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Affine hyperbolic toral automorphisms

Colin Thomson and Donna K. Molinek

(Communicated by Michael E. Zieve)

A hyperbolic transformation of the torus is an example of a function that is
Devaney chaotic; that is, it is topologically transitive and has dense periodic
points. An irrational rotation of the torus, on the other hand, is not chaotic
because it has no periodic points. We show that a hyperbolic transformation of
the torus followed by a translation (an affine hyperbolic toral automorphism) has
dense periodic points and maintains transitivity. As a consequence, affine toral
automorphisms are chaotic, even when the translation is an irrational rotation.

1. Introduction

Degirmenci and Kogak [2010] showed that the cross-product of the double-angle
map and an irrational rotation, which is a function on the torus, is transitive and has
sensitive dependence to initial conditions, but no periodic points, and therefore is not
chaotic. Linear hyperbolic toral automorphisms are known to be chaotic, so a natural
question in light of [Degirmenci and Kogak 2010] (and the generalizations in [Li and
Zhou 2013]) is whether a linear hyperbolic toral automorphism plus a translation is
still chaotic. We will refer to such functions as affine hyperbolic toral automorphisms
to indicate the translation. Our main goal will be to determine whether such an
affine map has periodic points, even in the event that the rotation is irrational.

We find that affine hyperbolic toral automorphisms are chaotic; in fact, we can
find the precise locations of periodic points in relation to the periodic points of
the corresponding linear map. In this respect, we generalize statements about the
transitivity and periodic points of linear hyperbolic toral automorphisms to affine
hyperbolic toral automorphisms.

2. Definitions

Throughout this paper, f : X — X will be a continuous function on a complete
metric space (X, d). We will examine the iterates of f using the notation f” to
represent the n-th iterate of f; thatis, f' = f and f"*! = f o f”. The composition

MSC2010: primary 54H20; secondary 37B40.
Keywords: topological dynamics, chaos, toral automorphism.
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of f is still a continuous function from X to X. For a specific point x € X, we may
refer to the n-th iterate of x under f by x”, which means x° = x is the initial point.
In this paper, all points in the space will be specified as vectors, and as such the
superscript notation will unambiguously denote an iterate, not raising to a power. In
addition, subscripts on points in the space will refer to the corresponding coordinate
value, with the basis specified in the case that it is unclear.

A function is transitive if for every pair of nonempty open sets U, V C X, there
exists a positive integer n such that f"(U) NV # @. An example of a transitive
function is the irrational rotation on the circle. An irrational rotation is actually
totally transitive, by which we mean that ' is transitive for every positive integer m.
A property of the irrational rotation that makes it useful for counterexamples is that
it is transitive, but has no periodic points.

A periodic point p € X is one for which f"(p) = p for some n, a positive integer.
The least such n is called the period of p, and if n = 1, we say that p is a fixed
point. We can locate points with a given period m by finding fixed points of f”,
provided that there is no k < n such that f* also fixes that point.

A function is Devaney chaotic (henceforth, chaotic) if it is transitive, has dense
periodic points, and has sensitive dependence to initial conditions. “Dense” refers
to the presence of at least one periodic point in every nonempty open set. Sensitivity
to initial conditions means that there exists an € > 0 so that for all § > 0 and x € X,
there exists a y € X with d(x, y) < § and an n € N such that d(f" (x), f*(y)) > €.
Banks et al. [1992] proved that the first two hypotheses are sufficient for the
third, making transitivity and dense periodic points all that is necessary for chaos.
As Crannell [1995] pointed out and by Banks et al. [1992], the elimination of
the sensitivity hypothesis makes chaos an entirely topological concept: sensitive
dependence on initial conditions is the only hypothesis of the three that relied on
the metric.

In general, no other combination of two hypotheses implies the third, but on the
unit interval, transitivity guarantees dense periodic points, and is therefore sufficient
for chaos [Vellekoop and Berglund 1994]. Contrast this with the irrational rotation
on the circle, which is transitive but has no periodic points and is not sensitive to
initial conditions.

A torus of d dimensions T¢ is the cartesian product of d copies of the circle,
ST x §1x ... x 8! Since §' = R/Z, coordinates in T¢ are real numbers from 0,
inclusive, to 1, exclusive. A linear automorphism of T¢ is matrix multiplication of
the coordinates in [0, 1) x [0, 1) x --- x [0, 1), taken modulo 1. Since the corners
of the unit d-cube are all identified on T¢, their images under matrix multiplication
must all have integer entries to ensure they are each mapped to the origin, modulo 1.
Thus the matrix representing the linear transformation must have integer entries. In
addition, this matrix must have determinant 1 so that the map is a bijection.
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This paper is concerned with hyperbolic toral automorphisms. If A is the matrix
representing the toral automorphism, the product of the d (not necessarily distinct)
eigenvalues of A is the determinant, which we require to be 1. A toral automor-
phism is hyperbolic when none of the eigenvalues are equal in magnitude to 1.

3. Preliminary results

Lemma 3.1 [Katok and Hasselblatt 1995]. Any hyperbolic toral automorphism
with a largest eigenvalue whose eigenvector has rationally independent entries is
transitive.

Proof. Let U,V C T¢ be nonempty open sets. The set U must contain a line
segment parallel to the eigenvector associated with the largest eigenvalue. Since this
eigenvalue is greater than 1, under iteration the line segment grows without bound
while remaining parallel to the eigenvector. Since the line “wraps around” the torus
whenever the value of a coordinate exceeds 1, the distances between points where
the line intersects the i-axis take on values that are multiples of the i-th entry in the
eigenvector. As with the irrational rotation of the circle, as the number of iterates
tends towards infinity, these intersection points are dense on the i-axis. Since the
line stays parallel to the eigenvector, and the entries are rationally independent, the
orbit of the line is dense in T¢. This guarantees that the line intersects V after a
finite number of iterations, and therefore U and V have nontrivial intersection for
some number of iterations of f. O

Lemma 3.2 [Katok and Hasselblatt 1995]. The rational points on the torus are
periodic for any hyperbolic toral automorphism.

Proof. Let
(Pl Pd)
p=—,....— ),
q q

with p1, ..., pa, g €N, be a point in T¢ with rational coordinates (not necessarily in
lowest terms). Since the entries of the matrix corresponding to the hyperbolic toral

automorphism are all integers, the image of p is also a rational point with common
denominator ¢. Since there are precisely ¢¢ rational points in the unit square with
denominator ¢ (again, not necessarily in lowest terms), every such point can take on
only finitely many values under iterates of the automorphism. Thus, each rational
point is either periodic, or preperiodic (in the sense that p is mapped into a periodic
orbit, but that orbit does not contain p). Since the automorphism is invertible, no
points are preperiodic and therefore must be periodic, with maximum period ¢g¢. [J

In fact, only the rational coordinates are periodic. To see this, consider that
periodic points of period n are in the kernel of A" — I;, where [, is the identity
matrix of dimension d. Since A" — I; has integer entries, its kernel is composed
only of vectors with rational entries.
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Example 3.3 [Elaydi 2008; Katok and Hasselblatt 1995]. The canonical example
of a hyperbolic toral automorphism is the Arnold “cat” map

LA:T2—>T2, xr—)ﬁ ii|xmod1. ()

The eigenvalues of the matrix are 5 (3—{—\/_ 5) and 1 53— NG 5) with respective eigenvec-
tors [ (14++/5), 1] and [ (1—+/5), 1] You can see that one of the eigenvalues
is larger than 1 and the other less, while both eigenvectors have irrational slope.

4. Main results

With the previous two lemmas, we have enough machinery to prove the main
theorem pertaining to affine hyperbolic toral automorphisms. As in the introduction,
an affine hyperbolic toral automorphism is a hyperbolic toral automorphism followed
by a translation. We give two proofs of the result. The first gives the precise location
of periodic points. The second relies on the fact that chaos is entirely topological
and uses topological conjugacy.

Theorem 4.1. Any affine hyperbolic toral automorphism is chaotic.

Proof. Let vy, va, ..., vg be the eigenvectors of A associated with Ay, Ao, ..., Ag,
respectively. The eigenvectors form a basis for R?, so for any translation b € R?,
b can be written as b = bjv; + bovy + - - - 4+ bgvy and any point on x € T as
Z?:] x;iv;. So instead of x"*! = Ax" + b, we may write

d d
+1 = Ain”v,- —i—Zb,-v,-.
i=1 i=1

We wish to find a closed form of x™. For any point x° € T¢,

d d d n
x'=Ax"+b=A Zx?—l—Zbiv,- = Zkix?v,- —I—Zb,-vi,
i=1 i=1 i=1 i=1

d n d

X —AX +b= A(Z)\.X vl+Zkibivi+Zbivi>+Zb,-v,-

i=1 i=1 i=1 i=1
d d
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The first three iterations suggest that

d
x —Zx X vl+2n:Zx{‘1biv,-. )

j=1i=1

Assume (2) as an induction hypothesis. Then we see that it also holds for n + 1:

I Ax" 4+ b= A(ka v,+ZZ)J 'p, v,)—i—Zb Vi
i=1

jlll

"+1x0v,+ZZA b;v; +Zb v;

j=1i=1
n+l d

+1x0v, + Z ZA] 1b v;.

1 j=1i=1

—_

I
M‘“ 'M*‘“

The last expression in (2) is not particularly revealing until we rewrite the double

sum as
d

ZZ)J 'biv; = Z’WZ'\“ Zb

j=1i=1

l—k”

and remember that we are looking for periodic points such that x® = x mod 1.
We are looking for x =) "_, x;v; mod 1 such that

d d d 1—n
X;Xiv,- = ;Afxiv,- +,21:bi1——)\,livi mod 1,
1= 1= 1=

which leads to

o
Il

?x,v, lev,—i-Zb v, mod 1

1—2
Mxjvp —xjv; +bj——L vi) mod 1

(
>

)\”l
. vi> mod 1

i

- 1—
(4 = Daxivi +bi g

M& M= ”M& ||Pﬂ:~

1

(A Y‘—l)(x-—i— bi )v- mod 1
i 1 )\,l—l l ’

b;
(A — 1)(361‘1)1'4-)L lvi> mod 1

1

Il
.M&

Il
-
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from which we can conclude that the periodic points of the affine map are precisely
those of the linear map translated by Z?:] (bi /(A; —1))v;. Since the periodic points
of the linear map are dense, so too are the periodic points of the affine map. In
addition, if U, V are open in T4, then there exists an n such that the n-th iterate of
the linear map of U intersects V. Thus, the affine map is chaotic. ([

There is another proof of the main result that uses far less calculation, but does
not give the new locations of periodic points. We use the fact that the linear and
affine hyperbolic toral automorphisms f(x) and g(x) = f(x) + b are topologically
conjugate, so that the following diagram commutes:

T L, e

b
T4 & T4

Alternate proof of Theorem 4.1. If we suppose f is defined by multiplication by a
matrix A and g is multiplication by A followed by translation by b, we must define
the homeomorphism / so that f = h~! o g o h. This homeomorphism 4 is simply
translation by some b:

Ax=A(x+b)+b—b=Ax+Ab+b—b=Ax+(A—I1)b+b
= A—-Ipb=—b = b=—(A-1p7'b.

We know A — I, is invertible because A has no eigenvalues equal to 1.

Since f and g are topologically conjugate, they have the same properties regard-
ing transitivity and periodic points. The transitivity and dense periodic points of
linear f are known, so they hold also for the affine g. U

Corollary 4.2. Any affine hyperbolic transformation of T? is chaotic.

Proof. Suppose the linear part of the transformation is multiplication by a matrix A.
Then the roots of the characteristic polynomial are

b

a—»\
det(A — D) _det[ ¢ d—n

]:kz—(a+d)k+(ad—bc)

e (a+d)+/(a+d)* —4(ad — bc)
= > :

The discriminant (a + d)? — 4(ad — bc) = (a +d)? — 4 cannot be a perfect square
because 2 is not part of any Pythagorean triple. Thus the eigenvalues are irrational,
which in turn implies that each of the eigenvectors has irrational slope. This is
sufficient since all affine hyperbolic functions on T? meet the criteria of the main
result, and are thus chaotic. (]
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Example 4.3. We now give a specific example of the previous corollary based on
Example 3.3. Let L4 5, : T?> — T2 be defined as

ol [2])=[ L)+ () ©

Recall that the eigenvectors of the matrix A are v; = [%(1 + \/3), I]T and v, =
[%(1 —J5), I]T, with eigenvalues A; = %(3 ++/5) and Ay = %(3 —4/5), so that
A1 > 1> Xy > 0. The points

p1= [g} . p3= Bﬁ] and pjo= Bg}

are fixed and periodic of periods 3 and 10 respectively under Example 3.3. To
find the corresponding periodic points g1, g3, g1o under L 4 p, first calculate by, by,
which are the projections of b against v1, vo.! Then add the translation prescribed
by Theorem 4.1:

b b (b)) (b 4227
T—a T 1=a 2 1= 1= 2 |8702]
o [4227] _[4227]

D= P g702] T | .8702]

o [4227] _[9227]

B=P3T| 8702| T | 3702]
oy [4227) _[6227]

N0 PI0T] 8702 | | 4702]

One can check numerically that indeed

Laplg)=q1. L},(@)=q3 LY, (q10)=qu0.
and for each this is the minimum number of iterations required.

Corollary 4.4. Any function fi o on the circle given by fi o : 6 — k6 + o with
keZ\{-1,0,1}and o € S' is chaotic.

Proof. The slope of an eigenvector degenerates for S' = T!, and in any case
the function fi , is not an automorphism. In the sense that f; , is a function
that is known to be chaotic followed by a (possibly irrational) rotation, the main
result holds.

First, an alternative explanation for the transitivity of fi o is in order. Any open
set U in S! contains an open arc (01, 6,) with length 6, —6;. Define m =2m /(6,—6).
After n > k™ iterations of fi , on U, we have fk’f LU)=S ! (A function with this

IRemember that all arithmetic is performed modulo 1.
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condition is said to be locally eventually onto.) Since every open set is “eventually
onto” the circle, any U will certainly have nontrivial intersection with any nonempty
open V € S! after a finite number of iterations.

The periodic points of fi = f o are the rational points in [0, 1) with denominator
one less than a power of k. Moreover, if this denominator is ¢ = k" — 1, then the point
p/q € @N[0, 1) will have period n if p/q is fully reduced. To see this, note that

f,f(?) _&" knp_ 1 =(k"—1+1)]w’;_1=(k"—1)knp_ 1 +knp_ 1 =p+§=§
because p € N and all of our arithmetic is modulo 1. Since g can be chosen
arbitrarily large and p =0, 1, ..., g — 1, with p/q evenly spaced about the circle,
the periodic points of f; are dense in S'.

We can now use the closed form from the proof of Theorem 4.1 to find the
periodic points of fi . We are searching for points such that f;" ,(x) =x mod 1, or

(k" — 1)<x+k°‘j> —x mod 1.
This shows that the periodic points of f; , are rational points of f; rotated about
the circle by a/(k — 1). Since the locally eventually onto property is preserved, and
periodic points are still dense, fi , is chaotic. O

5. Conclusion

Our main result shows that affine hyperbolic toral automorphisms are chaotic. The
added translation by a vector b preserves the transitivity of the map and translates all
of the periodic points by Zf: 1(bi /(A; — 1))v;, where the v; are eigenvectors, A; the
corresponding eigenvalues, and b; the coordinates of the translation vector b in the
basis defined by the eigenvectors. Note that in the case that b =0, the periodic points
are not translated at all, which coincides with a linear hyperbolic toral automorphism.

Using this translation result, one can construct an automorphism of the torus in
which any specified point y has a specified period n: Find an x such that x has
period n under a linear hyperbolic toral automorphism. By Lemma 3.2, x will
have rational coordinates in the standard basis (but not necessarily in the basis
defined by the eigenvectors of the linear automorphism). Then define b such that
b;i = (A —1)(y; —x;) mod 1, where b;, x;, y; are the coordinates in the basis defined
by the eigenvectors of the linear toral automorphism. The resulting affine hyperbolic
toral automorphism will have y as a periodic point with period 7.

More generally, the main result shows that the incorporation of an irrational
rotation into a toral automorphism does not necessarily eliminate the possibility of
periodic points.
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Rings of invariants for
the three-dimensional modular representations
of elementary abelian p-groups of rank four

Théo Pierron and R. James Shank

(Communicated by Ravi Vakil)

We show that the rings of invariants for the three-dimensional modular represen-
tations of an elementary abelian p-group of rank four are complete intersections
with embedding dimension at most five. Our results confirm the conjectures of
Campbell, Shank and Wehlau (Transform. Groups 18 (2013), 1-22) for these
representations.

Introduction

We continue the investigation of the rings of invariants of modular representations
of elementary abelian p-groups initiated in [Campbell et al. 2013]. We show that
the rings of invariants for three-dimensional modular representations of groups of
rank four are complete intersections and we confirm the conjectures of [loc. cit., §8]
for these representations.

Let V denote an n-dimensional representation of a group G over a field F of
characteristic p for a prime number p. We will usually assume that G is finite and
that p divides the order of G, in other words, that V is a modular representation
of G. We view V as a left module over the group ring FG and the dual, V* as a
right FG-module. Let F[V] denote the symmetric algebra on V* The action of G
on V* extends to an action by degree-preserving algebra automorphisms on F[V']. By
choosing a basis {x1, x2, ..., x,,} for V* we identify F[ V] with the algebra of polyno-
mials F[xy, x7, ..., x,]. Our convention that F[V] is a right FG-module is consistent
with the convention used by the invariant theory package in the computer algebra
software Magma [Bosma et al. 1997]. The ring of invariants, F[V]°, is the subring
of F[ V] consisting of those polynomials fixed by the action of G. Note that elements
of F[V] represent polynomial functions on V and that elements of F[V ] represent
polynomial functions on the set of orbits V/G. For G finite and [F algebraically
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Keywords: modular invariant theory, elementary abelian p-groups.
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closed, F[V]C is the ring of regular functions on the categorical quotient V / G. For
background on the invariant theory of finite groups, see [Benson 1993; Campbell
and Wehlau 2011; Derksen and Kemper 2002; Neusel and Smith 2002].

Computing the ring of invariants for a modular representation is typically a
difficult problem; the rings are often not Cohen—Macaulay. It is natural to take
p-groups as a starting point and recent work of David Wehlau [2013] gives us a
good understanding in the case of a cyclic group of order p. The next step is to look
at elementary abelian p-groups. The rings of invariants for the two-dimensional
modular representations of elementary abelian p-groups were computed in Section 2
of [Campbell et al. 2013] and the three-dimensional modular representations were
classified in Section 4 of that paper. The only three-dimensional representations
for which computing the ring of invariants is not straightforward are those of
type (1, 1, 1), in other words, those representations for which dim(V%) = 1 and
dim((V/ V9% = 1. Our goal here is to compute the rings of invariants for
representations of type (1, 1, 1) for groups of rank four. The methods we use are
essentially the same as the methods used in [loc. cit.]. As the rank increases, the
complexity of the required calculations increases; we believe that it is not feasible
to use the methods here for rank greater than four.

We denote by E = (e, e2,e3,e4) = (Z/ p)4 a rank-four elementary abelian
p-group. Note that E only has representations of type (1,1, 1) if p > 2, so we
make this assumption throughout the paper. As in Section 4 of [loc. cit.], define
o : > = GL3(F) by

1 2¢g C%—l—CQ
o(ci,c) =10 1 (1
0 0 1

Note that o defines a representation of the group (F?, +). For a matrix

M= <011 €12 C13 614)
€21 €22 €23 C24
with ¢;; € F, the assignment e; — o (cy;, cz;) determines a three-dimensional
representation of £, which we denote by Vj,. The action of E on F[x, y, 7] is
given by right multiplication on x =[0 0 1], y=[0 1 0] and z =[1 0 0]. Thus
x-o(ci,c0)=x, y-0(c1,c2)=y—+cixand z-0(cy, ¢2) =z+2c1y—|—(c%+cz)x.
The representation V), is of type (1, 1, 1) if at least one ¢y is nonzero. Furthermore,
by Proposition 4.1 of [loc. cit.], for every representation of type (1, 1, 1), there
exists a choice of basis for which the action is given by some matrix M.

In this paper, we compute F[Vy,]¢ for all M € F>** We give a stratification
of F** and show that within each stratum there is a uniform computation of F[Vu]E.
Note that the automorphism group of E is isomorphic to GL4([,), where [, denotes
the field of p elements. Since [, C [, there is a natural right action of GL4 ()
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on F>*% If M and M’ lie in the same GL4(F,)-orbit, then F[Vy/1E = F[V)s]E.
Essentially, we study subrings of F[x, y, z] parametrised by points in F2*4/ GL4(F)
and use elements of F[F2**]544(Fr) to describe the stratification.

In Section 2, we work over the field K:=F,(x;; | i € {1, 2}, j €{1,2,3,4}) and
compute K[Vm]E for the generic matrix

X11 X12 X13 Xi4
M= .
X1 X2 X23 X24

We show that K[V]F is a complete intersection of embedding dimension five
with generators in degrees 1, p2, p>+2p, p> +2 and p*, and relations in
degrees p> 4+ 2p? and p* +2p. Consider the 10 x 4 matrix

X11 X12 X13 X14

X21 X22 X23 X24
p P P P
X1 X2 X1z Xig

p P P D
=1 %1 X2 %23 X4

4 4 4 4
ptoopt pt p
X X2 X3 X
4 4 4 4
ptoopt  pt o p
Xo1 Xop Yoz A4

and for a subsequence (i, j, k, £) of (1,2, ..., 10), let y;;x, denote the associated
4 x 4 minor of I'. Note that ;¢ € F[F2*4]5L4 @) and, for g € GL4([F,), we have
& Vijke) = det(g)yijke- We use zero-sets of various ;e to define the stratification
of F>**/ GL4(F,). In Section 3, we show that for M € F>** with y1234(M) # 0,
y1235(M) # 0 and y357(M) # 0, the generic calculation survives evaluation. In
Sections 4 through 10, we compute the rings of invariants for the remaining strata.

Section 4: y1357(M) # 0, yi1235(M) # 0, y1234(M) = 0. We show F[Vy]® is a
complete intersection with generators in degrees 1, 2p, p?, p*+2 and p* and
relations in degrees 2p> and p* + 2p.

Section 5: y1357(M) #0, y1235(M) =0, y1234(M) #0. If y1245(M) #0 then F[ Vs 1©
is a complete intersection with generators in degrees 1, p% p*+p, p>+p+2
and p* and relations in degrees p> + p? and p* + p? +2p. Otherwise, F[Vy]F is
a hypersurface with generators in degrees 1, p% p?-+2 and p* with the relation in
degree p*+2p>

Section 6: y1357(M) =0, y1235(M) # 0, y1234(M) # 0. We show F[Vy,]F is a
complete intersection with generators in degrees 1, p% p>+2p, p®+1 and p*
and relations in degrees p> 4+ 2p? and p* + p.

Section 7: y1357(M) # 0, y1235(M) =0, y1234(M) = 0. We show F[Vy]F is a
hypersurface. If y1257(M) = 0, then the generators are in degrees 1, 2, p* and p*
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and the relation is in degree 2p* Otherwise, the generators are in degrees 1, p,
P+ p?>+ p+2, p* and the relation is in degree p* + p* + p> +2p.

Section 8: y1357(M) =0, y1235(M) # 0, y1234(M) = 0. We show F[Vy 1 is a
complete intersection with generators in degrees 1, 2p, p3, p*+1 and p* with
relations in degrees 2p? and p* + p.

Section 9: y1357(M) = 0, y1235(M) = 0, y1234(M) # 0. If y1245(M) # 0, then
F[Vy]F is a complete intersection with generators in degrees 1, p% p>+p, p>+1
and p* with relations in degrees p> + p? and p* + p. Otherwise, F[Vy]F is a
hypersurface with generators in degrees 1, p% p?+ 1 and p* with a relation in
degree p* + p

Section 10: y1357(M) = 0, y1235(M) =0, y1234(M) = 0. If y1246(M) # O then
F[ Va1 is a hypersurface with generators in degrees 1, p, p>+1, p* and a relation
in degree p* 4 p. Otherwise, the representation is either not faithful or not of
type (1, 1, 1); in either case, the invariants were computed in [Campbell et al. 2013].

1. Preliminaries

We make extensive use of the theory of SAGBI bases to compute rings of invariants.
A SAGBI basis is the subalgebra analogue of a Grobner basis for ideals, and is a
particularly nice generating set for the subalgebra. The concept was introduced
independently by Robbiano and Sweedler [1990] and Kapur and Madlener [1989];
a useful reference is Chapter 11 of Sturmfels [1996]. We adopt the convention that
a monomial is a product of variables and a term is a monomial with a coefficient.
We use the graded reverse lexicographic order with x < y < z. For a polynomial
f €Flx, y, z], we denote the lead monomial of f by LM(f) and the lead term of f

by LT(f). For B={hy, ..., h¢} CFlx,y,z] and I = (i1, ..., i), a sequence of
nonnegative integers, denote Hf’:l h}j by hl. A téte-a-téte for B is a pair (h!, h”)

with LM(h!) = LM(h’); we say that a téte-a-téte is nontrivial if the support
of I is disjoint from the support of J. The reduction of an S-polynomial is a
fundamental calculation in the theory of Grobner bases. The analogous calculation
for SAGBI bases is the subduction of a téte-a-téte. For any f € F[x, y, z], if there
exists a sequence I such that LM(f) = LM(h’), we can choose ¢ € F so that
LT(f) = LT(ch’). Then LT(f — ch!) < LT(f). If by iterating this process we
can write f as a polynomial in the /;, we say that f subducts to zero (using B).
For a téte-a-téte (h!, h”), choose ¢ so that LT(h!) = LT(ch’). We say that the
téte-a-téte subducts to zero if i’ —ch”’ subducts to zero. A subset B of a subalgebra
A C Flxy,...,x,] is a SAGBI basis for A if the lead monomials of the elements
of BB generate the lead term algebra of A or, equivalently, every nontrivial téte-a-téte
for B subducts to zero. For background material on term orders and Grobner bases,
we recommend [Adams and Loustaunau 1994].
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The following specialisation of Theorem 1.1 of [Campbell et al. 2013] is our pri-
mary computational tool. Note that under the hypotheses of the theorem, {x, /1, h,}
is a homogeneous system of parameters and, therefore, F[Vj/]% is an integral
extension of A.

Theorem 1.1. For homogeneous hy, ..., hy € FIVi1E with LM(hy) = y' for
some i >0, LM(hy) :zjfor some j > 0and LM(hy) € Fly, z] fork=2,...,£—1,
define B := {x,hy,...,he} and let A denote the algebra generated by B. If
Alx ™" =F[Vy1E[x~" and B is a SAGBI basis for A, then A = F[Vy/1* and B is
a SAGBI basis for F[Vy]E.

Note that, if an algebra is generated by a finite SAGBI basis, then for the
corresponding presentation, the ideal of relations is generated by elements corre-
sponding to the subductions of the nontrivial téte-a-t€tes (see Corollary 11.6 of
[Sturmfels 1996]). We use the term complete intersection to refer to an algebra with
a presentation for which the ideal of relations is generated by a regular sequence.
Since the Krull dimension of F[V,]¥ is three, the ring is a complete intersection if
the number of generators minus the number of nontrivial téte-a-tétes is three.

We routinely use the SAGBI/divide-by-x algorithm introduced in Section 1 of
[Campbell et al. 2013]. The traditional SAGBI basis algorithm proceeds by sub-
ducting téte-a-tétes and adding any nonzero subductions to the generating set. For
SAGBI/divide-by-x, if a nonzero subduction is divisible by x, we divide by the
highest possible power of x before adding the polynomial to the generating set.
While the SAGBI algorithm extends the generating set for a given subalgebra,
SAGBI/divide-by-x extends the subalgebra. If we start with a subalgebra A which
contains a homogeneous system of parameters and satisfies the condition that
Alx~ Y = F[Vy1E[x "], then the SAGBI/divide-by-x algorithm will produce a
generating set for F[Vj;]F (see Theorem 1.2 of [loc. cit.]).

For f € F[Vy], we define the norm of f to be the orbit product

Nu(f):=]]{f ¢lgeE}eFIVul®

with the action of E determined by M. When applying Theorem 1.1, we often
take hy to be Ny (z2).

Remark 1.2. Note that the action of E restricts to an action on F[x, y] and that
Flx, y1¥ = Flx, Ny (y)] (see Section 2 of [Campbell et al. 2013]). Therefore, if
h € Flx, y]¥ is homogeneous with deg(h) = |{y - g | g € E}| then A is a linear
combination of Ny (y) and xdee®),

Define 8 := y? — xz and observe that

§-0(c, ) =(y+c1x)* —x(z4+2c1y + (cf +e2)x) =8 — cox™.
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Note that F[x, y, z][x '] = F[x, y, —8/x][x '] and that the F[x, y, —8/x]F is a
polynomial algebra (see Theorem 3.9.2 of [Campbell and Wehlau 2011]). This
“change of basis” can be a useful way to compute the field of fractions of F[V,]E.
Form the matrix T by augmenting I" with the column

HOIGNC RO

For a subsequence J = (ji,...,j5) of (1,2,...,10), let fj e Klx, y, zl1[x 1]
denote the associated 5 x 5 minor of T'. Let f7 denote the element of K[x, y, z]
constructed by minimally clearing the denominator of f;. Observe that f; €
K[Vi(1E. Furthermore, the coefficients of f; lie in Fplxi j]SL“([FP) and, for an arbitrary
M e F>*4 evaluating the coefficients of f; at M gives an element f; € F[Vy]E.
Invariants constructed in this way are a crucial ingredient in our calculations. Define
fi = fi2345 and observe that LT( f;) = y1234y”" Note that LT( fi2346) = — 1234y
A straightforward calculation shows that

2 2
LT(f7 + 1234 f12346) = 2V123aY1235x7 2P yP +2P
Therefore,
fE +v1234 f12346 E
= k
f2 Py e K[Vl

has lead term )/1234]/1235yp2+2p.
We make frequent use of the Pliicker relations for the minors of I" and I'.

Theorem 1.3. Let N be an n x m matrix with n > m. Denote by p;, . . the
m x m minor of N determined by the rows iy, ..., i,,. For sequences (i1, ..., iy—1)
and (ji, - .., jms1), we have the following Pliicker relation

m+1

a=1
For a proof of the above theorem, see, for example, [Lakshmibai and Raghavan
2008, §4.1.3].

Lemma 14. For2 <i <7,

P _ P P J p
V12771234 = Y12i6Y1235 — Y12i5Y1245 T V12i4Y1345 — V12i3Y2345-

Proof. Since taking p-th powers is F,-linear, y(12)(j+2)(k+2)(¢4+2) = yi?ki' For

example, yiu56 = )/1”234. The desired result follows from this fact, using the

(1,2,i)(3,4,5,6,7) Pliicker relation for the matrix I". O

For K = (ky, ko, . . ., k) a subsequence of (1,2, ..., 10), let K; denote the subse-
quence of K formed by omitting i and let K; ; denote the subsequence of K formed
by omitting i and j. The following is Lemma 5.3 from [Campbell et al. 2013].
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Lemma 1.5. For any subsequence (i1, i»,i3) of K,
(_I)GIVK,']_,‘Z fK,'3 + (_1)62)/1(,'2,,'3 fK,'1 + (_1)63)/1{1'1,,'3 fK,'2 =0
for some choice of €, € {0, 1}.

Remark 1.6. Note that y;357(M) = 0 if and only if {c11, c12, €13, c14} is linearly
dependent over [F,,. This follows from the usual construction of the Dickson invari-
ants; see, for example, [Wilkerson 1983]. The key observation is that y;357(M)? -1
is the product of the nonzero [,-linear combinations of {c;1, c12, ¢13, C14}.

2. The generic case

In this section we compute K[Vy]%. With f; and £, defined as in Section 1, using
Theorem 5.2 of [Campbell et al. 2013], we see that

KIVMmIE[x ™ =Kix, fi, Hllx7']

Thus it is sufficient to extend {x, fi, f2, Na(2)} to a SAGBI basis. We use the
SAGBI/divide-by-x algorithm of [loc. cit., §1] to do this. We will show that the
algorithm produces one new invariant, which we denote by f3, and that

3
LT(f3) = yi3s7y” 2.

For p =3 and p =5, this result follows from a Magma calculation. For the rest of
this section, we assume p > 5.
Expanding the definitions of fi, fi2346 and f; gives

2 2 2 2 2__
f1 = 11230y Fy12358P X7 2P dyi0asxP TP yP 4134587 2 yasasx? Ty,

2p>—1

2 2p%*-2 2p%— 2p*-2
f12346 = —¥12348" +y12368 " X TP 4y1246X 77 TP yP 413460 X7 T "+ y2346X y

and

2
it vi23a fi2346
2xP*=2p

f2

2 2 2
+ 2p—2
= Y1234Y1235Y" 87 +v1234v1245X Py TP+ y1034y13458x P2 yP

2p—1 . p?>4+1 , 1.2 2p_p?> 1.2 2p p*-2
+¥123472345X PV T+ 3 Y103 X P2l + 5 Yinas0 X T
PP’ —pP p+l_p*-2 pp—1
+ 1235124567 x Y+ v12357134587 T x +V1235V234587x" Ty
1 2 1.2 22 24+p—2
+ 3¥1234Y1236X " 87 4 3¥in4sx” Y7P + vi24sy13a56x? TPTyP
2 2 2
+p—1_p+l 1 4p 1.2 2 pii2p—4
+¥1245V2345x 7 TP yP +§V1234V1246ypxp p+§V13455 xPEp

2 2
$2p=3. 1.2 $2p—2.2
+Y1345V23450 X TP Ty 4 S ya3usxl TPy

2 _
xP +2p—1

1 2+2p—2 1
+ 5V1234Y13460x 7 TP T2 4 S y103ay34s Y.
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. AN a p+2 p .
Subducting the téte-a-t€te (f," ", f, ) gives

7 p p+2 2 p 2_2p pp
B=Vipsfi = Viwaly tax? TP f
—_———— ———— N———

T T T
2 2 — 2 _
p+l 2p%=2p pp—1 2p*—p £(p=3)/2 (p+1)/2
+ apx? f] +o3x” pf1 fo+agx? pfl 2 )
n Ts Ts
where
p+1 p+3
_ p _ p _ Y1234 V1237 _ Y1234 Y1257
a1 ==2Y155 W =VpulVius: W=, U= )2
Y1235 1235

Lemma 2.1. For p > 5, we have LT( f3) = ax2P"=2yP*+2 yith

yp+1 y y2p+2
_ Y1234 p+1 p p+1 . 135741234
o= (V1234V1345 1 V123513451236 — V1235 V1346) =-

Y1235 Y1235

Proof. We work modulo the ideal in K[x, y, z] generated by x2r'=1, By the definition
of f2, we have

_ P p 2 P
T =T+ T3 = —Vi235Y1234 1 Ji2346 — Visats -
r_.p .p}
As fi' = yip3y" and
p_.,p P sp>.p p .0 _p* pP+p?
12 = Vip3aY12350" Y0+ VinaaViasx” Y

p P sp 2p°=2p p? PP 2p—p p+p
+V1234Y 134587 % YO V1234V 2345% yeor

we obtain
h—D+T3=— Vllgf Vigas* Py _lezgi (V12341345 V{235V 1236)87' % eyt
- )’1sz3r41 (Vi23aV2305HVas¥ 246)x sz_py P
_lezgi VhasVi3a68% 2p2_23’ 7,
Since

2 32
p+l _ _p
x? f] = V1234yp xP fi

= PPt P P20 =2p P
=YX Y + Vi23aYi2358" X y

272 3

P 2p*—p,pP+p p 2p p
+ Vi234V1245% y + ¥1234V13456% e,

we see that
_ ., ptl D p D 2p2=2p . piep
N =D+T3+Ta= Y ()’1235)’1245 — Vi235Y1236 — V1234V1345)x yré

p+l/ p+l P )4 2p%—p  p+p
t Vi34 (V1245 — Y1235Y1246 — y1234y2345)x y

p+1 22

14 P 2 3
+ Vi (V1245V1345 - V1235V1346)3x A
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Using Lemma 1.4 for i = 3 and i = 4, along with the analogous result coming
from the (1, 3,4)(3, 4,5, 6,7) Pliicker relation for I', gives

2p+1 2p*-2 3
N =T+ T34+ Ta=—Viga Vioyx "~ "yP o7
2p+1 2p2—p  PP+p 2p+1 2p2—2 P’
— Y1234 Vi247% y — V234 Yi3a78% yo.
. _ 1 2 2
Since 3p> —4p > 2p2 —1 for p > 5, we have x27° =2 fP =" = P lyp =0 x20°-2p

Using the description of f> given above,

2 2 2 —
X772 ) = 123 x P 2P yP (1123587 + YiaasxPyP 4 yi3aséx P 2.
Thus

3 2_ —
Ts = a3y{ha, P %7 2P (1123587 + Y12asxP yP + y13a58x2P 7).

Using the (1,2,4)(1,2,3,5,7) and (1, 3,5)(1,2,3,4,7) Pliicker relations gives

Vi34 V 3y V1234 V

1234 71257 .2 1234 71357 o 2p>—2_p3

— D+ B+ T+ Ts=-—""=2 =20 p? B L e R R AL S L L
Y1235 Y1235

Expanding and reducing modulo (x2p2_1), we get

2p—p ¢(p=3)/2 _ 2p*—p (p—=3)/2_(p*-3p*)/2
x2op plp 12— \2p 17),15934/},(17 PH/

and
2p pf(p+1)/2 (p+1)/2_ (p+1)/2 2p —p (p‘+3p2)/2+p
1234 1235 y

Thus

E— (p+1)/2,.2p*—p P +p

o 712347/1235 y

4
and

f3 =TT —hLh+hL+Th+Ts+ T = ax2p272yp3+2‘
Using the (1,2, 3)(1,3,4,5,6) and (1, 3,5)(3,4,5, 6, 7) Pliicker relations, we obtain

p+2 2p+2

_ Y134, p+l Py = Y1234 Y1357

= Yizas —VizseVi23s) = ——
Y1235 Y1235

and, since we are using the grevlex term order with x < y < z, the result follows. [J

Define
z Y1235
f3 f3 2p+2 2[72 2

Vi34 X
so that LT(f3) = y1357y? +2 . Looking at the exponents of %) modulo p, it is clear
that there is only one new nontrivial téte-a-téte: ( f3 S f1 ) In order to prove
that B := {x, fi, f>, f3, Nm(2)} is a SAGBI basis for K[Vy(]%, it is sufficient to
show that this té€te-a-téte subducts to zero. However, Np((z) is rather complicated
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and it is more convenient to take an indirect approach. Subducting the téte-a-téte
using only {x, f1, f2, f3} gives

x 21 2_(p+3)/2 (p+1))2
o= ff —Bofl "t paxt (0
‘\/"’

Ty T I
2p—2 pp*— 2p—1 p(PP=1/2—p ~(p—1)/2 (p+1)/2
+ Bax=l flp pf3+55xp flp )/ pfzp / 3p /a

T T/

where

P P
B, = p? By =7, By = Y1234 (V1245Y1357 — Y1235V 2357)
1= VY1235Y1234 2= Y1357 3=

(p+1)/2 ’
Y1235
) p—1 o PHpED/2 (p43)/2 (p—3)/2
B4 = Vip34V1345V1357>  P5 = V1234 Yioss  Vizst -

The lemma below proves that {x, f1, f2, f3, fa /x2P} is a SAGBI basis. We then
use this in the proof of Theorem 2.3.
~ 2
Lemma 2.2. For p > 5, we have LT( fy) = %y11)234y1[’2§51x2pz"4.
Proof. We work modulo the ideal in K[x, y, z] generated by x??*! and x2”y, which
we denote by n. Since p > 5, we have p?> —2p > 2p + 1. Therefore, using the
expressions for f] and f, given above, we have f; =, y1234y1’2 and
— p*sp PP 2p=2,p°
J2 =n vi23av1235y” 87 + yiozayioasy? TPxP + yia3ayi3as6xT 7y
2
+yizayassx Py 4 Lyl
We will need expressions modulo n for f:f , x2P72 f3 and x2P~! f;p T2 etm

denote the ideal generated by x?y and x>. Reworking the calculations of the proof
of Lemma 2.1 to keep additional terms of f3 gives

3 3 3
_ +1, 1 2
f3=m y13578y" + y23s7xyP T + 5y1035x 72

Thus
p_ P spupt P pupt+p 1.0 2p_p*
f3 =n ¥i3578" Y +V2357x y +2Vi3sX 20,
3 2p—1 1
2 f3 = Y13578x2P 2 yP 4 yozsyx P p+ +1 V1235X
x2r—1 (p+D/2 _  (ptD/2 21 »? +2)(p+1)/2.
f n Y1357 y
Therefore
2 4 4
/ /I p 14 p PP +p p 14 2p—2 P
I —T,=n V1234(V1235V2357 - V1245V1357)x y - V1234V1345V13575 y

2

P P 2p—1 p*+l p+1 2p_p*
V123472345V 1357% y +3 :

2 V1234V1235 X2
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Since xpf(p+])/2 =y V1(§3J£1)/2V1(2p3§1)/2 py(p +3p))/2+P | we have

/ / ’_ 2p—2
I —T,+T;=, —J/1234)/1345V13575X y N 2 o
p—1,p*+ )4 p
V1234V2345)/1357X y + 2y1234y1235x Pz

Using the description of x2?~2 f3 given above, we see that

T —T,+T;+T,

_ p+1
2p lyp +g 1 2p

— .,P p—1
=n Y1234V1357 ()/1345 V2357 — y1357y2345)x 2)/1234V12g5x z”

The (2,3,5)(1,3,4,5,7) Pliicker relation gives

V2345Y1357 — V2357V1345 = —V1235)3457-
Thus

2 2
T i ’ Y p—1 2p—1_ p*+1 p+1_2p p
Ty =T, + T5 + T4 =n ¥1234Y1357 V1235V 3457 % y + 2V1234V1235x Pz

Observe that

2p—1 (p*—1)/2 P*=1/2-p 2p-1 2
2P fp 12=p _ V1§34/Ppy(p -pH/2—p?

and

2 1 p(p— 1)/2 (p—1/2_ (p— 1)/2 2p—1_(pP+pH)/2—
= f 1234 Y1235 Pty Wiy,

(p+1)/2

Therefore, using the description of x27~! 13 given above, we obtain

Y / / / y_1..p*  p+l 2p_p*
Jo =T =T+ T+ T, + T5 =0 5y vias x 027

and, since we are using the grevlex term order with x < y < z, the result follows. [J

Theorem 2.3. The set B := {x, f1, f2, f3, N\m(2)} is a SAGBI basis, and hence a
generating set, for K[VaE. Furthermore, K[V\(F is a complete intersection with
generating relations coming from the subduction of the téte-a-tétes ( fzp , fP Jr2) and

L, !

Proof. Define fy := f4/x27, B := {x, fi, f>, f3, f4} and let A denote the al-
gebra generated by B'. The only nontrivial téte-a-tétes for B’ are ( f2 fi P +2

and ( f3 f f1 . From Lemmas 2.1 and 2.2, these téte-a-t€tes subduct to
zero. Therefore B/ is a SAGBI basis for A. From Theorem 5.2 of [Campbell
et al. 2013], K[V 1E[x~1] = KIx, fi, f1[x7']. Thus A[x~'] = K[Va]E[x 1.
Note that LM(fy) = zl’A. Therefore, by Theorem 1.1, A = K[V\(]¥ and B’ is
a SAGBI basis for K[Vy(]E. Hence the lead term algebra of K[V\(]¥ is gener-
ated by {x, yP’, yP’+2, yP*+2 zP"} Since the orbit of z has size p*, we see that
LM(Npm(2)) = zp4 Thus LM(B) =LM(8’) and B is also a SAGBI basis for K[ Vi(]E.
For any subalgebra with a SAGBI basis, the relatlons are generated by the nontrivial
téte-a-téte. Hence ( f2 , fr +2) and ( f3 5H f1 ) generate the ideal of relations
and K[ V(1% is a complete intersection with embedding dimension five. ]
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3. The essentially generic case

In this section we consider representations Vy; for M € F2** for which y;234(M) #0,
Y1235(M) # 0 and yy357(M) #% 0. With this restriction on M, we can evaluate the
coefficients of the polynomials {f; | i =1, 2, 3, 4}, as defined in Section 2, at M
to get {fi | i =1,2,3,4} C F[Vy]E. Note that LT(fi) = y1234(M)y?" so that
LM(F) = y?”. Similarly LM(f) = y?’ 27, LM(f3) = y”" 2 and LM(f}) = z*"
Also, note that y357(M) = 0 if and only if {c;1, c12, €13, 14} is linearly dependent
over [,. Thus, if y1357(M) # 0, the orbit of z has size p4 and LM(Ny(z)) = z”4.

Theorem 3.1. If y1234(M) # 0, yi1235(M) # 0 and y1357(M) # 0, then the set
B := {x, fi, . f3. Nu(2)} is a SAGBI basis, and hence a generating set, for
F[Vy1E. Furthermore, F[Vy1F is a complete intersection with generating 2relations
coming from the subduction of the téte-a-tétes ( fzp , _lp +2) and ( f3p , ng flp 71).

Proof. Define B’ := {x, f1, f>, f3, f4} and let A denote the algebra generélted by B'.
The only nontrivial téte-a-tétes for B’ are (f7, f7*%) and (f7, f, 7" ~'). The
calculations in the proofs of Lemmas 2.1 and 2.2 survive evaluation at M, proving
that these téte-a-tétes subduct to zero and B’ is a SAGBI basis for A. Thus, to use
Theorem 1.1 to prove A = F[V,,], we need only show that A[x '] =F[Vy1E[x~!].

Consider

3 2 3,2 3_ 372 371
fi12351 = 123597 — v12379P X TP+ y10579P X7 TP 4 y13578x P T 4+ yoszsyx?

and evaluate the coefficients at M to get f_12357 € F[Vy]F with lead monomial yf’s.
Since y1357(M) # 0, we know that f12357 has degree one as a polynomial in z.
Furthermore, the coefficient of z is —y357(M)x? =1 Therefore, using Theorem 2.4
of [Campbell and Chuai 2007], F[Vy15[x 1] = F[x, Ny (y), fi23571[x']. Thus,
to prove A = F[ V1%, it is sufficient to show that {Ny(y), ]‘_12357} c Alx7 1.
Using Lemma 1.5 for the subsequence (1, 2, 4) of (1,2, 3,4, 5,7) shows that

Vs 12357 = y3457 fia3s7 € Spang {2357 f13457, Y1357 f3as7)-

Thus f_12357 € Spanﬂx’x_l ]{ fl3457, f23457}. Similarly, using the (1, 6, 7) subsequence
of (1,3,4,5,6,7), we have that fi3457 € Spang, ,—11{fi3456, fir345}. Iterating this
process gives

f12357 € Spangy, —1){f12345, fir345: F12346}-
Since ﬂ2345 = ];1 and ]512346 = 2]52)(172_217 — ];12, we see that f13457 € A[)C_l]. A
similar argument shows that

- T
Jiss19 € Spaan[x,x*‘]{flgys’ Flae |17 €10, 1,2}},

giving f13579 € A[x~']. Since f_13579 = y1357(M)Np; () (see Remark 1.2), we have
Ny(y) € A[x~']. Therefore A = F[V)/]E. As in the proof of Theorem 2.3, observe
that LM(B) = LM(B'). U
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Remark 3.2. Lemmas 2.1 and 2.2 are only valid for p > 5. However, for the
Magma calculations used to verify Theorem 2.3 for p =3 and p = 5, only y1234
and yjp3s are inverted. Thus Theorem 3.1 remains valid for p =3 and p = 5.

4. The y1234 = 0, y1235 # 0, y1357 # 0 stratum

In this section we consider representations Vy, for M € F2*4 for which V1234(M) =0,
v1235(M) # 0 and yy357(M) # 0. For convenience, we write ;e for y;jke(M).
Evaluating coefficients gives

= - 2 _ 2 _ 2 _ 2
fi = 7123587 X7 2P + P1asyPxP TP 4 P13a58x7 T + Pazasyx?
Define
hy o= — fl2 and oy f12357
Vi23sxP =2 V1235

so that LT (h;) = y2p and LT(hy) = y"3. Note that &1, hy € F[Vy]E. Furthermore,
arguing as in the proof of Theorem 3.1, F[Vy/1Z[x ™11 = Flx, Ny (»), hallx ']

_p _
Lemma 4.1. Nyu(y) =hy + (71117237 _ 311359 )h2x”4_1’3 y1357 Pisst), o2,
Yi23s V1357 y1235

Proof. Since fl3579 = Y1357 Np (y) (see Remark 1.2), we have

P V1359y,, P p+)/1379yp ph—p? V1579yp P ,,+J/3579yxp471.
V1357 V1357 V1357 V1357

Nu(y)=y”

Using the definition gives

hy = yp3 _ V1237yp PP V1257ypxp Py )’1357(S P 2+@yxp3_1.
Y1235 Y1235 Y1235 Y1235
Thus
_p —_—
N (y) — hg _ (V1237 7/1359)yp3xp4—p3 _ ()jlp257 _ 711379)),172)6174—172
Vhas V1357 V1235 Y1357

p -

V. Y1579 4_ V 4 Y3579 4_

_ (__21;”57 + - yPxP TP — 1357517 pi=2p 4 2220 2D X 1
Yiazs Y1357 )/1235 Y1357

Using the (1,3,5)(3,4,5,7,9), (1,3,7)(3,4,5,7,9) and (1,5,7)(3,4,5,7,9) Pliicker
relations gives

-p—1

14
Ny (0)—hb = L (71345 y” PP iy

Vixss y
p4_2p)+ V3579 yx”4_1

Y1357

—)71457ypxp P —y13578Px
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Using the (1,2,3)(1,3,4,5,7) and (1,2,5)(1, 3,4, 5,7) Pliicker relations,

- V123771345 Y1245Y1357 — Y1257V1345

Yiza = ———— and Y57 = -
Y1235 Y1235
Thus
it V13577 V13577
1357 1357Y1245 4_ 1357V1345 . p4_2
Ny(y) = (V1345h2xp x4 e L T R
V1235 Y1235 Y1235

_ _p—1 - _
V13575p P*=2p 4 <V3579 _ V1%57V1345V2357>yxp4—1

Y1357 P+l

V1235 Y1235

Using the (1,3,5)(2,3,4,5,7) Plicker relation, y1345y2357 = V13572345 + )71172J3r51,
giving

_p—l — —
Y1351 V13a5V2357 _ Va34s V1357 4 ppo)

_ = Y1357 -
1 =7
leszrs Y1235
From the definition of A1,
p—1- _
J/ 14 3 V _ V3579  _p—1 4_
Ny (y) = 13§7p 1345, p'=p 1357h 2 4 < / V1%57)y ph-1
Y1235 V1235 Y1357
The result follows from the fact that y,5,9 = )71‘%57. U

As a consequence of the lemma, FIVy1E[x~"] = Flx, h;, ha][x~']. Thus ap-
plying the SAGBI/divide-by-x algorithm to {x, &, hz,z Ny (2)} produces a generat-
ing set for F[Vj/]%. Subducting the téte-a-téte (h3, hl") gives

~ Y 2
iy im 12— 7 2 P p D 2 gt o VST R0 2, iy
Y1235 Y1235

Lemma 4.2. LT(iy) = 210357 p¥42, 02,
Y1235

-1

Proof We work modulo the ideal in F[x, y, z] generated by xP’~1. Therefore

hp —y21’ hlx” p—yzf’xf’ ~P and
*_2V1237yp +p?  pP=p +2V1257y,,3+p P’ p+2V13578 P2
Y1235 Y1235 Y1235

) 32 39 2 32 32 3, 9
Since x” ~P hY = xP =P y2P" we have (h})PFTD/2xP =P = xP"=P" yP"+P" Thus

h%syz

h% = hpz _2)/1237hp(p+1)/2 PP—p +2)/1257h(p +1)/2 p —p +2y13575 3 P _2
! Y1235 Y1235 V1235

Hence ﬁg = 2()71357/)71235)6yp3x”3_2, and the result follows. O
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Define hs := )7123553/(2)71357#’3_2) so that LT(h3) = yp3+2. Subducting the
tete-a-téte (h%, hihy) gives

~ 3 1/2 _ 3_,2 2

hy = ht — kY —ax PR T2 gy 22y

2p—1h(pz—l)/Qh(p—3)/2h(l7+1)/2
1 2 3 ’

—o3X
with
(172357 )p Y1245 _ Vi3s . Y2357 V2345
o] = — — = s o) ‘= — s o3 = 0y — — = .
Y1357 Y1235 Y1235 Y1357 Y1235
= P
~ 4
Lemma 4.3. LT () = (@> X2
Y1357

Proof. We work modulo the ideal n := (x>?*! x27y). Using the definition of /3
and methods analogous to the proof of Lemma 4.2, it is not hard to show that

h3 =3 22y ) SyP 4 220 V2357 ey g 1298 207

V1357 Y1357
Thus » _ »
h =, 87y Lt (y2357) xPyP* e 4 (@) X P
Y1357 Y1357

. 3
Since hy =, y”", we have
y

h1h§ =y’ (8p+ )’1245yp Py )/1345(s 2p-2 4 )iz345yx2p_1>'
V1235 Y1235 Y1235

3
Furthermore, since x?h; =, xP§?, expanding gives xPpP T2 =, xpyp4+p. Thus
p gg 1
3
hY —hih? — xR T2

> = v P
Y1345 sx2-2ypt _ V2345 2Lyl (V1235> 2 p
Y1235 Y1235 Y1357

n
3 o
Note that x27=24'7" =7 2= x2r=2yp*=P’ Thus

3.2
x2p’2h3h§” /2 =, x2p2( pt 54 Y257 Y2357 Xy 4+1).
Y1357
Hence

3 3_,2
Y —hihf —aixPh” 2 o x =2 pspr PO

y p
= oax Py (@) X2z
V1357
2 _
Since xzp_lhgp 1)/2h§p 3)/2}1;’7“)/2 =, x2l’_1y1’4+1, the result follows. (]

Define hy := 135774/ (71357x2P) so that LT(hy) = 2.



566 THEO PIERRON AND R. JAMES SHANK

Theorem 4.4. If y1234(M) = 0, y1235(M) # 0 and y1357(M) # 0O, then the set
B := {x, hy, ho, h3, Ny(2)} is a SAGBI basis, and hence a generating set, for

F[Vy1E. Furthermore, F[Vy1E is a complete mtersectton with generating relations
coming from the subduction of the téte-a-tétes (h3, hp Y and (W%, h hp ).

Proof. Define B’ := {x, hy, hy, h3, hs} and let A denote the algebra generated
by B’. The only nontrivial téte-a-tétes for B’ are (h2, hp y and (b2, h hp ). Using
Lemmas 4.2 and 4.3, these téte-a-tétes subduct to zero, proving that B’ is a SAGBI
basis for A. Since F[Vy1E[x~'] = Flx, Ay, hal[x '], using Theorem 1.1, A =
F[Vy1E. Finally, observe that LM(B) = LM(B). O

5. The y1234 # 0, Y1235 =0, y1357 # 0 strata

In this section we consider representations Vy; for M € F>*# for which y;235(M) =0,
Y1234(M) # 0 and y1357(M) # 0. For convenience, we write y; ke for y;jxe(M).

Lemma 5.1. If y1234 # 0, Y1235 = 0 and y1357 # 0, then y1345 # 0.

Proof. Let r; denote row i of the matrix ['(M). Since y1234 #0, the set {ry, rp, 3, r4}
is linearly independent. Using this and the hypothesis that 1235 = 0, we conclude
that r5 is a linear combination of {r{, r2, r3}, say rs = ar; +axr, +asrs. Since r3 is
nonzero and the entries of r5 are the p-th powers of the entries of r3, we see that rs
is nonzero. Suppose, by way of contradiction, that 1345 = 0. Then r5 is a nonzero
linear combination of {ry, r3, r4}, say rs = biry + b3r3 + bars. Thus byry + bsrz +
bary = ayry +ayry +asrs. Since {ry, ry, r3, r4} is linearly independent, by = a, =0,
a; =by, a3 =>bj3 and rs = a;r;+aszrs, contradicting the assumption that y;357 0. [J

Take f; as defined in Section 2, evaluate coefficients and divide by y234 to get

fii=y" + @y”x” -r 4 V13453 r-2 @yxpz—l.
V1234 V1234 V1234
Note that fl is of degree one in z with coefficient xp2_2f1345/ Y1234 and so, using
Theorem 2.4 of [Campbell and Chuai 2007, F[Vy 15 [x 1= Flx, Ny (y), fillx!
Define
hy = Ny (y) — flpz ~|—o¢1flpxp4_p3 +oz2f12xp4_2pz,

with
_ _p? p?
Y1359 YV V
o= —+ % and oy : 1;45.
VI3ST Yo, Y1234

We work modulo the ideal n := (x1’4_”2_1). Since y1357Ny (y) = f]3579 (see
Remark 1.2), we have Ny (y) =, y’74 — (Y1359/V1357) y* xP'=P"_ Therefore

- —p2 2
_<V13s9 n V1245)yp3xp4—p3 V1345 Y1345 6 p?  p*=2p7

% - p?
Y1357 Virza

Nu(y) — f]pz

—p
Y1234
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Thus
_ p? _ p?
A2 ~ 4_ 3 Y 2 4 _H 2 Y P )
p p _ 1345 202 _ 1345 .2 2
Nu(y) = fi +aifixt'=? =n_?8p xP T =y ——z Y Pl b
Y1234 Y1234
Hence
~ Ap2 Ap p4_p3 ) P4—2P2
hy=Ny(y)— fi +orfix +ay fix

2009 2 4_ 2 2 4_ 2

_ - tpopt—p—p | 2 o2

=03 (V1245y? TPxP TP £oppagsyl X TP,
1

We first consider the case y1245 7% 0. Define
hy = 371[)223:1ﬁZ/(2XP4_p2_p771215771245)
so that LT (h;) = y1’2+1’. Since Ny (y) € Flx, fl, h»], we have
FIVa1 e = Flx, fi, hallx ™',

Subducting the téte-a-téte (hé7 , Alp +1) gives

- p

~ Ap+1 Y1345 Ap—2 2_

/’l3 = 1p+ — hg + (_—) lp h%xp 2‘0.
Y1245

v p+1
Lemma 5.2. LT(h3) = 2()/1345) yP3+P+2xP2—P—2.
V1245

Proof. We work modulo the ideal (xpz_p_l). Thus fl = ypz. Reviewing the
definition of /,, we see that

> p
34,2 V1345 3 2_
hé’ =y (__) yP 2P P 2P
V1245
and
2_ 2 2 )71345 2 2,
h%x” 2P = 2P 2P P 2p +2(__)y2p +p+2,p7=p=2
V1245

Thus

| 71345\ 2p—2 2 Pizas \' T s 2
- o ~ X o
fr—ht ( ) P22 r’ 2 = 2(—) yP P2 p=2

V1245 V1245

and the result follows. |
Define h3 := plyiahs/(2pliax?” ~P=2) so that LT(h3) = y? +7+2,

Ap?— . . . .
Lemma 5.3. Subducting the téte-a-téte (hgJ , flp 1h%) gives an invariant with lead
- _p? 4 2 _p?
PP 2 p*+p
term —¥24sV12342” X7 TP [ (47{345").
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Proof. Modulo the ideal (x?*t2P+! xP*+2Py) the expression
Ap +1 ~p? ApP+1
Wy— 1 h2+ﬁlh3f” AP oo f P A By T AP
_ 2
Bk T T g Bshshd f TP a7
-2 2 Ap?— 24
+ Bh2 T TR Bk £ 4 Bshs £

+,39h2f1p7 p+p+/310h3hpl PPP2p P22

(p+1)/2; (p—3)/2 p(p*+1)/2— 242p—1
+,311h3p /th /flp / PP +2p ’

with

-~ -~ p+1 /= P
V1345 V1245 V1234
/81::2_ , ﬁz::_(_ ) (_ )’
Y1245 Y1234 Y1345
_ _ 2 _ '
By = 1 <)’1245, )p (( Y2345 )p B <V1245 )p (V1245 )p)
V1345 Y1345 Y1345 Y1234 '
1 (1345 \’ P13as \P Pizas \P 2
134::__<— ) ﬂS ::2 — ) ﬁ6:_2 — )
2\ V1245 Y1245 Y1245

2
171245\ (71234 \ 7 V1359 Y1345
/373=—<_ = —, PBgi=——"p,

Y1345 Y1345 Y1357 Y1234
- P/ P”ss 5 -
Bo = _1<V1245) ()/1234) <V1245V1379 n V1579)
2\ 71345 V1345 Vizayizss  Vi3s1)
—_ — —_ 2 - - —_ 2 -
1 ( y1245 P V1234 P Y1379 1 (V1245 b V1234 P Y3579
Bio:==| = - —, Bui==|= — —,
2\ V1345 Y1345 Y1357 2\ Y1345 V1345 Y1357

2
is congruent to —15,s 71,z X7’ |47 +p) U

[\S)]

Theorem 5.4. If y1234(M) # 0, y1235(M) =0, y1357(M) # 0 and y1245(M) # 0,
then the set B := {x, fi, h2, h3, Ny (2)} is a SAGBI basis for F[Vy1E. Further-
more, F[Vy1F is a complete intersection with generatmg relations coming from the
subduction of the téte-a-tétes (h%, p+1) and (hp f1 _lhg)

Proof. Use the subduction of (hp f1 h%) glven in Lemma 5.3 to construct an
invariant s4 with lead term z” Define B’ := {x, f1 , hy, hs, h4} and let A denote the
algebra generated by B'. The only nontrivial téte-a-tétes for B’ are (h?, i +1)
and (hp f1 hg) Using Lemmas 5.2 and 5.3, these téte-a-tétes subduct to zero,
proving that B’ is a SAGBI basis for A. Since F[Vy1E[x~ "] = Flx, fl, hallx~ 1,
using Theorem 1.1, A = F[V),]%. Finally, observe that LM(B) = LM(B). U
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We now consider the case Y1245 = 0. Define h2 = )/1234 h2 / (2x1’ —p*=2 1‘;;5”1)
so that LT(hg) = yP +2 Since Ny (y) € Flx, f1 h2 we have F[Vy]¢[x~!] =
Flx, f1, hallx~'1.
Lemma 5.5. Subducting the téte-a-téte (h’7 , f ) gives an invariant with lead
term zP" (712342 213as) "
Proof. Modulo the ideal (x? +1 , X7’ y), the expression
lp +2_hp (alﬁzfpzxp 2oy fl PHL

+a3hpfp P2 —2p+a4h§(17+1)/2 1(p —p—2)/2 2p -p

2

A~ Ap2o] 2_ A(p2+1)/2 p(pP=3)/2 2p2—
+Ol5h2flp 2P 2+a6/’lép )/ fl(p )/ x2r 1)’

with
— Y = PPp
21345 Y1379V1234 V1359Y1234
o] = — s o) = — —2, o3 1= _———[72—]7
Y1234 V135771245 Y1357V1345
_ _ pz 2 1 _ _ pz
Y1579Y1234 . )/1379)/1234 . V3579V1234
Oy = —2, o5 = —21 og = —ﬁ,
V1357)/1345 Y1357 V1345 Y1357V 1345
is congruent to 27" (71234x2/(271345))”" O

Theorem 5.6. If y1234(M) # 0, yi235(M) =0, y1357(M) # 0 and y1245(M) =
then the set B := {x, f1 hz, Ny (2)} is a SAGBI basis for F[Vi]E. Furthermore

FIVu1E is a hypersurface with the relation coming from the subduction of the
téte-a-téte (hp , p +2).

Proof. Use the subduction of (fzp 2, ir +2) given in Lemma 5.5 to construct an
invariant h3 with lead term zl’ Deﬁne B = {x, f1, hz, h3} and let A denote the
algebra generated by B’. The only nontrivial téte-a-téte for B’ is (hp i ir +2 ),
which subducts to zero usmg Lemma 5.5. Thus B’ is a SAGBI basis for A. Since

F[Vp1E[x~"] = Flx, f1, h2][x~'], using Theorem 1.1, A = F[Vy]£. Finally, ob-
serve that LM(B) = LM(B'). O

6. The y1234 # 0, Y1235 # 0, Y1357 = 0 stratum

In this section we consider representations Vs for M € F2*4 for which Y1234(M) #£0,
v1235(M) # 0 and yy357(M) = 0. For convenience, we write ;e for y;jke (M).
Evaluating the coefficients of f| and dividing by y;234 glves f1 with lead term y” .
Since y1357 = 0 and y;235 # 0, the orbit of y has size p and Ny (y) = f12357/y1235
(see Remark 1.2). For convenience, write

Nu() =" +ay?” xP 7 4 a1 yPx? =P + agyx?’ !

and
Fr=y7 4 B38PxP T 4 BoyPx P 4 Br5x? T 4 Boyx? !,
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with
Y1237 Y1257 V2357
H=——"— a ==, Qy=—-—),
Y1235 Y1235 Y1235
Y1235 Y1245 V1345 Y2345
3=——, Po=—""—, Pi=—"7—, Po=—"7"".
V1234 V1234 Y1234 Y1234

Subducting Ny, (y) gives

~ A 3_ 2 A
hy = Ny (y) — fI + BYxP 20" f2.

v p+1
Lemma 6.1. LT(h,) = 2(7/1235) yP2+2PxP3—P2—2p'
V1234

Proof. We work modulo the ideal (xf’s_pz_p ). Using the definitions of fj;3s7 and

3 o 3 - — 2 3 2
fi2345, we have Ny (y) = y? and f[” = y7" + (71235/71234)P y* xP ~*P". The
result follows from the observation that

A 3 52 2 352 Y1235 5.2
fixP 2p = yP xP 2 4 (_—)yzl’x” P =2p O
V1234

Define ha := haypt, /27 haax? "7 ~2P) so that LT(h) = y”"+2P and

hy =2 y”z(ép—i—%y”x”—l—%cﬁxz”_z—l—%yxz”_l). 1

Lemma 6.2. FIVu1Ex~ 1 = Flx, fi, hallx ']

Proof. Since y1357 = 0 and the first row of M is nonzero, we can use a change of
coordinates, see [Campbell et al. 2013, §4], and the GL4([F,,)-action to write

M:<1 C12 C13 0).

0 22 c23 ¢4

Since 1235 # 0, we have cr4 # 0. With this choice of generators for E, let H denote
the subgroup generated by e; and e4. Using the calculation of F[x, y, z]" from
Theorem 6.4 of [loc. cit.], we see that F[Vy,]7[x~!] = F[x, Ny (y), Ng S1x"1
with Ny (y) := y? — yxP~! and Ny (8) = 87 — 8(ca4x?)P~!. Thus, to compute
FIVa1CTx " = (F[Vy 17 [x 1) ¢/H it is sufficient to compute

(Flx, Nu(y), NgO)Ix " DH = Flx, Ny (y)/xP 7L, Ny (8) /x>~ 119/  [x 1],
Note that deg(Ny (v)/xP~") = deg(Ny (8)/x21’_1) = 1. Furthermore
Flx, Ng(3)/xP " = Flx, Ng/u(Nu (y)/xP~ )]

and Ng/H(NH(y)/xp_l) = NM(y)/x”3_1’2. Using the form of M given above,
we see that y345 = —cé’;l)?ms. If we evaluate I' at M and set x =1, y =1
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and z = 1, then first and last columns of the resulting matrix are equal. Thus
Sf12345(1, 1, 1) = y1234 + Y1245 + Y2345 = 0. Using these two relations, we can write

Y1235
Y1234

fi=Np()? — m“SN ()PP + 225 N 5y

Thus we have fl/xf’z_” eFlx, Ng(y)/xP~1, Ny (8)/x*P~116/H s of degree one in
Ng(6)/ x2P~1 with coefficient x?~! Y1235/ Y1234. Thus by Theorem 2.4 of [Campbell
and Chuai 2007], we have

Flx, Ny (3)/xP ™, Ny (8)/x2P =0/ H [x = =F[x, Ny () /x? =7, fi /3P~ P1x 1.

Therefore F[Vy1Z[x '] = F[x, N m (), fl][x ]. The result then follows from the
fact that Ny (y) € Flx, fl,hz]. O

p+2

Subducting the téte-a-téte (h?, ) gives

hy:=hl — fr? +2,B;fph2x1’ ~2p

— B P (an fPH kP » —012/33f1p_1h2x2p272p +061fl(p_S)/zhgpﬂ)ﬂXZpr)
for p > 5 and
hy=h3 — £ +2B5 fi hox®

— (@B + B (%" = B3 fihox"?) — (B3 + oy + B3

for p =3.
Lemma 6.3. LT(h3) = aoBy "y? +1x?" L.
Proof. For p = 3, this is a Magma calculation. Suppose p > 5. We work mod-
ulo the ideal (x> 2) Since p —2p* > 2p we have y”. Furthermore,

3p2 —4p > 2p2, giving f1x2P" 2P =P’ x2P* =2, Using congruence (1) given above,
we have
h2x2p =2p — 20 “2py, (317 ﬁzypxp—l—ééle’_z%—@yxz”_l)

3 3 B3
and

p
hY = yP (8”4—?2 b "—I—ﬁ; 2‘”_24—%)%2”_1).

Using the definition of /;, we get
FE = 2B3hax? 2 = BPx P (FP — Ny ()
=87 + ByP((BY —a)y? x? + pLoPx 2
+ (B — ) yPxPP TP — agyx? Y,
Thus

3

A N 2 P 2 2 2 2
— T (f2 = 2B3hax” 72P)E;—p(012yp X7 +ayPx? P pagyx®h.
3
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Furthermore, using the above expressions,
Ap+1_p2 Ap—1 2p2—2p 3.2 2 2 A 2 950 2 342
L xXP =Bl haxP T =y PP P (3P f — BahoxP TPy = x Pyl

Therefore

N . e e
— FPCFE = 2B3hax? 20y = 2 (PP gy 7 a2
3

]73

= L @y gy,

By
2 2 2 ~ 2 2
Note that hyx2P"~P = yP*+2Px2P*=P and fix2P°~P = yP’x2P’~P_ Hence
y y

F(p=3)/2) (p+1)/2_2p—p _  pP+p 2p*—
! h X = P P2,

B3

~ 3 2
‘i — +1,2p*~1 /8P :
giving hz = apy? "'x“P 7"/ B5, as required. (]

- - — 1 . - - -
Note that a0/ = 72357734/ 7as- Since 1357 = 0, 71235 # 0 and 457 =
3’1235 ;é O argumg as in the proof of Lemma 5.1, we see that 7,357 # 0. Define

h3 = V1225 h3/(x = 723571’1234) so that LT (h3) = y? +1
Lemma 6.4. LM(hY — h(p +1)/2f(p2—2p—1)/2) =xPz""

Proof. Worklng modulo the ideal n := (x?*! x?y), we see that f1 =, yp and
hy =, yP" 2P, giving hY —h{’ +l)/2f(p2 2p=D/2 W h?—yP*+P. Thus it is sufﬁ-
cient to identify the lead monom1a1 of hy — y? 1 Note that y?’+! and xz”" are
consecutive monomials in the grevlex term order. Therefore, if xzP appears with
nonzero coefficient in /3, then LM (h3 — y”3+1) =xz? 3, and the result follows. Work
modulo the ideal m := (y). Then fl =n —ﬂ3szp2_p — ,Blzxpz_l and Ny (y) = 0.
Therefore

1 p
hy =n <z”2 2p+g PP 4 x P (B3z” + BrzxP~ 1)2>.

2:83 3
Hence /3 has degree p? as a polynomial in z, with leading coefficient x /2aq and
the result follows. U

Theorem 6.5. If y103a(M) # 0, y1235(M) # 0 and y1357(M) = 0, then the set

= {x, fl, ho, h3, Ny (2)} is a SAGBI basis for [ [Vi1E. Furthermore, F[Vy1E is
a complete intersection with generatmg relations commg from the subduction of the
téte-a-tétes (h’7 fp+2) and (hp f(p —2p= th(p +1)/2)

Proof. Use the subduction given in Lemma 6.4 to construct an invariant /4 with lead
term zp4. Define B’ := {x, f1, ha, h3, h4} and let A denote the algebra generated
by B'. The only nontrivial téte-a-tétes for B’ are

—( 2 2
(hp I7+2) and (h{), fl(p —2P—1)/2hé17 +l)/2).

Using Lemmas 6.3 and 6.4, these téte-a-tétes subduct to zero, proving that B’ is
a SAGBI basis for A. By Lemma 6.2, we have F[Vy,1F[x '] = F[x, f, ho][x~].
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Using Theorem 1.1, A = F[Vu1E. Clearly LT(Ny(2)) = zpk for k < 4. Since B’ is
a SAGBI basis for F[V¢]%, this forces k = 4, giving LM(B) = LM(B). [l

7. The y1234 =0, y1235 =0, Y1357 # 0 strata

In this section we consider representations Vy, for M € F2>4 for which Y1235(M) =0,
Y1234(M) = 0 and y1357(M) # 0. For convenience, we write y; k¢ for yijre(M).

We first consider the case yj257 = 0. Let r; denote row i of the matrix I'(M).
Since y1357(M) #0, the set {ry, r3, 5, r7} is linearly independent. Thus r; is a linear
combination of 71, r5 and r7. Since y;235 =0, we know that r; is a linear combination
of r1, r3 and rs. Using the (1, 2,3)(3,4, 5,7, 9) Pliicker relation, y;237 =0. Thus r;
is a linear combination of r, 3 and r7. Combining these observations, we see that r,
is a scalar multiple of . Using a change of coordinates (see Section 4 of [Campbell
et al. 2013]), we may assume that r, is zero. If the second row of M is zero, then
Vi is a symmetric square representation and the invariants are generated by x, &,
Ny (y) and Ny (z). Since 1357 # 0, we have that Ny, (y) and Ny, (z) are both of
degree p* and there is a single relation in degree 2p* which can be constructed by
subducting the téte-a-téte (81’4, N (»)?) (see Theorem 3.3 of [loc. cit.]).

For the rest of this section, we assume y|257 # 0. Evaluating Coefﬁcients gives
the invariant f12357 Using the (1,2,3)(3,4,5,7,9) Pliicker relatlon y1237 =0.
Thus y1237 =0, and we have fio357 = )/1257y"x”% P 4 71357857 2 4 P35y yx P
Divide by y1257x1’ P to get

hy = yp 4 )113578xp_2 n )i2357yxp_1.

Y1257 Y1257
Observe that Ny (y) = fi3570/71357. Subducting Ny (y) gives
fo = Nut(y) —h? o W2 ' =20 g 40ty 20 ot —pt 2
with & := y1357/y1257.
Lemma7.1. LT(h,) = 8ap3+p2+p+lyp3+p2+p+2xp4_p3_p2_”_2.
Proof. Tt will be convement to Work modulo the ideal (xp - x" —p'=p=p-1 ),
so that Ny (y) = y”" and h’7 = yP' 4 o’ §P %P 2P’ Thus Ny (y) — hp =

—aP 5P x P 2P . Expanding gives

B N S T A VA PV T s
Thus

3 3.92p2 4_9,3 30,52 3.2 4.3 9,2
Ny (y) —ht ol hyP xP =20 = 2qP TP yP g0 x P =P =20,
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Again expanding gives
240 4_ .3 _~,2 4_ 3 5,2 3, .2 2 2_
hf+px” PP=2p° — P =P =2p yP +p (P +2aP8Px? 217)'
Hence

3 3.0p2 4_9,3 30,2, p242 4_ 3 9,2
p p 2 +p2 PP +2p 2
Ny (y) —hy +a? h" xP 7P —2aP 7P R} xP P =P
3 2 3 2 4_ 3 2
= 4ol tr +p5pyp TP P =P =P 2p
. 2 2 432 4_ 32 3,2 _
Since hY TP PP 20 = )PP P20y PP D (P 4 20 8xP2), we have
fir = gap3+p2+p+1yp3+p2+p+2xp4—p3—p2—p—2
and the result follows. ([
— pP+p2+p+l,pt—p*—p?—p-2 pP+pi+p+2
Define h; := hy /(8 X ) so that LT(hy) =y .

3 2
Lemma 7.2. Subducting the téte-a-téte (hY, hf +p Jr‘HZ) gives an invariant with

lead term
?_,’_ 2+

- P +p2+p
( V1257 ) ey
291357

Proof. For p =3, this is a Magma calculation. For p > 3, the subduction is given by
p__p PP Hp+2 )
hy —hj +2ahyhy x
(g PPt = +2p
oy (BB
2 3 2 53 2 3_p2 34,
+2Bra? TRy TP A o P g T
3 3 349 2 3_p2_ 24 5
—Box P (Y TP X —aP R T P 420 P pyh TP TP P2y
3 2 3+1 3.2 -1 _
A BaxP PP (W —ahohl TP TP xP7?)
_ﬂ4hgp+1)/2h§P2+P+1)(P—3)/2xp3+172+2p—1)’
with

Y1357 Y1359 V1379 1579
—, Bri=——, Bri=——, Bi==
Y1257 Y1357 Y1357 Y1357

. op—1
» Pa=Y3s7-

To calculate the lead term, work modulo the ideal generated by x?'+P*+2P+1 and
xP P2y, O

Theorem 7.3. If y1234(M) = 0, y1235(M) =0, y1357(M) = 0 and y1257(M) # 0,

then the set B := {x, hi, ho, Ny (2)} is a SAGBI basis for F[Vy1E. Further-

more, F[Vy1E is a hypersurface with the relation coming from the subduction
AN A p o p3Hpiip2

of the téte-a-téte (h;, h; ).
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Proof. Use the subduction given in Lemma 7.2 to construct an invariant 43 with
lead term z" Define B’ := {x, hy, ho, h3} and let A denote the algebra generated
by B'. The only nontrivial téte-a-téte for B’ is (h5, hY PP Ghich subducts
to zero using the definition of h3. Thus B’ is a SAGBI basis for A. Since h; is
of degree one in z with coefficient —ax”~!, it follows from [Campbell and Chuai
2007] that F[Vy1E[x~ 11 = Flx, A1, Npe(0)1[x']. Since Ny (y) € Flx, hy, hal, we
have F[Vy 1E[x " = Flx, hy, ha][x '] Using Theorem 1.1, A = F[Vu]E. Clearly
LT(Ny(2)) = z”k for k < 4. Since B’ is a SAGBI basis for F[V¢]E, this forces
k =4, giving LM(B) C LM(B'). O

8. The y1234 =0, y1235 # 0, y1357 = 0 stratum

In this section we consider representations Vy; with y1235(M) # 0, y1234(M) =0
and yy357(M) = 0. The results of this section are valid for p > 3. For convenience,
we write ¥;jke for y;jxe(M). Observe that Ny (y) = f12357/)71235 (see Remark 1.2).
Thus Ny (y) has lead term y"% Furthermore, f12345 has lead term ;735 y2pxp —2p,
Define 1 1= fio345/(71235x” ~2F) so that LT(;) = y?.

Lemma 8.1. FIVa1E[x~" = Flx, hy, Ny~

Proof. We argue as in the proof of Theorem 4.4 of [Campbell et al. 2013]. Since
N (y) and hy/xP are algebraically independent elements of F[x, y, §/x]F with
deg(Ny(y)) deg(hy/xP) = p4 = |E|, applying Theorem 3.7.5 of [Derksen and
Kemper 2002] gives F[x, y, 8/x]E =[F[x, Ny (y), h1/x?]. The result then follows
from the observation that

Flx, y, 215 x "1 =Flx, v, 8/x1F[x 1. 0

2
Subducting the téte-a-téte (Nyy (y)2, hf ) gives

~ 2 _ 3.2 2 2 _ 3_ 2 1/2
ho = Ny ()2 = Y + == ragx? =P R = o= P 02,

Y1235
Lemma 8.2. LT(h2) = 292357y" T /71235

Proof. We work modulo the ideal (x”’). Expand Ny (y)? and observe that
hf = y2P3, hfx”3_p2 = y21’2xl’3_172 and hlxl’3_1’ = y2pxp3_1’. |

Using the (1,3,5)(2,3,4,5,7) Pliicker relation, we have 134572357 = 771]72J3r51
Thus 72357 # 0. Define ha 1= Pi2asha /(27235757 ~1) s0 that LT(hp) = y?"*.

Lemma 8.3. LM(h} — h§p3+l)/2) = zP'xP.
Proof. A careful calculation shows that

3
LT — K02y = A2 o 0
Y2357
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Theorem 8.4. If y1234(M) =0, y1235(M) # 0 and y1357(M) = 0, then the set 5 :=
{x,h1, ha, Nyy(¥), Na(2)} is a SAGBI basis for F[Vy1E. Furthermore, F[Vy1F is

a complete mtersectlon with relatlons coming from the subduction of the téte-a-tétes
(Nyr ()2, 1Y) and (], B 072,

Proof. Use the subduction from Lemma 8.3 to construct an invariant h3 with
lead term zp4. Define B’ := {x, Ny (y), h1, hy, h3} and let A denote the alge-
bra generated by B’. The nontrivial téte-a-tétes for B’ subduct to zero using
Lemmas 8.2 and 8.3. Thus B’ is a SAGBI basis for A. From Lemma 8.1,
FIVpm1E[x'] = Flx, hy, Npy(»)][x~']. Thus, using Theorem 1.1, A = F[Vy,]E.
Clearly LT(Ny(2)) = zpk for k < 4. Since B’ is a SAGBI basis for F[Vz]E, this
forces k = 4, giving LM(B) = LM(B'). O

9. The 1234 # 0, Y1235 =0, y1357 = 0 strata

In this section we consider representations Vy; with y1235(M) =0, y1234(M) #0
and y1357(M) = 0. For convenience, we write y;jx¢ for y;jxe(M). Using the
(1,3,5)(3,4,5,6,7) Pliicker relation, y;345 = 0. Thus

= — 2 _ 2_ — 2_

fi = 712347 + ProasyPxP 7P 4+ posasyx? 1 e Flx, yl.

Since y1234 # 0, the orbit of y contains at least p2 elements. Thus Ny (y) = f_l /Y1234
(see Remark 1.2).

Lemma 9.1. FIVa1E1x ™' = Flx, Ny (y), fiozasllx ™'

Proof. We argue as in the proof of Lemma 8.1 (and Theorem 4.4 of [Campbell
et al. 2013]). Since Ny (y) and f_12346 /xl72 are algebraically independent elements

of FLx, y, 8/x1E with deg(Na(y)) deg(fizsas/x"") = p* = | E|, applying Theo-
rem 3.7.5 of [Derksen and Kemper 2002] gives

- 2
Flx, y, 8/x1% =Flx, Nu(y), fiozae/x" 1.
The result then follows from the observation that
Flx, y, 21 [x "1 = Flx, y, 8§/x1[x "1 O

We first consider the case yjp45 # 0. Define fz = fz/ (Y1234Y1245x7) so that
LT(f>) = y?"*7. Subduct the téte-a-téte (£, Ny (y)?T1) to get

hy = NM(Y)p+1_j?2p_():1245 yms)fN ()P~ P,

V1234 Vs
- p+1

Lemma 9.2. LT(h3) = (VBJA;SI )xpz_lyp3+l.
Vhas

Proof. Expand and reduce modulo the ideal (x”z). U
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Define ot

V ~

hy = . 1245 h
—15Pt
V2345

so that LT(h3) = yP'+1.

. A s s 20 p . . . .
Lemma 9.3. Subducting the téte-a-téte (h%, Ny (y)? "~ f5) gives an invariant with
. 4
lead monomial xPz? .

Proof. Work modulo the ideal (x?*!, x?y) and expand to get

A 2,1 Y2345 1 371[72234 7711)245 4
— HLNu(y)? —xP"h NM()’)p L (f)zp xP. 0O
V1234 y5’34’;f’
Theorem 9.4. If y1234(M) #0, y1235(M) = y1357(M) =0 and y1245(M)) # O, then
the set B:={x, Ny (y), f>, h3, Ny (2)} is a SAGBI basis for F[Vy1E. Furthermore,
F[Vum]1E is a complete intersection with relations coming from the subduction of the

téte-a-tétes (fF, Ny (y)?*1) and (h%, Ny ()7~ fa).

Proof. Use the subduction given in Lemma 9.3 to construct an invariant 24 with
lead term zp4. Define B’ := {x, Ny (y), fz, hs3, ha} and let A denote the algebra
generated by B’. The nontrivial téte-a-tétes for ' subduct to zero using Lemmas 9.2
and 9.3. Thus B’ is a SAGBI basis for A. From Lemma 9.1, F[Vy]5[x~!] =
Flx, N (), fi23a6llx 1. However, since f> = (2 + Yi2sa f12346)/ (22X 2P), we
see that .

Flx, Nu (), fizaasllx ™1 = Flx, Ny (), f2llx ']

Thus, using Theorem 1.1, A = F[V)/]E. Clearly LT(Ny(z)) = z? for k < 4. Since
B’ is a SAGBI basis for F[ V], this forces k = 4, giving LM(B) =LM(B). O

Suppose y1245 = 0 and let r; denote row i of the matrix I'(M). Since Y234 # 0,
we see that {ry, rp, 3, r4} is linearly independent. Using the assumptions that
Y1235 = Y1245 = 0, we see that rs € Span(ry, 2, r3) N Span(ry, ro, r4). Therefore
rs € Span(ry, r;). However, since ;357 = 0, using a change of coordinates (see
[Campbell et al. 2013, §4]) and the GL4([F),)-action, we may assume

Mo (1 c12 €13 0)
0 ¢ c3 ¢

with ¢4 # 0. Since rs = r1 . we conclude that s =T1. Thus y2345 = —Y1234.
Hence Ny (y) = f1/7i234 = yp - yxp ~1. Define h, := ]”2/()/123416217 1) so that
LT(hy) = y?"+!.

Theorem 9.5. If y1234(M) # 0 and y1235(M) = y1357(M) = y1245(M) = O, then
the set B := {x, Ny (¥), h2, Ny (2)} is a SAGBI basis for F[Vy1E. Furthermore,
FIVu1E is a hypersurface with the relation coming from the subduction of the

Ap2 2
téte-a-téte (hh, Ny (y)P"+1.
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Proof. Using the definition of /1, and the description given above of Ny (y), we see
that i
LT(hY = NP+ = ha(eNy (0)?" 1) = =127'x7"

Thus we can use the subduction of the téte-a-téte (ﬁgz, Ny (y)”2+1) to construct
an invariant s4 with lead term z”4. Define B’ := {x, Ny (y), fzz, h4} and let A
denote the algebra generated by B’. The only nontrivial téte-a-téte subducts to
zero. Therefore B’ is a SAGBI basis for A. From Lemma 9.1, F[Vy/1E[x~!] =
Flx, Ny (), fizsaellx~']. However, it follows from the definition of /1, that
Flx, Ny (), fizsael[x ™11 = Flx, Ny (), hol[x~']. Thus, using Theorem 1.1, A =
F[Vy1E. Clearly LT(Ny(z)) = z”* for k < 4. Since B’ is a SAGBI basis for F[V]E,
this forces k = 4, giving LM(B) = LM(B'). O

10. The y1234 =0, y1235 =0, y1357 = 0 strata

In this section we consider representations Vy; with y1235(M) =0, y1234(M) =0
and y1357(M) = 0. For convenience, we write y; ke for y;jxe(M). We assume that
the first row of M is nonzero; otherwise, the representation is of type (2, 1) and the
calculation of F[V),]¥ can be found in Section 4 of [Campbell et al. 2013]. Using
a change of coordinates, see Proposition 4.3 of [loc. cit.], the GL4([F,)-action, and
the hypothesis that y;357 = 0, we may take

1 cppc 0
=} ez e 0.
0 ¢ 23 ¢
Since y1235 =0, either cp4 =0 or {1, c12, c13} is linearly dependent over [,. We
assume cp4 7 0; otherwise the representation is not faithful and we can view Vj; as

a representation of a group of rank three. Using the GL4([F,)-action, we replace the
third column by a linear combination of the first two columns to get

<1 C12 0 0>
0 ¢ 23 )’

- p €23 €24
Y1234 = (c12 — ¢},) det < » p ) .
€3 €y

Expanding gives

Since y1234 =0, either c12 € [, or {c23, ¢24} is linearly dependent over [F,. However,
if {c23, c24} 1s linearly dependent over [, then the representation is not faithful. So
we may assume cy2 € [,. Using the GL4([F,)-action to replace the second column
with a linear combination of the first two columns gives

<1 0 O 0>
0 ¢ 3 )’
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If Y1246 = 0, then {c27, ¢23, ¢24} is linearly dependent over [, and again the repre-
sentation is not faithful. Thus we may assume that 1246 7% 0. Using the above form
for M, it is clear that Y1236 = 0, Y1346 = 0 and Y1246 = —¥2346. Thus

- _ 2_ 2_
Fi2346 = V1246 (PP 7P — yx?P" 71y e Flx, y]*.

Since F[x, y1Z = F[x, Ny ()], we have

Nu(y) = ﬂ2346/(771246x2p2_p) =yP —yxP 1,
Lemma 10.1. FIVm1Elx ™' = Flx, Ny (y), fioaeslx 1.

Proof. The proof is similar to the proof of Theorem 4.4 of [Campbell et al. 2013]
(and Lemmas 8.1 and 9.1). Since Ny (y) and fmﬁg /xf73 are algebraically inde-
pendent elements of F[x, y, 8/x]F with deg(Ny(y)) deg(f_12468/x1’3) =p*=|E|,
applying Theorem 3.7.5 of [Derksen and Kemper 2002] gives

FLx, v, 8/x1% = Flx, Ny (»), fizass/x""1.
The result then follows from the observation that
Flx, y, z10x "1 = Flx, y, 8/x15[x 1. O
Subducting f1246g gives
it = Fioass + Fioas (N0 + 2Ny ()P HPxP =7 4 2Ny ()P H P 7).
Lemma 10.2. LT(h)) = _2)71246xp3—1yp3+1‘

Proof. We work modulo the ideal (xpg). Using the definition, ﬁ2468 = —Y146 y2p3.
Since Ny (y) = y? — yxP~!, we have

Ny ()2 = 20" oy 07y 0’0 (208207200 200 oy p
Expanding and simplifying gives

2 3 2 2 3 3 2 3 2 3 3
+p . p— +1,.p—p _ PP+ - +1,.p7-1
Ny (WP PP =P 4 Ny ()P P =P = P+ 7 =p" ol =1

hy = fioaes + )71246(NM()7)2P2 F2Ny ()P PP 2NM()’)”2+1XP3_”)
= —27naex? Ty O
Define k; := —ﬁl/(2)71246x1’3_1) so that LT(h) = yp3+1. Note that
Flx, Nar(3), hillx ™1 = Flx, Nar(y), fioassllx ™',

. P 3 . . . .

Lemma 10.3. Subducting the téte-a-téte (h', Ny (y)? 1) gives an invariant with
. 4
lead monomial xPz? .
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Proof. Refining the calculation in the proof of the previous lemma gives

. . ) o
= Y +1 -1
gl = y) Vizas(—2y7 x4 xP 2.

Thus
hi = P4l _1p? d h= pip _ 1 ptp
1 =(x2, xy) y — 370 X an 1 =(xp+l xpy) y — 32" X",
Furthermore
3 4 4 _
NM(y)p + =(xptl xPy) yp TP yp +1xp !
and
3_,2 _ 4 _
RNy ()P P xP ! =(xrtl xry) v Hyrt
3
Thus LT(hf - NA‘}H — thM(y)p3—p2) = _%xpzp“. m

Theorem 10.4. If y1234(M) =0, y1235(M) =0, y1357(M) = 0 and y1246(M) # 0,
then the set B:={x, Ny (y), h1, Ny (2)} is a SAGBI basis for F[Viy1E. Furthermore,
FIVu1E is a hypersurface with the relation coming from the subduction of the
téte-a-téte (h', Ny (y)P'+1).

Proof. Use the subduction given in Lemma 10.3 to construct an invariant h;
with lead term zp4. Define B’ := {x, Ny(y), h1, h2} and let A denote the alge-
bra generated by B’. The single nontrivial téte-a-téte for B’ subducts to zero
using Lemma 10.3. Thus B’ is a SAGBI basis for A. From Lemma 10.1,
FIVy1E[x~'] = Flx, Np(y), h1][x~']. Thus, using Theorem 1.1, A = F[Vj,]E.
Clearly LT(Ny (2)) = z”k for k < 4. Since B’ is a SAGBI basis for F[Vg]%, this
forces k = 4, giving LM(B) = LM(B'). O
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Bootstrap techniques for measures of center
for three-dimensional rotation data

L. Katie Will and Melissa A. Bingham
(Communicated by Mary C. Meyer)

Bootstrapping is a nonparametric statistical technique that can be used to esti-
mate the sampling distribution of a statistic of interest. This paper focuses on
implementation of bootstrapping in a new setting, where the data of interest are
3-dimensional rotations. Two measures of center, the mean rotation and spatial
average, are considered, and bootstrap confidence regions for these measures
are proposed. The developed techniques are then used in a materials science
application, where precision is explored for measurements of crystal orientations
obtained via electron backscatter diffraction.

1. Introduction

Three-dimensional rotation data is common in the field of materials science, where
electron backscatter diffraction (EBSD) can be used to study the microtexture of
metals, including the orientation of crystals within the metal. Using EBSD, a fixed
beam of electrons is diffracted off of a metal sample, creating an image on a focal
plane of sensors. These images reveal information about crystal structure and
orientation in the metal [Randle 2003]. One area of interest in regards to EBSD
measurements is precision. As Bingham, Nordman, and Vardeman [Bingham et al.
2009a] point out, methods used for quantifying EBSD precision in the materials
science literature are not standard, with ad hoc precision estimates often reported
(see, for example, [Demirel et al. 2000; Wilson and Spanos 2001]). This led
Bingham et al. [2009a] to investigate the precision of measurements obtained
via EBSD by developing new statistical distributions for 3-dimensional rotations.
While the distributions developed by Bingham et al. [2009a] do allow for some
flexibility in modeling, our intent here is development of nonparametric techniques,
namely bootstrap confidence regions, that can be used without the need for any
distributional assumptions. While bootstrapping techniques are commonly used in
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one-dimensional nonparametric statistics, these techniques have not been applied
to 3-dimensional rotation data.

Suppose that Oy, ..., 0, € SO(3) represent orientations at n scanned locations
on a metal specimen as measured by EBSD, where SO(3) denotes the set of all 3 x 3
orthogonal rotation matrices. When adjacent locations produce similar EBSD crystal
orientations, those locations are considered to be part of the same grain. We are inter-
ested in estimating the central rotation of a set of orientations from within the same
grain, since the true central orientation would represent the actual grain orientation,
with random scatter in Oy, ..., O, due to measurement error in the EBSD process.
We will investigate two different measures of center for 3-dimensional rotation data.

The mean rotation, M, is a commonly used measure of center [Ledn et al. 2006;
Bingham et al. 2009a; Khatri and Mardia 1977] that is defined to be the rotation
that maximizes trace(M” O), where O = % Z?:l O; for Oy, ..., O, € SO(3). The
mean rotation M can be found by using M = VW, where O = V£ W is the singular
value decomposition of O. It is necessary to use these components from the singular
value decomposition since O may not be an element of SO(3), but M is.

The second measure of center considered is the spatial average of Ball and
Greiner [2012]. The spatial average of a set of rotations Oy, ..., O, € SO(3) is
obtained through an iterative procedure that uses what is referred to as the axis-angle
representation of a matrix. For a given matrix, the axis and angle are such that if
you rotate the 3 x 3 identity matrix about the axis by the angle, you will arrive at
the specified matrix. The steps to find the spatial average are outlined below, where
the end result is the matrix S found in step (4) in the final iteration. The procedure
begins by looking at just the first two matrices, O; and O,. Starting at O;, we
rotate half of the way towards O, resulting in a matrix S. Then we consider the
third matrix in the data set O3 and rotate S one-third of the way towards this matrix,
giving an updated matrix S. We then rotate S one-fourth of the way towards Og,
again updating S. This process continues until we have been through all » matrices
in the data set. Note that for large samples both the mean rotation and spatial
average converge to the population central matrix.

(1) Let S = Oy and let i = 2.
(2) Compute G = ST 0;.
(3) Let u be the axis of G, let 6 be the angle of G, and let p =6/1i.
(4) Compute S = SP, where P is the matrix form of (u, p), and leti =i + 1.
(5) If i <n, return to step (2).
In Section 2, development of bootstrap confidence regions for these measures

of center for 3-dimensional rotations will be discussed. Accuracy of the bootstrap
techniques will be explored through a simulation study in Section 3. Finally, the
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bootstrap procedure will be applied to data from a nickel specimen to evaluate
EBSD precision in Section 4.

2. Development of bootstrapping technique

Bootstrapping is a nonparametric statistical technique that uses resampling with
replacement. It can be used to estimate the sampling distribution of almost any
statistic, e.g., mean, proportion, variance. It is commonly used to find confidence
regions for population parameters. To find a 95% confidence interval in one-
dimension, a large number (say 1000) of samples of size n are drawn from the
original sample of size n with replacement and the statistic of interest is computed
for each bootstrap sample. This creates a sampling distribution for the statistic of
interest. Under the bootstrap percentile method, a 95% confidence interval is then
obtained by using the 2.5th and 97.5th percentiles as confidence bounds.

Although bootstrapping has been used to create confidence regions in a wide
variety of settings, including analyzing directional data such as p-dimensional
unit vectors [Fisher and Hall 1989], we introduce the concept of bootstrapping for
measures of center in the 3-dimensional setting, where the data can be represented by
3 x 3 orthogonal rotation matrices. To estimate measures of center for 3-dimensional
rotation data by bootstrapping, we sample with replacement from the original sample
of n matrices 1000 times. Each sample is a bootstrap sample, for which we compute
a measure of center (mean rotation or spatial average). We will refer to these
1000 matrices as bootstrap central matrices. To provide an estimate of center for
the 3-dimensional rotation data, the mean rotation of the 1000 bootstrap central
matrices can be computed. Since this matrix is analogous to what we would consider
a “point estimate” when considering 1-dimensional data, we also refer to it as a
point estimate here.

After obtaining the point estimate for our central rotation, we want to find a
confidence region around this matrix. Because rotation matrices do not have a
natural ordering, the percentile bootstrap method of using the 2.5th and 97.5th
percentiles as confidence bounds does not translate directly to 3-dimensional rotation
data. Instead, we will use a set of three cones centered at the point estimate to give
a confidence region for the true central rotation in a similar fashion to Bingham
et al. [2009a]. Figure 1 illustrates this concept for two different-sized sets of cones.
To determine the size of the cones needed to give a 95% confidence region, we
first think of each matrix as a set of three axes (x, y, and z) and consider the angles
between the axes of the point estimate and the bootstrap central matrices. For each
bootstrap central matrix, we find three angles. Each one is the angle between an
axis and the corresponding axis of the point estimate. We then take the maximum of
these three angles, so that moving a distance of that angle away from all three axes
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Figure 1. Plot of confidence cones around a point estimate (rep-
resented as three axes) with an angle of 0.2 radians (left) and
0.6 radians (right).

of the point estimate would contain all three axes of the bootstrap central matrix.
Once these maximum angles are computed for all 1000 bootstrap central matrices,
we take the 95th percentile and use this as the cone size. Since this set of three cones
centered at the point estimate will capture 95% of the bootstrap central matrices,
we think of it as a 95% bootstrap percentile region for the true central matrix.

3. A simulation study

To examine the accuracy of the bootstrap technique developed in Section 2, a
simulation study was performed. Data sets were simulated from both the von Mises
version of the uniform axis random spin (vM-UARS) distributions [Bingham et al.
2009a] and the matrix Fisher distribution [Khatri and Mardia 1977]. A vM-UARS
or matrix Fisher distribution is characterized by a central rotation S € SO(3) and
a spread parameter « € (0, co). The spread parameter « is best described as a
concentration parameter since larger values of « yield rotations with less variability.

For this simulation study we used « values of 1, 5, 20, and 500 and sample size n
of 10, 30, and 100. For each combination of x and n both the mean rotation and
spatial average were considered and the bootstrapping procedure was replicated
1000 times (i.e., 1000 different samples were drawn from each of the vM-UARS
and matrix Fisher distributions) with 1000 bootstrap samples taken from the original
sample each time. For each of the 1000 replications a 95% confidence region as
a set of three cones was found. The coverage rates of the confidence cones were
then found as the proportion of times out of 1000 that the true central rotation S
was captured. Note that our choice of S for simulation purposes was arbitrary, as
results are the same regardless of what true central rotation is used. Tables 1 and 2
show the coverage rates along with the median cone size, in radians, for each case.

The coverage rates fluctuate closely around 95%, which validates that the boot-
strapping procedure is behaving as desired for the two distributions considered here.
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(e.m) Mean rotation Spatial average
K, n
Coverage rate  Median cone size | Coverage rate Median cone size

(1, 10) 0.966 0.63441 0.944 0.72272
(1, 30) 0.962 0.32435 0.980 0.51034
(1, 100) 0.948 0.16934 0.979 0.26583
(5, 10) 0.944 0.22523 0.924 0.22695
(5, 30) 0.932 0.13152 0.947 0.13726
(5, 100) 0.954 0.07147 0.965 0.07526
(20, 10) 0.944 0.10876 0.943 0.10816
(20, 30) 0.946 0.06436 0.945 0.06500
(20, 100) 0.956 0.03512 0.959 0.03535
(500, 10) 0.944 0.02157 0.927 0.02176
(500, 30) 0.963 0.01269 0.945 0.01271
(500, 100) 0.949 0.00697 0.961 0.00702

Table 1. Coverage rates and median cone sizes (in radians) for
estimating the center of the vM-UARS distribution using the mean
rotation and the spatial average.

(e.m) Mean rotation Spatial average
K,n
Coverage rate  Median cone size | Coverage rate Median cone size

(1, 10) 0.957 1.05138 0.951 1.35648
(1, 30) 0.950 0.55232 0.995 0.88534
(1, 100) 0.942 0.29247 0.991 0.43596
(5, 10) 0.922 0.27921 0.909 0.27613
(5, 30) 0.945 0.16369 0.939 0.16325
(5, 100) 0.954 0.09025 0.947 0.09023
(20, 10) 0.919 0.13289 0.920 0.13365
(20, 30) 0.932 0.07896 0.952 0.07891
(20, 100) 0.950 0.04319 0.939 0.04318
(500, 10) 0.918 0.02629 0.925 0.02633
(500, 30) 0.940 0.01556 0.948 0.01544
(500, 100) 0.947 0.00851 0.948 0.00851

Table 2. Coverage rates and median cone sizes (in radians) for
estimating the center of the matrix Fisher distribution using the
mean rotation and the spatial average.
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We also see that the values of « and n impact the median confidence region sizes as
expected, with larger « (less spread) and larger n resulting in smaller regions. It is
also important to compare the nonparametric bootstrap techniques developed here
to existing parametric methods for the vM-UARS and matrix Fisher distributions.
Bingham, Vardeman, and Nordman [Bingham et al. 2009b, Table 5, page 618]
provide median cone sizes for the central rotation of the vM-UARS distributions
obtained by maximum quasi-likelihood estimation using the same « and n values
considered here. Bingham, Nordman, and Vardeman [Bingham et al. 2010b, Table 5,
page 1325] use maximum likelihood estimation to provide similar results for the
matrix Fisher distribution. To compare the cone sizes of these works to the results
given in Tables 1 and 2 presented here, we calculated the relative difference between
the sizes as d(a,, ap) = |la, — ap|/a,, where a, is the angle from the parametric
approach and ay is the angle from the bootstrap approach. For the vM-UARS distri-
bution, the largest relative difference was 0.1360 (for « = 1 and n = 100). For the
matrix Fisher distribution, the largest relative difference was 0.1441 (for x =1 and
n =10). Both of these differences are small, indicating that the bootstrap techniques
developed here produce results that are equivalent to existing parametric approaches.

4. Application to electron backscatter diffraction data

Now that the bootstrapping technique developed in Section 2 has been shown to keep
coverage rates as expected and perform similarly to existing parametric methods, we
use it to investigate precision of measurements obtained through EBSD. A high-iron-
concentration nickel specimen of size 40 um x 40 um was scanned using EBSD.
The scanning was done over a regularly spaced grid with 0.2 um step size across
the top of the specimen, resulting in 4121 crystal orientations. See [Bingham et al.
2010a] for more details regarding the machinery used and data collection process.

For two orientations P and Q, the misorientation angle between them is the
smallest angle of rotation needed to get from P to Q when rotating about some axis.
When using EBSD, orientations close in proximity are classified as composing
a grain when the misorientation angle between them is small, so that a grain is
thought of as a homogeneous piece of material that produces observations which
generally share a common orientation. Figure 2 gives the grain map that resulted
from using EBSD on the nickel specimen [Bingham et al. 2010a]. The grain map
can be viewed as if one was looking down on the piece of nickel, so that the axes
give the x- and y-locations on a rectangular grid. Each dot in the figure corresponds
to a single measured orientation from the total 4121 orientations in this scan. Similar
orientations are classified into grains, with each colored block on the map indicating
a different grain. The similarity of color within grains makes some of the 4121 dots
indistinguishable from others. Dots that clearly stand out represent locations on
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Figure 2. EBSD grain map for the nickel specimen, with grains
represented by blocks of similar color.

Grain | Sample size (n) | Original cone size | Reported EBSD precision
1 49 0.0647° 0.4531°
2 31 0.1742° 0.9699°
3 21 0.0876° 0.4016°
4 44 0.0823° 0.5461°
5 22 0.1054° 0.4942°

Table 3. Size of 95% confidence regions for central rotations and
reported precision of EBSD measurements (in degrees).

the scan with deformities. Although there are over ten grains present, we will use
subsets of data from five of these grains in the analysis here.

For each of the five grains considered, we applied the bootstrapping technique
to the 3 x 3 matrices representing crystal orientations. Using the mean rotation
as our measure of center, 95% confidence regions for the central rotation were
found. The sizes of the confidence cones are provided in Table 3, in degrees.
Because confidence region sizes decrease at a rate of 1//n (which can be verified
by examining the cone sizes presented in Tables 1 and 2), before reporting the
degree of precision we multiply each of the five cone sizes by /n. The reported
precision estimates are also provided in Table 3. We find EBSD precision estimates
comparable to the 1° reported by Demirel, El-Dasher, Adams, and Rollett [Demirel
et al. 2000] and the 0.5° reported by Wilson and Spanos [2001] by using methods
that are much more statistically sound than the methods employed in these works.

5. Conclusion

The study of precision for EBSD measurements considered here is just one of
many applications that could benefit from the bootstrapping techniques developed.
These bootstrapping techniques, while simple to implement, have been shown
to perform as well as existing parametric approaches. Given the complexity of
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existing parametric methods, they are likely not easily accessible to practitioners
(such as materials scientists) who often collect 3-dimensional rotation data. Further,
statistical methods that do not rely on distributional assumptions are important in
the area of 3-dimensional rotation data since there are relatively few developed
distributions for which parametric methods are even available [Bingham et al. 2009a;
Khatri and Mardia 1977; Le6n et al. 2006]. Therefore, the bootstrapping techniques
presented here could play an important role in the field of statistics, as well as in
areas of study where 3-dimensional rotations are commonly found.
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Graphs on 21 edges that are not 2-apex

Jamison Barsotti and Thomas W. Mattman

(Communicated by Joel Foisy)

We show that the 20-graph Heawood family, obtained by a combination of VY
and YV moves on K7, is precisely the set of graphs of at most 21 edges that are
minor-minimal with respect to the property “not 2-apex”. As a corollary, this
gives a new proof that the 14 graphs obtained by VY moves on K are the minor-
minimal intrinsically knotted graphs of 21 or fewer edges. Similarly, we argue
that the seven-graph Petersen family, obtained from K, is the set of graphs of at
most 17 edges that are minor-minimal with respect to the property “not apex”.

1. Introduction

A graph is n-apex if there is a set of n or fewer vertices whose deletion results in
a planar graph. As this property is closed under taking minors, it follows from
Robertson and Seymour’s graph minor theorem [2004] that, for each n, the n-apex
graphs are characterized by a finite set of forbidden minors. For example, 0-apex is
equivalent to planarity, which Wagner [1937] showed is characterized by K5 and
K3 3. For the property 1-apex, which we simply call apex, there are several hundred
forbidden minors (see [Ding and Dziobak 2016], which refers to work of a team
led by Kézdy). Since there are likely even more forbidden minors for the 2-apex
property, we divide the problem into more manageable pieces by graph size. In an
earlier paper [Mattman 2011], the second author showed that every graph on 20 or
fewer edges is 2-apex. This means there are no forbidden minors with 20 or fewer
edges. In the current paper, we show that there are exactly 20 obstruction graphs
for 2-apex of size at most 21.

Following [Hanaki et al. 2011], the Heawood family will denote the set of
20 graphs obtained from K7 by a sequence of zero or more VY or YV moves.
Recall that a VY move consists of deleting the edges of a 3-cycle abc of graph G
and adding a new degree-3 vertex adjacent to the vertices a, b, and c. The reverse,
deleting a degree-3 vertex and making its neighbors adjacent, is a YV move. The

MSC2010: primary 05C10; secondary 57M15, 57TM25.
Keywords: spatial graphs, intrinsic knotting, apex graphs, forbidden minors.
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Figure 1. The Heawood family (figure taken from [Goldberg et al.
2014]). Edges represent VY moves.

Heawood family is illustrated schematically in Figure 1, where K7 is graph 1 at the
top of the figure and the (14, 21) Heawood graph is graph 18 at the bottom.

Our main theorem is that the Heawood family is precisely the obstruction set for
the property 2-apex among graphs of size at most 21. We will state this in terms of
minor-minimality. We say H is a minor of graph G if H is obtained by contracting
edges in a subgraph of G. The graph G is minor-minimal with respect to a graph
property P if G has P, but no proper minor of G does. We call obstruction graphs
for the 2-apex property minor-minimal not 2-apex or MMN2A.

Theorem 1.1. The 20 Heawood family graphs are the only MMN2A graphs on
21 or fewer edges.

As there are no MMN2A graphs of size 20 or less [Mattman 2011] and one
easily verifies that the Heawood family graphs are MMN2A, the argument comes
down to showing no other 21-edge graph enjoys this property. We give a more
complete outline of our proof at the end of this introduction.

Our interest in 2-apex stems from the close connection with intrinsic knotting.
A graph is intrinsically knotted or IK if every tame embedding of the graph in R
contains a nontrivially knotted cycle. Then, a minor-minimal IK, or MMIK, graph is
one that is IK, but such that no proper minor has this property. Again, Robertson and
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Seymour’s graph minor theorem [2004] implies a finite list of MMIK graphs, but
determining this list or even bounding its size has proved very difficult. Restricting
by order, it follows from Conway and Gordon’s seminal paper [1983] that K7 is the
only MMIK graph on seven or fewer vertices; two groups, Campbell et al. [2008]
and Blain et al. [2007], independently determined the MMIK graphs of order 8;
and we have announced (see [Morris 2008; Goldberg et al. 2014]) a classification
of nine-vertex graphs, based on a computer search. In terms of edges, we know
([Johnson et al. 2010] and, independently, [Mattman 2011]) that a graph of size 20
or less is not IK. Using the following lemma (due, independently, to two research
teams), this follows from the lack of MMN2A graphs of that size.

Lemma 1.2 [Blain et al. 2007; Ozawa and Tsutsumi 2007]. If G is IK, then G is
not 2-apex.

The current authors [Barsotti and Mattman 2013] and, independently, Lee et al.
[2015] classified the 21-edge MMIK graphs. These are the 14 KS graphs obtained
by VY moves on K7, first described by Kohara and Suzuki [1992]. In other words,
these are the Heawood family graphs except those labeled 9, 14, 16, 17, 19, and 20
in Figure 1. In light of Lemma 1.2, we have a new proof as a corollary to our
main theorem.

Corollary 1.3. The 14 KS graphs are the only MMIK graphs on 21 or fewer edges.

Proof. Kohara and Suzuki [1992] showed that the KS graphs are MMIK. Suppose G
is MMIK of at most 21 edges. Then G is connected. By Lemma 1.2, G has an
MMN2A minor and, by Theorem 1.1, this means a Heawood family graph minor.
As G has at most 21 edges and is connected, G is a Heawood family graph. Finally,
Goldberg et al. [2014] and Hanaki, Nikkuni, Taniyama, and Yamazaki [2011],
independently, showed that in the Heawood family only the KS graphs are IK.
Therefore, G is a KS graph. O

We remark that there is considerable overlap in the current paper and our
preprint [Barsotti and Mattman 2013]. We have opted for a self-contained presenta-
tion here as we will not be publishing the above preprint elsewhere.

The proof of our main theorem relies on our classification of MMNA graphs
(i.e., obstructions to the 1-apex, or apex, property) of small size, a result that may
be of independent interest. Recall that, in analogy with the Heawood family, the
Petersen family is the set of the seven graphs obtained from the Petersen graph by
a sequence of VY or YV moves.

Theorem 1.4. The seven Petersen family graphs are the only MMNA graphs on
16 or fewer edges.

Famously, the Petersen family is precisely the obstruction set to intrinsic link-
ing [Robertson et al. 1995]. It would be nice to have a similar description of the
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Heawood family. Theorem 1.1 is one such characterization. As a second corollary to
our main theorem, we give a characterization of similar flavor. Hanaki et al. [2011]
showed that the Heawood family graphs are minor-minimal with respect to the
property “intrinsically knotted or completely 3-linked”; that is, Heawood family
graphs are MMI(K or C3L).

Corollary 1.5. The 20 Heawood family graphs are the only MMI(K or C3L) graphs
on 21 or fewer edges.

Proof. Hanaki et al. [2011] proved these graphs are MMI(K or C3L). Let G be
MMI(K or C3L) on 21 or fewer edges. Then G is connected. By [Hanaki et al.
2011, Remark 4.5], I(K or C3L) implies N2A, so G must have an MMN2A minor.
By Theorem 1.1, this means a Heawood minor. It follows that G has 21 edges and
is a Heawood family graph, as required. ([

This gives two characterizations of the Heawood family. However, like our
Theorem 1.4, they are less than ideal due to the hypothesis on graph size. Is there
a “natural” description of the Heawood family analogous to the way the Petersen
family is precisely the obstruction set for intrinsic linking?

Note that the condition on graph size in these three results is necessary. Indeed,
for Theorem 1.4, the disjoint union K3 3L K33 is an 18-edge MMNA graph outside
the Petersen family. On the other hand, a computer search [Pierce 2014] shows
that Theorem 1.4 could be extended to 17 edges: there are no MMNA graphs of
size 17. Since IK implies both N2A (Lemma 1.2) and I(K or C3L) (see [Hanaki
et al. 2011]) there are many examples of MMN2A and MMI(K or C3L) graphs
on 22 edges, including K3 3 1,1. Foisy [2002] showed this graph is MMIK, which
means it is also N2A and I(K or C3L). As any proper minor of K331, would
have at most 21 edges, and no Heawood family graph is a minor, it follows from
Theorem 1.1 and Corollary 1.5, that K3 3 1,1 is both MMN2A and MMI(K or C3L).
So, the hypothesis on size is necessary for both the theorem and its corollary.

Thus, K33.1,1 and the 14 KS graphs are examples of graphs that enjoy all
three properties: MMN2A, MMIK, and MMI(K or C3L). On the other hand, the
remaining six Heawood graphs show that a graph can be MMNZ2A and not MMIK.
This includes the graph that we have called E9 [Mattman 2011] and that Hanaki et al.
[2011] label Ng. In [Goldberg et al. 2014] we showed that adding an edge to this
graph makes it MMIK. In other words, Eg + ¢ is MMIK and not MMN2A (as it has
the N2A graph Ey as a subgraph). On the other hand, since IK implies I(K or C3L),
every MMIK graph has a minor that is MMI(K or C3L); although Eg, for example,
shows that the set of I(K or C3L) graphs is a strictly larger class than IK. Similarly,
I(K or C3L) implies N2A [Hanaki et al. 2011], which means every MMI(K or C3L)
has an MMN2A minor, while the disjoint union of three K3 3 graphs is an example
of a graph that is N2A but not I(K or C3L).
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All six of the Heawood graphs that are not MMIK are MMI(K or C3L) and we
can ask if a graph that is MMN2A and not MMIK need be I(K or C3L). However,
the disjoint union G = K¢ LI K5 is a counterexample. Since K¢ is MMNA and K5
is nonplanar, G is N2A and, since any proper minor is 2-apex, it is in fact MMN2A.
On the other hand, G is neither IK nor I(K or C3L) as each component has fewer
than 21 edges.

We conclude this overview of connections between apex graphs and intrinsic
knotting with a question. In [Goldberg et al. 2014] we describe the known 263 exam-
ples of MMIK graphs. By Lemma 1.2, none of these graphs are 2-apex. However,
it is straightforward to verify that each is 3-apex. Does this hold more generally?

Question 1.6. Is every MMIK graph 3-apex?

The remainder of our paper is a proof of Theorem 1.1. Let G be an MMN2A
graph of size 21. We must show that G is a Heawood family graph. We can
assume §(G), the minimum degree, is at least 3. Indeed, in an N2A graph, deleting
a degree-0 vertex or contracting an edge of a vertex of degree 1 or 2 will result
in an N2A minor. We can also bound the number of vertices. As G has 21 edges
and minimum degree of at least 3, it has at most 14 vertices. On the other hand,
we classified MMN2A graphs on nine or fewer vertices in [Mattman 2011]. So we
can assume 10 < |V (G)| < 14. After introducing some preliminary lemmas, and
proving Theorem 1.4, in the next section, we devote one section each to the five
cases where the number of vertices runs from 14 down to ten. We opted for this
reverse ordering as it roughly corresponds to the increasing lengths of the proofs.

2. Preliminaries

We denote the order of a graph G by |G| and its size by |G| and frequently use
the pair (|G|, ||G||) as a way of describing the graph. For a; € V(G), we will
use G —ay, ..., a, to denote the induced subgraph on V(G) \ {ay, ..., a,}. We
will write G + a to denote a graph with vertices V (G) U {a} that includes G as
the induced subgraph on V(G). In the case where V(G) and {a} are included
in the vertex set of some larger graph, G + a will mean the induced subgraph
on V(G)U {a}. We use N (a) to denote the neighborhood of vertex a, the set of
vertices adjacent to a. We will write NA, MMNA, N2A, and MMN2A for “not
apex” (equivalently, “not 1-apex”), “minor-minimal not apex”, “not 2-apex”, and
“minor-minimal not 2-apex” respectively.

Vertices of degree less than 3 do not participate in determining whether or not a
graph is n-apex, so we next describe a systematic way of deleting those vertices.
Recall that in a multigraph the edge set is a multiset, so that edges may be repeated.
In addition, there may be loops, edges that are incident to the same vertex twice.
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Definition 2.1. The simplification G* of a graph G is the multigraph obtained by
the following procedure:

(1) Delete all degree-0 vertices.
(2) Delete all degree-1 vertices and their edges.
(3) If there remain vertices of degree O or 1, go to step (1).

(4) For each degree-2 vertex v with distinct edges va and vb, delete v and those
edges and add the edge ab.

(5) If there remain any vertices of degree O or 1, go to step (1).

The procedure allows us to recognize V (G*) as a subset of V(G). We call these
vertices of G the branch vertices.

In step (4), the procedure leaves loops on degree-2 vertices unchanged. On
the other hand, it may be that a = b so that va is a doubled edge. In this case,
step (4) replaces the doubled edge with a loop on vertex a and deletes vertex v. It’s
straightforward to verify that G* is unique, up to isomorphism.

Lemma 2.2. The graph G is n-apex if and only if G* is.

Proof. Just as for a graph, we say that a multigraph is n-apex if there are n or
fewer vertices whose deletion results in a planar multigraph. The lemma follows as
n-apex is preserved by each step in the definition. U

This means that graphs where G* is nonplanar will be of particular interest. An
important class is that of split K3 3 graphs: graphs G such that G° = K3 3.

In this section, we will prove Theorem 1.4: the Petersen family graphs are the
MMNA graphs with |G || < 16. Recall that the Petersen family is the set of seven
graphs obtained by VY and YV moves on the (10, 15) Petersen graph Pjg. In
addition to Py, the set includes K¢, K3 3,1, K44 — e, and, by definition, is closed
under VY and YV moves. We first observe that each graph in the family is MMNA.

Lemma 2.3. The seven graphs in the Petersen family are all MMNA.

Proof. Aside from describing what is to be checked, we omit most of the details.
Let G be a graph in the Petersen family. It’s enough to verify that for all v € V(G),
G — v is nonplanar and that for all e € E(G), deletion and contraction of e both
result in apex graphs. U

The proof of Theorem 1.4 depends on the following lemma that characterizes
NA graphs using the idea of a vertex near a branch vertex. If G is a graph and
w € V(G) is such that there is a path from w to a branch vertex, a, of G that
contains no other branch vertices of G, then we say w is near a. Similarly, if w is a
vertex in some G + v, then w is near a branch vertex a of G if there is a w-a path
independent of the other branch vertices.
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For the lemma, we assume that either G is a Kuratowski graph or else it is a
multigraph, which we will call a K3 3 with a fat edge, denoted by K3 3+ e. This
means the multigraph is a K3 3 graph but for a single edge that is repeated (possibly
many times). Figure 13 (left) is an example. We consider the graph K3 3 to be a
K33+ e. Note that we will use K3 3 4 e to refer to the graph obtained by adding
an edge to K3 3; see Figure 13 (right).

Lemma 2.4. Suppose G simplifies to Ks or a K33 +e. Then G + v is NA if and
only if v is near every branch vertex of G.

Proof. As in the definition above, forming G*, the simplification of G, determines
a set of branch vertices.

First, assume that G + v is NA and v is not near a branch vertex a of G. If
we remove a branch vertex b near a, then, we claim, G + v — b is planar, which
contradicts that G + v is NA. In the case of a K33 + ¢, choose b to be a vertex of
the fat edge, so that it is incident to every repeated edge. To verify the claim, note
that (G — b)* is a Kuratowski graph with one vertex deleted, either K4 or K3 5. The
only way that G + v — b could be nonplanar would be for v to take the place of b
in the Kuratowski graph. This would require independent paths from v to each of
the branch vertices near b. As there is no such v-a path, G + v — b is planar.

Now assume that, in G + v, the vertex v is near every branch vertex of G. Then
G* = (G +v)’ is of the form H + v, where H is a subdivision of G* and, by abuse
of notation, we again refer to the vertices of H of degree 3 or more as branch
vertices (of G). In G*, the neighbors of v are either branch vertices of G or on
edges of G* that were subdivided to form H. In particular, v is near the same
branch vertices in H + v as it was in G + v. We wish to show that G* can, through
a series of YV moves, be transformed into an NA graph. If, in G*, we have that v
is adjacent to all the branch vertices of G, we are done, since if G* = K5, then G*
has a K minor, and if G* is a K33 + e, then G* has K3 3 | as a minor. As K¢ and
K3 3.1 are both NA (see the previous lemma), G + v is as well.

Next, choose a branch vertex a from G. Suppose v is not adjacent to a in G*.
However, we’ve assumed v is near every branch vertex, including a. Hence there is
a vertex w of degree 3 that has both a and v as neighbors. Performing a YV move
on w makes a and v neighbors and will not change the nearness of v to any branch
vertices. Repeating this process for the rest of the branch vertices results in a graph
where v is adjacent to each branch vertex of G. Again, if G° = K5, then this series
of YV moves on G* gives a graph that has a K¢ minor. If G* is a K3 3+ ¢ then a
series of YV moves on G* gives us a graph that has K3 31 as a minor. Since YV
and VY preserve the Petersen family, we conclude that G 4 v has a minor from the
Petersen family and is, therefore, NA. U
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The proof shows that, not only is G + v NA, it has a Petersen family graph as
a minor. On the other hand, if G 4 v has a Petersen family graph minor, then it
is NA by Lemma 2.3. Also, Petersen family graph minors characterize intrinsic
linking [Robertson et al. 1995]. The following lemma combines these observations.

Lemma 2.5. Let G be a graph with vertex v such that (G —v)® is K5 ora K33 +e.
Then the following are equivalent:

o The vertex v is near every branch vertex of G — v.
o G is NA.
o G has a Petersen family graph minor.

o G is intrinsically linked.

Lemma 2.6. Suppose G is NA and there is a vertex a such that (G —a)® = K33 +e.
Then G has a minor in the Petersen family.

Proof. We use the notation provided by Figure 13 (right). If a is not near v, or vs3
then G —wj3 is planar. On the other hand, if a is not near one of w, w,, and w3, then
G —vs is planar. So a is near vy, v3, wy, wy, and ws. If {vy, v3, wy, wy, w3} C N(a),
then G has the Petersen family graph P; (obtained by a single VY on Kjg) as a
minor, as required.

Suppose one of these vertices is not in N(a), say v» ¢ N(a). Then, as in the
proof of Lemma 2.4, there is some minor of G in which a YV move produces a
graph that has v, € N(a) (where a and v, are the induced vertices from a and v,
after finding such a minor of G and performing the YV move) and a is still near
each vertex in {v3, wy, wo, w3}. Repeat this process for each of those remaining
vertices and we see that G has a minor that, following a sequence of YV moves,
becomes P;. Since the Petersen family is closed under YV and VY moves, G has
a minor in the Petersen family. (]

Lemma 2.7. Suppose G is NA and there is a vertex a such that ||(G —a)*|| < 10.
Then G has a minor in the Petersen family.

Proof. By assumption, G — a is nonplanar, and by Lemma 2.2, (G — a)*® is as well.
So, K5 or K3 3 is a minor, (G —a)® is either K5, K33+e¢, or a K33+ e, and we
can apply Lemma 2.5 or Lemma 2.6. ([

Lemma 2.8. If G+a is formed by adding a degree-3 vertex a to a split K3 3 graph G
and G + a is NA, then (G + a)® is the Petersen graph.

Proof. By Lemma 2.4, there are paths from a to each branch vertex that avoid all
other branch vertices. Up to isomorphism, the only way to arrange this is as in the
graph of Figure 2, which is the Petersen graph. (]
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Figure 2. Adding a degree-3 vertex to a split K3 3 yields the Pe-
tersen graph.

Figure 2 illustrates the idea of a vertex being near an edge. Let G be such that
G* = K33 or K5. As in the proof of Lemma 2.4, if we add a vertex v, then, in
general, (G +v)* will be of the form H +v, where H is a subdivision of G*. We say
that v is near the edge xy in G*, where x and y are branch vertices, if, in (G + v)*,
v has a neighbor interior to the (subdivided) edge xy of G°®. In Figure 2, a is near
the edges v;w; withi =1, 2, 3.

Lemma 2.9. If G + a is formed by adding a vertex a of degree 4 to a split K33
graph G and G + a is NA, then (G + a)® is one of the seven graphs in Figure 3.

Proof. By Lemma 2.4, there are paths from a to each branch vertex that avoid all
other branch vertices. Let N (a) = {n1, ny, n3, ns}. As there are six vertices and
d(a) =4, there is an n;, say n, that has an edge, say v;wy, as its nearest part. Since
there are four branch vertices left and three neighbors of a, another n;, say n,, must
have an edge as its nearest part with vertices disjoint from {v{, w}; call it vyw,.
There are three graphs generated when a has a neighbor whose nearest part is a
branch vertex of G and four more when a has no such neighbor. Figure 3 shows
the graphs that result from this condition. U

We conclude this section with a proof of Theorem 1.4. The proof requires one
additional lemma. Let §(G) and A(G) denote the minimum and maximum degrees
of a graph G.

Lemma 2.10. Suppose G has §(G) =3, A(G) =4, and 13 < ||G|| < 16. Then
either there is a degree-4 vertex with a degree-3 neighbor or else G is the disjoint
union Ks 11 K.

Proof. For a contradiction, suppose no degree-4 vertex has a degree-3 neighbor.
Then G is disconnected with cubic and quartic components. The smallest quartic
graph is K5 with ten edges and the smallest cubic graph is K4 with six. So, the size
of G is at least 16 and K5 Ul K4 is the only way to realize that minimum. O

Proof of Theorem 1.4. As stated in Lemma 2.3, the Petersen family graphs are all
MMNA. What is left is to show that they are the only such graphs on 16 or fewer
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Figure 3. Adding a degree-4 vertex to a split K3 3.

edges. Suppose G is an MMNA graph with 16 or fewer edges. Our goal is to show
that G is in the Petersen family. If §(G) < 3, then contracting an edge of a vertex
of small degree or deleting an isolated vertex results in a proper minor that is still
NA, contradicting minor-minimality. So we assume §(G) > 3.

Further, we can assume that, for every vertex a, we have ||[(G — a)®| > 11.
Otherwise, by Lemma 2.7, G has a minor in the Petersen family. Since the Petersen
family graphs are NA and we’re assuming G is MMNA, G must be a Petersen
family graph, as required.
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V3 w3 3 w3
w2 ) wy 2

wi
V1 w1 V1

Figure 4. Nonplanar (6, 11) graphs with §(G) > 3.

Combining the assumptions §(G) > 3 and ||(G — a)*|| > 11, we see that G has
size 14, at least. However, if |G| = 14, then a minimum degree of 3 and each
G — a having size 11 or more imply that G is cubic, which is not possible. In fact,
G must have at least 15 edges.

If |G| = 15, then A(G) < 4 since we’re assuming each (G — a)* has at least
11 edges. Suppose A(G) = 4. Since there are no quartic graphs with 15 edges, by
Lemma 2.10, there is a degree-4 vertex a with at least one neighbor of degree 3.
Then ||(G — a)®|| < 10, contradicting our assumption. So, we can assume G is
cubic. In this case, apply Lemma 2.8 to see that G is the Petersen graph.

This leaves the case where ||G|| = 16. The assumption that each (G — a)* has at
least 11 edges implies A(G) <5. If A(G) =5, leta be a vertex of top degree. We can
assume a has no degree-3 neighbor since ||(G—a)*|| > 11. Then G —a is a nonplanar
simple graph of size 11 and minimum degree 3. The only possibilities are the (6, 11)
graphs of Figure 4 or the (7, 11) graph of Figure 16 (top center). As is the case with a,
we can assume that no degree-5 vertices have degree-3 neighbors in G. Suppose
first that G — a is the (6, 11) graph of Figure 4 (left). Then N (a) must include v3
and ws, the degree-3 vertices of G — a, as otherwise there will be a degree-5 vertex
with a degree-3 neighbor. Without loss of generality, w; is the vertex of G — a
missing from N (a). Then G — v; is planar, a contradiction. Similarly, if G —a is
the (6, 11) graph of Figure 4 (right), then, since we assumed A(G) =35, it’s v, that
is missing from N (a), in which case G — w is planar. Finally, suppose G —a is
the (7, 11) graph of Figure 16 (top center). We see that v, € N(a) as otherwise
G — wj3 is planar. But then v; is a degree-5 vertex in G and can have no degree-3
neighbors. Thus N (a) = {u, vy, wy, wy, w3} and contracting uv; gives the Petersen
family graph P; as a minor. (Recall that P; is the result of a VY move on Kg.)

Next assume A(G) = 4. If G is quartic, it is one of the six quartic graphs of
order 8 (see [Meringer 1999]). Only two of these are NA. One is K4 4, which has
the Petersen family graph K4 4 — e as a subgraph. The other comes from splitting
the degree-6 vertex of the Petersen family graph K33 ;.

Thus we can assume §(G) = 3 and since each (G — a)® has at least 11 edges,
each degree-4 vertex has at most one degree-3 neighbor. By Lemma 2.10 (note
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that Ks U K4 is not NA), there is a degree-4 vertex b with a degree-3 neighbor for
which || (G — b)*|| =11.

Since §(G) = 3, we have that |G| > 9. Since (G — b)® is formed by deleting
vertex b and its degree-3 neighbor (which becomes degree-2 and is lost through
simplification), it has order 7 at least. Thus, (G — b)* is either the (7, 11) graph
of Figure 16 (top center) or one of the (7, 10) graphs of Figure 15 with a doubled
edge, and G — b is formed by a single subdivision.

Suppose G — b is the (7, 11) graph with a single subdivision. Recall that each
degree-4 vertex has at most one degree-3 neighbor. So that both G —w; and G — w3
are nonplanar, the subdivision must be of an edge incident to v,. This constitutes a
degree-3 neighbor of v, and its remaining neighbors must all be adjacent to b. How-
ever, this results in a degree-4 vertex with two degree-3 neighbors, a contradiction.

If (G—b)* is a graph of Figure 15 with a doubled edge, one of those repeated edges
is subdivided to form G —b. This introduces a new vertex x that must be adjacent to
b since §(G) =3. If (G —b)* is the graph of Figure 15 (left), then, since 6 (G —b) > 2,
it must be the edge uv; that is doubled. Both u and x are degree-2 in G — b. So,
both are in N (b) and become degree-3 in G. However, this means the degree-4
vertex b has two degree-3 neighbors in G, which is a contradiction. Similarly, if
(G —b)* is the graph of Figure 15 (right), the doubled edge must be adjacent to u as
otherwise u, x € N (b), which gives b two degree-3 neighbors. So, we can assume
it’s uv; that is doubled. As v is degree-4 in G and x is degree-3, v; can have no
other degree-3 neighbors. Then N (b) = {u, x, w, ws}. However, this leaves several
degree-4 vertices in G that have two degree-3 neighbors, which is a contradiction.

Having size 16, G is not cubic, so we’ve completed the argument for graphs of
this size, and with it the proof. U

3. 14-vertex graphs

We now show the following (originally proved in [Barsotti and Mattman 2013]):
Proposition 3.1. If G is a (14, 21) MMN?2A graph, then G is in the Heawood family.

Proof. Let G be a (14, 21) MMN2A graph. We can assume 3(G) > 3 as otherwise
a vertex deletion or edge contraction on a small-degree vertex will give a proper
minor that is also N2A. Then G must have the degree sequence (3'%) and for any
a € V(G), we know that G — a has the sequence (319, 23). Now choose another
vertex, b, such that G* = G — a, b has the sequence (3%, 2% (i.e., a and b have no
common neighbors). There are enough degree-3 vertices in G — a to assure we can
always choose such a b.

Since G is N2A and G* has the sequence (39, 26), we have that G* must be
a split K3 3. By Lemma 2.8, (G* + a)® is the Petersen graph of Figure 2. Then
G’ = (G* 4+ a) — ws is another split K3 3.
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Figure 5. Two possibilities for G’ + b.

By Lemma 2.4, b must have a path to a that avoids v3, w;, wp, y, and z. Since a
and b have no common neighbors, this means b has a neighbor b that is adjacent
to x. So, there are two cases: in G’ + b, either b; is of degree 2, or else it has v3 as
a third neighbor. (See Figure 5.)

In either case, b; gives paths from b to the branch vertices a and v3 and there are
three ways to split the remaining four branch vertices into two pairs. However, we
see that G — wy, z is planar (and G is 2-apex), unless we make the choices shown
in Figure 5. In both cases, adding w3 back will give us the Heawood graph. Hence
the only (14,21) MMN2A graph is the Heawood graph. (]

4. 13-vertex graphs

In this section we prove the following:
Proposition 4.1. If G isa (13, 21) MMN?2A graph, then G is in the Heawood family.

Proof. Let G be an MMN2A (13, 21) graph. Consider the degree sequences
(312, 6) and (3!, 4, 5). If we remove the vertex of highest degree, the resulting
graph simplifies to a graph with fewer than 14 edges, hence (by Theorem 1.4) to an
apex graph. So G does not have such a degree sequence.

Then G has the sequence (3'°, 4%). Again, if a is a vertex of degree 4 that has
three neighbors of degree 3, then (G — a)’ is apex, so this cannot be the case. We
conclude that the degree-4 vertices form a triangle in G and that there is a degree-3
vertex a in G whose neighbors all have degree 3. This means that G — a simplifies
to a graph G* = (G — a)® with degree sequence (3%, 4%). Since G* must be NA,
and has 15 edges, by Theorem 1.4 it is in the Petersen family. There is a unique
nine-vertex graph in the family, which we call Py; see Figure 6.

Note that in Figure 6 there is a unique triangle, which we’ll denote by xyz and
label the corresponding vertices in G —a and G as x, y, and z as well. Notice also
that x, y, and z all have degree 4 in G* so none of them are neighbors of a in G.
Moreover, we assumed x, y, and z form a triangle in G, and since the triangle is
clearly preserved in G*, it must also be preserved in G —a. In particular, this implies
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Figure 6. The Petersen family graph Po.

that a is not near any of the edges that form this triangle; i.e., none of the degree-2
vertices deleted in simplifying from G —a to G* are on the edges of the triangle.

Observe that (G — a, y)* = K33 and that the induced graph after adding a back
must be NA. Hence, by Lemma 2.4, a must have a path to each branch vertex that
does not go through any other branch vertex. Since a is not near the edge xz, it
must be near either edges xw; or xv; and zws or zvs. Similarly, (G —a, x)* shows
that @ must also be near yw; or yv,.

We claim that a is near xw1, yw,, and zws or near xvi, yvs, and zv3, in which
case G is the Heawood family graph Ci3. (See [Hanaki et al. 2011] for the names,
like Cy3, of the Heawood family graphs. This is the unique order-13 graph in the
Heawood family and corresponds to graph 15 in Figure 1). Otherwise, either a is
near xv; and yw, or near xw; and yv,, in which case G — v3, ws is planar, or else
a is near zv3y and yw, or near zws and yv; in which case G — vy, wy is planar. [J

5. 12-vertex graphs

In this section we prove that a (12, 21) MMN2A graph G is in the Heawood family.
This means G is one of three graphs that are called Hy», C2, and N I , by Hanaki et al.
[2011] and are represented as graphs 12, 13, and 19, respectively, in Figure 1. We
first observe that if G is triangle-free and of the correct degree sequence, it must
be Hj;. This was originally proved in [Barsotti and Mattman 2013].

Lemma 5.1. Let G be MMN2A of degree sequence (3°,4%) and triangle-free.
Then G is Hya.

Proof. Note that if any of the vertices of degree 4 have three or more neighbors of
degree 3, removing such a vertex results in an apex graph by Theorem 1.4, so we
may assume this doesn’t happen. We also notice that we can either single out a
degree-3 vertex, all of whose neighbors are degree-3 vertices, or a degree-4 vertex
that has two degree-3 neighbors. To see this, suppose it is not the case. Since G
has no triangles, the subgraph induced by the degree-4 vertices is K3 3 and each of
the vertices has a unique neighbor of degree 3. Hence, removing two nonadjacent
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vertices of degree 4 results in a graph that simplifies to a graph of size 8, and thus
is planar. Hence G would not be 2-apex.

Now assume that we do not have a vertex of degree 4 with two degree-3 neighbors.
Say that a is a degree-3 vertex whose neighbors are all of degree 3. Then (G — a)*®
has degree sequence (32, 4%). Theorem 1.4 implies thatitis K4 4 —e. Because G has
no degree-4 vertex with two degree-3 neighbors, we know that the edge subdivisions
from (G —a)® to G —a are all on edges incident to the degree-3 vertices of (G —a)°’.
Also, since G is triangle-free, there is at most one subdivision on each edge. Since
there are exactly three subdivisions from (G — a)® to G — a, there is one vertex of
degree 3 in (G —a)® that gets at least two subdivisions; call it a;. So, a; has degree-4
neighbors vy, vy in (G —a)® so that a;v; and a; v, are subdivided in forming (G —a).
Then G — vy, vy is planar; indeed (G — v1, v2)* is K42, and G is 2-apex.

So we may assume that a has degree 4 and there exist b, ¢ € N(a) such that
d(b)=d(c) =3 and c #b. Then (G —a)* has degree sequence (3%, 4%), which tells
us, by Theorem 1.4, that it is Py. Furthermore, since G does not have a triangle,
we know that one of the subdivisions from (G — a)® to G — a is on the triangle
xyz of Figure 6; say it’s xy that is subdivided. Removing either x or y, Lemma 2.4
tells us that the other subdivision from (G — a)® to G — a must be on an edge
incident to z. (Note that z ¢ N (a) as it would be a degree-5 vertex.) The subdivision
cannot be on the edge yz or xz, otherwise one of x, y, or z would have more than
two neighbors of degree 3. Furthermore, we need that either w;, w, € N(a) or
vy, 12 € N(a), since x and y are allowed at most two neighbors of degree 3 and G
has no triangles. If w;, wy € N(a) then considering (G — a, z)* shows us that a is
near w3 by Lemma 2.4, hence the subdivision is on wsz. Similarly, if v{, v, € N(a)
the subdivision is on v3z. Both cases yield Hy,. |

Proposition 5.2. If G isa (12,21) MMN2A graph, then G is in the Heawood family.

Proof. We assume again that G is MMN2A and that G is a (12, 21) graph. We can
assume the maximum degree A(G) is at most 5. A vertex a with d(a) > 6 in a
(12, 21) graph with 6(G) > 3 will have at least one neighbor of degree 3. Then
(G —a)* has at most 14 edges and is apex, by Theorem 1.4. This implies G —a is
apex and G is 2-apex, a contradiction.

This leaves four possible degree sequences: (32, 5%), (38, 4%,5%), (37, 4*,5), and
(36, 4%).

Let G have the degree sequence (3%, 5%) or (3%, 42, 5%). Then any a withd(a) =5
has at least two neighbors of degree 3. This means (G — a)* simplifies to a graph
with fewer than 15 edges and so it is apex (Theorem 1.4), whence G is 2-apex, a
contradiction.

We now focus our attention on the case where G has the degree sequence
(37, 4%, 5) and show that the only MMN2A graph with this degree sequence is Cj5.
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Figure 7. Graph near the degree-5 vertex a. The dotted edge
indicates that the degree-4 vertices may form a path.

(See [Hanaki et al. 2011] for the name. This is graph 12 in Figure 1.) Let a denote
the vertex of degree 5. Note that a has at most one neighbor of degree 3, as otherwise
(G —a)’| <14, meaning G —a is apex (Theorem 1.4) and G is 2-apex. Hence, the
neighbors of a are all the vertices of degree 4 and one vertex of degree 3. Moreover,
each vertex of degree 4 has at most two neighbors of degree 3. This is illustrated
in Figure 7 . This implies that (G — a)® is an NA 3-regular graph with 15 edges,
i.e., the Petersen graph (see Figure 2). Since the Petersen graph has no triangles or
4-cycles, we see that G —a has no 4-cycles. This implies that the vertices of degree 4
do not form a triangle or 4-cycle in G. This justifies the specifics of Figure 7.

Then there is a b € V (G) of degree 4 with exactly two degree-3 neighbors, so that
(G—>b)*isa (9, 15) graph with degree sequence (3%, 4%). This implies that (G —b)*
is the Petersen family graph Py illustrated in Figure 6 (the unique Petersen family
graph on nine vertices). In G —b, vertex a has degree 4 and without loss of generality
is vertex y in the figure. We have deduced that b is adjacent to a as well as to either
wy Or vy, say vy. At this stage, we see that, in fact, the degree-4 vertices do not form
a path. Note that b is not near the edge xz; otherwise both x and y will have three
neighbors of degree 3. In order for G —a to be NA, by Lemma 2.4, b must be near
the edges vix and v3z. Adding both a and b back in shows that this graph is Cy;.

Now let G have the degree sequence (39, 4%). We will show G is either Hj, or
else N{z. (See [Hanaki et al. 2011] for these names. These are graphs 12 and 19
respectively in Figure 1.) By Lemma 5.1, the only triangle-free MMN2A graph
with degree sequence (3%, 4%) is Hj,, so we will assume that G has a triangle and
show that this implies it is N{,. By Theorem 1.4, each degree-4 vertex in G can
have at most two neighbors of degree 3. Notice that in N|,, each degree-4 vertex
has exactly one neighbor of degree 3 and vice versa. We argue that G must also
share this property in order to be MMN2A.

First, assume there is an a € V(G) such that a has degree 3 and three degree-3
neighbors. Hence G* = (G —a)® has degree sequence (4%, 3%) andis an (8, 15) graph.
Since G being MMN2A implies that G* is NA, by Theorem 1.4 it is in the Petersen
family. By the degree sequence (4°, 3%), we can identify G* as K4 4 — e, drawn in
Figure 8. Since G* has no triangles, the triangle of G is formed in reattaching a.
Hence there is at least one edge in G* that is subdivided twice in returning to G —a.
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Figure 8. The Petersen family graph K44 —e.

Because of the symmetry of G*, we may assume without loss of generality that
these subdivisions are on the edges viw; or yv;. In the first case, G — vy, wy is
planar, and the second splits into two cases: either the other subdivision from G*
to G — a occurs on an edge incident to x in G* or it does not. In the case where
it does not, G — v;, w; is planar, where v; and w; are the vertices in G* between
which the subdivision occurs or v; and wj if it’s on an edge incident to y. In the
other case, G — x, v is planar since it is essentially the same as the planar graph
G* — x, vy with an extra path from y to a w;. So, in an MMN2A graph, every
degree-3 vertex has at least one degree-4 neighbor.

Now suppose a € V(G) is a degree-4 vertex with exactly two neighbors of
degree 3. Then G* = (G — a)® has degree sequence (4°, 3%). Since G* must be
NA, by Theorem 1.4 it is in the Petersen family and hence is the graph Py shown
in Figure 6. In the following, we use the labeling of that figure.

When we remove x, y, or z separately from G*, each induced subgraph shows
us (by Lemma 2.4) that ¢ must have paths to x, y, and z in G that do not include
any of their neighbors in G*. As these three vertices already have degree 4, the
neighborhood of a includes vertices adjacent to x, y, z created by edge subdivisions.

Since there are only two edge subdivisions from G* to G — a, this implies that
one has to be on the xyz triangle. By the symmetry of G*, we can assume without
loss of generality that xy is subdivided. The other subdivision is on an edge incident
to z in G*. Since we assume that G contains a triangle, ¢ must be part of that
triangle. Observe that (G*—y)* = K3 3. By Lemma 2.4, ¢ must have pathsin G —y
to the vertices vy, v3, wi, w3, x, and z that exclude the others from that list. Now, a
is adjacent to exactly two vertices in G* — y (as the two other neighbors appear only
after additional edge subdivisions) and since we have already established that a is
near both x and z and possibly v3 or w3, the remaining neighbors of a are either
w7 and vy, vy and vy, or w; and w,. Recalling that a is not actually adjacent to x,
just simply near it by way of a subdivision of xy in G*, and since G must have a
triangle, none of these cases can be G.

To summarize, we established that if G is MMN2A with degree sequence (3%, 4%)
and contains a triangle, then each vertex of degree 4 has at most one neighbor of
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Figure 9. Graph after removing a degree-4 vertex leaving a triangle.

degree 3 and each vertex of degree 3 has at least one neighbor of degree 4. Hence,
there is a one-to-one correspondence between the degree-4 vertices and the degree-3
vertices by the relation of being neighbors in G. Note that degree-3 vertices cannot
occur on triangles that include degree 4 vertices. Otherwise either the degree-3
vertex is adjacent to two degree-4 vertices, or else there is a degree-4 vertex with two
degree-3 neighbors. If the degree-3 vertices form two disjoint triangles, G is 2-apex.
Indeed, let a and b be two degree-4 vertices whose neighbors of degree 3 are on
distinct triangles. Then (G — a, b)* is basically a subgraph of the planar graph K.
The vertices of the K4 are the remaining degree-4 vertices of G (besides a and b). In
addition to edges between these that were in G, the remnants of the degree-3 vertices
contribute two additional paths of length three with the central edge doubled.
Thus, we can assume there is a triangle of vertices of degree 4 in G. Choose some
vertex of degree 4 not on this triangle; call it a. Then G* = (G — a)® has degree
sequence (3%, 4%) and contains a triangle. We claim that G* is the graph illustrated
in Figure 9. Note that the two degree-4 vertices in G* are adjacent. So, if we delete
one of them, denote it by y, then (G* — y)* has nine edges and must be nonplanar
since G* is NA. Thus (G* — y)* = K3 3 and, using Lemma 2.9, and the fact that G*
has a triangle and degree sequence (3%, 4%), we deduce G* is as shown in Figure 9.
Now that we have established what G* looks like (Figure 9), we can determine
where a goes. Since both y and z are adjacent to x, we know that x cannot have
degree 3 due to the one-to-one correspondence between vertices of degrees 3 and 4.
So a is adjacent to x. Then a is adjacent to either v; or w; since y is adjacent
to only one vertex of degree 3, say w;. Then, for the same reason x and a were
adjacent, a and v, are adjacent. Since G — z is NA, by Lemma 2.4, a is near w,v3
or viw;. Similarly, G — y is NA and Lemma 2.4 shows a is near vyw; or vjws. So
a is near viwy. This graph is N{,. Therefore, the only MMN2A graph with degree
sequence (3%, 49) that contains a triangle is N 15- U

6. 11-vertex graphs

In this section we prove that an (11, 21) MMN2A graph is in the Heawood family.
We begin with five lemmas, one for each Heawood family graph of this order: E,
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Ci1, Hi1, Ny, and Ny;. (See [Hanaki et al. 2011] for the names. These correspond
to graphs 8, 10, 11, 16, and 17 respectively in Figure 1.)

Lemma 6.1. Let G be an (11, 21) MMN2A graph with degree sequence (3%, 4%, 6).
Then G is C 11-

Proof. Consider b € V (G) such that deg(b) = 6. Notice that for any v € N(b) we
must have deg(v) = 4; otherwise, by Theorem 1.4, G — b is not NA. This implies
that G — b must be the Petersen graph (see Figure 2). Without loss of generality,
we can assume that the vertex a in Figure 2 is not a neighbor of b in G. Since
(G — b, x)* = K33, we have that in G — x, by Lemma 2.4, b must be adjacent to z
and y. Similarly, if we consider G — b, z we see that b is adjacent to x. Consider
again G — x. Since b has degree 5 in G — x, is adjacent to y and z, and must
have paths to vy, vy, wy, and w, that do not go through vy, vy, wy, wo, x, or y,
we see that b is adjacent to either v3 or wz or both. Similarly, considering G — y
and G — z, we see that b is adjacent to either v, or w, and vy or wi. We claim
that b is adjacent to vy, vo, and v3 or wi, wy, and w3, in which case we have Cy;.
Otherwise, if v, € N(b) and w; € N (b) then G — v3, w3 is planar, or if vy € N(b)
and ws € N(b) then G — wy, vy is planar. Similarly, if w, € N(b) and v; € N(b)
then G — v3, w3 is planar, or if wy € N(b) and v3 € N(b) then G — wy, vy is planar.
Therefore G must be C1;. O

Lemma 6.2. Let G be an (11, 21) MMN2A graph with degree sequence (3°, 43, 5%).
Then G is Eq;.

Proof. We may assume that there exists a € V (G) such that deg(a) = 5 and there
exists u € N (a) such that deg(u) = 3. If not, then removing any two of the degree-4
vertices results in a K4 graph with a bridge to a graph of at most seven edges, which
is clearly planar. On the other hand, by Theorem 1.4, G* = (G — a)® has at least
15 edges, so u is the only degree-3 neighbor. Then G* has nine vertices.

This means that G* is the Petersen family graph Py shown in Figure 6, the only
order-9 graph in the family. By the degree sequence of the original G, we may
assume, without loss of generality, that a is adjacent to x and y (referring again
to Figure 6), and hence is not adjacent to z. Removing either x or y, Lemma 2.4
shows us that a is near an edge incident to z. If a is near the edge yz or xz, then a
is also adjacent to two more vertices in Figure 6. Removing both of these results in
a planar graph. Thus a is near the edge v3z or the edge w3z. By symmetry, we will
assume v3Z.

Applying Lemma 2.4 to G — y shows that @ must be adjacent to v, and, similarly,
considering G — x shows us that a must be adjacent to v;. Reassembling G
gives E;. O

Lemma 6.3. Let G be an (11, 21) MMN?2A graph with degree sequence (34, 4°,5%).
Then G is H 11
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Figure 10. Graphs with degree sequence (3%,4%) by adding a
degree-4 vertex a to a split K3 3.

Proof. Assume that there exists a € V(G) such that deg(a) = 5 and there exists
u € N(a) such that deg(u) =3. Then G* = (G —a)® is a (9, 15) NA graph, hence the
graph illustrated in Figure 6, with degree sequence (3%, 4%). Since G has only two
vertices of degree 5, vertex a is adjacent to at most one of x, y, and z in Figure 6. We
will assume that it is x and hence y, z ¢ N(a). By Lemma 2.4, a must be near edges
incident to both y and z (consider G —z and G — y, respectively). However, as a
has a unique neighbor of degree 2 in G —a, it is near only one edge. Therefore, a is
near the edge yz. If a is adjacent to vy, v, and v3 or wy, wy, and ws then G is Hy;.

We next verify that this must be the case. Note that there are exactly three
vertices in N (a) N{vy, vo, v3, wi, wy, ws}. Let us first examine the intersection with
{v2, v3, wy, w3}. Lemma 2.4 applied to G — z shows that a has at least one neighbor
in each of the pairs {v,, w3}, {vs, wy}, and {v3, ws}. The same lemma with G — x
shows that N (a) N {vy, v3, wy, w3} is not simply {v3, w3}. We conclude that a is
adjacent to wy and w3 or v, and v3, and, by symmetry, we can assume v, and vs. The
last neighbor of @ must be vy, as otherwise G — v3, w3 or G — v, wy will be planar.

Let a and b be the degree-5 vertices and suppose neither has a degree-3 neighbor.
If a and b are not adjacent, then (G —a, b)* is a (3*) multigraph that is clearly planar.
Further, a and b can have at most three common neighbors, as otherwise (G —a, b)*
has fewer than nine edges and is therefore planar. On the other hand, since there are
only five degree-4 vertices, a and b must share at least three neighbors. This means
(G —a, b)’ = K33. By Lemma 2.9, G — b must be one of the graphs in Figure 10.
By our assumption, b is adjacent to a, x, y, and z, with one other neighbor from
the set {w1, wy, w3, vz, v3}. In the case where G — b looks like Figure 10 (left) we
see that G — vy, wy is planar. For the case of the right graph in the figure, observe
that G — vy, x is planar. Hence if @ and b have no degree-3 neighbors, then G is
2-apex. Therefore G must be Hy;. U

Lemma 6.4. Let G be an (11, 21) MMN2A graph with degree sequence (33,47, 5).
Then G is Ny;.

Proof. Let us begin by assuming that the degree-5 vertex b is adjacent to some vertex
of degree 3. Then G* = (G — b)* has degree sequence (3%, 4%) and is therefore the
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y w» X v
U3 w3

Figure 11. Remove vy and v, from K44 —e.

P9 graph of Figure 6. Note that b is not adjacent to x, y, or z, since going from G
to G* did not change their degree. However, observing the graphs we obtain when
removing x, y, or Z, by Lemma 2.4 we see that b needs a path to all of them that does
not utilize any of their neighbors in G*. This is clearly impossible since there is at
most one subdivision from G* to G —b. Hence for all v € N (b), we have deg(v) =4.

Then G — b must have the degree sequence (3%, 4%). If the vertices of degree 4
in G — b are not adjacent, then if v is one of those, (G — b, v)* has eight edges and
is therefore planar, which is a contradiction. So choose a € V(G — b) such that
deg(a) = 4. Then if G is N2A, (G —a, b)* is K3 3. When we add a back in, by
Lemma 2.9, there are two cases, shown in Figure 10. However, for Figure 10 (right),
we notice that b is not adjacent to v; since it can only be adjacent to vertices of
degree 3 in G —b. This means that it is not near v, which is required by Lemma 2.4.
So G — b is isomorphic to the graph illustrated in Figure 10 (left). As above, since b
must be near vy, it must be adjacent to x. Now, G —v;, w; will be planar unless N (b)
includes either {v,, v3} or {w,, w3}. We will argue that it must be the latter. Suppose
instead that {x, vy, v3} is in N (b) and {w,, w3} is not. In particular, if wr ¢ N (D),
then G — vz, w3 is planar, a contradiction. Similarly, if ws ¢ N (b), then G — vy, wy
gives a contradiction. This shows that it is not possible that {w,, w3} ¢ N(b), and
so we can assume {wp, w3} C N(b). Now G — vy, wy is planar unless b is adjacent
to y and G — v3, w3 shows z is adjacent to b as well, which means G is Nj;. O

Lemma 6.5. Let G be an (11,21) MMN2A graph with degree sequence (3%, 4°).
Then G is Nyj.

Proof. First assume that there exists a v € V(G) such that deg(v) = 4 and the two
vertices of degree 3 are neighbors of v. Then (G — v)* has degree sequence (32, 4%)
and is the Petersen family graph K4 4 — e, illustrated in Figure 8. Thus G —vis a
subdivision of K44 —e. Note that in G, vertex v is adjacent to both x and y. The
graph obtained from K4 4 — e when we remove v; and v; is illustrated in Figure 11.
Since v is adjacent to both x and y and the graph G — v, v1, v» can be obtained
from Figure 11 by only two subdivisions (the other neighbors of v), we see that
G — vy, vy is planar.
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v N
> < B > < L

Figure 12. There are two or four edges between V3 and Vj.

We can now assume that the two degree-3 vertices of G have no common
degree-4 neighbors. Let a be a degree-4 vertex that has a degree-3 neighbor. Then
G* = (G — a)® has degree sequence (34, 49).

If G* is not a simple graph, then, since it must be NA, by Theorem 1.4, itis a
Petersen family graph with an edge doubled. This means the Petersen family graph
is Py (Figure 6), the only one of order 9. The doubled edge is between two degree-3
vertices in that figure. Using symmetry, we can assume it’s vjw; that’s doubled.
In G one of these edges is subdivided to give a degree-3 vertex whose neighbors
are a, vy, and w,. None of these three are adjacent to the other degree-3 vertex,
which is therefore w; or v,. By symmetry, we can assume w; is the other vertex of
degree 3. In other words, G is formed from Py by adding a vertex b adjacent to v,
and w», and a vertex a with N(a) = {b, v, v3, w3}. Then G — vy, wy is planar, a
contradiction. So we can assume G* is a simple graph and G — a differs from it
only by subdivision of an edge.

Notice first that if G* has a degree-4 vertex v that has three or more degree-3
neighbors, then (G* — v)® has at most nine edges and five vertices and is planar.
We claim that there is a degree-4 vertex in G* that has two neighbors of degree 3.
Suppose not and let V3 denote the set of degree-3 vertices of G* and V, those of
degree 4. As the degree sums in the two parts are even, there are an even number
of edges between V3 and Vj. If there were six or more, then, by the pigeonhole
principle, one of the degree-4 vertices would have two degree-3 neighbors, which is
what we are trying to establish. If there were no edges in between, G* = K4 Ll K5
would be apex, a contradiction. So there are two or four edges between V3 and V.
(See Figure 12.) In either case, removing a degree-4 vertex that has a degree-3
neighbor will result in a planar graph.

So, let b € V(G*) be a degree-4 vertex with two degree-3 neighbors. Moreover,
a and b have a common neighbor, as otherwise b has two degree-3 neighbors in G.
Now, G* — b will be formed by subdividing two edges of a (6, 10) graph G’ having
degree sequence (3%, 4). Since our assumption implies that G’ is nonplanar, G’ is
one of the two graphs obtained by adding an edge to K3 3 (see Figure 13).

Assume that G’ is the K3 3 + e shown in Figure 13 (left). Since G was a simple
graph, there is at least one subdivision on one of the paired edges. This means b
is adjacent to the vertex resulting from that subdivision. Notice that G — v3, w3 is
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Figure 13. Two nonplanar (6, 10) graphs.

essentially a subdivision of the 4-cycle viwjvyw, along with two more vertices that
are not adjacent to one another. This graph is planar unless a and b are near the same
edge, which is incident to either vz or w3 in G’. On the other hand, by Lemma 2.4,
b must have independent paths to each of the branch vertices of G and this cannot
happen if it is near two different edges adjacent to v3 or w3. In other words, a and b
are adjacent to the same edge, which is one of the pair between v3 and ws.

Next, suppose a and b are adjacent to the same edge in the pair, but attached to the
edge at two different vertices formed by subdividing that edge twice. By Lemma 2.4,
b must have independent paths to each of the branch vertices of G’. Now, b is
adjacent to two vertices formed by subdivisions of G’ as well as two degree-3
vertices in that graph. This means that, in addition to one of the vsws-edges, b is
near an edge between two other vertices, say viwj. This gives b paths to four of the
branch vertices and shows that the other two vertices, v, and w,, are the remaining
neighbors of b.

Recall that G — a, b is obtained from G’ by exactly three edge subdivisions. If
a and b do not share a vertex on the v3ws; edge, it must be the vertex resulting
from subdividing v;w; that is common. But this means there is no way to attach
a to G’ so that it will have independent paths to all the branch vertices. So far, we
have subdivisions that show a is near a v3ws edge and viw;. The remaining two
neighbors would have to be v, and w,. However, these vertices then have degree 5
in G, contradicting its (3%, 4°) degree sequence.

We conclude that a and b attach at the same vertex of one of the paired edges
of G’. Then as above, we can assume that b is near the edge v;w; and adjacent to
vy and wy. Then those two vertices have degree 4 and are not adjacent to a. As
there remains a single subdivision of G, it must be on the edge v,w;. So, a is near
that edge, which forces a to be adjacent to v; and wj. This graph is Nyj.

Now assume that G’ is the simple graph K3 3 + e illustrated in Figure 13 (right).
The graph G’ — v3, shows us that both @ and b are near w;, wy, and w3. Similarly,
G’ — w3 shows us that they are near v3 and v,. Recall that b is adjacent to two of the
degree-3 vertices of G’ as well as two vertices formed by subdividing edges of G'.
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Suppose b is adjacent to v; in G — a. Then b is adjacent to one of the w; for
i €{l1, 2, 3}, and by symmetry, we may assume w;. Since b is also near the other
four vertices in G’, we may assume b’s other neighbors are vertices resulting from
subdivisions of the edges w,v, and vsws. Since a and b share at least one neighbor,
we may assume (without loss of generality) that a is adjacent to the same vertex
formed by subdividing w3v; of G'.

There must be an additional subdivision of G’ giving a neighbor of a. Since
A(G) =4, the remaining two neighbors of a are drawn from {w,, w3} and the vertex
on vyw, resulting from its subdivision. Suppose a is adjacent to w, and ws3. As it
must also be near v, and w, it is also adjacent to a vertex formed by a subdivision
of the edge v,w; in G’. However, in this case v, has two neighbors of degree 3,
a possibility ruled out at the beginning of the proof. This shows that, if a and b
share exactly one neighbor, then b is not adjacent to vy. A similar argument starting
with a instead of b shows that a is also not adjacent to vy, at least in the case where
a and b share exactly one neighbor.

On the other hand, if we assume that a shares two neighbors with b, we can
continue our search for a contradiction to the assertion that b is adjacent to v;. In
this case, the common neighbors are the two vertices formed by subdividing vow»
and v3ws and a is adjacent to exactly one of w, and w3, say ws. Now, a must be
near w; but if it is adjacent to a vertex formed by the subdivision of vjw; or v3w;,
we again have the case of a degree-4 vertex with two degree-3 neighbors (v; and v3
respectively). So it must be that a is adjacent to a vertex resulting from subdivision
of the edge wiv;. In this case, let x denote the common neighbor of @ and b that
is also a neighbor of v3 and ws. Then G — x, w3 is planar. This shows that b is not
adjacent to v;.

So we know that b is not adjacent to vy in G’. Then without loss of generality it
is adjacent to wy and ws. So, a is adjacent to w; or v;. If a is adjacent to vy, then
a shares two neighbors with b. In other words, the vertices created by subdivisions
in going from G’ to G — a, b that are neighbors of b are also neighbors of a. Since
both a and b are near wi, suppose they are adjacent to a vertex resulting from
subdivision of the edge viw;. Then since a is near w;, w3, vy, and v3, we may
assume a is adjacent to vertices resulting from subdivisions of the edges wyv;
and vzws and that b is adjacent to one of these. However, in either case G has a
degree-4 vertex with two degree-3 neighbors (v3 and v, respectively).

Suppose instead that a and b are adjacent to a vertex produced by a subdivision of
the edge vow;. (The symmetric case using the edge v3w; will be similar.) Since a
is near vs, it must be adjacent to a vertex formed by subdivision of the edge w,v3 or
w3 vs (the other two options will not allow a to be near both w, and w3). Without loss
of generality it is w3v3. Moreover, this forces b to share this neighbor as otherwise v3
will have two degree-3 neighbors in G. The final neighbor of a makes a near w,
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but cannot lie on v;w, or v3w; lest we again have a vertex of degree 4 with two
degree-3 neighbors. So a is adjacent to a vertex on the wov, edge. This is again Ny;.

Finally, assume that neither a nor b is adjacent to vy in G’, that b is adjacent
to wy and ws, and that a is adjacent to w;. The degree-3 vertices in G are then v,
and the one adjacent to a formed by a subdivision of an edge in G'. Then the two
subdivision vertices adjacent to b must also be adjacent to a. Since b is near wy,
assume first that b is adjacent to a subdivision on the edge vjw; in G'. Then the
only way to make b near both v, and v3 is by making it adjacent to a vertex formed
by subdividing that edge. As a is also adjacent to that vertex, there is no way to
make a near both w, and ws3. So without loss of generality b (hence a) must be
adjacent to a subdivision vertex on the edge vyw; (as the symmetric case where
a and b are adjacent to vzw is similar). Notice now that since a is near both w
and ws, either w; or w3 will share a degree-3 neighbor with a. However, since they
are both also neighbors of v, we know that G will have a degree-4 vertex with two
degree-3 neighbors and cannot be 2-apex. O

Proposition 6.6. If G is (11,21) MMN?2A, then G is in the Heawood family.

Proof. Assume that G is an (11,21) MMN2A graph. As we did in the previous
cases, we may assume that the maximum vertex degree of G is 6 or less. Further,
if G has more than one vertex of degree 6, then G is not MMN2A, since it must be
the case that one of the degree-6 vertices has a degree-3 neighbor and removing
such a vertex leaves one with a graph that simplifies to a graph that has no more
than 14 edges, hence is not NA by Theorem 1.4. This leaves us with the following
degree sequences to consider: (37, 53,6), (3%, 42,52,6), (3°,4%,5,6), (3% 49, 6),
(3%,4,5%), (3°,4%,5%), 3%,4°,5%), (3%,47,5), and (3%, 4°).

We can throw out the first three sequences, since it is clear that the degree-6
vertex must have a neighbor of degree 3 and we find ourselves in the same situation
as we were in at the beginning of this proof. Five of the remaining six sequences
do in fact lead to an MMN2A graph and are treated in the five lemmas above.

This leaves only the degree sequence (3%, 4, 5%). Suppose G is an MMN2A
graph with this degree sequence. Each degree-5 vertex v has at most one degree-3
neighbor as otherwise G — v simplifies to a graph of at most 14 edges and is not NA
by Theorem 1.4. This implies that the vertices of degrees 4 and 5, when considered
separately, induce a K5 subgraph, with four of the vertices having other neighbors
in G. Choose a, b € V(G) such that deg(a) = deg(b) = 5, and consider G — a, b.
Observe that the induced K5 subgraph becomes a K3 subgraph when a and b are
removed and only two of its three vertices have neighbors in the rest of G —a, b.
This means (G —a, b)* has nine edges, of which two are a double edge between the
two remaining K3 vertices. This graph is planar, which is a contradiction. Therefore
there is no (11, 21) MMN2A graph G with degree sequence (3%, 4, 5%). ]
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7. 10-vertex graphs

We prove that a (10, 21) MMN2A graph is in the Heawood family. This is a corollary
of the following proposition, originally proved in [Barsotti and Mattman 2013].

Proposition 7.1. Let G be a graph with either |V (G)| <8 or else |V (G)| < 10 and
|E(G)| <21. If G is N2A and a YV move takes G to G', then G’ is also N2A.

Proof. Since a graph of 20 or fewer edges is 2-apex [Mattman 2011], the only N2A
graph with |G| <7 is K7, which has no degree-3 vertices. So, the proposition is
vacuously true for graphs of order 7 or less.

Suppose G is N2A with |G| = 8. As discussed in [Mattman 2011], G must be
IK and we refer to the classification of such graphs due independently to Campbell
et al. [2008] and Blain et al. [2007]. There are 23 IK graphs on eight vertices, but
only four have a vertex of degree 3. In each case, a YV move on that vertex results
in K7, which is also N2A.

Again, graphs of size 20 or smaller are 2-apex. So, we can assume |G| = 21
and |G| > 9. If G is of order 9 and N2A, then, by [Mattman 2011, Proposition 1.6],
G is a Heawood family graph (possibly with the addition of one or two isolated
vertices). A YV move results in the Heawood family graph Hg or K7 LI K1, both of
which are N2A.

This leaves the case where |G| = 10. Assume G is a (10, 21) N2A graph that
admits a YV move to G’. For a contradiction, suppose G’ is 2-apex with vertices a
and b so that G’ — a, b is planar. Let vy be the degree-3 vertex in G at the center of
the YV move and vy, vy, v3 the vertices of the resultant triangle in G’. Since G is
N2A, it must be that {v;, v, v3} is disjoint from {a, b}. Fix a planar representation
of G’ — a, b. The triangle vivyv3 divides the plane into two regions. Let H; be
the induced subgraph on the vertices interior to the triangle and H, that of the
vertices exterior. Then |H| + |Hz| = 4. Since G is N2A, there is an obstruction
to converting the planar representation of G’ — a, b into a planar representation of
G — a, b. This means that both H; and H; contain vertices adjacent to each of the
triangle vertices {vy, vy, v3}. In particular, H; and H, each have at least one vertex.

Suppose |H;| = |H,| = 2. The graph G — b, v; is nonplanar, but its subgraph
G —a, b, v is essentially a subgraph of G’ — a, b (with the addition of a degree-2
vertex vy on the edge vpv3) and we will use the same planar representation for
G —a, b, v; that we have for G’ —a, b.

Since G — b, v; is not planar, there’s an obstruction to placing a in the same
plane. If we imagine putting a outside of a disk in the plane that covers G —a, b, vy,
we see that there is some vertex w in an H; that is hidden from a. That is, although
there’s an edge aw € E(G), there is no path from a to w in the plane that avoids
G — b, v;. It follows that there’s a cycle in G — b, v; with w in the interior and a
on the exterior of the cycle.
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Without loss of generality, the hidden vertex w isin V (H1) ={c1, d1}, say w =c;.
This means we can assume that c;v,djvs is a 4-cycle in G, which, in the planar
embedding of G’ — a, b, is arranged with ¢; interior to the cycle v,d;vs. However,
since G’ — a, b is planar, this means c; is also hidden from vy and c¢jv; is not an
edge of the graph.

A similar argument using G — b, v, allows us to deduce a 4-cycle cyv1d,v3 using
the vertices ¢, and d, of H, while showing covy ¢ E(G). However, it follows that
G — b, vs is planar, a contradiction.

So, we can assume | H; | = 3, while H, consists of the vertex ¢, with {vy, v, v3} C
N (c2). Suppose H; also has a vertex, c1, that is adjacent to all three triangle vertices.
As G — b, v; is nonplanar, there’s a vertex d; of H; that is hidden from a such
that c;vodjvs is a cycle in G and djv; ¢ E(G). Similarly, G — b, v, shows that
civiervs is in G and e v; is not, e being the third vertex of H;. Now, G — b, v3
will be planar unless dije; € E(G). However, in that case, contracting dje; shows
that G’ — a, b has a K3 3 minor and is nonplanar, a contradiction.

In fact, the argument just given shows that there must be such a vertex ¢; € V (H))
adjacent to all triangle vertices. That is, for G — b, v to be nonplanar requires
x1,x2 € V(H)) so that xjvyxpv3 is a cycle, while G — b, v, gives vertices yi, y»
that form a cycle yjvyy,v3. Since |H;| = 3, there are i, j so that x; = y; and that
vertex is adjacent to all v; withi =1, 2, 3.

We’ve shown that assuming G’ is 2-apex leads to a contradiction. Thus, the
proposition also holds in the case |G| = 10, which completes the proof. O

Corollary 7.2. If G is a (10, 21) MMN?2A graph, then G is in the Heawood family.

Proof. Suppose G is (10, 21) MMN2A. Recall that §(G) > 3 as otherwise a vertex
deletion or edge contraction on a small-degree vertex gives a proper minor that is
also N2A.

In [Mattman 2011], we showed that a graph of order 9 is MMN2A if and
only if it is in the Heawood family. So, if G has a degree-3 vertex, then apply
a YV move at that vertex to get a graph G’. Then, by Proposition 7.1 and the
classification of MMN2A graphs of order 9, G’ is Heawood, whence G is too. So,
we can assume §(G) > 4, which means the degree sequence of G is either (48, 5%)
or (4°, 6).

Suppose there are vertices a and b such that |G —a, b|| = 11. Then at least one
of a and b has degree 5 or 6. Since §(G) = 4, we have that §(G —a, b) > 2 and
G —a, b is one of the graphs of Figure 14. In all three cases, both a and b must
be adjacent to both v3 and ws. For if, for example, a and v3 are not adjacent, then
G — b, w3 would be planar. But, if a and b are adjacent to both, then v3 and w3
also have degree 5 in G, which contradicts the two given degree sequences for G.
We conclude there is no choice of a and b such that |G —a, b|| = 11.
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Figure 14. The three nonplanar (8,11) graphs of minimum degree
at least 2.

This means G must have degree sequence (4%, 5%) with the two vertices of
degree 5 adjacent and G —a, b an (8, 12) graph. There are two cases depending on
whether or not @ and b have a common neighbor in G. Suppose first that c is adjacent
to both a and b. In G —a, b, vertex ¢ will have degree 2 and we can contract an edge
on ¢ to arrive at either a (7, 11) graph or else a multigraph with a doubled edge. Re-
moving the extra edge if needed, let H denote the resulting (7, 11) or (7, 10) graph.

If H is (7, 10), it is one of the two graphs of Figure 15. In the case of the
graph on the left, the doubled edge must be that incident on the degree-1 vertex as
8(G —a, b) > 2. But then the vertex labeled v; in the figure will have degree 5 in
G —a, b, contradicting our assumption that a and b were the only vertices of degree
greater than 4. So, we can assume H is the graph to the right in the figure. Up
to symmetry, the doubled edge of H is either uvy, viw,, or vow,. We’ll examine
the first case; the others are similar. Doubling uv; and adding back c leaves v; of
degree 4 in G—a, b. Then G —a, b, vy simplifies to K3 3—v;. Since wy, wy, and w3
all have degree 3 in G — a, b, they each have exactly one of a and b as a neighbor
in G. Suppose a is adjacent to wp. Then G — a, v; is planar, contradicting G
being N2A. For the other two choices of edge doubling, one can again delete a
resulting degree-4 vertex along with a or b to achieve a planar graph. So H being
(7, 10) leads to a contradiction.

v3 w3 U3 w3
%) %) wa %)
U] wi vy U w
u

[}

Figure 15. The two nonplanar (7,10) graphs of minimum degree
at least 1.
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Figure 16. The five nonplanar (7,11) graphs of minimum degree
at least 2.

If His (7,11), then 6(H) = 6(G —a, b) > 2 and H is one of the five graphs of
Figure 16. Here we use a similar approach. Deleting one of the degree-4 vertices
of H, call it x, results in a graph G — a, b, x that simplifies to K33 — v;. Since
each of the degree-3 vertices of H is adjacent to exactly one of a and b, there will
be an appropriate choice from those two, say a, such that G — a, x is planar, which
is a contradiction. So, H being (7, 11) is not possible and we conclude that there
is no such vertex c that is adjacent to both a and b.

This means that G — a, b is a nonplanar cubic graph (i.e., 3-regular) on eight
vertices. There are two such graphs, shown in Figure 17. If G — a, b is the graph
to the left in Figure 17, note that the vertex labeled v is adjacent to exactly one of
a and b, say a. Then G —a, w is planar.

U1 V2

Ug U3

1% V4

Ve Us

Figure 17. The two nonplanar cubic graphs of order 8.



620 JAMISON BARSOTTI AND THOMAS W. MATTMAN

Finally, assume that G — a, b is the graph to the right in Figure 17. Note that
each vertex of G — a, b is adjacent to exactly one of @ and b in G. If a and b are
adjacent to alternate vertices in the 8-cycle (for example if {v, vs, vs, v7} C N(a)
and {v;, v4, vg, vg} C N (b)), we obtain graph 20 of Figure 1, a Heawood family
graph. If not, then we must have two consecutive vertices, say v; and vy, that share
the same neighbor in {a, b}, say a. That is, we can assume avy, av; € E(G). Then
G — a, v3 is planar, contradicting G being N2A.

In summary, if G of order 10 is N2A with §(G) > 3, it must be graph 20 of the
Heawood family. 0
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Mathematical modeling of
a surface morphological instability of
a thin monocrystal film in a strong electric field

Aaron Wingo, Selahittin Cinar, Kurt Woods and Mikhail Khenner

(Communicated by Natalia Hritonenko)

A partial differential equation (PDE)-based model combining the effects of
surface electromigration and substrate wetting is developed for the analysis of the
morphological instability of a monocrystalline metal film in a high temperature
environment typical to operational conditions of microelectronic interconnects
and nanoscale devices. The model accounts for the anisotropies of the atomic
mobility and surface energy. The goal is to describe and understand the time-
evolution of the shape of the film surface. The formulation of a nonlinear parabolic
PDE problem for the height function A (x, ¢) of the film in the electric field is
presented, followed by the results of the linear stability analysis of a planar surface.
Computations of a fully nonlinear evolution equation are presented and discussed.

1. Introduction

The drift of ionized adsorbed atoms (adatoms) on a metal or semiconductor crys-
tal surface due to their interaction with the “electron wind” is termed surface
electromigration. The “wind” force on adatoms is the effect of a high-density
direct current through the bulk of a crystal, which also heats up the surface —
thus increasing the adatoms’ own kinetic energy. It is this combination that makes
adatoms drift. Surface electromigration was studied theoretically in connection to the
grain-boundary grooving in polycrystalline films [Averbuch et al. 2001; Maroudas
1995], the kinetic instabilities of crystal steps [Chang et al. 2006; Debierre et al.
2007; Stoyanov 1997], morphological stability of thin films [Dobbs and Krug 1994;
Krug and Schimschak 1997; Barakat et al. 2012; Khenner 2013], and recently, as a
way to fabricate nanometer-sized gaps in metallic films — suitable for testing of the
conductive properties of single molecules and control of their functionalities [Barnes
et al. 2010; Bolotin et al. 2007; Block et al. 2006]. Although the phenomenon of
electromigration has been known for over 100 years, it became of practical interest
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in 1966 when the first integrated circuits became commercially available. It is
considered a key factor in determining the reliability of integrated circuits.

As we just mentioned, one recent technological application of electromigration
is the fabrication of the nanoscale contacts (gaps) that are manufactured from the
thin Ag films wetting the Si substrate [Barnes et al. 2010; Bolotin et al. 2007; Block
et al. 2006]. The gap between contacts can be cyclically opened and closed. To
open the contact, a strong electric current is applied at a low temperature of the
film (~80 K), which enables the surface mass flow of adatoms across the narrow
bridge, thus connecting the anode and the cathode, until the bridge breaks. To close
the contact, the natural surface diffusion of adatoms across the gap is enabled by
heating the film to the room temperature, all the while keeping the electric current.

Another example, more relevant to the present study, is a faceting of the initially
planar surface of a crystalline thin film upon passing the current along the substrate.
This way the so-called quantum wires can be fabricated [Dai et al. 2014]. Since the
cross-section of a quantum wire is only a few nanometers, it possesses very special
electronic properties, which makes it desirable for integration into nanoscale devices.

Here we further develop the PDE-based mathematical model of the film-surface
morphological instability and evolution driven by the electromigration [Khenner
2013]. The very special feature of the presented model is that it accounts both for
the wetting and the surface energy anisotropy effects. The surface morphological
instability and evolution in a thin film system where the wetting, anisotropy, and elec-
tromigration are active have not been addressed theoretically, although PDE-based
models of wetting and anisotropy [Davis et al. 2004; Gill and Wang 2008; Khenner
2008a; 2008b; Khenner et al. 2011], wetting and electromigration [Khenner 2013],
and electromigration and anisotropy [Barakat et al. 2012] have been published.

The wetting effect emerges due to the existence of the attractive force between the
adatoms and the substrate atoms; this force is nonnegligible because of the very small
thickness of the film (4 ~ 10 nm). The surface-energy anisotropy effect emerges due
to the crystal nature of the film surface. The combination of the two effects results
in a complicated nonlinear evolution PDE. We use the approach of [Khenner 2013]
to build and analyze the model with the added anisotropy effect; first, the governing
PDE is derived, and then we analytically obtain the stability regions of the planar
surface in the space of the physical parameters and, for the values of the parameters
such that the planar surface is unstable, compute the evolution of the small, one-
wavelength surface perturbation on a periodic domain. The typical evolution scenar-
ios, such as the evolution to a steady-state or the lateral surface drift, are presented.

2. Problem statement

We assume a simple one-dimensional geometry, where the surface is an open curve
(without overhangs) in the xz-plane, described by a function z = h(x). Since the
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Figure 1. Sketch of the film surface & (x, t) in the horizontal, constant
electric field E. Here Ej,. = E cos 6 is the projection of E on the
surface. The surface atomic flux j is in the direction opposite to Ejqc.

curve deforms with time, 4 is also a function of time 7; that is, z = h(x, t). As is
common in physics literature, the curve A(x, t) is termed the film surface in the
following, despite being a one-dimensional object.

Following [Khenner 2013], we focus on the case of the horizontal electric field
(directed along the substrate and the initially planar film surface i (x, 0) = const.).
As was stated in the Introduction, we will incorporate the effects of substrate wetting
by the film [Khenner 2008a], the anisotropy of the diffusional mobility M (9) [Krug
and Schimschak 1997], and weak anisotropy of the surface energy y (8) [Liu and
Metiu 1993], where 0 is the angle that the unit normal n to the surface makes with
the vertical coordinate axis z. From the mathematical standpoint, these effects will
manifest in our model through various linear and nonlinear terms in the parabolic
PDE for h(x,t). The physicomathematical framework in which our model is
firmly rooted has been established, beginning in 1960s, through the efforts of many
prominent materials scientists, physicists, and mathematicians [Mullins 1963; Cahn
et al. 1992; Cahn and Taylor 1994; Di Carlo et al. 1992; Dobbs and Krug 1994;
Liu and Metiu 1993; Davis et al. 2004]. The mathematics of the accounting for the
relevant physical effects are summarized below, and the physical foundations, as
well as further mathematical detail, can be found in the cited papers. To illustrate the
effects of the electromigration on film morphology, Figure 1 depicts two directions
of the electric field. In Figure 1 (left), the electric current forces the adatoms
downhill (from the crest to the trough); thus the surface becomes more planar with
time. In Figure 1 (right), the field in the opposite direction forces the adatoms uphill
(from the trough to the crest) and thus the surface becomes less planar. This is the
instability mechanism that we are investigating in this paper.

The dimensionless PDE governing the evolution of % (x, t) has the form

he=B[M(h)(1+h2) "] + A[M ) +03) 2] €]

In (1), B > 0 is the effective diffusivity of adatoms and A > 0 is the strength of the
electric field. The first term on the right-hand side stems from the natural diffusion
of adatoms (in the absence of the electric current) on a heated crystal surface. The
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meaning of this term is that relocation of adatoms through diffusion changes the
shape of the surface. It was first derived by Mullins [1963] in what is now considered
the classical work. Similarly, the second term stems from the forced diffusion (drift)
of adatoms caused by the electromigration force. It was derived in several papers,
including [Dobbs and Krug 1994; Krug and Schimschak 1997; Khenner 2013]. The
surface chemical potential i (x, ¢) entering the Mullins term contains, in our model,
the contributions from wetting (through the dependence of the surface energy y on
the film thickness /; see (3) below) and anisotropy. The expression for w(x, ) reads

w=y+yo0)k+(h—heyne)cost,  cosf=(1+h) 72 k=—he (1+h) 72,

()
Here « is the curvature, and y (%, 6) is the weakly anisotropic film-surface energy
(tension):

y(h,0)=1+¢€,cos40 + (G —1—¢, cos 49)e_h, 6 = arctan i, 3)

where G > 1and 0 <¢, < % are the parameters; G is the ratio of the (dimensional)
substrate energy to the (dimensional) surface energy, and €, is the strength of the
anisotropy. The interval for €, implies that the “stiffness” y +ypg is larger than 0 for
all  in (2) when y =y (0) = 1+¢, cos 40 (the four-fold anisotropy typical for most
semiconductor and metal crystals). This implies a negative effective “diffusivity” o
in the linearized PDE (1) (for A = 0): h; = a1 hyxxx, Where @; < 0. Such a linear
PDE is well-posed; i.e., it is forward parabolic. If €, > % (strong anisotropy, typical
at comparatively low temperatures), then the PDE is backward parabolic for some
f-intervals and the regularization is required; usually the curvature-squared term
is added to y (@) [Di Carlo et al. 1992], which raises the PDE order from the fourth
to the sixth. In the presence of the electric current, the crystal temperature is high
due to Joule heating, which justifies the restriction of the consideration to mild
anisotropy. The choice G > 1 means that only wetting films are considered; i.e.,
the substrate energy is larger than the surface energy. Thus dewetting, meaning the
substrate exposure, may occur only through the application of the external force,
such as the electromigration.

The form of (3) results from the consideration of the conventional “two-layer”
model for the film energy; for the discussion of that model see, for instance, [Davis
et al. 2004] and the references therein. The parameters and their typical range of
values are displayed in Table 1. Notice that the classical Mullins model assumes
y = const. (the isotropic case without the wetting effect); thus the chemical potential
reduces to u = y«. The form of the wetting potential contribution to the surface
energy, (yn —hxYne) cos 8, is well established and is taken from [Davis et al. 2004].

In reference to the electromigration term in (1),

1 + B cos?(N (arctan hy + ¢))

M(ho) = 1+ B cos2(N¢g)

,  where B, N, ¢ =const., (4)
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Physical  Typical

parameters  values Range Physical meaning
B 8 fixed effective adatoms diffusivity
M(0) 1 fixed adatoms mobility on the horiz. surface
hg 3 0<hy<20 initial height of the film (same for all x)
A 72 10 <A <1000 strength of the electric field
G 2 1 <G <100 ratio of the substrate energy to the surface energy
M’ (0) -3 —10<M’(0) <0 derivative of adatoms’ mobility on the horiz. surface

Table 1. Values of the dimensionless physical parameters. The def-
initions of these parameters in terms of the dimensional quantities
can be found in [Khenner 2013; 2008b; Khenner et al. 2011]. The
typical values in the second column result from the substitutions in
these expressions of the published standard values of the dimensional
parameters [Mullins 1963; Maroudas 1995; Dobbs and Krug 1994;
Krug and Schimschak 1997; Davis et al. 2004; Liu and Metiu 1993],
which have been measured in the experiments.

is the anisotropic diffusional mobility (notice that the denominator of the fraction
is a constant value for the given nonnegative parameters 8, N and ¢); here 8 is
the anisotropy strength, N is the number of crystallographic symmetry axes and
¢ is the angle between a symmetry direction and the average surface orientation.
In this paper, B varies (resulting in a variation of M’(0); see Table 1), N =4, and
¢ =m/16. Notice that M (0) =1 for any 8, N, ¢. Equation (4) is taken from [Krug
and Schimschak 1997].

Next, we begin by linearizing M (h,) about h, = 0; i.e., we write M (h,) =
M (0) + M’ (0)h,, where M (0) and M’(0) will be later calculated from (4) for given
B, N and ¢ (see [Khenner 2013]). Then

M) _ M),

=M O,y 5
™ o, 0) (5)

and (1) now reads
he=BM' (0)he(1+h3) ™21y + BIM©0) + M (O)h)[(1+13) " Py ]
+ AM' (Ohe (141372 + AM ) + M' O ) [(1+1DTV] . (6)

In order to compute u, in (6), we first calculate ygg, ¥i, Yno using (3). Then we
substitute these expressions in (2), use the trigonometric identities

cosdb = 8(00549 — 00529) +1, sind46 =4sinfcosd(2 cos’6 — 1),

(where cos = (1 + h2)~1/2 and sin® = h, (1 + h2)~!/2) and obtain w(x,t) in
terms of /., h)zc, hyx, etc. We then substitute p(x, ¢) into (6) and the remaining
differentiations are performed.
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Finally, we employ the small-slope approximation. The spatial derivatives are
replaced as 3/9x* — €%3/3x¥, the coefficients of the powers of € are collected,
and all but the coefficients of €X, k =1, 2, 3, 4, are set to zero. Then, € is set equal
to 1. This results in the fourth-order, nonlinear PDE for A (x, t):

hy=BM(0)(15¢, — 1 + (1 — G — 15€,)e ") hyrxs
+ (AM'(0) — BM(0)(1 — G +€,)e ")y @)
— Ahy (M(0)hy + 30T M'(0)) + Be " F,
where
F=MOhi(1-G+e)—2M 0)hihe(1 -G +e,) — MO (1 -G —Te,)
+ MO)h3(1—G+€,) +SMOih (1 — G —2e))
—3M(0)hherc(1 — G — 15¢)) —2M(0)h% (1 — G —15¢,).  (8)

The first and second lines of (7) are composed of the linear contributions, while
all terms in the third line are nonlinear (i.e., they are proportional to the products
of the spatial derivatives of /). The terms in the first line emerge due to the natural
diffusions of adatoms, mediated by a surface/substrate-interaction force, on a heated
crystal surface with anisotropic surface energy. In the second line, the linear term that
is proportional to B is also due to the natural diffusion mediated by the wetting effect,
while another linear term there that is proportional to A is due to the electromigration
drift of adatoms. In the third line, the two terms that are proportional to A also are
due to the electromigration. Finally, the last contribution in the third line, Be "F,is
the nonlinearity produced by the substrate wetting effect. This contribution, as well
as the linear terms that are proportional to e " in the first and second lines of (7), drop
out in the limit of a thick film, # — oo, where the film surface/substrate-interaction
force vanishes. When €, = 0, equations (7) and (8) are reduced to [Khenner 2013,
(15)]. In the following, it is important that the coefficients of the linear terms are
negative, due to negativity of M’(0) and weak anisotropy, 0 < €, < %

2.1. Example: analysis of a linear second-order PDE. Equation (7) is a well-
posed, fourth-order, nonlinear parabolic PDE. The prototype linear fourth-order

parabolic PDE is
hi = a1hyxxx +a2hyy,  ap, a2 <O0. 9)

This equation has the trivial solution & (x, t) = hg = const. In the physical context,
this solution corresponds to a constant-height film for all values of x and ¢, that is, a
film with a planar stationary surface. We call such a solution an equilibrium surface.
The key issue is whether the equilibrium is stable or unstable with respect to small
perturbations & (x, ¢). This can be settled by substituting &7 = ho + & (x, t) and then
assuming £(x, t) is a single Fourier mode: £(x,t) = &e® e'**, where & is the
amplitude, w (k) is the growth rate, and k is the wavenumber. (The wavelength, or
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wmax
0
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Figure 2. Two cases of the typical growth rate w (k). Left: long-
wave instability. Right: stability, w (k) < O for all k.

the spatial period, is . =2/ k.) Then one obtains the expression for the perturbation
growth rate as a function of the wavenumber, the so-called dispersion relation

w (k) = a1k* — ark>. (10)

For small &, the second term is dominant in this expression. For large k, it is the
first term. Since oy < 0, perturbations with small wavenumbers (large wavelengths)
grow (w (k) > 0); because «; < 0, perturbations with large wavenumbers (small
wavelengths) decay (w (k) < 0). This is reflected in the shape of the curve w (k) (see
Figure 2 (left)), and correspondingly the instability is termed the long-wavelength
instability. All perturbations with wavenumbers in the interval 0 < k < k. grow, and
all perturbations with wavenumbers greater than k. decay; k. is termed the instability
cut-off wavenumber. The surface is unstable with respect to long-wavelength
perturbations, and it is stable with respect to small-wavelength perturbations. In
practice, the perturbation (induced, for instance, by a thermal noise) is not a single
Fourier mode. However, most perturbations can be represented by a superposition
of Fourier modes. Thus some modes grow and some decay. Among the unstable
modes, there is a mode with the largest growth rate, wyax. This most dangerous
mode will dominate over other modes shortly after the surface is destabilized,
resulting in a surface deformation of the form A(x, t) = hg + &pe“" cOS kpmaxX.
Here, knax is the wavenumber for which @ = wpmay, 1.€., the maximum of w (k) on
the interval 0 < k < k.. In other words, k. is the positive solution of dw/dk = 0.

It is easy to show that for (10), we have kpax =k / /2. First, we set the right-hand
side of (10) to zero and solve for k:

wk)=—mk*+a1k*=0 = K (—ar+a1k>)=0 = k=0 or k== /0.

Since we need a positive solution, k. = /o /1. To determine kp,x, we solve
dw/dk = 0 for k; that is,

—2ak+4oa kP =0 = 2k(—a2+2a1k2) =0 = k=0 or k=xar/20;.
Again we take the positive solution. Thus, kmax = /o2/201 = ke/~/2.
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Notice that the parameter «; in (9) cannot be positive. Otherwise, the short-
wavelength perturbations will grow, which is not physically permissible, since
in this case the surface is always unstable — such perturbations would be always
present in the spectrum. However, an instability is not universal, and most material
surfaces remain planar. Mathematically, (9) in the case of &1 > 0 is ill-posed; despite
its higher order, it is similar to the (ill-posed) backward heat equation i, = —h,.
However, the parameter o, may be positive for some physical parameters’ values.
Then w (k) is negative for all k£ (Figure 2 (right)), meaning that all perturbations
decay and the surface restores its initial planar shape.

Equations such as (7) are nonlinear; thus the exponential growth of the most
dangerous mode will not continue forever. Nonlinear terms in the equation will
dampen growth, which usually results in a stationary, nontrivial solution which has
the spatial form resembling the large-amplitude cosine curve. Determination of the
stability of (7) and the form of the stationary solution will be discussed next.

3. Linear stability analysis

The dynamics of the film surface are governed by the nonlinear PDE (7). Toward
our goal of determining stability of the surface with respect to small perturbations,
we notice that (7) has the equilibrium solution &2 = hg = const., and we linearize
about this solution along the lines described above for (9). First, using the general
small perturbation &(x, ¢), we substitute 7 = hg + & (x, t) in (7) and retain only the
linear terms in &£. Then, we substitute £ = £ye® e'**, calculate the partial derivatives
and divide out the factor &ye®’. This results in the dispersion relation

w(k) = —BM(0)((G — 1+ 15¢,)e™" + 1 — 15¢, )k*
— (BM(0)(G —1—¢,)e ™+ AM'(0))k*. (11)

3.1. Analysis of the dispersion relation (11). In this section we determine how
the physical parameters of the problem affect the surface instability.

As we explained in Section 2, if w(k) < O for all &, then the surface is stable
with respect to the perturbations of any wavenumber (Figure 2 (right)). When
this condition does not hold, the surface is long-wave unstable (Figure 2 (left)).
The degree of the instability is measured by the width of the domain under the
dispersion curve w (k). That is, the larger the cut-off wavenumber k. is, the stronger
the instability.

We notice that the dispersion relation (11) has the form of (10) and thus we
identify

a1 =—BM(0)((G — 1 +15¢,)e™™ +1—15¢,),

@y =BM(0)(G—1—¢))e ™+ AM'(0).
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to zero (isotropic evolution). The same strategy with regard to
parameters is followed in Figures 4 and 5.
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Then the expressions for k., kmax and wmax are

BM(0)(1— G — 156, + (156, — elo)” "™~ /3

\9)

_\/ AehoM'(0) + BM(0)(G — 1 —¢,) ke

(12)
1 (AehoM'(0) + BM(0)(G — 1) — BM(0)e, )’

" 4 BM(0)e"(G — 1+ 156, + (1 — 15, )eh0)

Wmax

The wavelength of the most dangerous perturbation is Amax = 27/ kmax-

The expressions for k., kmax and wpax include new contributions due to the
surface energy anisotropy (the terms proportional to €, ).

The film stability decreases with increasing hg, and this trend saturates around
ho =5.12nm (Figure 3(a)). This is because the film wets the substrate and thus the
attractive, cohesive force between the adatoms and the substrate atoms is stronger for
thinner films (smaller /(). Increasing the electric field strength A also makes the film
less stable, but increasing G makes it more stable, since the substrate energy provides
a stabilizing effect (Figures 3(b)—(c)). The stability of the film decreases with increas-
ing |[M'(0)| and €, (Figures 3(d)—(e)). The results in the panels (a)-(d) and (f)—(i)
were obtained also in [Khenner 2013]; here these results are recomputed from (7).
The results in the panels (e) and (j) are new; they stem from the new feature of the
extended model: the accounting for the mild anisotropy of the film-surface energy.

4. Numerical solution of equation (7)

Using the information from the previous section on how the physical parameters
affect the surface stability, in this section we compute the full nonlinear PDE (7) by
implementing the method of lines (MOL) [Verwer and Sanz-Serna 1984; Schiesser
1994] in Mathematica [Wolfram 2016]. The MOL is a technique for solving partial
differential equations by discretizing in all but one dimension, and then integrating
the semidiscrete problem as a system of ordinary differential equations (ODEs).
A significant advantage of the method is that it allows us to use the sophisticated
general-purpose software [Hairer and Wanner 1999; Brown et al. 1989] that has been
developed for numerically integrating large systems of ODEs. For the parabolic
initial-boundary-value problems, the MOL typically is very efficient and accurate.
Sophisticated adaptive MOL methods were also developed for some hyperbolic
equations [Saucez et al. 2001].

The initial condition is the perturbation of & = hg, and the boundary conditions
are periodic:

h(-x7 O):h0+8005(kmaxx), h(os t):h()“max,t), h/(()’ t):h/()‘max’t)’ (13)

where § is a small amplitude (we take § = 0.01). Periodic boundary conditions
are used since the goal is to compute the evolution of a finite section of a periodic,
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laterally unbounded surface. Notice that A(x, 0) is the most dangerous (fastest
growing) unstable perturbation according to the linear stability analysis in Section 3.

Evolution of the perturbation is computed until the steady-state solution emerges.
The steady-state solution is either a stationary or a traveling wave of wavelength A«
and constant amplitude. The amplitude and wave speed are studied as a function
of the parameters A, ho, G, M'(0), and €, . It is important to emphasize here that
the traveling wave is a nonlinear effect (which was overlooked in [Khenner 2013]);
indeed, the perturbation growth rate w (k) is real-valued (see (11)), indicating the
absence of a linear traveling wave. In computations, the profile started to shift
laterally only when the amplitude of a cosine-like perturbation became fairly large,
indicating that nonlinearities in (7) are responsible. Another important observation
is that for thick films, 4 > 1, the wave speed is zero; thus the traveling wave solution
is caused by the nonlinear effect of substrate wetting, which is described by the term
Be™""F in (7). The lateral drift of surface perturbations has been noted previously
in surface electromigration problems; for instance, the drift is the hallmark of [Krug
and Schimschak 1997], where it is caused by the nonlocality of the electric field.

Two sets of simulations are conducted, at different film heights: hgp = 3 and
ho = 10; when one parameter is varied, other parameters are fixed to their typical
values in Table 1. In addition, the height is also varied with all other parameters
fixed. The results are displayed in Figures 4 and 5.

Figures 4(a)—(b) show the effect of varying the film height on the amplitude and
the wave speed. Both graphs show the sharp decreases and then the amplitude levels
off, while the wave speed vanishes at hy & 7. The decrease of the wave amplitude
and speed is expected, since the wetting potential and the corresponding driving
force decay exponentially as the film thickness increases.

As seen in Figures 4(e) and 5(e), as the electric field parameter A is increased, the
amplitude is decreased and then it levels off. As the graph is the same, we conclude
that the dependence of the amplitude on A is unaffected (or is affected very weakly)
by the height changes and by the traveling surface wave. Changing A affects the
wave speed in a more complicated manner. As Figure 5(f) shows, increasing the
strength of the field initially dampened the wave speed, but with further increase of
the field, the wave speed also increases. The latter behavior is expected, since the
strong field implies a fast adatoms drift. We will be looking into the reason for the
initial wave speed decrease.

Figures 4(c) and 5(a) show that increasing the anisotropy strength €, makes the
amplitude smaller. The wave speed, however, increases with the increase of €,,, as
shown in Figure 5(b). The amplitude variation is primarily affected by €, and the
simultaneous height changes make little difference.

In Figure 5(g), the amplitude increases only very little as the ratio of the ener-
gies G increases. (At hg = 10, the amplitude value stays constant (= 0.65) as G is
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Figure 4. Graphs (a)—(b) show the effects of varying ig on the
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here iy = 10, i.e., the film is thick. As is displayed in (b), for thick
films the wave speed is zero.

varied; thus this graph is not shown in Figure 4.) In Figure 5(h), the wave speed
increases as G increases.

Increasing the absolute value of the diffusional mobility derivative, |M'(0)],
results in the decrease of the amplitude and wave speed, as shown in Figures 4(d),
5(c) and 5(d). Once again we notice that the height variation does not seem to affect
the trends that M’(0) places on these characteristics.

Notice from the graphs of the amplitude in Figures 4 and 5 that the amplitude
never reaches the value of A, that is, 3 or 10. This means that the film’s local
height is not zero, and therefore the film does not dewet the substrate. In other
words, the film continuously covers the substrate at all times— the substrate is
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not exposed, despite the application of the electromigration. This can be expected,
since the electric field is applied along the substrate, rather than across it. In the
latter situation the film is more likely to dewet [Khenner 2013].

These results give insights into the complicated nonlinear dynamics of a film
surface. Importantly, even though increasing A, €, and |[M’(0)| results in the
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decrease of the amplitude, the initial state of § = 0.01 is never reached. Thus at all
times ¢ > 0 the surface is always more deformed than it is initially.

The amplitude trends shown in Figures 4(a),(d),(e) and Figures 5(c),(e),(g)
confirm the results obtained previously in [Khenner 2013]. The results for the
amplitude and wave speed in other panels of these figures are new. As we noted
above, the traveling wave solution was overlooked in [Khenner 2013] and thus the
dependence of the traveling wave speed and amplitude on parameters, including
the new parameter, i.e., the strength of the anisotropy €,,, was not computed there.

5. Conclusions

We performed the analysis of the partial differential equation model of the surface
morphological evolution affected by electromigration, assuming a wetting solid
film with the mildly anisotropic surface energy.

The linear stability analysis shows that the stability of the base planar state of the
surface decreases with the increasing film thickness 4, the electric field strength A,
the derivative of the diffusional mobility |M’(0)| and the anisotropy strength ¢, .
The stability increases with increasing the ratio G of the substrate energy to the
film energy, or equivalently, increasing the strength of the intermolecular attractive
force between the adatoms and the atoms of the substrate.

We used the method of lines to numerically solve the fully nonlinear PDE. This
way we found two outcomes of the surface evolution: the stationary wave relief
for thick films, and the traveling surface wave (the surface drift) for thin films. We
illustrated how all other physical parameters affect the amplitude of either wave
(stationary or traveling), as well as the wave speed of the traveling wave. Our results
also hint that there is no combination of the physically admissible parameters’ values
for which the film dewets the substrate.

Our numerical studies are on the periodic one-wavelength domain x € [0, Amax],
and we used the cosine curve with the small initial amplitude to perturb the (constant)
initial height. Future work will be focused on computing the evolution of a small
random perturbation on the large periodic domain comprising many wavelengths. In
this setup, the coarsening of the initial perturbation can be studied and predictions
can be made about the pattern formation on the surface.
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Jacobian varieties of Hurwitz curves with
automorphism group PSL(2, g)

Allison Fischer, Mouchen Liu and Jennifer Paulhus

(Communicated by Nigel Boston)

The size of the automorphism group of a compact Riemann surface of genus g > 1
is bounded by 84(g — 1). Curves with automorphism group of size equal to this
bound are called Hurwitz curves. In many cases the automorphism group of
these curves is the projective special linear group PSL(2, g). We present a
decomposition of the Jacobian varieties for all curves of this type and prove that
no such Jacobian variety is simple.

1. Introduction

Let X be a compact Riemann surface of genus g (henceforth called a “curve”),
and G its automorphism group with identity element denoted idg. A result of
Wedderburn gives the decomposition of the group ring QG,

QG = P M, (A,

where M, (A;) denotes n; x n; matrices with coefficients in a division ring A;.
It is possible to decompose the Jacobian variety, JX, of the curve X into abelian
varieties, up to isogeny ~, as

JX ~ EB (e; (JX))", (1)

where ¢; are certain idempotents in End(JX) ®z Q. More details about this de-
composition may be found in [Paulhus 2008]. It is important to note here that this
decomposition may not be the finest possible decomposition. Some of the abelian
variety factors e; (JX) could decompose further.

Decomposable Jacobian varieties have applications to rank and torsion questions
in number theory [Howe et al. 2000; Rubin and Silverberg 2001]. In genus 2,

MSC2010: 14H40, 14H37, 20GO05.
Keywords: Jacobian varieties, Hurwitz curves, projective special linear group, representation theory.

639


http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2016.9-4
http://dx.doi.org/10.2140/involve.2016.9.639

640 ALLISON FISCHER, MOUCHEN LIU AND JENNIFER PAULHUS

the elliptic curve factors appearing in these decompositions have interesting arith-
metic properties (see [Cardona 2004; Earle 2006; Magaard et al. 2009], among
many others).

The dimension, as an abelian variety, of the factor e;(Jx) in (1) is %(1//,-, x),
where (y;, x) denotes the inner product of v;, the i-th irreducible @-character
labeled according to the Wedderburn decomposition, with x, a character we define
below called the Hurwitz character. To define the character x, we consider the
covering from X to its quotient ¥ = X/G, a curve with genus denoted gy. Let
hy, ..., hs € G be the monodromy of this covering. For any subgroup H of G,
define the character x g to be the trivial character of H induced to G, and 1 to be
the trivial character of G. In this paper H is a cyclic subgroup generated by one
element of the monodromy, which we write as (h;). Note that with this notation
X(idg) 1s the character associated to the regular representation. Define the Hurwitz
character as

S
x=2-1¢ +2(gy — D Xidg) + Z(X(idg) = Xhj) (2)
j=1

which is the character of the representation of G on Helt(X , Q) [Milne 1980,
Chapter V, §2]. To determine the dimensions of factors of JX from (1), we must
know the automorphism group of X, the irreducible Q-characters for that particular
group, and the monodromy of the covering X — Y.

The upper bound on the size of the automorphism group of a curve of genus g > 1
is given by 84(g — 1). Curves whose automorphism groups attain this bound are
called Hurwitz curves and the groups themselves are called Hurwitz groups. Hurwitz
groups have a long history in the study of triangle groups, Riemann surfaces, and
hyperbolic geometry. See [Conder 1990] for a nice survey of these groups and
their significance.

For all Hurwitz curves, the quotient curve Y is the projective line, so gy = 0.
Since the quotient curve has genus 0, the monodromy of the covering is a set of
elements {hy, ..., hs}in G suchthat i - - - hy =1id; and the set of all i; generates G.
The monodromy for Hurwitz curves is always of type (2, 3, 7), meaning it consists
of an element of order 2, an element of order 3, and an element of order 7, denoted
in this paper by &, hs, and h7, respectively. (Equivalently, a Hurwitz group is a
finite, nontrivial quotient of the (2, 3, 7)-triangle group.) For Hurwitz curves, (2)
may be simplified to

X =216+ Xidg) = X(ha) — X(h3) — X{h7)- G)

Let PSL(2, g) denote the projective special linear group with coefficients in the
finite field of order ¢g. In this paper we will use (1) to decompose the Jacobian
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varieties of all Hurwitz curves with automorphism group PSL(2, ¢). This decom-
position may be found in Theorem 10 and, in particular, in Corollary 9 we prove
that the Jacobian variety of these curves is never simple.

While there is an infinite family of Hurwitz curves with automorphism group
PSL(2, g) (as we will see immediately below), there are many Hurwitz curves with
other automorphism groups. For example, the alternating group A, is a Hurwitz
group for all n > 168 as well as for many smaller n [Conder 1990]. It is likely that
a similar analysis would yield results about the decomposition of the Jacobians of
these families of curves too.

Macbeath determines for which ¢ the group PSL(2, ¢) is a Hurwitz group.

Theorem 1 [Macbeath 1969]. The group PSL(2, q) is a Hurwitz group if and only if

i) g=1,
(1) g is a prime and congruent to =1 mod 7, or
(iii) ¢ = p> for a prime p =42 or £3 mod 7.

Note that in both cases (ii) and (iii), we have ¢ = £1 mod 7. Case (i) occurs for
a Hurwitz curve of genus 3, and the Jacobian is known to decompose as JX ~ E3,
where E is an elliptic curve [Kuwata 2005]. In case (ii), when ¢ = 13 (and g = 14),
the technique above may be used to show that JX ~ E'4, again for E some elliptic
curve. Case (iii) includes the special case where ¢ = 8. This corresponds to a
genus 7 curve sometimes called the Macbeath curve. It has long been known that
JX ~ E7 [Wolfart 2002].

For odd ¢, PSL(2, ¢g) has a well understood and relatively straightforward char-
acter table. Additionally, the monodromy of the coverings is not hard to find as (3)
only requires knowledge of the monodromy up fo conjugation. It turns out that, as
we show below in Proposition 2, for almost all ¢ satisfying Theorem 1, PSL(2, q)
has only one conjugacy class of elements of order 2, one of elements of order 3, and
three conjugacy classes of elements of order 7. This then allows us to compute the
inner product (v, x) in all such examples and prove very general results about the
Jacobian decompositions of curves with these groups as automorphism groups. The
few exceptional g are either discussed above or at the end of the paper in Section 6.

We begin in Section 2 by reviewing known results about G = PSL(2, g). In
particular, in Section 2.3 we determine the irreducible Q-characters, a key piece in
our determination of the dimension of the factors in the Jacobian decompositions.
In Section 3 we compute the Hurwitz character x, and in Section 4 we compute
the inner products. Finally we put the pieces together and present the Jacobian
decomposition in Section 5.

Using a different set of idempotents in QG and the fact that PSL(2, ¢) has a
partition (a set of subsets of G whose pairwise intersection is the identity and
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whose union is the whole group), Kani and Rosen [1989, Example 2] describe a
decomposition of a power of the Jacobian variety of curves with such automorphisms.
The factors are themselves Jacobians of quotients of the curve by p-Sylow subgroups
or Cartan subgroups of G.

2. Properties of PSL(2, q)

Here we collect the relevant information about the group G = PSL(2, ¢). More
details may be found in [Karpilovsky 1994] and we follow the notation in that
book. For the rest of the paper, assume ¢g is odd, g > 27, and g satisfies case (ii) or
case (iii) in Theorem 1. All cases not covered by this are discussed above, except
for ¢ = 27, which we cover in Section 6.

First, the size of PSL(2, ¢) is

Lq(g+D(g—1).

To describe the character table of PSL(2, ¢) we need several special elements of
SL(2, g). Let « be a generator of the group of units of the finite field with g2
elements, let 8 = «9+!, and define b as the element of SL(2, ¢) determined by the
map x — a9 !x for x € F,2. Additionally define elements of SL(2, ¢)

B o 10 1o
o=[b 2] e=[1 9] e a=[3 0]

The images of the elements a, b, ¢, and d in the quotient PSL(2, g) are denoted
asa, b, ¢, and d. The element a has order %(q —1), the element b has order %(q +1)
and the elements ¢ and d each have order g.

2.1. Conjugacy classes. To determine the monodromy of the covering, we need
to understand the conjugacy classes of elements of orders 2, 3, and 7. The rep-
resentatives of the conjugacy classes of PSL(2, ¢) are 1,¢, d,a", and b™, where
l<n,m<}g—1)ifg=1mod4, whilel <n<i(g—3)and 1 <m < (g+1)
if g = —1 mod 4. We will write the conjugacy class of an element 4 € G as [A].

Conjugacy classes with a representative a” have size g(g 4 1), and conjugacy
classes with a representative b” have size q(g — 1), with the exception of the
conjugacy class containing elements of order 2 which has order half that size, (or
%q(q — 1)) [Karpilovsky 1994]. We will see in the proof of Proposition 2 that the
conjugacy class of elements of order 2 is [a~D/4] if ¢ = 1 mod 4 and [h44+D/4]
if g =—1 mod 4.

It turns out that x as defined in (3) is O outside of the conjugacy classes of
elements of orders 1, 2, 3, and 7, as we will see in Section 3. So it will be sufficient
to only study these conjugacy classes of PSL(2, g) since any other conjugacy
class will not contribute to our goal of computing the inner product of x with the
irreducible @-characters. But how many such conjugacy classes are there?
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Proposition 2. If G =PSL(2, q) for q odd, greater than 27, and satisfying case (ii)
or case (iii) in Theorem 1, then G has three distinct conjugacy classes of elements
of order 7, and one each of elements of orders 2 and 3.

Proof. When ¢ is as in the proposition, since elements of the conjugacy classes
represented by ¢ and d have order ¢, the elements of order 7 can only lie in conjugacy
classes represented by some power of @ or b. (For ¢ = 7 this need not be true as ¢
and d both have order ¢ = 7.)

Recall for a finite group G, the order of g* for any g € G and positive integer k
is 0(g") = o(g)/ ged(k, o(g)). Thus, 7 must divide the order of a or the order of b
but not both, else it divides %(q +1)— %(q — 1) = 1. Thus the conjugacy class(es)
of order 7 are either represented by some power(s) of a or some power(s) of b.

First consider the case where ¢ = 1 mod 4. Suppose that the conjugacy classes of
elements of order 7 are represented by powers of @ (so ¢ = 1 mod 7). The number
of conjugacy classes will be the number of i such that 7=o0(a)/ gcd(o(a), i), where
1<i< %(q —1). Since 7 divides the order of a, we let o(a) =7 for some positive
integer j. Then the number of i such that 7 =7/ gcd(7j, i) is the number of i
that satisfy gcd(7j,i) = jand 1 <i < %j. Since o(a) = %(q —1) and ¢ > 13,
there are always three of them: i = j (or ;(g — 1)), i =2j (or 2(¢ — 1)), and
i=3j (or 13—4(q — 1)). Hence the elements of order 7 are in the conjugacy classes
represented by @@~ D/14 3@=D/7 and g3@—D/14 A similar argument works if these
classes are represented by powers of b (or ¢ = —1 mod 7). The elements of order 7
are in the conjugacy classes represented by b +1/14 pa+D/7 and p3a+D/14,

Now, when ¢ = —1 mod 4, the argument is identical except the bounds on i
changeto 1 <i <1(¢—3)ifg=1mod7and1<i<1(g—1)ifg=—1 mod 7. The
rest of the argument does not change and so there are three conjugacy classes of ele-
ments of order 7, again defined as a@=b/14 g@=0/7 and g3a-D/14 ifg=1 mod7
or ba+D/14 p@+D/7 and p3@+D/14 if g = —1 mod 7.

The cases with orders 2 and 3 follow similarly. When g =1 mod 4, the elements
of order 2 are in the conjugacy class [a~1/4]; when ¢ = —1 mod 4, the elements
of order 2 are in the conjugacy class [6TD/4]. For elements of order 3, the
conjugacy class is [~ D/¢] if g = 1 mod 3 and [p9+D/0] if g = —1 mod 3. (If
q = 27 there are two conjugacy classes of elements of order 3. See Section 6 for
this special case.) U

2.2. Character tables. Let ¢ be a primitive (¢—1)-th root of unity and let § be a prim-
itive (¢+1)-th root of unity, where &y, = £2¥" 472" and §,,, = — (8> +872™),
When ¢ = 1 mod 4, the character table of G =PSL(2, g) is given in Table 1 for
1<m,n,t <3q—1) and 1 <k < 1(¢ —5) [Karpilovsky 1994, Theorem 8.9].
When g = —1 mod 4, the character table of G = PSL(2, g) is given in Table 2
for1 <n,k,t<3(¢—3)and 1 <m < j(g+1) [Karpilovsky 1994, Theorem 8.11].
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[1] @] [p™] [c] [d]
1g 1 1 1 1 1
A q 1 -1 0 0
we | g+1 Ekn 0 1 1
91‘ q_l 0 81m —1 —1
xi | 3@+D (=" 0 1(+yq) 3(1—yq)
x2 | 3(@+D (=D)" 0 1(—-yq) 3(1+q)

Table 1. The character table of G =PSL(2, g) for ¢ =1 mod 4.

1 [a"1 " [c] [d]
I 1 1 1 1 1
A q 1 —1 0 0
pr | g+1 €kn 0 1 !
0; qg—1 0 Stm —1 —1
vi 3= 0 D" S(=1+y=q) F(=1-V=q)
v l3g=D 0 D" J(=1-y=q) 3(=1+J=q)

Table 2. The character table of G = PSL(2, ¢g) for ¢ = —1 mod 4.

2.3. Irreducible Q-characters. The character tables above give the irreducible
C-characters of PSL(2, g) but we need Q-characters to compute the dimensions
of the factors of the Jacobian decompositions. Since all irreducible C-characters
of PSL(2, g¢) have Schur index 1 [Janusz 1974], it is sufficient to find the Galois
conjugates of all C-characters.

The characters 15 and A are already Q-characters, and it is clear that x; + x»
and y; + y» are Q-characters as their noninteger entries are Galois conjugates. This
leaves the w; and 6, characters.

Proposition 3. (a) Let r be a divisor of %(q — 1) and define the set
Mo {will1<i<i(g—5) and ged(i, 3(g—1)=r} if g=1mod4,
T il <i<Xg—3) and ged(i, 1 - 1)) =1} if g=—1mod4.
The sum of the characters in each M, is an irreducible Q-character of PSL(2, g).
(b) Let s be a divisor of %(q + 1) and define the set
e =i<i@—1) and ged(i, 3(g— D) =s} if g=1mod4,
a1 =i <X —3) and ged(i, 1~ 1) =5} if g=—1 mod4.

The sum of the characters in each Oy is an irreducible Q-character of PSL(2, g).
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[a] [a?] . [a—D/4
"1 p-’_p*l p2+p72 . p(qfl)/4+p*(q*1)/4
7 p2+p72 p4+p74 ce p(qfl)/2+p7(‘]*1)/2
(g—5)/4 p(q—5)/4+p—(q—5)/4 p(q—S)/2+p—((]—5)/2 p(q—S)(q—1)/16+p—(q—5)(q—1)/16

Table 3. Values of @ on conjugacy classes of elements a” when
g =1 mod 4.

Proof. We prove (a) below. The argument for (b) is almost identical. Since the only
nonrational values of the u; characters are their values on the [a"], we only need
to consider the values on these conjugacy classes. For simplicity of notation, we
define p to be &2, so p is a primitive %(q— 1)-th root of unity. Then the values of
the wuy on the conjugacy classes [a"] in the case where ¢ = 1 mod 4 are given in
Table 3. (For g = —1 mod 4, replace %(q —5) in the last row with %(q —3) and
change the exponent in the last column from zll(q —1)to zll(q — 3).)

Fix a particular p; with gcd(k, %(q — 1)) = r. The Galois orbit is completely
determined by u ([a]) since the values of w; on the conjugacy classes with represen-
tative powers of a are sums of powers of the summand of p ([a]) (as seen in Table 3).
So it is enough to find the Galois conjugates of i ([a]). Now ug([a]) = ok 4+ pk,
where pX is a primitive 217(q—1)—th root of unity. The Galois conjugates of this
will be sums of the other primitive Zl—r(q—l)—th roots of unity. By a simple or-
der argument, we determine that p' is a primitive (%(q —1)/ gcd(i , %(q — 1)))—th
root of unity. So the other primitive %(q—l)—th roots of unity appear for ex-
actly those u; such that gcd(i, %(q — 1)) = r. So the irreducible Q-character
associated with p; will be the sum of p; with the other characters u; such that
ged(i, (g — D)) = ged(k, (g — D)) =r. O
Example. We demonstrate the previous proposition with an example. Consider
g=29=1 mod 4. Here (g —1)=14, 1(¢+1)=15, ;1(g—5)=6,and ;(¢—1)=7
and so there are 6 pu; characters and 7 6; characters. The only divisors of %(q -1
less than 6 are 1 and 2. From Proposition 3(a) we have two distinct sets

My = {u; | ged(Q, 14) = 1} = {1, u3, ps},
My = {u; | ged(i, 14) =2} = {2, pa, pe}-

The divisors of %(q + 1) less than 7 are 1, 3, and 5, so from Proposition 3(b) there
are three distinct sets
O ={0; | ged(i, 15) = 1} = {01, 02, 04, 67},

O3 = {0; | gcd(i, 15) = 3} = {63, Oc},
Os = {60; | gcd(@, 15) =5} = {05}.
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Therefore when g = 29, there are two irreducible Q-characters of degree g + 1
(1 + w3 + us and wo + g+ 1e) and three irreducible Q-characters of degree g — 1
(01 + 02 + 04+ 67, 03+ 06, and 6s).

We also need the values of the irreducible Q-characters from Proposition 3 for
the inner product computation of the dimensions of the factors in (1). In the rest of
the paper, for any character uy, we denote by r the gcd(k, %(q — 1)), and for any
character 6,, we denote by s the gcd(t, %(q + 1)). Thus M, from Proposition 3(a)
will contain the character u; and ®; from Proposition 3(b) will contain 6,. The value
of the characters in Proposition 3 will be the value of w; (or ;) times the number of
irreducible C-characters in the set M, (or ®;). The size of M, is half the number of i
such that gcd(i, %(q — 1)) =r, or half the number of i such that gcd(i, zl—r(q — 1)) =1.
This is %¢(%(q — 1)), where ¢ (x) is the Euler phi function. Similarly, the size of
Oy is equal to %d)(%(q + 1)). Additionally for our computations, we will only need
the values of the characters on conjugacy classes of orders 1, 2, 3, and 7, as it turns
out that the Hurwitz character yx is O outside these conjugacy classes. This means
the inner product we use to compute the dimension of the factors of the Jacobian
will not be impacted by the values outside of these conjugacy classes. Again, see
Section 3 and (5).

Determining the value of each p; or 6; on the relevant conjugacy classes boils
down to whether elements of that order are powers of @ or b. The next three
propositions give the values of these characters on conjugacy classes of elements
of orders 2, 3, and 7, respectively.

Proposition 4. Consider the conjugacy class of elements of order 2 in PSL(2, q)
for q satisfying the conditions in Proposition 2.

(a) When g = 1 mod 4, the irreducible Q-characters from Proposition 3(a) evaluate
to (—1)k¢(%(q — 1)), while the irreducible Q-characters from Proposition 3(b)
evaluate to 0.

(b) When g = —1 mod 4, the irreducible Q-characters from Proposition 3(a) eval-
uate to 0, while the irreducible Q-characters from Proposition 3(b) evaluate to

(=D 1e(5 (g + D).

Proof. (a) As we saw in the proof of Proposition 2, the conjugacy class of elements
of order 2 is represented by a power of either @ or b, depending on whether
g = %=1 mod 4. In the first case, it is [a9—D/4]. Consider the value of one 1 on
this conjugacy class:

Ekig—1)/4 = ghla=D/2 4 o=kg=1)/2,

Since ¢ is a primitive (g—1)-th root of unity, £~1/2 is a primitive second root
of unity, i.e., —1. Thus g;—1)/4 = (—=D¥ + (=1)7%. When k is odd, this value
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is —2, and when £ is even, this value is 2. Combining this value with the number
of characters in the set M, yields the value of

k(41
(=1 ¢<T)

The (-characters which are sums of the characters in ®; (as in Proposition 3(b))
are 0 on this class in this case. From the character table for this case, it is clear that
each 6, has a value of 0 on any conjugacy class of the form [a@"] and hence the sum
of such characters also has a value of 0.

(b) When ¢ = —1 mod 4, the conjugacy class is represented by 5@+1/# and so the
(D-characters in Proposition 3(a) are 0 on that class since each uy evaluates to 0. A
similar argument as for ¢ = 1 mod 4 gives that 6, will be 2 when ¢ is odd and —2
when 7 is even. Then the irreducible Q2-characters in Proposition 3(b) evaluate to
this value multiplied by the size of ®;. This gives

(—1)’“¢(—q2+1). O
A

Proposition 5. Consider the conjugacy class of elements of order 3 in PSL(2, q)
for q satisfying the conditions in Proposition 2.

(a) When g = 1 mod 3 the irreducible Q-characters in Proposition 3(a) evaluate to

¢(L(g—1) ifk=0mod3,
—% (%(q—l)) otherwise,

while the irreducible Q-characters from Proposition 3(b) evaluate to 0.

(b) When g = —1 mod 3, the characters described in Proposition 3(a) evaluate to 0,
while the irreducible Q-characters in Proposition 3(b) evaluate to

—¢(L(g+1) ifr=0mod3,
%qb(%(q + 1)) otherwise.

Proof. As was discussed in the proof of Proposition 2, the conjugacy class of
elements of order 3 is represented by @?—1/¢ or pla+D/6,

(a) Consider the value of :

Ekq—1y/6 = £K07D/3 4 gmka=D/3,

Since ¢ is a primitive (g—1)-th root of unity, £¢~1/3 is a third root of unity, which
we call w. Thus, exy—1)/4 = o* + %, When 3 | k, this is 2 and when 31k, this is
Ekig—1)/4 = @0+ w* = —1. This value, together with the size of M, gives the value
of the irreducible (Q-characters in Proposition 3(a) on elements of order 3. Since
each 6, evaluates to 0 on the conjugacy classes represented by powers of a, the
irreducible Q-characters from Proposition 3(b) also evaluate to 0.
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(b) A similar argument may be used when ¢ = —1 mod 3 (or the elements of order 3
are in the conjugacy class represented by »@+1/6), O

Proposition 6. Consider the conjugacy classes of elements of order 7 in PSL(2, q)
for q satisfying the conditions in Proposition 2.

(a) When g = 1 mod 7, the characters in Proposition 3(b) evaluate to 0, while the
irreducible Q)-characters from Proposition 3(a) evaluate to

¢(3(@—1) if k=0mod7,
—%qﬁ(z]—r(q—l)) otherwise.

(b) When g = —1 mod 7, the irreducible Q)-characters in Proposition 3(a) evaluate
to 0, while the irreducible Q-characters from Proposition 3(b) evaluate to

—¢(5(g+1) ift=0mod7,
%q&(%(g + 1)) otherwise.
Proof. From the proof of Proposition 2 we know that the three conjugacy classes of

order 7 are represented by a@~D/14 g@=D/7 and g3@—D/14 or pla+/14 " pla+D/7
and p3@+D/14

(a) If g =1 mod 7 (equivalently the conjugacy classes of elements of order 7 are
represented by powers of @) then j1; evaluates to £¥4¢ ~* on these conjugacy classes,
where ¢ is a primitive 7th root of unity. If 7| k, then ¢* + ¢ % is 2 and if 71k, then
¢% 4+ ¢7% is —1. Combining this with the size of the set M, or ® gives the result.

(b) A similar argument follows for ¢ = —1 mod 7 except we are considering
conjugacy classes represented by powers of b. U

3. Computation of the Hurwitz character

Recall from (3) that in order to compute x, we need to determine x(idg), X (ha)s X(h3)s
and x(s,). Let H be a subgroup of G. By the definition of x, the induced character
of the trivial character of H is

1 ifgeH,

_ 1 0 —1 0 _
xn(®) = Y x"(xgx™"),  where <g>—{0 e H.

xeG
Note that x4, is just the regular representation
|G| if g =idg,
0 ifg#idg.

To compute the remaining three characters, we need several facts from Section 2.1

X(idg) (&) = {

and a lemma, which is an immediate consequence of the orbit-stabilizer theorem
considering the group action of conjugation.
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Lemma 7. Let G be a group and g, h € G with g not the identity. The number
of x € G such that xgx~' = h is the size of the centralizer of h if g € [h] and 0
otherwise.

Consider yx,). We know

X(h2)(8) = % > xxgx™h. 4
xeG

For each g € G, we must determine the number of x € G such that xgx~! =idg
or hy, since (h,) = {idg, h}. The case of xgx~! =idg follows from the fact that,
for any group G and g € G not the identity, there is no x € G so that xgx~! = idg.
Thus the number of x € G such that xgx~! =idg or A, is the size of G when g is the
identity and O otherwise. For x,)(g) when g #idg, if g ¢ [h2] then this number is 0,
else we must determine the number of x € G so that xgx ! = h,. By Lemma 7, this
is the size of the centralizer of /,. Recall that under the action of conjugation, orbits
are conjugacy classes. By the orbit-stabilizer theorem, |C(hy)| = |G|/|[h2]]. For
hy of order 2, we have |[h2]| = 1q(g+1) when g =1 mod 4, and |[h>]| = 1g(g—1)
when ¢ = —1 mod 4, hence |Cg(hy)|=g—1ifg=1 mod4 and |Cg(hy)|=qg+1
if g = —1 mod 4. Plugging these values into (4) gives

1G] if g =idg,
Ng—1) ifgelhlandg=1mod4,
%(q+1) if g € [hy] and g = —1 mod 4,

0 otherwise.

X(ha) (&) =

Now, we calculate y .. As before, for each ¢ € G, we need to find the number
of x € G so that xgx~! € (h3) = {1, hs, h%}, and the formula in this case is

X (8) = % > xxgxh.

xeG

When g =idg, we have x4 (idg) = %|G|. Else by Lemma 7 and the fact that
h% € [h3], we have xp,)(8) = %|C(;(h3)| if g € [h3] and O otherwise. From
Section 2.1 we know |[h3]| = g(qg — 1) if 3| %(q + 1) and |[h3]| = g(g + 1)
if 3] 7(¢ —1). Then |Cg (h3)| = 3(g + 1) if 3] 3(¢ +1) and | C (h3)| = (g — D) if
311(g—1),and

NGl ifg=ide,
3@—1) ifge[hs]andg=1mod3,
3@+1) ifge[hs]andg =2 mod3,

0 otherwise.

X (&) =
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g mod 84 Value for elements of order

+1 | 5IGl =i@FD —3@FD —i@FD
+13 | 5IGl =3@FD —j@FD —i@=£D
+29 | 5IGl —iqFD -ig+D -i@gFD
+43 | 5G] -1+ -i@FD -3@FD

Table 4. Values of x’ on conjugacy classes of elements of orders 1,
2,3,and 7.

For x 1.y, as with the proof of the other characters, x,) (idg) = % |G|. To compute
the value on other elements, observe that for any g of order 7, we know that g and g~
are in the same conjugacy class [Karpilovsky 1994, Corollary 8.3] but g, g2, and g3
are all in distinct conjugacy classes. Combining Lemma 7 with this information
gives us that x,)(g) = %lCG (h7)|, and we know the sizes of the conjugacy classes
by Section 2.1. Putting all this information together, the value of x,)(g) is

el if g =idg,
%(q—l) if ge[h7]and g =1 mod 7,
Hg+1) ifge[hslandg=—1mod7,

0 otherwise.

X (&) =

Note that the values of x are invariant under the three conjugacy classes of elements
of order 7. This means we do not have to find in which conjugacy class of elements
of order 7 the monodromy exists in order to compute (3) (i.e., we do not have to
explicitly find A7, we can just use the formula above for any element of order 7).

We will use x to calculate inner products with irreducible Q-characters to find the
dimensions of the factors in the Jacobian variety decomposition. To simplify later
calculations, we rewrite x as x =2-1g+ x’, where x' = x(15) = X(hs) = X(h3) — X (h7)-
Then, the inner product of an irreducible Q-character v; and x will be (;, x) =
2(¥i, 1g) + (¥i, x'). But since ¥; and 15 are orthogonal when v/; # 1, we have
that (y;, x) is simply (v, x’) in all cases except for the trivial character.

Table 4 gives the values of x’ on the conjugacy classes of elements of orders
1, 2, 3, and 7, computed by combining all the data in this section. Additionally,
x'(g) =0 if g is not in one of these conjugacy classes.

4. Inner product computations

Our next goal is to use our computation of x’ in Section 3 and the irreducible
Q-characters in Section 2.3 to compute the inner products (;, x’). Consider
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(¥, x'), where y; is an irreducible @-character of PSL(2, ¢). The formula for the
inner product is
1 _
Wi x) =157 D o vi@x' @ .
geG

Since g and g~! are in the same conjugacy class and x’ is O for all elements that

are not of order 1, 2, 3, or 7, we have the formula

1

(Wi, x') = @(1//1' (idg) x'(idg) + |[A2119i (h2) ' (h2)
+ 1lh31lvi (h3) X (h3) + 31 [h711%i (h7) X (h7)).

In Section 3 we saw that
[h2]] X' (ha) = —31G|,  |[h3llx'(h3) = —3IG|,  3|lh7]lx'(h7) = =$IG]|.
The formula for the inner product reduces to
(Wi, x') = 35 (de) — 3¥i (ha) — 59 (h3) — S (7). (5)

Since the values of the irreducible Q-characters are based on whether the con-
jugacy classes of elements of orders 2, 3 and 7 are represented by a or b (which
depends on the residue of ¢ modulo 3, 4, or 7), the values of these characters, and
the subsequent inner products, will depend on what ¢ is modulo 3 -4 -7 = 84.

4.1. Trivial character. Recall that x is the Hurwitz character, and x =216 + x/'.
Proposition 8. (1, x) =0.

Proof. By the calculation of x, we have that (1, x) =2(1g, lg) + (lg, x) and
(1g, 1g) = 1. Consider (15, x’). We use (5) to get

(le. XV =g 1c()—3-16(h2) = 3-16(h) =5 -lg(hn) = 5 — 3 —F —§ = —2.
Thus, (1, x')=2-2=0. O

All other irreducible Q-characters of PSL(2, ¢) have degree greater than 1. Hence
by (1), where the n; correspond to the degree of the i-th irreducible Q-character,
the decomposition of JX must have more than one factor.

Corollary 9. No Hurwitz curve with automorphism group PSL(2, q) has a simple
Jacobian variety.

4.2. Character of degree q. Recall A is the character of degree g. We again
apply (5). Since the value of A is either 1 or —1 depending on whether the element
is in a conjugacy class represented by powers of a or b, we get that (A, ') =
ﬁ(q — u), where u is given in Table 5 and the positive u-values correspond to
positive ¢ mod 84 values and the same holds for the negative values.
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g mod 84 | Value of u
+1 +85
+13 +13
+29 +29
+43 +43

Table 5. Values for u in (A, x').

4.3. Characters of degree %(q:l:l). For g =1 mod 4, this irreducible Q-character
is x1-+ x2 and evaluates to g+ 1 on the identity, 2(—1)" on the conjugacy classes [a” ],
and 0 on the conjugacy classes [b™]. Furthermore, the conjugacy class of elements
of order 2 will always be in the set of conjugacy classes [a"]. We use (5) again,
which becomes

(1 + h=4 +1 Gu+x)h) 200+ x2)(h3) 6001+ x2) (A7)
T HE g 2 3 7

Determining these values depends on whether ¢ = 41 mod 3 and whether g =
41 mod 7 (as we have discussed above, this distinguishes the cases where the
elements of orders 3 and 7 are in conjugacy classes represented by powers of a
or b). But additionally we need to determine if 7 is even or odd to determine the
sign of x4+ x». Recall n is given by é(q — 1) for elements of order 3 and 11—4(q -1
for elements of order 7. This requires us to consider values modulo 3-4-7-2 = 168.

Similar arguments will give us the values for y; + ¢, when ¢ = —1 mod 4. In
all cases, the inner product is given by ﬁ(q —v), where v is given in Table 6. In
the table, the positive values of ¢ mod 168 correspond to the positive v-values and
the same holds for the negative values.

4.4. Characters of degree q¢ £ 1. The computations for the inner products of x’
with sums of uy or 6, are similar. We recall the values of these (-characters

g mod 168 | Values of v
+1 +169
+13 +13
+29 +29
+41 +41
+43 +43
+85 +85
+97 +97

+113 +113

Table 6. Values for v in (x1 + x2, x') or (y1 + 2, x').
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g=1mod4 ¢g=-—1mod4

Mk | z+(f—1)-84 z—f-84
0, 7+ f-84 z—(f—1)-84

Table 7. Values of w for the inner products of x’ with characters
of degree g +1.

on the conjugacy classes of orders 1, 2, 3, and 7 from Section 2.3. The values
depend on whether the conjugacy classes are powers of @ or b. To describe the
value in all cases, we define two additional values. For r = gcd(k, %(q — 1)) and
s =ged(r, 3(g +1)), define f to be the number of 2, 3, and 7 which divide r (or s).
Also define z to be the least residue of ¢ modulo 84. Then the inner product with
irreducible (Q-characters from Proposition 3(a) is

l¢ g—1\qg—w
2 2r 42
and the inner product with irreducible Q-characters from Proposition 3(b) is

1¢ g+1\g—w
2 2s 42

Example. Continuing from the example in Section 2.3, let ¢ = 29, so z also
is 29. Whenr =1 (or s =1 or 5) then f = 0 and when r = 2 (or s = 3)
we have f = 1. In this case (since g = z) if f = 1, then the value of the inner
product on the corresponding irreducible (D-character which is the sum of characters
in M, (r = 2) will be 0 and if f = 0, the value on the inner product of the
corresponding irreducible QQ-character which is the sum of characters in ®; (s = 1
or 5) will also be 0. This just leaves two nonzero values to compute (r = 1
and s = 3),

where w is given in Table 7.

(i +us+us, x)=30(3) - (B2)=5-2=6

and

03+ 00, ) = B0 () (255) = 424

5. Decomposition of Jacobian varieties

As described in the introduction, Jacobian varieties may be factored into the direct
product of abelian varieties as in (1). The dimension of the factors is half of the
inner product computed in Section 4. Collecting the information in the previous
section we get the following result.
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Theorem 10. Let X be a Hurwitz curve with full automorphism group PSL(2, q),
where q is odd and g > 27. Let u, v, and w be as given in Tables 5, 6, and 7,
respectively.

When g = 1 mod 4, the Jacobian variety of X is isogenous to

rli(g—1)/2 sl(g+1)/2
r<(g—5)/4 s<(g—1)/4
and when g = —1 mod 4, the Jacobian variety of X is isogenous to
AY@ BU-D/2g l_[ citlg l_[ pa—1
r S )
rig—1/2 s(g+1)/2
r<(qg—3)/4 s<(qg—3)/4

where the factors in the decomposition are abelian varieties and
e A has dimension 8L4(q —u),
o B has dimension 81—4(q —v),
e each C, has dimension %d)(%(q — 1)) (g —w),
o and each Dy has dimension %¢(%(q + 1)) - (g —w).

As mentioned in the introduction, the decomposition technique does not guarantee
that the factors are indecomposable. Also, when determining w, note that the
product indexed by r corresponds to inner products of characters which are sums
of u characters, and the product indexed by s corresponds to inner products of
characters which are sums of the 6, characters.

6. Special case

In the special case when ¢ = 27 = 33, there are still three conjugacy classes of
elements of order 7 and one of elements of order 2; however, there are now two
conjugacy classes of elements of order 3. When we apply the decomposition
technique to this special case we find

JX ~ E}* x A3® x EY,

where the E; are elliptic curves and Aj is a dimension-3 abelian variety. These
factors correspond to nonzero inner products of x with the character y; + y», a sum
of 6;, and A, respectively.
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