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We study the ε-pseudospectra σε(A) of square matrices A ∈ CN×N . We give a
complete characterization of the ε-pseudospectra of 2×2 matrices and describe
the asymptotic behavior (as ε→ 0) of σε(A) for every square matrix A. We also
present explicit upper and lower bounds for the ε-pseudospectra of bidiagonal
matrices, as well as for finite-rank operators.

1. Introduction

The pseudospectra of matrices and operators is an important mathematical object that
has found applications in various areas of mathematics: linear algebra, functional
analysis, numerical analysis, and differential equations. An overview of the main
results on pseudospectra can be found in [Trefethen and Embree 2005].

In this paper we describe the asymptotic behavior of the ε-pseudospectrum of all
n×n matrices. We apply this asymptotic bound to several classes of matrices and
operators, including 2×2 matrices, bidiagonal matrices, and finite-rank operators,
and additionally provide explicit bounds on their ε-pseudospectra.

The paper is organized as follows: in Section 2, we give the three standard
equivalent definitions for the pseudospectrum and present the “classical” results on
ε-pseudospectra of normal and diagonalizable matrices (the Bauer–Fike theorems).
Section 3 contains a detailed analysis of the ε-pseudospectrum of 2×2 matrices,
including both the nondiagonalizable and the diagonalizable cases. The asymptotic
behavior (as ε→ 0) of the ε-pseudospectrum of each n×n matrix is described
in Section 4, where we show (in Theorem 4.2) that, for every square matrix, the
ε-pseudospectrum converges, as ε→ 0, to a union of disks. We apply the main
result of Section 4 to several classes of matrices: matrices with a simple eigen-
value, matrices with an eigenvalue with geometric multiplicity 1, 2×2 matrices,
and Jordan blocks.
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Section 5 is dedicated to the analysis of arbitrary periodic bidiagonal matrices A.
We derive explicit formulas (in terms the coefficients of A) for the asymptotic radii,
given by Theorem 4.2, of the ε-pseudospectrum of A as ε→ 0. In the last section
(Section 6), we consider finite-rank operators and show that the ε-pseudospectrum
of an operator of rank m is at most as big as Cε1/m as ε→ 0.

2. Pseudospectra

Motivation and definitions. The concept of the spectrum of a matrix A ∈ CN×N

provides a fundamental tool for understanding the behavior of A. As is well known,
a complex number z ∈ C is in the spectrum of A (denoted σ(A)) whenever z I − A
(which we will denote as z− A) is not invertible, i.e., the characteristic polynomial
of A has z as a root. As slightly perturbing the coefficients of A will change the
roots of the characteristic polynomial, the property of “membership in the set of
eigenvalues” is not well-suited for many purposes, especially those in numerical
analysis. We thus want to find a characterization of when a complex number is
close to an eigenvalue, and we do this by considering the set of complex numbers z
such that ‖(z − A)−1

‖ is large, where the norm here is the usual operator norm
induced by the Euclidean norm, i.e.,

‖A‖ = sup
‖v‖=1

‖Av‖.

The motivation for considering this question comes from the observation that
if zn is a sequence of complex numbers converging to an eigenvalue λ of A, then
‖(zn−A)−1

‖→∞ as n→∞. We call the operator (z−A)−1 the resolvent of A. The
observation that the norm of the resolvent is large when z is close to an eigenvalue
of A leads us to the first definition of the ε-pseudospectrum of an operator.

Definition 2.1. Let A ∈ CN×N , and let ε > 0. The ε-pseudospectrum of A is the
set of z ∈ C such that

‖(z− A)−1
‖> 1/ε.

Note that the boundary of the ε-pseudospectrum is exactly the 1/ε level curve of
the function z 7→ ‖(z− A)−1

‖. Figure 1 depicts the behavior of this function near
the eigenvalues.

The resolvent norm has singularities in the complex plane, and as we approach
these points, the resolvent norm grows to infinity. Conversely, if ‖(z − A)−1

‖

approaches infinity, then z must approach some eigenvalue of A [Trefethen and
Embree 2005, Theorem 2.4].

(It is also possible to develop a theory of pseudospectrum for operators on
Banach spaces, and it is important to note that this converse does not necessarily
hold for such operators; that is, there are operators [Davies 1999a; 1999b] such that
‖(z− A)−1

‖ approaches infinity, but z does not approach the spectrum of A.)
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Figure 1. Contour plot of the resolvent norm.

The second and third definitions of the ε-pseudospectrum arise from eigenvalue
perturbation theory [Kato 1995].

Definition 2.2. Let A∈CN×N. The ε-pseudospectrum of A is the set of z∈C such that

z ∈ σ(A+ E)

for some E with ‖E‖< ε.

Definition 2.3. Let A∈CN×N. The ε-pseudospectrum of A is the set of z∈C such that

‖(z− A)v‖< ε

for some unit vector v.

The third definition is similar to our first definition in that it quantifies how
close z is to an eigenvalue of A. In addition to this, it also gives us the notion of an
ε-pseudoeigenvector.

Theorem 2.4 (equivalence of the definitions of pseudospectra). For every matrix
A ∈ CN×N , the three definitions above are equivalent.

The proof of this theorem is given in [Trefethen and Embree 2005, Section 2].
As all three definitions are equivalent, we can unambiguously denote the ε-pseudo-
spectrum of A as σε(A).

While the investigation of the set σε(A) can be motivated by questions in numeri-
cal analysis, the main impetus for the in-depth study of the ε-pseudospectrum is the
study of the size and behavior of the norms ‖et A

‖ (with t ∈ [0,∞)) and ‖Ak
‖ (with

k ∈ {0, 1, 2, . . .}), where A is a matrix or an operator that defines the differential
equation x ′ = Ax or the difference equation xk+1 = Axk .

As explained in [Trefethen and Embree 2005, Part IV] and in [Böttcher 2006], the
ε-pseudospectra of A can be used to define and compute the Kreiss constant K(A),
which in turn can be used, via the Kreiss matrix theorem [Trefethen and Embree
2005, Section 18], to find upper and lower bounds for supt≥0 ‖e

t A
‖ and supk≥0 ‖Ak

‖.
Thus, while the spectrum and the numerical range of A only provide information
on ‖et A

‖ and ‖Ak
‖ in the limits t →∞ and t → 0, as well as for k →∞, the
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Figure 2. The curves bounding the ε-pseudospectra of a matrix A
for different values of ε.

pseudospectrum of A gives information on the size of these norms (and therefore on
the size of the solutions of the corresponding linear differential/difference equations)
for all values of t and k.

Figure 2 depicts an example of ε-pseudospectra for a specific matrix and for
various ε. We see that the boundaries of ε-pseudospectra for a matrix are curves
in the complex plane around the eigenvalues of the matrix. We are interested in
understanding geometric and algebraic properties of these curves.

Several properties of pseudospectra are proven in [Trefethen and Embree 2005,
Section 2]. One of which is that if A ∈ CN×N , then σε(A) is nonempty, open, and
bounded, with at most N connected components, each containing one or more
eigenvalues of A. This leads us to the following notation:

Notation. For λ ∈ σ(A), we write σε(A)�λ to be the connected component of
σε(A) that contains λ.

Another property, which follows straight from the definitions of pseudospectra,
is that

⋂
ε>0 σε(A)= σ(A). From these properties, it follows that there is ε small

enough so that σε(A) consists of exactly |σ(A)| connected components, each an
open set around a distinct eigenvalue. In particular, there is ε small enough so that
σ(A)∩ σε(A)�λ= {λ}.

When a matrix A is the direct sum of smaller matrices, we can look at the
pseudospectra of the smaller matrices to understand the ε-pseudospectrum of A.
We get the following theorem from [Trefethen and Embree 2005]:

Theorem 2.5. σε(A1⊕ A2)= σε(A1)∪ σε(A2).

Normal matrices. Recall that a matrix A is normal if AA∗ = A∗A, or equivalently,
if A can be diagonalized with an orthonormal basis of eigenvectors.

The pseudospectra of these matrices are particularly well-behaved: Theorem 2.6
shows that the ε-pseudospectrum of a normal matrix is exactly the union of disks of
radius ε around each eigenvalue, as in shown in Figure 3. This is clear for diagonal
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Figure 3. The curves bounding the ε-pseudospectra of a normal
matrix for different values of ε. Note that the boundaries are unions
of perfect circles around each eigenvalue.

matrices; it follows for normal matrices since, as we shall see, the ε-pseudospectrum
of a matrix is invariant under a unitary change of basis.

Theorem 2.6. Let A ∈ CN×N . Then,

σ(A)+ B(0, ε)⊆ σε(A) for all ε > 0. (2-1)

Furthermore, A is a normal matrix if and only if

σε(A)= σ(A)+ B(0, ε) for all ε > 0. (2-2)

The proof of this theorem can be found in [Trefethen and Embree 2005, Section 2].

Nonnormal diagonalizable matrices. Now suppose A is diagonalizable but not
normal, i.e., we cannot diagonalize A by an isometry of CN . In this case, we
do not expect to get an exact characterization of the ε-pseudospectra as we did
previously. That is, there exist matrices with pseudospectra larger than the union of
disks of radius ε. Regardless, we can still characterize the behavior of nonnormal,
diagonalizable matrices.

Theorem 2.7 (Bauer–Fike). Let A ∈ CN×N be diagonalizable with A = V DV−1.
Then for each ε > 0,

σ(A)+ B(0, ε)⊆ σε(A)⊆ σ(A)+ B(0, εκ(V )),
where

κ(V )= ‖V ‖‖V−1
‖ =

smax(V )
smin(V )

,

and smax(V ), smin(V ) are the maximum and minimum singular values of V .

Here, κ(V ) is known as the condition number of V . Note that κ(V )≥ 1, with
equality attained if and only if A is normal. Thus, κ(V ) can be thought of as a
measure of the normality of a matrix. However, there is some ambiguity when
we define κ(V ), as V is not uniquely determined. If the eigenvalues are distinct,
then κ(V ) becomes unique if the eigenvectors are normalized by ‖v j‖ = 1.
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Nondiagonalizable matrices. So far we have considered normal matrices, and
more generally, diagonalizable matrices. We now relax our constraint that our
matrix be diagonalizable, and provide similar bounds on the pseudospectra. While
not every matrix is diagonalizable, every matrix can be put in Jordan normal form.
Below we give a brief review of the Jordan form.

Let A ∈ CN×N and suppose A has only one eigenvalue, λ with geometric
multiplicity 1. Writing A in Jordan form, there exists a matrix V such that AV =V J ,
where J is a single Jordan block of size N . Write

V =
(
v1 v2 . . . vn

)
.

Then,

AV =
(

Av1 Av2 . . . Avn
)
=
(
λv1 v1+λv2 . . . vn−1+λvn

)
= V J,

and hence v1 is a right eigenvector associated with λ and v2, . . . , vn are generalized
right eigenvectors, that is, right eigenvectors for (A− λI )k for k > 1. Similarly,
there exists a matrix U such that U∗A = JU∗, where now the rows of U∗ are left
generalized eigenvectors associated with λ.

We can also quantify the normality of an eigenvalue in the same way κ(V )
quantifies the normality of a matrix.

Definition 2.8. For each simple eigenvalue λ j of a matrix A, the condition number
of λ j is defined as

κ(λ j )=
‖u j‖‖v j‖

|u∗jv j |
,

where v j and u∗j are the right and left eigenvectors associated with λ j , respectively.

Note. The Cauchy–Schwarz inequality implies |u∗jv j | ≤ ‖u j‖‖v j‖, so κ(λ j )≥ 1,
with equality when u j and v j are collinear. An eigenvalue for which κ(λ j )= 1 is
called a normal eigenvalue; a matrix A with all simple eigenvalues is normal if and
only if κ(λ j )= 1 for all eigenvalues.

With this definition, we can find finer bounds for the pseudospectrum of a
matrix; in particular, we can find bounds for the components of the pseudospectrum
centered around each eigenvalue. The following theorem can be found, for example,
in [Baumgärtel 1985].

Theorem 2.9 (asymptotic pseudospectra inclusion regions). Suppose A ∈ CN×N

has N distinct eigenvalues. Then, as ε→ 0,

σε(A)⊆
N⋃

j=1

B
(
λ j , εκ(λ j )+O(ε2)

)
.

We can drop the O(ε2) term, for which we get an increase in the radius of our
inclusion disks by a factor of N [Bauer and Fike 1960, Theorem 4].
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Theorem 2.10 (Bauer–Fike theorem based on κ(λ j )). Suppose A ∈ CN×N has
N distinct eigenvalues. Then for all ε > 0,

σε(A)⊆
N⋃

j=1

B
(
λ j , εNκ(λ j )

)
.

The above two theorems give us upper bounds on the pseudospectra of A only
when A has N distinct eigenvalues. These results can be generalized for matrices
that do not have distinct eigenvalues. The following is proven in [Trefethen and
Embree 2005, Section 52].

Theorem 2.11 (asymptotic formula for the resolvent norm). Let λ j ∈ σ(A) be an
eigenvalue of A with k j the size of the largest Jordan block associated to λ j . For
every z ∈ σε(A), for small enough ε,

|z− λ j | ≤ (C jε)
1/k j ,

where C j = ‖V j T
k j−1
j U∗j ‖ and T = J − λI .

We extend these results by providing lower bounds for arbitrary matrices, as
well as explicit formulas for the ε-pseudospectra of 2×2 matrices.

3. Pseudospectra of 2×2 matrices

The following section presents a complete characterization of the ε-pseudospectra
of all 2×2 matrices. We classify matrices by whether they are diagonalizable or
nondiagonalizable and determine the ε-pseudospectra for each class. We begin with
an explicit formula for computing the norm of a 2×2 matrix.

Let A be a 2×2 matrix with complex coefficients and let smax denote the largest
singular value of A.

Then,

‖A‖2 = smax =
Tr(A∗A)+

√
Tr(A∗A)2− 4 det(A∗A)

2
. (3-1)

Nondiagonalizable 2×2 matrices. Every nondiagonalizable 2×2 matrix must have
exactly one eigenvalue of geometric multiplicity 1. In this case, we can Jordan-
decompose the matrix and use the first definition of pseudospectra to show that
σε(A) must be a perfect disk.

Proposition 3.1. Let A be a nondiagonalizable 2×2 matrix, and let λ denote the
eigenvalue of A. Write A = V J V−1, where

V =
(

a b
c d

)
, J =

(
λ 1
0 λ

)
. (3-2)
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Given ε > 0,
σε(A)= B(λ, |k|), (3-3)

where

|k| =
√

Cε+ ε2 and C =
|a|2+ |c|2

|ad − bc|
. (3-4)

Proof. Let z = λ+ k, where k ∈ C. Then we have (z− A)−1
= V (z− J )−1V−1.

Taking the norm, this yields

‖(z−A)−1
‖ =

‖M‖
|k2(ad−bc)|

, where M =
(

adk−ac−bck a2

−c2
−bck+ac+adk

)
.

From (3-1), we obtain that

ε−1 < ‖(z− A)−1
‖ =

√
Tr(M∗M)+

√
Tr(M∗M)2− 4 det(M∗M)

|k|2 |ad − bc|
√

2
.

Note that this function depends only on |k| = |z − λ|; thus for every ε > 0, we
have that σε(A) will be a disk. Solving for k to find the curve bounding the
pseudospectrum, we obtain

|k| =

√
|a|2+ |c|2

|ad − bc|
ε+ ε2. �

Diagonalizable 2×2 matrices. Diagonalizable 2×2 matrices must have two dis-
tinct eigenvalues or be a multiple of the identity matrix. In either case, the pseu-
dospectra can be described by the following proposition.

Proposition 3.2. Let A be a diagonalizable 2×2 matrix and let λ1, λ2 be the
eigenvalues of A and v1, v2 be the eigenvectors associated with the eigenvalues.
Then the boundary of σε(A) is the set of points z that satisfy the equation

(ε2
− |z− λ1|

2)(ε2
− |z− λ2|

2)− ε2
|λ1− λ2|

2 cot2(θ)= 0, (3-5)

where θ is the angle between the two eigenvectors.

Proof. Since A is diagonalizable, we can write A = V DV−1, where

V =
(

a b
c d

)
, D =

(
λ1 0
0 λ2

)
. (3-6)

Without loss of generality, let z = λ1+ k.
Let γ = λ1− λ2 and r = ad − bc. Then,∥∥(z− A)−1∥∥= ∥∥V (z− D)−1V−1∥∥= ‖M‖

|rk(γ + k)|
,
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where

M =
(

adγ + rk −abγ
cdγ −bcγ + rk

)
.

Calculating Tr(M∗M), we obtain

Tr(M∗M)= |r |2
(
|γ + k|2+ |k|2+ |γ |2 cot2 θ

)
, (3-7)

where θ is the angle between the two eigenvectors, which are exactly the columns
of V . For the determinant, we have

det(M∗M)= |r |4 |k|2 |k+ γ |2. (3-8)

Plugging the above into (3-1), we get

ε−1
= ‖(z− A)−1

‖ =

√
Tr(M∗M)+

√
Tr(M∗M)2− 4 det(M∗M)

2|r |2 |k(γ + k)|2
.

Rewriting and simplifying, we obtain the curve describing the boundary of the
pseudospectrum:

(ε2
− |k|2)(ε2

− |k+ γ |2)− ε2
|γ |2 cot2 θ = 0. �

Note that for normal matrices, the eigenvectors are orthogonal. Therefore the
equation above reduces to

(ε2
− |k|2)(ε2

− |k+ γ |2)= 0, (3-9)

which describes two disks of radius ε centered around λ1, λ2, as we expect.
When the matrix only has one eigenvalue and is still diagonalizable (i.e., when

it is a multiple of the identity), we obtain

(ε2
− |k|2)2 = 0,

which is a disk of radius ε centered around the eigenvalue.
One consequence of Proposition 3.2 to note is that the shape of σε(A) is dependent

on both the eigenvalues and the eigenvectors of the matrix A. Another less obvious
consequence is that the pseudospectrum of a 2×2 matrix approaches a union of
disks as ε tends to 0.

Proposition 3.3. Let A be a diagonalizable 2×2 matrix with two distinct eigen-
values, λ1, λ2. Then, σε(A)�λi asymptotically tends toward a disk. In particular,

rmax(λi )

rmin(λi )
= 1+O(ε),

where rmax(λi ), rmin(λi ) are the maximum and minimum distances from λi to
∂σε(A)�λi . Moreover, for A diagonalizable but not normal, σε(A)�λi is never
a perfect disk.
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Proof. Let ε be small enough so that the ε-pseudospectrum is disconnected. Without
loss of generality, we will consider σε(A)�λ1 .

Let zmax ∈ ∂σε(A) such that |zmax−λ1| is a maximum. Set rmax(λ)= |zmax−λ|.
Consider the line joining λ1 and λ2. Suppose for contradiction that zmax does not
lie on this line. Then, rotate zmax in the direction of λ2 so that it is on this line, and
call this new point z′. Note that |z′− λ2|< |zmax− λ2|, but |z′− λ1| = |zmax− λ1|.
As such, we get that

(|z′− λ1|
2
− ε2)(|z′− λ2|

2
− ε2) < (|zmax− λ1|

2
− ε2)(|zmax− λ2|

2
− ε2)

= ε2
|λ1− λ2|

2 cot2 θ.

Thus, from Proposition 3.2, we have that z′ ∈ σε(A) but z′ is not on the boundary
of σε(A). Starting from z′ and traversing the line joining λ1 and λ2, we can find
z′′ ∈ ∂σε(A) such that |z′′−λ1|> |z′−λ1| = |zmax−λ1|. This contradicts our choice
of zmax and so zmax must be on the line joining λ1 and λ2. A similar argument shows
that zmin must also be on this line, where zmin ∈ ∂σε(A) such that rmin = |zmin−λ1|

is a minimum.
Since zmax is on the line joining λ1 and λ2, we have the exact equality

|zmax− λ2| = |zmax− λ1| + |λ2− λ1|.

Let y = |λ2− λ1|. The equation describing rmax(λ1) becomes(
rmax(λ1)

2
− ε2)((y− rmax(λ1))

2
− ε2)

= ε2 y2 cot2 θ.

Similarly, we can obtain the equation for rmin(λ1). Solving for rmax(λ1) and rmin(λ1),
we get

rmax(λ1)=
1
2

(
y−

√
y2+ 4ε2− 4yε csc θ

)
, (3-10)

rmin(λ1)=
1
2

(√
y2+ 4ε2+ 4yε csc θ − y

)
. (3-11)

For ε small, we can use the approximation (1+ ε)p
= 1+ pε+O(ε2). Then,

rmax(λ1)

rmin(λ1)
=

1−
√

1+ 4(ε/y)2− 4(ε/y) csc θ√
1+ 4(ε/y)2+ 4(ε/y) csc θ − 1

=
1+ ηε+O(ε2)

1− ηε+O(ε2)
, (3-12)

where η = (cos θ cot θ)/y. Using the geometric series approximation 1/(1− x)=
1+ x +O(x2), we find that

rmax

rmin
= 1+

(2 cos θ cot θ)ε
y

+O(ε2). (3-13)
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Figure 4. The ε-pseudospectra of a diagonalizable 2×2 matrix.

Thus, σε(A) tends towards a disk. Moreover, if A is diagonalizable but not normal,
then the eigenvectors are linearly independent but not orthogonal, so θ is not a
multiple of π/2 or π , and therefore cos θ cot θ 6= 0 and (rmax(λ))/(rmin(λ)) 6= 1. �

This result can be observed by looking at plots of the pseudospectra of diagonal-
izable 2×2 matrices.

The image on the left in Figure 4 shows the pseudospectra of a particular 2×2
matrix. One can see that for large enough values of ε, the pseudospectra around
either eigenvalue are not perfect disks. The image on the right is the pseudospectra
of the same matrix (restricted to one eigenvalue), with smaller values of epsilon.
Here, the pseudospectra appear to converge to disks. We find that this result holds
in general for every N×N matrix and this is proven in the following section.

4. Asymptotic union of disks theorem

In Propositions 3.1 and 3.2, we showed that the ε-pseudospectra for all 2×2 ma-
trices are disks or asymptotically converge to a union of disks. We now explore
whether this behavior holds in the general case. It is possible to find matrices
whose ε-pseudospectra exhibit pathological properties for large ε; for example, the
nondiagonalizable matrix given in Figure 5 has, for larger ε, an ε-pseudospectrum
that is not convex and not simply connected.


−1 −10 −100 −1000 −10000

0 −1 −10 −100 −1000
0 0 −1 −10 −100
0 0 0 −1 −10
0 0 0 0 −1



Figure 5. A Toeplitz matrix and its pseudospectra.
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Thus, pseudospectra may behave poorly for large enough ε; however, in the limit
as ε→ 0, these properties disappear and the pseudospectra behave as disks centered
around the eigenvalues with well-understood radii. In order to understand this
asymptotic behavior, we use the following set-up (which follows [Moro et al. 1997]).

Let A ∈ CN×N and fix λ ∈ σ(A). Write the Jordan decomposition of A as(
J

Ĵ

)
=

(
Q

Q̂

)
A
(
P P̂

)
,

(
Q

Q̂

)(
P P̂

)
= I,

where J consists of Jordan blocks J1, . . . , Jm corresponding to the eigenvalue λ,
and Ĵ consists of Jordan blocks corresponding to the other eigenvalues of A.

Let n be the size of the largest Jordan block corresponding to λ, and suppose
there are ` Jordan blocks corresponding to λ of size n×n. Arrange the Jordan
blocks in J in weakly decreasing order, according to size. That is,

dim (J1)= · · · = dim(J`) > dim (J`+1)≥ · · · ≥ dim (Jm),

where J1, . . . , J` are n×n.
Further partition P ,

P =
(
P1 · · · P` · · · Pm

)
,

in a way that agrees with the above partition of J , so that the first column, x j , of
each Pj is a right eigenvector of A associated with λ. We also partition Q likewise,

Q =


Q1
...

Q`
...

Qm

 .
The last row, y j , of each Q j is a left eigenvector of A corresponding to λ.
We now build the matrices

Y =


y1

y2
...
y`

 , X =
(
x1 x2 · · · x`

)
,

where X and Y are the matrices of right and left eigenvectors, respectively, corre-
sponding to the Jordan blocks of maximal size for λ.

The following theorem is presented by Moro, Burke, and Overton [Moro et al.
1997] and due to Lidskiı̆ [1966].

Theorem 4.1 [Lidskiı̆ 1966]. Given `, n as defined above corresponding to the
matrix A, there are `n eigenvalues of the perturbed matrix A+εE admitting a first-
order expansion

λ j,k(ε)= λ+ (γ jε)
1/n
+ o(ε1/n)
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for j = 1, . . . , `, and k = 1, . . . , n, where γ j are the eigenvalues of YEX and
the different values of λ j,k(ε) for k = 1, . . . , n are defined by taking the distinct
n-th roots of γ j .

Lidskiı̆’s result can be interpreted in terms of the ε-pseudospectrum of a matrix A
in order to understand the radii of σε(A) as ε→ 0.

Theorem 4.2. Let A ∈ CN×N . Let ε > 0. Given λ ∈ σ(A), for ε small enough,
there exists a connected component U ⊆ σε(A) such that U ∩σ(A)= λ; denote this
component of the ε-pseudospectrum by σε(A)�λ.

Then, as ε→ 0,

B
(
λ, (Cε)1/n

+ o(ε1/n)
)
⊆ σε(A)�λ ⊆ B

(
λ, (Cε)1/n

+ o(ε1/n)
)
,

where C = ‖XY‖, with X, Y defined above, and n is the size of the largest Jordan
block corresponding to λ.

Proof. Lower bound: Give E ∈ CN×N , and let γmax(E) be the largest eigenvalue
of YEX . It is shown [Moro et al. 1997, Theorem 4.2] that

α := max
‖E‖≤1

γmax(E)= ‖XY‖.

Moreover, the E that maximizes γ is given by E = vu, where v and u are the
right and left singular vectors of the largest singular value of XY , normalized so
‖v‖ = ‖u‖ = 1. We claim that B

(
λ, (|α|ε)1/n

+ o(ε1/n)
)
⊆ σε(A)�λ.

Fix E = vu, with v, u defined above, fix θ ∈ [0, 2nπ ], and define Ẽ = eiθ E .
Note that γ is an eigenvalue of YEX if and only if eiθγ is an eigenvalue of
YẼX . Since α is an eigenvalue of E , we know that eiθα is an eigenvalue of
YẼX . Considering the perturbed matrix A+ ε Ẽ , Theorem 4.1 implies that there is
a perturbed eigenvalue λ(ε) of the form

λ(ε)= λ+ (eiθαε)1/n
+ o(ε1/n),

and thus λ(ε) ∈ σε(A)�λ. Ranging θ from 0 to 2nπ , we get the desired result.

Upper bound: Using the proof of [Trefethen and Embree 2005, Theorem 52.3],
we know that asymptotically

σε(A)�λ ⊆ B
(
λ, (βε)1/n

+ o(ε1/n)
)
,

where β = ‖P Dn−1 Q‖ and J = λI + D. We claim β = ‖XY‖ = α.
Note that Dn−1

= diag[01, . . . , 0`, 0], where 0k is an n×n matrix with a 1 in
the top right entry and zeros elsewhere. We find

P Dn−1
=
(
�1 �2 · · · �` 0

)
,
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where � j is a matrix whose last column is x j with zeros elsewhere. This then gives

P Dn−1 Q =
(

XY 0
0 0

)
.

Thus β = ‖P Dn−1 Q‖ = ‖XY‖ = α. �

We present special cases of matrices to explore the consequences of Theorem 4.2.

Special cases.
(1) λ is simple: Then, n = 1 and X and Y become the right and left eigenvectors x
and y∗ for λ, respectively. Hence, C = ‖XY‖ = ‖xy∗‖ = ‖x‖‖y‖ = κ(λ), where
we normalize so that |y∗x | = 1. Then, Theorem 4.2 becomes

σε(A)�λ ≈ B
(
λ, κ(λ)ε

)
,

which matches with Theorem 2.9.

(2) λ has geometric multiplicity 1: In this case, we obtain the same result as when λ
is simple, except n may not equal 1. In other words,

σε(A)�λ ≈ B
(
λ, (κ(λ)ε)1/n).

(3) A ∈ C2×2: There are two cases, as in Section 3.
First, assume A is nondiagonalizable. In this case, A only has one eigenvalue, λ.

Writing A = V J V−1, where V and J are as defined in (3-2), we have that,

X =
(
a c

)T
, Y =

1
ad − bc

(
−c a

)
.

From Theorem 4.2, we then have that as ε→ 0,

σε(A)≈ B
(
λ,

(
|a|2+ |c|2

|ad − bc|
ε

)1/2

+ o(ε1/2)

)
.

This agrees asymptotically with (3-4); however, (3-4) gives an explicit formula
for σε(A).

In the case where A is diagonalizable, A has two eigenvalues, λ1 and λ2. Again,
we write A = V DV−1, where V and D are as defined in (3-6). From this, we have

‖XY‖ =
(|a|2+ |c|2)(|b|2+ |d|2)

|ad − bc|
= csc θ.

Thus, as ε→ 0, we have from Theorem 4.2 that

B
(
λ, (csc θ)ε+ o(ε)

)
⊆ σε(A)⊆ B

(
λ, (csc θ)ε+ o(ε)

)
.

So,
rmax

rmin
=
(csc θ)ε+ o(ε)
(csc θ)ε+ o(ε)

= 1+ o(1).
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This agrees with the ratio we obtain from the explicit formula for diagonalizable
2×2 matrices; however, (3-13) gives us more information on the o(1) term.

(4) A is a Jordan block: From [Trefethen and Embree 2005, p. 470], we know that
the ε-pseudospectrum of the Jordan block is exactly a disk about the eigenvalue
of J of some radius. An explicit formula for the radius remains unknown; however,
we can use Theorem 4.2 to find the asymptotic behavior.

Proposition 4.3 (asymptotic Bound). Let J be an N×N Jordan block. Then

σε(J )= B
(
λ, ε1/N

+ o(ε1/N )
)
.

Proof. The N×N Jordan block has left and right eigenvectors u j and v j , where
‖u j‖ = 1 and ‖v j‖ = 1. So, from Theorem 4.2, we find C = ‖XY‖ = ‖v j u j‖ = 1.
Thus,

σε(J )≈ B
(
λ, ε1/N

+ o(ε1/N )
)
. �

By a simple computation, we can also get a better explicit lower bound on the
ε-pseudospectra of an N×N Jordan block that agrees with our asymptotic bound.

Proposition 4.4. Let J be an N×N Jordan block. Then,

B
(
λ,

N
√
ε(1+ ε)N−1

)
⊆ σε(J ).

Proof. We use the second definition for σε(J ). Let

E =


0 k

0 k
. . .

. . .

. . . k
k 0

 ,

where |k|< ε, and note that ‖E‖< ε. We take det(J + E − z I ) and set it equal to
zero to find the eigenvalues of J + E :

0= det(J + E − z I )

= det


λ− z k+ 1

λ− z k+ 1
. . .

. . .

. . . k+ 1
k λ− z


= (λ− z)N

+ (−1)N−1k(1+ k)N−1

= (−1)N−1((z− λ)N
+ k(1+ k)N−1),
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and we know that

0= (−1)N−1((z− λ)N
+ k(1+ k)N−1)

⇐⇒ (z− λ)N
= k(1+ k)N−1

⇐⇒ z− λ= N
√

k(1+ k)N−1.

So, B
(
λ,

N
√
ε(1+ ε)N−1

)
⊆ σε(J ). �

5. Pseudospectra of bidiagonal matrices

In this section we consider bidiagonal matrices, a class of matrices with impor-
tant applications in spectral theory and mathematical physics. We investigate the
pseudospectra of periodic bidiagonal matrices and show that the powers n and
the coefficients C in Theorem 4.2 can be computed explicitly. We consider the
coefficients {ak}

N
k=1 and {bk}

N−1
k=1 , which define the bidiagonal matrix

A = bidiag
(
{ak}

N
k=1, {bk}

N−1
k=1

)
=



a1 b1

a2 b2
. . .

. . .

. . .
. . .

aN−1 bN−1

aN


.

Note that if bi = 0 for some i , then the matrix A “decouples” into the direct sum

A = bidiag
(
{ak}

i
k=1, {bk}

i−1
k=1

)
⊕ bidiag

(
{ak}

N
k=i+1, {bk}

N−1
k=i+1

)
,

and by Theorem 2.5 the pseudospectrum of A is the union of pseudospectra of
smaller bidiagonal matrices. Therefore we can assume, without loss of generality,
that bi 6= 0 for every i ∈ {1, 2, . . . , N − 1}.

Note also that the eigenvalues of A are {a1, a2, . . . , an} and some eigenvalues
may be repeated in the list. In order to apply Theorem 4.2, we have to find the
dimension of the largest Jordan block associated to each eigenvalue of the matrix A.
The following proposition addresses this question:

Proposition 5.1. Let
A = bidiag

(
{ak}

N
k=1, {bk}

N−1
k=1

)
with bi 6= 0 for every i and suppose that a is an eigenvalue of A. Then

dim N (A− aI )= 1,

where N (A−aI ) is the eigenspace corresponding to the eigenvalue a of the matrix A.

Proof. Suppose a = ai1 = ai2 = · · · = aim , where 1 ≤ i1 < i2 < · · · < im ≤ N and
a 6= ak for every k ∈ {1, 2, . . . , n} \ {i1, i2, . . . , im}. We have
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A−aI =



a1−a b1

a2−a
. . .

. . . bi1−2

ai1−1−a bi1−1

0 bi1

ai1+1−a
. . .

. . . bN−1

aN−a


.

Let us denote by c1, c2, . . . , cN the columns of A− aI and by e1, e2, . . . , eN the
standard canonical basis in RN . Since bk 6= 0 for every k ∈ {1, 2, . . . , N − 1}, we
obtain that columns c2, c3, . . . , cN are linearly independent. Moreover, we also have

Span(c2, c3, . . . , ci1)= Span(e1, e2, . . . , ei1−1),

which in turn implies that c1 ∈ Span{c2, c3, . . . , ci1}. We conclude that the rank of
the matrix A− aI is N − 1; hence dim N (A− aI )= 1. �

The previous proposition implies that, under the assumption bi 6= 0 for all i ,
if a is an eigenvalue of the matrix A = bidiag

(
{ak}

N
k=1, {bk}

N−1
k=1

)
of algebraic

multiplicity m, then there is only one Jordan block associated to the eigenvalue a.
We now consider the special case of periodic bidiagonal matrices. Let A be an

N×N matrix with period k on the main diagonal and nonzero superdiagonal entries

A =



a1 b1
...

...

ak
...
...

...

...
...

a1
...
... bN−1

ar


.

We have from Theorem 4.2 and Proposition 5.1 that

σε(A)≈
k⋃

j=1

B
(
a j , (C jε)

1/n j
)
,

where n j is the size of the Jordan block corresponding to a j and also the number
of times a j appears on the main diagonal. Moreover, for each j , the constant C j

that multiplies the eigenvalue a j is simply C j = ‖v j‖‖u j‖, where v j and u j denote
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the right and left eigenvectors, respectively. We will give the explicit expressions
for v j and u j .

We will begin by introducing ε-pseudospectra for simple special cases that lead
to the most general case.

The cases will be presented as follows:

• Case 1: Let A be a kn×kn matrix with a1, . . . , ak distinct.

• Case 2: Let A be an N×N matrix with a1, . . . , ak distinct.

• General case: Let A be an N×N matrix with a1, . . . , ak not distinct.

To shorten notation for the rest of this section, we define

f (x)=
{

x x 6= 0,
1 x = 0.

Case 1: The size of A is kn×kn and the ai are distinct.
We write the elements of the superdiagonal as b1, b2, . . . , bN−1, and we let

p = k(n− 1)+ j .
We have that

v j=



b1···b j−1
f (a j−a1)··· f (a j−a j−1)

b2···b j−1
f (a j−a2)··· f (a j−a j−1)

...
b j−1

f (a j−a j−1)

1
0
...

0


, u∗j=

1
( f (a1−a j )··· f (ak−a j ))n−1



0
...

0
1

b j ···bp
f (a j+1−a j )

...
b j ···bN−2

f (a j+1−a j )··· f (ak−1−a j )

b j ···bN−1
f (a j+1−a j )··· f (ak−a j )



T

.

Direct computation will show that these are indeed left and right eigenvectors
associated with each eigenvalue a j .

Case 2: The size of A is N×N , and the ai are distinct.
We relax our assumption that the size of our matrix is kn×kn, for period k on

the diagonal. Let n, r be such that N = kn+r , where 0< r ≤ k. In other words, ar

is the last entry on the main diagonal, so the period does not necessarily complete.
For a j , the right eigenvector is given by

v j =

(
b1···b j−1

f (a j−a1)··· f (a j−a j−1)

b2···b j−1
f (a j−a2)··· f (a j−a j−1)

· · ·
b j−1

f (a j−a j−1)
1 0 · · · 0

)T
.

We split up the formula for the left eigenvectors into two cases: (i) 1 ≤ j ≤ r
and (ii) r < j ≤ k.
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(i) 1 ≤ j ≤ r . On the main diagonal, there are n complete blocks with entries
a1, . . . , ak , and one partial block at the end with entries a1, . . . , ar . When 1≤ j ≤ r ,
we have that a j is in this last partial block. In this case, let p = kn+ j .

We have that

u j = µ j



0
...

0
(b j · · · bp−1) · f (a j+1− a j ) · · · f (ar − a j )

(b j · · · bp) · f (a j+2− a j ) · · · f (ar − a j )
...

(b j · · · bN−2) · f (ar − a j )

b j · · · bN−1



T

,

where

µ j =
f (a1− a j ) · · · f (a j−1− a j )(

f (a1− a j ) · · · f (ak − a j )
)n f (a1− a j ) · · · f (ar − a j )

.

(ii) r < j ≤ k. In this case, a j is in the last complete block. Now, let p= k(n−1)+ j .
We have that

u j =µ j



0
...

0
(b j · · · bp−1) · f (a1− a j ) · · · f (ar − a j ) f (a j+1− a j ) · · · f (ak − a j )

(b j · · · bp) · f (a1− a j ) · · · f (ar − a j ) f (a j+2− a j ) · · · f (ak − a j )
...

(b j · · · bp+k− j−1) · f (a1− a j ) · · · f (ar − a j )

(b j · · · bp+k− j ) · f (a2− a j ) · · · f (ar − a j )
...

(b j · · · bN−2) · f (ar − a j )

b j · · · bN−1



,

where

µ j =
f (a1− a j ) · · · f (a j−1− a j )(

f (a1− a j ) · · · f (ak − a j )
)n f (a1− a j ) · · · f (ar − a j )

.

Case 3: General case. The size of A is N×N and the ai are not distinct for 1≤ i ≤ k.
Let A be an N×N periodic bidiagonal matrix with period k on the main diagonal.

Let n, r be such that N = kn+ r , where 0< r ≤ k. Write a1, . . . , ak for the entries
on the main diagonal (the ai not distinct) and b1, . . . , bN−1 for the entries on the
superdiagonal. Let ar be the last entry on the main diagonal.
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We can explicitly find the left and right eigenvectors for each eigenvalue α.
Suppose α first appears in position ` of the period k. Then the corresponding right
eigenvector for α is the same form as v` in Case 2. That is,

v` =
(

b1···b`−1
f (a`−a1)··· f (a`−a`−1)

b2···b`−1
f (a`−a2)··· f (a`−a`−1)

· · ·
b`−1

f (a`−a`−1)
1 0 · · · 0

)T
.

The corresponding left eigenvector for α depends on the first and last positions of α.
Let k(n− 1)= `q + s and set q ≡ m (mod k). We split up the formula for the left
eigenvector of α into two cases, which again mirror the formulas given in Case 2:
(i) 1≤ `≤ r and (ii) r < `≤ k.

For both of these two cases, we define

g(bi )=

{
bi i ≥ p,
1 i < p.

(i) 1≤ `≤ r . In this case, α appears in the partial block. Let p = kn+ `. We have

u` = µ`



0
...

0
g(bp+m−`−1) f (am+1− a`) · · · f (ar − a`)

g(bp+m−`−1)g(bp+m−l) f (am+2− a`) · · · f (ar − a`)
...

g(bp+m−`−1) · · · g(bN−2) f (ar − a`)

g(bp+m−`−1) · · · g(bN−1)


,

where

µ` =
b` · · · bp−1 f (a1− a`) · · · f (a`−1− a`)(

f (a1− a`) · · · f (ak − a`)
)n f (a1− a`) · · · f (ar − a`)

.

(ii) r<`≤k. In this case, α is in the last complete block. Here, we let p=k(n−1)+`.
Now, we have

u`=µ`



0
...

0
g(bp+m−`−1) f (a1−a`)···(ar−a`) f (am+1−a`)··· f (ak−a`)

g(bp+m−`−1)g(bp+m−l) f (a1−a`)··· f (ar−a`) f (am+2−a`)··· f (ak−a`)
...

g(bp+m−`−1)···g(bp+k−`−1) f (a1−a`)··· f (ar−a`)

g(bp+m−`−1)···g(bp+k−`) f (a2−a`)··· f (ar−a`)
...

g(bp+m−`−1)···g(bN−2) f (ar−a`)

g(bp+m−`−1)···g(bN−1)



,
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where

µ` =
(b` · · · bp−1) · f (a1− a`) · · · f (a`−1− a`)(

f (a1− a`) · · · f (ak − a`)
)n f (a1− a`) · · · f (ar − a`)

.

From these formulas, we can find the eigenvectors, and hence the asymptotic
behavior of the ε-pseudospectrum for every bidiagonal matrix A:

σε(A)≈
k⋃

j=1

B
(
a j , (C jε)

1/n j
)
,

where C j = ‖v j‖‖u j‖ and n j is the size of the Jordan block corresponding to a j .

Note. Let A be a periodic, bidiagonal matrix and suppose bi = 0 for some i . Then
the matrix decouples into the direct sum of smaller matrices; call them A1, . . . , An .
To find the ε-pseudospectrum of A, apply the same analysis to these smaller matrices,
and from Theorem 2.5, we have that

σε(A)=
n⋃

i=1

σε(Ai ).

6. Finite-rank operators

The majority of this paper has focused on both explicit and asymptotic characteriza-
tions of ε-pseudospectra for various classes of finite-dimensional linear operators. A
natural next step is to consider finite rank operators on an infinite-dimensional space.

In Section 2 we defined ε-pseudospectra for matrices, although our definitions
are exactly the same in the infinite-dimensional case. For our purposes, the only
noteworthy difference between matrices and operators is that the spectrum of an
operator is no longer defined as the collection of eigenvalues, but rather

σ(A)= {λ | λI − A does not have a bounded inverse}.

As a result, we do not get the same properties for pseudospectra as we did previously;
in particular, σε(A) is not necessarily bounded.

That being said, the following theorem shows that finite-rank operators behave
similarly to matrices in that asymptotically the radii of ε-pseudospectra are bounded
by powers of epsilon. The following theorem makes this precise.

Theorem 6.1. Let V be a Hilbert space and A : V → V a finite-rank operator
on V . Then there exists C such that for sufficiently small ε,

σε(A)⊆ σ(A)+ B
(
0,Cε1/(m+1)),

where m is the rank of A. Furthermore, this bound is sharp in the sense that there
exists a rank-m operator A and a constant c such that

σε(A)⊇ σ(A)+ B
(
0, cε1/(m+1))

for sufficiently small ε.
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Proof. Since A has finite rank, there exists a finite-dimensional subspace U such
that V =U ⊕W and A(U )⊆U and A(W )= {0}. Choosing an orthonormal basis
for A which respects this decomposition, we can write A = A′ ⊕ 0. Then the
spectrum of A is σ(A′)∪ {0}, and we know that for every ε > 0,

σε(A)= σε(A′)∪ σε(0).

The ε-pseudospectrum of the zero operator is well-understood since this operator
is normal; for all ε, it is precisely the ball of radius ε. It thus suffices to consider
the ε-pseudospectrum of the finite-rank operator A′ : U → U , where U is finite-
dimensional. The ε-pseudospectrum of this operator goes like ε1/j , where j is the
dimension of the largest Jordan block; we will prove that j ≤ m+ 1. Note that the
rank of the n×n Jordan block given by

A =


λ 1 0 0 . . .

0 λ 1 0 . . .
...
...
. . .

. . . . . .
...
...
...
. . . 1

0 0 0 0 λ


is n if λ 6= 0 and n− 1 if λ = 0. Since we know that the rank of A is larger than
or equal to the rank of the largest Jordan block, we have an upper bound on the
dimension of the largest Jordan block: it is of size m + 1, with equality attained
when λ = 0. By Theorem 4.2, we then know that σε(A) is contained, for small
enough ε, in the set σ(A)+Cε1/(m+1).

Note that this bound is sharp; we can see this by taking V to be Rm+1 and
considering the rank-m operator

Am =


0 1 0 0 . . .

0 0 1 0 . . .
...
...
. . .

. . . . . .
...
...
...
. . . 1

0 0 0 0 0

 ,
whose pseudospectrum will contain the ball of radius ε1/(m+1) by Proposition 4.4. �

Open Questions. The natural question to ask now is whether we can extend this
result to more arbitrary operators on Hilbert spaces. In particular, for a bounded
operator A, we would like to establish if there exists a continuous function rA(ε)

such that for sufficiently small ε,

σε(A)⊆ σ(A)+ B
(
0, rA(ε)

)
.

For a matrix A, we proved in Theorem 4.2 that rA(ε)= Cε1/n , where n is the size
of the largest Jordan block associated to A, and C is a constant that depends on
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the left and right eigenvectors associated to a certain eigenvalue. For a finite-rank
operator A, we proved in Theorem 6.1 that rA(ε)= Cε1/(m+1), where m is the rank
of the operator and C is as above.

For closed but not necessarily bounded operators, the picture is more complex,
as the spectrum need not be bounded or even nonempty. For example, the operator
A : u 7→ u′ in L2

[0, 1] with domain D(A) being the set of absolutely continuous
functions on [0, 1] satisfying u(1) = 0 has empty spectrum. When D(A) is the
entire space, the spectrum of A is the entire complex plane. Davies [1999a] also
provides an example of an unbounded operator with unbounded pseudospectrum.

Given these examples, we can see that Theorem 6.1 will not generalize to
unbounded operators, as the pseudospectrum of an unbounded operator may be
unbounded for all ε.

Nonetheless, we do still have a certain convergence of the ε-pseudospectrum to
the spectrum [Trefethen and Embree 2005, Section 4], namely

⋂
ε>0 σε(A)= σ(A).

Also, while the ε-pseudospectrum may be unbounded, each bounded component
of it necessarily contains a component of the spectrum. These results imply that
the bounded components of the ε-pseudospectrum must converge to the spectrum.
Therefore, if we restrict our attention to these bounded components, we can attempt
to generalize Theorems 4.2 and 6.1 by asking whether the bounded components
of σε(A) converge to the spectrum as a union of disks.

Acknowledgements

Support for this project was provided by the National Science Foundation REU
Grant DMS-0850577 and DMS-1347804, the Clare Boothe Luce Program of the
Henry Luce Foundation, and the SMALL REU at Williams College.

References

[Bauer and Fike 1960] F. L. Bauer and C. T. Fike, “Norms and exclusion theorems”, Numer. Math. 2
(1960), 137–141. MR 0118729 Zbl 0101.25503

[Baumgärtel 1985] H. Baumgärtel, Analytic perturbation theory for matrices and operators, Operator
Theory: Advances and Applications 15, Birkhäuser, Basel, 1985. MR 878974 Zbl 0591.47013

[Böttcher 2006] A. Böttcher, “Review of “Spectra and pseudospectra: The behavior of nonnormal
matrices and operators” by L. N. Trefethen and M. Embree”, Linear Algebra Appl. 416:2-3 (2006),
1098–1101.

[Davies 1999a] E. B. Davies, “Pseudo-spectra, the harmonic oscillator and complex resonances”,
R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455:1982 (1999), 585–599. MR 1700903
Zbl 0931.70016

[Davies 1999b] E. B. Davies, “Semi-classical states for non-self-adjoint Schrödinger operators”,
Comm. Math. Phys. 200:1 (1999), 35–41. MR 1671904 Zbl 0921.47060

[Kato 1995] T. Kato, Perturbation theory for linear operators, Springer, Berlin, 1995. MR 1335452
Zbl 0836.47009

http://dx.doi.org/10.1007/BF01386217
http://msp.org/idx/mr/0118729
http://msp.org/idx/zbl/0101.25503
http://msp.org/idx/mr/878974
http://msp.org/idx/zbl/0591.47013
http://dx.doi.org/10.1016/j.laa.2005.11.011
http://dx.doi.org/10.1016/j.laa.2005.11.011
http://dx.doi.org/10.1098/rspa.1999.0325
http://msp.org/idx/mr/1700903
http://msp.org/idx/zbl/0931.70016
http://dx.doi.org/10.1007/s002200050521
http://msp.org/idx/mr/1671904
http://msp.org/idx/zbl/0921.47060
http://dx.doi.org/10.1007/978-3-642-66282-9
http://msp.org/idx/mr/1335452
http://msp.org/idx/zbl/0836.47009


540 F. GONG, O. MEYERSON, J. MEZA, M. STOICIU AND A. WARD

[Lidskiı̆ 1966] V. B. Lidskiı̆, “On the theory of perturbations of nonselfadjoint operators”, Z̆. Vyčisl.
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