathbb{R}$ and $\tau_{i}:\left[t_{0}, \infty\right) \rightarrow \mathbb{R}$ are continuous functions satisfying conditions stated below. We establish sufficient conditions for all solutions to oscillate.

When $f_{i}(t, x)=p_{i}(t) x$, equation (1-1) becomes linear and it is easy to show that all solutions oscillate or tend to zero, under the assumption

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \sum_{i=1}^{n} p_{i}(s) d s=\infty \tag{1-2}
\end{equation*}
$$

This result has been extended to delay equations of several types: nonlinear, nonhomogeneous, higher order, neutral equations, etc.; see, for example, [Dix et al. 2008; Elbert and Stavroulakis 1995; Erbe et al. 1995; Gil’ 2014; Győri and Ladas 1991; Hale 1977; Ladde et al. 1987; Zhou 2011]. Since we want to ensure oscillation, we impose conditions stronger than the one above.

[^0]For $n=1$ and $f_{1}(t, x)=p_{1}(t) x$, there are two well-known conditions for the oscillation of all solutions: [Ladde et al. 1987, Theorem 2.1.3],

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{\tau_{1}(t)}^{t} p_{1}(s) d s>1 \tag{1-3}
\end{equation*}
$$

and [Ladde et al. 1987, Theorem 2.1.1],

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{\tau_{1}(t)}^{t} p_{1}(s) d s>\frac{1}{e} \tag{1-4}
\end{equation*}
$$

Some authors try to narrow the gap between these two lower bounds, while others extended the above criteria for covering more general equations. In this article, we try both of these tasks.

Braverman and Karpuz [2011] showed that when applying (1-3), the conditions that $\tau_{1}(t)<t$ and τ_{1} be nondecreasing are necessary. They also modified (1-3) by using Grönwall's inequality. Chatzarakis and Öcalan [2015] applied the modified condition to multiple delay equations. We extend these results to nonlinear equations.

For $f_{i}(t, x)=p_{i}(t) x$, Grammatikopoulos et al. [2003] assumed that τ_{i} is monotonic. We do not use the monotonicity assumption. Gyôri and Ladas [1991] stated conditions using a nondecreasing upper bound for the delayed arguments, similar to our σ defined below. Hunt and Yorke [1984] proved oscillation of solutions assuming that

$$
\liminf _{t \rightarrow \infty} \sum_{i=1}^{n} p_{i}(s)\left(t-\tau_{i}(t)\right)>\frac{1}{e}
$$

and that $t-\tau_{i}(t)$ is bounded. They did not assume monotonicity of τ_{i}, and used an inequality of differentials in their proof. We extend their result to nonlinear equations; see Theorem 4.6 below. Li [1996] used a logarithmic inequality to obtain a condition weaker than (1-4) for constant delays. We use the same logarithmic inequality for variable delays in nonlinear equations. Fukagai and Kusano [1984] considered retarded and advanced nonlinear equations with $f_{i}(t, x)=p_{i}(t) g_{i}(x)$, where g_{i} satisfies conditions similar to those in (H2) below. We assume that $f_{i}(t, x) \geq p_{i}(t) g_{i}(x)$, and then apply the Grönwall and logarithmic inequalities.

In this article, we use the hypotheses
(H1) $\tau_{i}(t)<t$ for $t \geq t_{0}$, and $\lim _{t \rightarrow \infty} \tau_{i}(t)=\infty$ for $i=1,2, \ldots, n$.
(H2) $x f_{i}(t, x) \geq 0$, and there exist continuous functions $p_{i}(t) \geq 0$ and $g_{i}(x)$ such that

$$
\left|f_{i}(t, x)\right| \geq p_{i}(t)\left|g_{i}(x)\right| \quad \forall x \in \mathbb{R}, t \geq t_{0}
$$

where $x g_{i}(x)>0$ for $x \neq 0$ and $\lim \sup _{x \rightarrow 0} x / g_{i}(x)<\infty$. Without loss of generality, we assume that

$$
\begin{equation*}
\limsup _{x \rightarrow 0} \frac{x}{g_{i}(x)}<1 \tag{1-5}
\end{equation*}
$$

If $\lim \sup _{x \rightarrow 0} x / g_{i}(x)=M_{1} \geq 1$, we multiply p_{i} by a constant greater than M_{1}, and divide g_{i} by the same constant; so the assumption is satisfied without modifying f_{i}.

We define the functions

$$
\tau_{0}(t)=\max _{1 \leq i \leq n} \tau_{i}(t), \quad \sigma(t)=\max _{t_{0} \leq s \leq t} \tau_{0}(s) .
$$

Then σ is nondecreasing. Also by (H1), we have $\tau_{i}(t) \leq \tau_{0}(t) \leq \sigma(t)<t$, and

$$
\lim _{t \rightarrow \infty} \tau_{0}(t)=\infty, \quad \lim _{t \rightarrow \infty} \sigma(t)=\infty
$$

Let $t_{-1}=\min _{1 \leq i \leq n} \inf _{t_{0} \leq t} \tau_{i}(t)$. Then the initial condition for (1-1) is

$$
\begin{equation*}
x(t)=\phi(t) \quad \text { for } t \in\left[t_{-1}, t_{0}\right], \tag{1-6}
\end{equation*}
$$

where $\phi:\left[t_{-1}, t_{0}\right] \rightarrow \mathbb{R}$ is a continuous function.
By a solution we mean a function that is continuous on $\left[t_{-1}, \infty\right)$, differentiable on $\left[t_{0}, \infty\right)$, and satisfies (1-1) and (1-6).

A unique solution x can be obtained by the method of steps: Using the information on $\left[t_{-1}, t_{0}\right]$, define x by integrating (1-1) for $t \in\left[t_{0}, t_{1}\right]$, where t_{1} is the largest value such that $\tau_{i}(t) \leq t_{0}$ for all $t \leq t_{1}$, where $i=1,2, \ldots, n$. Then we repeat the process for $\left[t_{1}, t_{2}\right)$ and so on.

A function is said to be oscillatory if it has arbitrarily large zeros; otherwise it is called nonoscillatory. A function x is said to be eventually positive if there exists t^{*} such that $x(t)>0$ for all $t \geq t^{*}$. We define eventually negative similarly.
Lemma 1.1. Under assumptions (H1), (H2) and (1-2), if x is an eventually positive solution of (1-1), then there exists $t_{1} \geq t_{0}$ such that $x(t)>0, x\left(\tau_{i}(t)\right)>0, x$ is nonincreasing, and $\left|x\left(\tau_{i}(t)\right)\right| \leq\left|g_{i}\left(x\left(\tau_{i}(t)\right)\right)\right|$ for $t \geq t_{1}$ and $i=1,2, \ldots, n$.
Proof. Since x is eventually positive, there exists $t^{*} \geq t_{0}$ such that $x(t)>0$ for $t \geq t^{*}$. Since $\lim _{t \rightarrow \infty} \tau_{i}(t)=\infty$ for $i=1,2, \ldots, n$, there exists $t^{* *} \geq t^{*}$ such that $\tau_{i}(t) \geq t^{*}$; thus $x\left(\tau_{i}(t)\right)>0$ for $t \geq t^{* *}$ and $i=1,2, \ldots, n$.

From $(\mathrm{H} 2), f_{i}\left(t, x\left(\tau_{i}(t)\right) \geq 0\right.$, and from $(1-1), x^{\prime}(t) \leq 0$. Therefore, x is nonincreasing. Since x is nonnegative and nonincreasing, it must converge to a number $\alpha \geq 0$ as $t \rightarrow \infty$. We claim that $\alpha=0$. To reach a contradiction, assume that $\lim _{t \rightarrow \infty} x(t)=\alpha>0$. Then $0<\alpha \leq x \leq x_{\max }$. Since g_{i} is continuous and positive on $\left[\alpha, x_{\max }\right]$, there exists $\gamma_{i}>0$ such that $\gamma_{i} \leq g\left(x\left(\tau_{i}(t)\right)\right)$ for all $t \geq t^{* *}$. By (1-1) and (H2),

$$
0 \geq x^{\prime}(t)+\sum_{i=1}^{n} p_{i}(t) g_{i}\left(x\left(\tau_{i}(t)\right)\right) \geq x^{\prime}(t)+\sum_{i=1}^{n} p_{i}(t) \gamma_{i} .
$$

Integrating from $t^{* *}$ to t,

$$
\alpha-x\left(t^{* *}\right) \leq x(t)-x\left(t^{* *}\right) \leq-\int_{t^{* *}}^{t} \sum_{i=1}^{n} p_{i}(s) \gamma_{i} d s .
$$

Note that as $t \rightarrow \infty$, by (1-2), the right-hand side approaches $-\infty$, while the left-hand side is constant. This contradiction implies $\lim _{t \rightarrow \infty} x(t)=0$. From (1-5) and $\lim _{t \rightarrow \infty} \tau_{i}(t)=\infty$, there exists $t_{1} \geq t^{* *}$ such that $x\left(\tau_{i}(t)\right) \leq g_{i}\left(x\left(\tau_{i}(t)\right)\right)$ for all $t \geq t_{1}$.

Under the assumptions of Lemma 1.1, from the definitions of τ_{0} and σ, for all $t \geq t_{1}$, we have the inequalities

$$
\begin{align*}
0=x^{\prime}(t)+\sum_{i=1}^{n} f_{i}\left(t, x\left(\tau_{i}(t)\right)\right) & \geq x^{\prime}(t)+\sum_{i=1}^{n} p_{i}(t) x\left(\tau_{i}(t)\right) \tag{1-7}\\
& \geq x^{\prime}(t)+x\left(\tau_{0}(t)\right) \sum_{i=1}^{n} p_{i}(t) \tag{1-8}\\
& \geq x^{\prime}(t)+x(\sigma(t)) \sum_{i=1}^{n} p_{i}(t) \tag{1-9}\\
& \geq x^{\prime}(t)+x(t) \sum_{i=1}^{n} p_{i}(t) \tag{1-10}
\end{align*}
$$

For the rest of this article, we reserve the symbol t_{1} for the value obtained in Lemma 1.1. Note that a similar value t_{1} can be obtained for eventually negative solutions. In such case, inequalities (1-7)-(1-10) need to be reversed.

2. Conditions using the limit superior

A direct application of [Ladde et al. 1987, Theorem 2.1.3] to (1-9) states that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{\sigma(t)}^{t} \sum_{i=1}^{n} p_{i}(s) d s>1 \tag{2-1}
\end{equation*}
$$

implies the oscillation of all solutions to (1-1). This corresponds to [Ladde et al. 1987, Remark 2.7.3], where the assumption that τ_{i} is nondecreasing needs to be added.

Regarding the necessity of σ being monotonic and $\sigma(t)<t$, Braverman and Karpuz [2011] considered the single delay equation

$$
\begin{equation*}
x^{\prime}(t)+p_{1} x\left(\tau_{1}(t)\right)=0 \tag{2-2}
\end{equation*}
$$

with the assumption

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{\tau_{1}(t)}^{t} p_{1} d s>A \tag{2-3}
\end{equation*}
$$

where A and p_{1} are positive constants. They showed that for every A, there exists a p_{1} and a nonmonotonic delay τ_{1}, with $\tau_{1}(t)=t$ on some intervals, such that (2-3) is satisfied, but (2-2) has a nonoscillatory solution. We shall show a similar result for (1-1), when τ_{1} remains monotonic; see Theorem 2.5 below.

As in [Braverman and Karpuz 2011, Corollary 1] and [Chatzarakis and Öcalan 2015, Theorem 1], we use Grönwall's inequality to obtain a condition weaker than (2-1).
Lemma 2.1. Assume that $(\mathrm{H} 1)$, (H2) and (1-2) hold and that x is an eventually positive solution of (1-1). Then

$$
\begin{equation*}
\int_{\sigma(t)}^{t} \sum_{i=1}^{n} p_{i}(s) \exp \left(\int_{\tau_{i}(s)}^{\sigma(t)} \sum_{j=1}^{n} p_{j}(r) d r\right) d s<1 \quad \forall t \geq t_{1} \tag{2-4}
\end{equation*}
$$

where t_{1} is defined by Lemma 1.1
Proof. Grönwall's inequality applied to (1-10) with $x>0$ and $\tau_{i}(s) \leq \sigma(t)$ yields

$$
\begin{equation*}
x\left(\tau_{i}(s)\right) \geq x(\sigma(s)) \exp \left(\int_{\tau_{i}(s)}^{\sigma(t)} \sum_{i=j}^{n} p_{j}(r) d r\right) \tag{2-5}
\end{equation*}
$$

Integrating (1-1) from $\sigma(t)$ to t and using (H2) and (2-5) yields

$$
\begin{align*}
0 & \geq x(t)-x(\sigma(t))+\int_{\sigma(t)}^{t} \sum_{i=1}^{n} p_{i}(s) x\left(\tau_{i}(s)\right) d s \\
& \geq x(t)-x(\sigma(t))+x(\sigma(t)) \int_{\sigma(t)}^{t} \sum_{i=1}^{n} p_{i}(s) \exp \left(\int_{\tau_{i}(s)}^{\sigma(t)} \sum_{j=1}^{n} p_{j}(r) d r\right) d s . \tag{2-6}
\end{align*}
$$

Denoting the outer integral by $\mathbb{P}(t)$,

$$
\begin{equation*}
0<x(t) \leq x(\sigma(t))(1-\mathbb{P}(t)) \quad \forall t \geq t_{1} . \tag{2-7}
\end{equation*}
$$

Therefore, $\mathbb{P}(t)<1$ for all $t \geq t_{1}$, which completes the proof.
Theorem 2.2. Assume (H1), (H2) and (1-2). If there exists a sequence $\left\{u_{k}\right\} \rightarrow \infty$ such that

$$
\begin{equation*}
\int_{\sigma\left(u_{k}\right)}^{u_{k}} \sum_{i=1}^{n} p_{i}(s) \exp \left(\int_{\tau_{i}(s)}^{\sigma\left(u_{k}\right)} \sum_{j=1}^{n} p_{j}(r) d r\right) d s \geq 1 \quad \forall k, \tag{2-8}
\end{equation*}
$$

then all solutions of (1-1) are oscillatory.
Proof. To reach a contradiction, assume that there is a nonoscillatory solution x, and initially assume x is eventually positive. Let t_{1} be defined by Lemma 1.1. Then by Lemma 2.1, inequality (2-4) is satisfied, which contradicts (2-8). Therefore x cannot be eventually positive.

When x is eventually negative, we prove a variation of Lemma 1.1 in which $x(t)<0, x\left(\tau_{i}(t)\right)<0, x$ is nondecreasing, and $\left|x\left(\tau_{i}(t)\right)\right| \leq\left|g_{i}\left(x\left(\tau_{i}(t)\right)\right)\right|$ for $t \geq t_{1}$. Then we show that Lemma 2.1 still holds. In its proof, we need to reverse inequalities (2-5), (2-6) and (2-7). With these two lemmas, we obtain again a contradiction to (2-8), which implies that x cannot be eventually negative.

Remark 2.3. Note that (2-8) is implied by

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{\sigma(t)}^{t} \sum_{i=1}^{n} p_{i}(s) \exp \left(\int_{\tau_{i}(s)}^{\sigma(t)} \sum_{j=1}^{n} p_{j}(r) d r\right) d s>1 \tag{2-9}
\end{equation*}
$$

Since the exponent in (2-9) is not negative, it follows that (2-9) is implied by (2-1). In summary, (2-8) is less restrictive than (2-2).
Remark 2.4. When the equal sign in (1-1) is replaced by \leq, the new equation cannot have eventually positive solutions under assumption (2-8). Similarly when the equal sign in (1-1) is replaced by \geq, the new equation cannot have eventually negative solutions under assumption (2-8).

Regarding the necessity of the hypothesis $\sigma(t)<t$ in Theorem 2.2, we consider the single delay equation

$$
\begin{equation*}
x^{\prime}(t)+p_{1} x\left(\tau_{1}(t)\right)=0 \tag{2-10}
\end{equation*}
$$

with the assumption

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{\tau_{1}(t)}^{t} p_{1} \exp \left(\int_{\tau_{1}(s)}^{\sigma(t)} p_{1} d r\right) d s>A, \tag{2-11}
\end{equation*}
$$

where A and p_{1} are positive constants.
Theorem 2.5. For each p_{1} and each $A<e$, there exists a monotonic delay with $\tau_{1}(t)=t$ on certain intervals such that (2-11) is satisfied, but (2-10) has a nonoscillatory solution.
Proof. Since the continuous mapping $y \mapsto y e^{y}$ is strictly increasing and maps zero to zero and 1 to e, there exists $\beta<1$ such that $\beta e^{\beta}=A$. Since for positive integers, $\frac{m-1}{m}<1$ and $\lim _{m \rightarrow \infty} \frac{m-1}{m}=1$, there exists m such that $\beta<\frac{m-1}{m}<1$. Then

$$
\frac{m \beta}{(m-1) p_{1}}<\frac{1}{p_{1}} .
$$

By the completeness of the real numbers, there exists α such that

$$
\frac{m \beta}{(m-1) p_{1}}<\alpha<\frac{1}{p_{1}} .
$$

In summary, for some integer m, we have

$$
\begin{equation*}
\alpha p_{1}<1 \text { and } \beta<\frac{(m-1) \alpha p_{1}}{m} . \tag{2-12}
\end{equation*}
$$

As a delayed argument, we define the piecewise linear function

$$
\tau_{1}(t)= \begin{cases}t & \text { if } 0 \leq t \leq \alpha, \\ \alpha & \text { if } \alpha<t<\frac{2 m-1}{m} \alpha, \\ 2 \alpha+m(t-2 \alpha) & \text { if } \frac{2 m-1}{m} \alpha \leq t \leq 2 \alpha .\end{cases}
$$

For $t \in(2 \alpha, 4 \alpha]$, we use the formula $\tau_{1}(t)=2 \alpha+\tau_{1}(t-2 \alpha)$, and a similar formula for $t \in(4 \alpha, 6 \alpha]$, etc. Note that τ_{1} is continuous, nondecreasing, $\lim _{t \rightarrow \infty} \tau_{1}(t)=\infty$, and $\tau_{1}(t)=\tau_{0}(t)=\sigma(t)$. To define a solution to (2-10), we use an initial condition $x(t)=x_{0}>0$ for $t \leq 0$.

On the interval $[0, \alpha]$, equation (2-10) becomes an ordinary differential equation whose solution is $x(t)=x_{0} e^{-p_{1} t}$, which is positive and decreasing.

On the interval $\left[\alpha, \frac{2 m-1}{m} \alpha\right]$, the delayed argument is $\tau_{1}(t)=\alpha$. Then (2-10) has the solution

$$
\begin{equation*}
x(t)=x(\alpha)-p_{1} x(\alpha)(t-\alpha)=x(\alpha)\left(1-(t-\alpha) p_{1}\right) \tag{2-13}
\end{equation*}
$$

which is decreasing. From the inequality $t \leq \frac{2 m-1}{m} \alpha<2 \alpha$, we obtain the lower bound

$$
x(t)>x(\alpha)\left(1-\alpha p_{1}\right)
$$

which is positive because of (2-12).
So far the solution is positive on $\left[0, \frac{2 m-1}{m} \alpha\right]$. Next we show that the solution cannot have zeros in $\left(\frac{2 m-1}{m} \alpha, 2 \alpha\right]$. To reach a contradiction, let t_{2} be the smallest zero in $\left(\frac{2 m-1}{m} \alpha, 2 \alpha\right]$. By the mean value theorem, there exists t^{*} in $\left(\frac{2 m-1}{m} \alpha, t_{2}\right)$ such that

$$
x^{\prime}\left(t^{*}\right)=\frac{x\left(\frac{2 m-1}{m} \alpha\right)-0}{\frac{2 m-1}{m} \alpha-t_{2}}
$$

From $t_{2}<2 \alpha$, it follows that

$$
\begin{equation*}
x^{\prime}\left(t^{*}\right)<\frac{x\left(\frac{2 m-1}{m} \alpha\right)}{-\frac{\alpha}{m}} \tag{2-14}
\end{equation*}
$$

Note that for $t \leq t_{2}$, we have $\tau_{1}(t)<t_{2}$. Since $x(t) \geq 0$ for all $t \leq t_{2}$, by (2-10), $x^{\prime}(t) \leq 0$ so that x is nonincreasing for all $t \leq t_{2}$. Because x is nonincreasing and $\alpha \leq \tau_{1}\left(t^{*}\right)$, we have $x\left(\tau_{1}\left(t^{*}\right)\right) \leq x(\alpha)$. This and (2-14) imply

$$
\begin{equation*}
0=x^{\prime}\left(t^{*}\right)+p_{1} x\left(\tau_{1}\left(t^{*}\right)\right)<\frac{x\left(\frac{2 m-1}{m} \alpha\right)}{-\frac{\alpha}{m}}+p_{1} x(\alpha) \tag{2-15}
\end{equation*}
$$

From (2-13),

$$
x\left(\frac{2 m-1}{m} \alpha\right)=x(\alpha)\left(1-\left(\frac{2 m-1}{m} \alpha-\alpha\right) p_{1}\right)=x(\alpha)\left(1-\frac{m-1}{m} \alpha p_{1}\right)
$$

Substituting this value in (2-15) yields

$$
x(\alpha)\left(1-\frac{m-1}{m} \alpha p_{1}\right)<\frac{\alpha}{m} p_{1} x(\alpha)
$$

which implies $1-\frac{m-1}{m} \alpha p_{1}<\frac{\alpha}{m} p_{1}$. This in turn implies $1<\alpha p_{1}$, and contradicts (2-11). Therefore, $x(t)>0$ on $[0,2 \alpha]$.

Next we set $x(2 \alpha)$ as the initial value, and solve (2-10) on $[2 \alpha, 4 \alpha]$. Repeating this process, we have a positive solution on $[0, \infty)$.

It remains to show that (2-11) is satisfied. From the definition of τ_{1}, when $t=u_{1}=\frac{2 m-1}{m} \alpha$, we have $\sigma\left(u_{1}\right)=\frac{2 m-1}{m} \alpha$. For $\alpha \leq s \leq \frac{2 m-1}{m} \alpha$, we have that $\tau_{1}(s)=\alpha$. Then (2-11) becomes

$$
\int_{\alpha}^{\frac{2 m-1}{m} \alpha} p_{1} \exp \left(\int_{\alpha}^{\frac{2 m-1}{m} \alpha} p_{1} d r\right) d s=\frac{m-1}{m} \alpha p_{1} \exp \left(\frac{m-1}{m} \alpha p_{1}\right) .
$$

Since the mapping $y \mapsto e^{y}$ is increasing, by (2-12),

$$
\frac{m-1}{m} \alpha p_{1} \exp \left(\frac{m-1}{m} \alpha p_{1}\right)>\beta e^{\beta}>A .
$$

Repeating this process at $u_{k}=2 k \alpha+\frac{2 m-1}{m} \alpha$, we obtain a sequence at which the above inequality holds. The presence of this sequence implies (2-8) and (2-11) are satisfied.

3. Conditions using the limit inferior

A direct application of [Ladde et al. 1987, Theorem 2.1.1] to (1-8) states that

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{\sigma(t)}^{t} \sum_{i=1}^{n} p_{i}(s) d s>\frac{1}{e} \tag{3-1}
\end{equation*}
$$

implies the oscillation of all solutions of (1-1). Also note that (3-1) implies (1-2).
Grammatikopoulos et al. [2003] showed that for (1-1) with $f_{i}(t, x)=p_{i}(t) x$, all solutions are oscillatory when the τ_{i} are nondecreasing, and

$$
\begin{gather*}
\int_{0}^{\infty}\left|p_{i}(s)-p_{j}(s)\right| d s<\infty, \\
\liminf _{t \rightarrow \infty} \int_{\tau_{i}(t)}^{t} p_{i}(s) d s=\beta_{i}>0, \quad \sum_{i=1}^{n} \liminf _{t \rightarrow \infty} \int_{\tau_{i}(t)}^{t} p_{i}(s) d s>\frac{1}{e} . \tag{3-2}
\end{gather*}
$$

As in the previous part, we use Grönwall's inequality for finding a condition less restrictive than (3-1).

Lemma 3.1. Assume (H1), (H2). If x is an eventually positive solution of (1-1), and

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{\sigma(t)}^{t} \sum_{i=1}^{n} p_{i}(s) \exp \left(\int_{\tau_{i}(s)}^{\sigma(s)} \sum_{j=1}^{n} p_{j}(r) d r\right) d s>\frac{1}{e}, \tag{3-3}
\end{equation*}
$$

then $\lim _{t \rightarrow \infty} x(\sigma(t)) / x(t)=\infty$.
Proof. By a contrapositive argument, we can show that (3-3) implies (1-2), so we let t_{1} be defined by Lemma 1.1. Applying Grönwall's inequality to (1-10) yields
(2-5), which is substituted in (1-7) to obtain

$$
\begin{equation*}
0 \geq x^{\prime}(t)+\sum_{i=1}^{n} p_{i}(t) x(\sigma(t)) \exp \left(\int_{\tau_{i}(t)}^{\sigma(t)} \sum_{j=1}^{n} p_{j}(r) d r\right) \quad \forall t \geq t_{1} \tag{3-4}
\end{equation*}
$$

Dividing by $x(t)$ and integrating from $\sigma(t)$ to t, we obtain

$$
\begin{equation*}
\ln \left(\frac{x(t)}{x(\sigma(t))}\right)+\int_{\sigma(t)}^{t} \sum_{i=1}^{n} p_{i}(s) \frac{x(\sigma(t))}{x(s)} \exp \left(\int_{\tau_{i}(s)}^{\sigma(s)} \sum_{j=1}^{n} p_{j}(r) d r\right) d s \leq 0 \tag{3-5}
\end{equation*}
$$

From (3-3), there exist constants $t_{2} \geq t_{1}$ and α such that

$$
\int_{\sigma(t)}^{t} \sum_{i=1}^{n} p_{i}(s) \exp \left(\int_{\tau_{i}(s)}^{\sigma(s)} \sum_{j=1}^{n} p_{j}(r) d r\right) d s \geq \alpha>\frac{1}{e} \quad \forall t \geq t_{2}
$$

Since $\sigma(s)<s$ and x is nonincreasing, $x(\sigma(s)) / x(s) \geq 1$. Then (3-5) and the above inequality yield

$$
\ln \left(\frac{x(t)}{x(\sigma(t))}\right)+\alpha \leq 0
$$

Since $\alpha e \leq e^{\alpha}$ for all α,

$$
\begin{equation*}
\alpha e \leq e^{\alpha} \leq \frac{x(\sigma(t))}{x(t)} \quad \forall t \geq t_{2} \tag{3-6}
\end{equation*}
$$

Since $\lim _{t \rightarrow \infty} \sigma(t)=\infty$, there exists $t_{3} \geq t_{2}$ such that $\sigma(t) \geq t_{2}$ for all $t \geq t_{3}$. Using (3-6) in (3-5), we obtain

$$
(\alpha e)^{2} \leq \frac{x(\sigma(s))}{x(s)} \quad \forall t \geq t_{3}
$$

Repeating this process, we obtain

$$
(\alpha e)^{k} \leq \frac{x(\sigma(s))}{x(s)}
$$

for all t sufficiently large. Since $\alpha e>1$, the assertion of the lemma follows.
Theorem 3.2. Under assumptions (H1), (H2) and (3-3), all solutions to (1-1) are oscillatory.

Proof. To reach a contradiction, assume that there is a nonoscillatory solution x, which initially is assumed to be eventually positive. By a contrapositive argument, we can show that (3-3) implies (1-2), so we let t_{1} be defined by Lemma 1.1. To simplify notation, we define

$$
\mathbb{P}(s)=\sum_{i=1}^{n} p_{i}(s) \exp \left(\int_{\tau_{i}(s)}^{\sigma(s)} \sum_{i=1}^{n} p_{i}(r) d r\right)
$$

Then from (3-3), there exist constants $t_{2} \geq t_{1}$ and α such that

$$
\int_{\sigma(t)}^{t} \mathbb{P}(s) d s \geq \alpha>\frac{1}{e} \quad \forall t \geq t_{2}
$$

Using the intermediate value theorem, we can show that there exists $t^{*} \in(\sigma(t), t)$ such that

$$
\begin{equation*}
\int_{\sigma(t)}^{t^{*}} \mathbb{P}(s) d s \geq \frac{\alpha}{2} \quad \text { and } \quad \int_{t^{*}}^{t} \mathbb{P}(s) d s \geq \frac{\alpha}{2} \tag{3-7}
\end{equation*}
$$

Integrating (1-7) from $\sigma(t)$ to t^{*} and using (2-5) yield

$$
x\left(t^{*}\right)-x(\sigma(t))+x\left(\sigma\left(t^{*}\right)\right) \int_{\sigma(t)}^{t^{*}} \mathbb{P}(s) d s \leq 0
$$

Using that $x\left(t^{*}\right)>0$ and (3-7), we obtain

$$
\begin{equation*}
x\left(\sigma\left(t^{*}\right)\right) \leq \frac{2}{\alpha} x(\sigma(t)) \tag{3-8}
\end{equation*}
$$

Integrating (1-7) from t^{*} to t and using (2-5) yield

$$
x(\sigma(t))-x\left(t^{*}\right)+x(\sigma(t)) \int_{t^{*}}^{t} \mathbb{P}(s) d s \leq 0
$$

Using that $x(\sigma(t))>0$ and (3-7), we obtain

$$
x(\sigma(t)) \leq \frac{2}{\alpha} x\left(t^{*}\right)
$$

Using this inequality in (3-8) yields

$$
\frac{x\left(\sigma\left(t^{*}\right)\right)}{x\left(t^{*}\right)} \leq\left(\frac{2}{\alpha}\right)^{2}
$$

Because $\sigma(t) \leq t^{*} \leq t$ and $\lim _{t \rightarrow \infty} \sigma(t)=\infty$, the above inequality contradicts Lemma 3.1; so the solution x cannot be eventually positive.

When x is eventually negative, as in Lemma 1.1, there exist $t_{1} \geq t_{0}$ such that $x(t)<0, x\left(\tau_{i}(t)\right)<0, x(t)$ is nondecreasing and $\left|x\left(\tau_{i}(t)\right)\right| \leq\left|g_{i}\left(x\left(\tau_{i}(t)\right)\right)\right|$ for $t \geq t_{1}$. Then Lemma 3.1 holds, but in its proof we need to reverse inequality (3-4). Again we reach a contradiction indicating that x cannot be eventually negative.

Remark 3.3. Note that the exponent in (3-3) is nonnegative; therefore, condition (3-1) is more restrictive than (3-3). Also the statements in Remark 2.4 apply to condition (3-3).

4. Estimates using a logarithmic inequality

Li [1996] used the inequality $e^{r x} \geq x+\frac{1}{r}(1+\ln r)$ to show that all solutions to (1-1) are oscillatory when $f_{i}(t, x)=p_{i}(t) x$ and the delays have the form $\tau_{i}(t)=t-k_{i}$
with positive constants k_{i}. There, the key assumption is

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \sum_{i=1}^{n} p_{i}(s)\left(1+\ln \left(\int_{s}^{s+k_{i}} \sum_{j=1}^{n} p_{j}(r) d r\right)\right) d s=\infty \tag{4-1}
\end{equation*}
$$

We want to extend the result in [Li 1996] to (1-1) that are nonlinear and have variable delays. The variable delays cause some difficulties when obtaining a condition similar to (4-1).

First we define a function that is the inverse of σ almost everywhere. Under assumption (H1), the function σ is continuous; thus for each s, the set $\sigma^{-1}(s)$ is closed. Since σ is monotonic and $\lim _{t \rightarrow \infty} \sigma(t)=\infty$, the set $\sigma^{-1}(s)$ is a closed and bounded interval. There are at most countably many of those closed intervals that do not consist of a single point. Let

$$
\sigma_{\mathrm{inv}}(s)=\max \{t: \sigma(t)=s\}
$$

Note that $\sigma_{\text {inv }}$ is strictly increasing and has at most countably many discontinuities. Also $s<\sigma_{\text {inv }}(s)$, and $\sigma_{\text {inv }}$ is bounded on bounded intervals. Under these conditions, σ_{inv} is Riemann integrable, and expressions of the form $\int_{a}^{b} p(s) \int_{s}^{\sigma_{\mathrm{inv}}(s)} \lambda(r) d r d s$ are well-defined for all continuous functions λ, p. Also the value of this integral remains the same when $\sigma_{\mathrm{inv}}(s)$ is replaced by any t as long as $\sigma(t)=s$. This happens because the integrand would change only at countably many points.
Lemma 4.1. Under assumption (H1), for $a \leq \sigma(b)$ and any continuous nonnegative functions λ and p, we have

$$
\begin{equation*}
\int_{a}^{b} p(s) \int_{\sigma(s)}^{s} \lambda(r) d r d s \geq \int_{a}^{\sigma(b)} \lambda(s) \int_{s}^{\sigma_{\mathrm{inv}}(s)} p(r) d r d s \tag{4-2}
\end{equation*}
$$

Proof. Interchanging the order of integration on the left-hand side of (4-2) gives

$$
\begin{aligned}
\int_{a}^{b} p(s) \int_{\sigma(s)}^{s} \lambda(r) d r d s= & \int_{\sigma(a)}^{a} \lambda(r) \int_{a}^{\sigma_{\mathrm{inv}}(r)} p(s) d s d r \\
& +\int_{a}^{\sigma(b)} \lambda(r) \int_{r}^{\sigma_{\mathrm{inv}}(r)} p(s) d s d r+\int_{\sigma(b)}^{b} \lambda(r) \int_{r}^{b} p(s) d s d r
\end{aligned}
$$

Since all these integrals are nonnegative, we use the second integral in the right-hand side as a lower bound. Renaming the variables r and s, we obtain the assertion of the lemma.

Lemma 4.2. Under assumptions (H1), (H2) and (1-2), if (1-1) has an eventually positive solution, then

$$
\int_{t}^{\sigma_{\mathrm{inv}}(t)} \sum_{i=1}^{n} p_{i}(s) d s<1 \quad \forall t \geq t_{1}
$$

where t_{1} is defined by Lemma 1.1

Proof. Let x be an eventually positive solution of (1-1). Recall that x is nonincreasing, σ is nondecreasing, and $t<\sigma_{\text {inv }}(t)$. Integrating (1-9) from t to $\sigma_{\text {inv }}(t)$, we have

$$
\begin{equation*}
x\left(\sigma_{\mathrm{inv}}(t)\right)-x(t)+x(t) \int_{t}^{\sigma_{\mathrm{inv}}(t)} \sum_{i=1}^{n} p_{i}(s) d s \leq 0 \tag{4-3}
\end{equation*}
$$

Then

$$
\begin{equation*}
0<x\left(\sigma_{\mathrm{inv}}(t)\right) \leq x(t)\left(1-\int_{t}^{\sigma_{\mathrm{inv}}(t)} \sum_{i=1}^{n} p_{i}(s) d s\right) \quad \forall t \geq t_{1} \tag{4-4}
\end{equation*}
$$

The assertion of the lemma follows.
Lemma 4.3. Under assumptions (H1), (H2) and (1-2), if x is an eventually positive solution of (1-1) and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{t}^{\sigma_{\mathrm{inv}}(t)} \sum_{i=1}^{n} p_{i}(s) d s>0 \tag{4-5}
\end{equation*}
$$

then $\liminf _{t \rightarrow \infty} x(\sigma(t)) / x(t)<\infty$.
Proof. Let t_{1} be defined by Lemma 1.1. From (4-5), there exist a constant α and a sequence $\left\{t_{k}\right\}_{k=2}^{\infty} \rightarrow \infty$ such that

$$
\int_{t_{k}}^{\sigma_{\mathrm{inv}}\left(t_{k}\right)} \sum_{i=1}^{n} p_{i}(s) d s \geq \alpha>0 \quad \forall k \geq 2
$$

Using the intermediate value theorem, we can show that there exists t_{k}^{*} in the interval $\left(t_{k}, \sigma_{\text {inv }}\left(t_{k}\right)\right)$ such that

$$
\begin{equation*}
\int_{t_{k}}^{t_{k}^{*}} \sum_{i=1}^{n} p_{i}(s) d s \geq \frac{\alpha}{2} \quad \text { and } \quad \int_{t_{k}^{*}}^{\sigma_{\mathrm{inv}}\left(t_{k}\right)} \sum_{i=1}^{n} p_{i}(s) d s \geq \frac{\alpha}{2} \tag{4-6}
\end{equation*}
$$

Integrating (1-9) from t_{k} to t_{k}^{*}, and using that σ is nondecreasing while x is nonincreasing, yields

$$
x\left(t_{k}^{*}\right)-x\left(t_{k}\right)+x\left(\sigma\left(t_{k}^{*}\right)\right) \int_{t_{k}}^{t_{k}^{*}} \sum_{i=1}^{n} p_{i}(s) d s \leq 0
$$

Using that $x\left(t_{k}^{*}\right)>0$ and (4-6), we have

$$
\begin{equation*}
x\left(\sigma\left(t_{k}^{*}\right)\right) \leq \frac{2}{\alpha} x\left(t_{k}\right) \tag{4-7}
\end{equation*}
$$

Integrating (1-9) from t_{k}^{*} to $\sigma_{\mathrm{inv}}\left(t_{k}\right)$ yields

$$
x\left(\sigma_{\mathrm{inv}}\left(t_{k}\right)\right)-x\left(t_{k}^{*}\right)+x\left(t_{k}\right) \int_{t_{k}^{*}}^{\sigma_{\mathrm{inv}}\left(t_{k}\right)} \sum_{i=1}^{n} p_{i}(s) d s \leq 0
$$

Using that $x\left(\sigma_{\text {inv }}\left(t_{k}\right)\right)>0$ and (4-6), we have

$$
\begin{equation*}
x\left(t_{k}\right) \leq \frac{2}{\alpha} x\left(t_{k}^{*}\right) \tag{4-8}
\end{equation*}
$$

Using (4-8) in (4-7), it follows that

$$
\frac{x\left(\sigma\left(t_{k}^{*}\right)\right)}{x\left(t_{k}^{*}\right)} \leq\left(\frac{2}{\alpha}\right)^{2} \quad \forall k \geq 2
$$

The assertion of the lemma follows by calculating the limit inferior as $k \rightarrow \infty$.
Theorem 4.4. Assume (H1), (H2), and

$$
\begin{gather*}
\int_{s}^{\sigma_{\mathrm{inv}}(s)} \sum_{j=1}^{n} p_{j}(r) d r>0 \quad \forall s \geq t_{0} \tag{4-9}\\
\int_{t_{0}}^{\infty} \sum_{i=1}^{n} p_{i}(s)\left(1+\ln \left(\int_{s}^{\sigma_{\mathrm{inv}}(s)} \sum_{j=1}^{n} p_{j}(r) d r\right)\right) d s=\infty \tag{4-10}
\end{gather*}
$$

Then every solution of (1-1) is oscillatory.
Proof. To reach a contradiction, assume that there is a nonoscillatory solution x, which initially is assumed to be eventually positive. By a contrapositive argument, we can show that (4-10) implies (1-2), so we let t_{1} be defined by Lemma 1.1. Let

$$
\lambda(t)=\frac{-x^{\prime}(t)}{x(t)} \quad \text { for } t \geq t_{1}
$$

Then λ is a continuous and nonnegative function. Integrating λ from a value t^{*} to t, we have $x(t)=x\left(t^{*}\right) \exp \left(-\int_{t^{*}}^{t} \lambda(s) d s\right)$. Then

$$
x^{\prime}(t)=-\lambda(t) x\left(t^{*}\right) \exp \left(-\int_{t^{*}}^{t} \lambda(s) d s\right)
$$

Substituting this expression in (1-1) yields

$$
\lambda(t)=\frac{1}{x\left(t^{*}\right)} \sum_{i=1}^{n} f_{i}\left(t, x\left(\tau_{i}(t)\right)\right) \exp \left(\int_{t^{*}}^{t} \lambda(s) d s\right)
$$

For $t^{*}=\sigma(t)<t$, using (H2) and $x(\sigma(t)) \leq x\left(\tau_{i}(t)\right)$, we obtain

$$
\begin{equation*}
\lambda(t) \geq \sum_{i=1}^{n} p_{i}(t) \exp \left(\int_{\sigma(t)}^{t} \lambda(r) d r\right) \tag{4-11}
\end{equation*}
$$

Note that the corresponding inequality on [Li 1996, page 3734] is incorrect, but it does not affect their proof of Theorem 1. Next as in [Li 1996], we use the inequality

$$
\begin{equation*}
e^{\gamma \beta} \geq \gamma+\frac{1}{\beta}(1+\ln (\beta)) \quad \forall \beta>0 \tag{4-12}
\end{equation*}
$$

which can be shown by fixing β and minimizing $e^{\gamma \beta}-\gamma-\frac{1}{\beta}(1+\ln (\beta))$ with respect to γ. Let

$$
\beta(s)=\int_{s}^{\sigma_{\mathrm{inv}}(s)} \sum_{i=1}^{n} p_{i}(r) d r,
$$

which is positive. Then by (4-11) and (4-12),

$$
\begin{aligned}
\lambda(s) & \geq \sum_{j=1}^{n} p_{j}(s) \exp \left(\frac{1}{\beta(s)} \int_{\sigma(s)}^{s} \lambda(r) d r \beta(s)\right) \\
& \geq \sum_{i=1}^{n} p_{i}(s) \frac{1}{\beta(s)}\left(\int_{\sigma(s)}^{s} \lambda(r) d r+(1+\ln (\beta(s)))\right) .
\end{aligned}
$$

Multiplying by $\beta(s)$ and integrating from t_{1} to t,

$$
\int_{t_{1}}^{t} \lambda(s) \beta(s) d s \geq \int_{t_{1}}^{t} \sum_{i=1}^{n} p_{i}(s) \int_{\sigma(s)}^{s} \lambda(r) d r d s+\int_{t_{1}}^{t} \sum_{i=1}^{n} p_{i}(s)(1+\ln (\beta(s))) d s .
$$

By Lemma 4.1, with $a=t_{1}$ and $b=t$, we have

$$
\begin{aligned}
& \int_{t_{1}}^{t} \lambda(s) \beta(s) d s \\
& \qquad \geq \int_{t_{1}}^{\sigma(t)} \lambda(s) \int_{s}^{\sigma_{\mathrm{inv}}(s)} \sum_{i=1}^{n} p_{i}(r) d r d s+\int_{t_{1}}^{t} \sum_{i=1}^{n} p_{i}(s)(1+\ln (\beta(s))) d s .
\end{aligned}
$$

Substituting $\beta(s)$ by its value on the left-hand side, and combining integrals, gives

$$
\int_{t}^{\sigma(t)} \lambda(s) \int_{s}^{\sigma_{\mathrm{inv}}(s)} \sum_{i=1}^{n} p_{i}(r) d r d s \geq \int_{t_{1}}^{t} \sum_{i=1}^{n} p_{i}(s)(1+\ln (\beta(s))) d s
$$

By Lemma 4.2, the coefficient of $\lambda(s)$ is at most 1 . Then

$$
\ln \left(\frac{x(\sigma(t))}{x(t)}\right)=\int_{t}^{\sigma(t)} \lambda(s) d s \geq \int_{t_{1}}^{t} \sum_{i=1}^{n} p_{i}(s)(1+\ln (\beta(s))) d s .
$$

In the limit as $t \rightarrow \infty$, the right-hand side approaches ∞ because of (4-10). Therefore, $\lim _{t \rightarrow \infty} x(\sigma(t)) / x(t)=\infty$, which contradicts Lemma 4.3. This shows that the solution cannot be eventually positive.

When x is eventually negative, as in Lemma 1.1 , we obtain a $t_{1} \geq t_{0}$ such that $x(t)<0, x\left(\tau_{i}(t)\right)<0, x$ is nondecreasing, and $\left|x\left(\tau_{i}(t)\right)\right| \leq\left|g_{i}\left(x\left(\tau_{i}(t)\right)\right)\right|$ for $t \geq t_{1}$. Lemma 4.1 holds; it is independent of x. Lemma 4.2 holds, but in its proof we need to reverse the inequalities in (4-3) and (4-4). Lemma 4.3 holds, but in its proof we need to reverse the inequalities in (4-6), (4-7) and (4-8). In the first part of this proof, we need to reverse inequality (4-10). Again, we reach a contradiction indicating that the solution cannot be eventually negative.

Remark 4.5. If $t-\tau_{i}(t)=k_{i}$, a positive constant, then (3-1) implies (4-10). In general, conditions (2-1), (3-1) and (4-10) are independent of each other. Here we present an example where (4-10) is satisfied, but (2-1) and (3-1) are not satisfied.

Consider (1-1) with only one delay, $f_{1}(t, x)=p_{1}(t) x, \tau_{1}(t)=t-\frac{1}{e}$, and

$$
p_{1}(t)= \begin{cases}4 e t & \text { if } 0 \leq t \leq \frac{1}{2 e} \\ 2 & \text { if } \frac{1}{2 e}<t<1-\frac{1}{2 e} \\ -4 e(t-1) & \text { if } 1-\frac{1}{2 e} \leq t \leq 1\end{cases}
$$

For $t \geq 1$, extend p_{1} with period 1 . Then

$$
\frac{1}{e} \leq \int_{s}^{s+\frac{1}{e}} p_{1}(r) d r \leq \frac{2}{e}
$$

Note that the lower bound is attained when s is an integer minus $\frac{1}{2 e}$; therefore

$$
\liminf _{t \rightarrow \infty} \int_{t-\frac{1}{e}}^{t} p_{1}(r) d r=\frac{1}{e}
$$

and (2-1) is not satisfied. The upper bound is attained when s equals an integer plus $\frac{1}{2 e}$; thus

$$
\limsup _{t \rightarrow \infty} \int_{t-\frac{1}{e}}^{t} p_{1}(r) d r=\frac{2}{e}<1
$$

and (3-1) is not satisfied. Condition (4-10) is satisfied, because

$$
\int_{0}^{\infty} p_{1}(s)\left(1+\ln \left(\int_{s}^{s+\frac{1}{e}} p_{1}(r) d r\right)\right) d s \geq \sum_{k=0}^{\infty} \int_{k+\frac{1}{2 e}}^{k+1-\frac{3}{2 e}} 2\left(1+\ln \frac{2}{e}\right)=\infty
$$

Now we extend the results in [Hunt and Yorke 1984] from the linear to the nonlinear case of equation (1-1). However, the Grönwall and the logarithmic inequalities cannot be applied in this case.

Theorem 4.6. Assume (H1), (H2) and that there exists a constant β such that

$$
\begin{gather*}
0<t-\tau_{i}(t) \leq \beta \quad \forall t \geq t_{0}, \quad 1 \leq i \leq n, \tag{4-13}\\
\liminf _{t \rightarrow \infty} \sum_{i=1}^{n} p_{i}(t)\left(t-\tau_{i}(t)\right)>\frac{1}{e} . \tag{4-14}
\end{gather*}
$$

Then all solutions of (1-1) are oscillatory.
Proof. To reach a contradiction, assume that there is a nonoscillatory solution x, which initially is assumed to be eventually positive. First we show that (4-14)
implies (1-2), which allows us to use Lemma 1.1. From (4-14), there exist $t^{*} \geq t_{0}$ such that

$$
\sum_{i=1}^{n} p_{i}(t)\left(t-\tau_{i}(t)\right) \geq \frac{1}{e}
$$

for all $t \geq t^{*}$. Then by (4-13),

$$
\beta \int_{t^{*}}^{\infty} \sum_{i=1}^{n} p_{i}(t) d t \geq \int_{t^{*}}^{\infty} \sum_{i=1}^{n} p_{i}(t)\left(t-\tau_{i}(t)\right) d t \geq \int_{t^{*}}^{\infty} \frac{1}{e} d t=\infty .
$$

Let t_{1} be defined by Lemma 1.1.
From (4-14), there exist constants $t_{2} \geq t_{1}$ and α such that

$$
\sum_{i=1}^{n} p_{i}(t)\left(t-\tau_{i}(t)\right) \geq \alpha>\frac{1}{e} \quad \forall t \geq t_{2}
$$

Let $y(t)=-\ln (x(t))$. Then $x(t)=\exp (-y(t))$ and from (1-7), we have

$$
\begin{equation*}
y^{\prime}(t) \geq \sum_{i=1}^{n} p_{i}(t) \exp \left(y(t)-y\left(\tau_{i}(t)\right)\right) \quad \forall t \geq t_{2} \tag{4-15}
\end{equation*}
$$

As in [Hunt and Yorke 1984], we construct a solution u to a delay differential equation such that $u(t) \leq y(t)$ and u blows up in finite time. Let u be the solution to the delay equation

$$
\begin{equation*}
u^{\prime}(t)=\alpha \inf _{t-\beta \leq r<t} \frac{1}{t-r} \exp (u(t)-u(r)) \quad \forall t \geq t_{2}+\beta \tag{4-16}
\end{equation*}
$$

with the constant initial condition

$$
u(t)=u\left(t_{2}+\beta\right) \leq \min _{t_{2} \leq s \leq t_{2}+\beta} y(s) \quad \text { for } t \leq t_{2}+\beta
$$

The rest of the proof is the same as that of [Hunt and Yorke 1984, Theorem 1]; so we just outline the steps. First justify the existence of the solution to (4-16), and denote by $r(t)$ the value at which the infimum is attained. Then show that u and u^{\prime} are increasing, and that, $r(t)$, being a minimizer, satisfies either $t-r(t)=1 / u^{\prime}(t)$ or $(t-\beta) \leq 1 / u^{\prime}(\beta)$ when $r(t)=\beta$. Then construct a recurrence sequence $\left\{t_{n}\right\}$ increasing to a value t^{*}, while $u\left(t_{n}\right) \rightarrow \infty$. This implies $\lim _{t \rightarrow t^{*}}-\ln (x(t))=\infty$ and $x\left(t^{*}\right)=0$, which contradicts x being eventually positive.

When x is eventually negative, as in Lemma 1.1, we obtain $t_{1} \geq t_{0}$ such that $x(t)<0, x\left(\tau_{i}(t)\right)<0, x$ is nonincreasing, and $\left|x\left(\tau_{i}(t)\right)\right| \leq\left|g_{i}\left(x\left(\tau_{i}(t)\right)\right)\right|$ for $t \geq t_{1}$. We redefine $y(t)=-\ln (-x(t))$; thus $-x(t)=\exp (-y(t))$. From (1-7) with the inequality reversed, we obtain (4-15). The rest of the proof is as for the eventually positive case.

Remark 4.7. Note that the integral in (3-1) satisfies

$$
\int_{\sigma(t)}^{t} \sum_{i=1}^{n} p_{i}(s) d s \leq \sum_{i=1}^{n} \int_{\tau_{i}(t)}^{t} p_{i}(s) d s
$$

and that for $p_{i}(t)$ constant, the right-hand side of this inequality is $p_{i}(t)\left(t-\tau_{i}(t)\right)$, which is used in (4-14). Therefore when $p_{i}(t)$ is constant, (3-1) implies (4-14). When $p_{i}(t)$ is constant and $\tau_{i}(t)=\beta$, conditions (3-1) and (4-14) are the same. In general, (4-14) is independent of both (3-1) and (3-3).

The above conditions are only sufficient for the oscillation of all solutions; finding necessary conditions may be a direction for future research.

References

[Braverman and Karpuz 2011] E. Braverman and B. Karpuz, "On oscillation of differential and difference equations with non-monotone delays", Appl. Math. Comput. 218:7 (2011), 3880-3887. MR 2012h:34145 Zbl 1256.39013
[Chatzarakis and Öcalan 2015] G. E. Chatzarakis and Ö. Öcalan, "Oscillation of differential equations with several non-montonic advanced arguments", Dyn. Syst. 30:3 (2015), 310-323. MR 3373715 Zbl 06514202
[Dix et al. 2008] J. G. Dix, N. Misra, L. Padhy, and R. Rath, "Oscillatory and asymptotic behaviour of a neutral differential equation with oscillating coefficients", Electron. J. Qual. Theory Differ. Equ. 2008:19 (2008), 1-10. MR 2009d:34198 Zbl 1183.34107
[Elbert and Stavroulakis 1995] Á. Elbert and I. P. Stavroulakis, "Oscillation and nonoscillation criteria for delay differential equations", Proc. Amer. Math. Soc. 123:5 (1995), 1503-1510. MR 95f:34099 Zbl 0828.34057
[Erbe et al. 1995] L. H. Erbe, Q. Kong, and B. G. Zhang, Oscillation theory for functional-differential equations, Monographs and Textbooks in Pure and Applied Mathematics 190, Marcel Dekker, New York, 1995. MR 96c:34147 Zbl 0821.34067
[Fukagai and Kusano 1984] N. Fukagai and T. Kusano, "Oscillation theory of first order functionaldifferential equations with deviating arguments", Ann. Mat. Pura Appl. (4) 136 (1984), 95-117. MR 86b:34135 Zbl 0552.34062
[Gil' 2014] M. I. Gil', Stability of neutral functional differential equations, Atlantis Studies in Differential Equations 3, Atlantis Press, Paris, 2014. MR 3289984
[Grammatikopoulos et al. 2003] M. K. Grammatikopoulos, R. Koplatadze, and I. P. Stavroulakis, "On the oscillation of solutions of first order differential equations with retarded arguments", Georgian Math. J. 10:1 (2003), 63-76. MR 2004c:34199 Zbl 1051.34051
[Győri and Ladas 1991] I. Győri and G. Ladas, Oscillation theory of delay differential equations: With applications, Clarendon Press, Oxford, 1991. MR 93m:34109 Zbl 0780.34048
[Hale 1977] J. Hale, Theory of functional differential equations, 2nd ed., Applied Mathematical Sciences 3, Springer, New York, 1977. MR 58 \#22904 Zbl 0352.34001
[Hunt and Yorke 1984] B. R. Hunt and J. A. Yorke, "When all solutions of $x^{\prime}=-\sum q_{i}(t) x\left(t-T_{i}(t)\right)$ oscillate", J. Differential Equations 53:2 (1984), 139-145. MR 85k:34169 Zbl 0571.34057
[Ladde et al. 1987] G. S. Ladde, V. Lakshmikantham, and B. G. Zhang, Oscillation theory of differential equations with deviating arguments, Monographs and Textbooks in Pure and Applied Mathematics 110, Marcel Dekker, New York, 1987. MR 90h:34118 Zbl 0832.34071
[Li 1996] B. Li, "Oscillation of first order delay differential equations", Proc. Amer. Math. Soc. 124:12 (1996), 3729-3737. MR 97b:34078 Zbl 0865.34057
[Zhou 2011] Q. Zhou, "Asymptotic behavior of solutions to a first-order non-homogeneous delay differential equation", Electron. J. Differential Equations 2011:103 (2011), 1-8. MR 2012g:34163 Zbl 1230.34061

Received: 2015-04-08 Revised: 2015-05-22 Accepted: 2015-06-13
james.p.dix@gmail.com
jd01@txstate.edu University of Texas, Austin, TX 78703, United States Department of Mathematics, Texas State University, 601 University Drive, San Marcos, TX 78666, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2016 is US $\$ 160 /$ year for the electronic version, and $\$ 215 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
mathematical sciences publishers

involve 2016 vol. 9 no. 3

A combinatorial proof of a decomposition property of reduced residue systems 361Yotsanan Meemark and Thanakorn Prinyasart
Strong depth and quasigeodesics in finitely generated groups 367Brian Gapinski, Matthew Horak and Tyler Weber
Generalized factorization in $\mathbb{Z} / m \mathbb{Z}$ 379Austin Mahlum and Christopher Park Mooney
Cocircular relative equilibria of four vortices 395
Jonathan Gomez, Alexander Gutierrez, John Little, Roberto Pelayo and Jesse Robert
On weak lattice point visibility 411Neil R. Nicholson and Rebecca Rachan
Connectivity of the zero-divisor graph for finite rings 415
Reza Akhtar and Lucas Lee
Enumeration of m-endomorphisms 423
Louis Rubin and Brian Rushton
Quantum Schubert polynomials for the G_{2} flag manifold 437Rachel E. Elliott, Mark E. Lewers and Leonardo C.Mihalcea
The irreducibility of polynomials related to a question of Schur 453
Lenny Jones and Alicia Lamarche
Oscillation of solutions to nonlinear first-order delay differential equations 465
James P. Dix and Julio G. Dix
A variational approach to a generalized elastica problem 483
C. Alex Safsten and Logan C. Tatham
When is a subgroup of a ring an ideal? 503
Sunil K. Chebolu and Christina L. Henry
Explicit bounds for the pseudospectra of various classes of matrices and 517operators
Feixue Gong, Olivia Meyerson, Jeremy Meza, Mihai Stoiciu and Abigail Ward

[^0]: MSC2010: 34K11, 34C10.
 Keywords: oscillation of solutions, first-order delay differential equation.

