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A hyperbolic transformation of the torus is an example of a function that is
Devaney chaotic; that is, it is topologically transitive and has dense periodic
points. An irrational rotation of the torus, on the other hand, is not chaotic
because it has no periodic points. We show that a hyperbolic transformation of
the torus followed by a translation (an affine hyperbolic toral automorphism) has
dense periodic points and maintains transitivity. As a consequence, affine toral
automorphisms are chaotic, even when the translation is an irrational rotation.

1. Introduction

Değirmenci and Koçak [2010] showed that the cross-product of the double-angle
map and an irrational rotation, which is a function on the torus, is transitive and has
sensitive dependence to initial conditions, but no periodic points, and therefore is not
chaotic. Linear hyperbolic toral automorphisms are known to be chaotic, so a natural
question in light of [Değirmenci and Koçak 2010] (and the generalizations in [Li and
Zhou 2013]) is whether a linear hyperbolic toral automorphism plus a translation is
still chaotic. We will refer to such functions as affine hyperbolic toral automorphisms
to indicate the translation. Our main goal will be to determine whether such an
affine map has periodic points, even in the event that the rotation is irrational.

We find that affine hyperbolic toral automorphisms are chaotic; in fact, we can
find the precise locations of periodic points in relation to the periodic points of
the corresponding linear map. In this respect, we generalize statements about the
transitivity and periodic points of linear hyperbolic toral automorphisms to affine
hyperbolic toral automorphisms.

2. Definitions

Throughout this paper, f : X → X will be a continuous function on a complete
metric space (X, d). We will examine the iterates of f using the notation f n to
represent the n-th iterate of f ; that is, f 1

= f and f n+1
≡ f ◦ f n. The composition
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of f is still a continuous function from X to X . For a specific point x ∈ X , we may
refer to the n-th iterate of x under f by xn , which means x0

= x is the initial point.
In this paper, all points in the space will be specified as vectors, and as such the
superscript notation will unambiguously denote an iterate, not raising to a power. In
addition, subscripts on points in the space will refer to the corresponding coordinate
value, with the basis specified in the case that it is unclear.

A function is transitive if for every pair of nonempty open sets U, V ⊆ X , there
exists a positive integer n such that f n(U )∩ V 6= ∅. An example of a transitive
function is the irrational rotation on the circle. An irrational rotation is actually
totally transitive, by which we mean that f m is transitive for every positive integer m.
A property of the irrational rotation that makes it useful for counterexamples is that
it is transitive, but has no periodic points.

A periodic point p ∈ X is one for which f n(p)= p for some n, a positive integer.
The least such n is called the period of p, and if n = 1, we say that p is a fixed
point. We can locate points with a given period m by finding fixed points of f n,
provided that there is no k < n such that f k also fixes that point.

A function is Devaney chaotic (henceforth, chaotic) if it is transitive, has dense
periodic points, and has sensitive dependence to initial conditions. “Dense” refers
to the presence of at least one periodic point in every nonempty open set. Sensitivity
to initial conditions means that there exists an ε > 0 so that for all δ > 0 and x ∈ X ,
there exists a y ∈ X with d(x, y) < δ and an n ∈N such that d( f n(x), f n(y)) > ε.
Banks et al. [1992] proved that the first two hypotheses are sufficient for the
third, making transitivity and dense periodic points all that is necessary for chaos.
As Crannell [1995] pointed out and by Banks et al. [1992], the elimination of
the sensitivity hypothesis makes chaos an entirely topological concept: sensitive
dependence on initial conditions is the only hypothesis of the three that relied on
the metric.

In general, no other combination of two hypotheses implies the third, but on the
unit interval, transitivity guarantees dense periodic points, and is therefore sufficient
for chaos [Vellekoop and Berglund 1994]. Contrast this with the irrational rotation
on the circle, which is transitive but has no periodic points and is not sensitive to
initial conditions.

A torus of d dimensions Td is the cartesian product of d copies of the circle,
S1
× S1
× · · · × S1. Since S1

= R/Z, coordinates in Td are real numbers from 0,
inclusive, to 1, exclusive. A linear automorphism of Td is matrix multiplication of
the coordinates in [0, 1)×[0, 1)× · · ·× [0, 1), taken modulo 1. Since the corners
of the unit d-cube are all identified on Td , their images under matrix multiplication
must all have integer entries to ensure they are each mapped to the origin, modulo 1.
Thus the matrix representing the linear transformation must have integer entries. In
addition, this matrix must have determinant ±1 so that the map is a bijection.
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This paper is concerned with hyperbolic toral automorphisms. If A is the matrix
representing the toral automorphism, the product of the d (not necessarily distinct)
eigenvalues of A is the determinant, which we require to be ±1. A toral automor-
phism is hyperbolic when none of the eigenvalues are equal in magnitude to 1.

3. Preliminary results

Lemma 3.1 [Katok and Hasselblatt 1995]. Any hyperbolic toral automorphism
with a largest eigenvalue whose eigenvector has rationally independent entries is
transitive.

Proof. Let U, V ⊂ Td be nonempty open sets. The set U must contain a line
segment parallel to the eigenvector associated with the largest eigenvalue. Since this
eigenvalue is greater than 1, under iteration the line segment grows without bound
while remaining parallel to the eigenvector. Since the line “wraps around” the torus
whenever the value of a coordinate exceeds 1, the distances between points where
the line intersects the i-axis take on values that are multiples of the i-th entry in the
eigenvector. As with the irrational rotation of the circle, as the number of iterates
tends towards infinity, these intersection points are dense on the i-axis. Since the
line stays parallel to the eigenvector, and the entries are rationally independent, the
orbit of the line is dense in Td . This guarantees that the line intersects V after a
finite number of iterations, and therefore U and V have nontrivial intersection for
some number of iterations of f . �

Lemma 3.2 [Katok and Hasselblatt 1995]. The rational points on the torus are
periodic for any hyperbolic toral automorphism.

Proof. Let
p =

(
p1

q
, . . . ,

pd

q

)
,

with p1, . . . , pd , q ∈N, be a point in Td with rational coordinates (not necessarily in
lowest terms). Since the entries of the matrix corresponding to the hyperbolic toral
automorphism are all integers, the image of p is also a rational point with common
denominator q . Since there are precisely qd rational points in the unit square with
denominator q (again, not necessarily in lowest terms), every such point can take on
only finitely many values under iterates of the automorphism. Thus, each rational
point is either periodic, or preperiodic (in the sense that p is mapped into a periodic
orbit, but that orbit does not contain p). Since the automorphism is invertible, no
points are preperiodic and therefore must be periodic, with maximum period qd . �

In fact, only the rational coordinates are periodic. To see this, consider that
periodic points of period n are in the kernel of An

− Id , where Id is the identity
matrix of dimension d. Since An

− Id has integer entries, its kernel is composed
only of vectors with rational entries.
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Example 3.3 [Elaydi 2008; Katok and Hasselblatt 1995]. The canonical example
of a hyperbolic toral automorphism is the Arnold “cat” map

L A : T
2
→ T2, x 7→

[
2 1
1 1

]
x mod 1. (1)

The eigenvalues of the matrix are 1
2(3+

√
5) and 1

2(3−
√

5)with respective eigenvec-
tors

[ 1
2(1+

√
5), 1

]> and
[ 1

2(1−
√

5), 1
]>. You can see that one of the eigenvalues

is larger than 1 and the other less, while both eigenvectors have irrational slope.

4. Main results

With the previous two lemmas, we have enough machinery to prove the main
theorem pertaining to affine hyperbolic toral automorphisms. As in the introduction,
an affine hyperbolic toral automorphism is a hyperbolic toral automorphism followed
by a translation. We give two proofs of the result. The first gives the precise location
of periodic points. The second relies on the fact that chaos is entirely topological
and uses topological conjugacy.

Theorem 4.1. Any affine hyperbolic toral automorphism is chaotic.

Proof. Let v1, v2, . . . , vd be the eigenvectors of A associated with λ1, λ2, . . . , λd ,
respectively. The eigenvectors form a basis for Rd , so for any translation b ∈ Rd ,
b can be written as b = b1v1 + b2v2 + · · · + bdvd and any point on x ∈ Td as∑d

i=1 xivi . So instead of xn+1
= Axn

+ b, we may write

xn+1
= A

d∑
i=1

xn
i vi +

d∑
i=1

bivi .

We wish to find a closed form of xm . For any point x0
∈ Td ,

x1
= Ax0

+ b = A
d∑

i=1

x0
i +

d∑
i=1

bivi =

d∑
i=1

λi x0
i vi +

n∑
i=1

bivi ,

x2
= Ax1

+ b = A
( d∑

i=1

λi x0
i vi +

d∑
i=1

bivi

)
+

n∑
i=1

bivi

=

d∑
i=1

λ2
i x0

i vi +

d∑
i=1

λi bivi +

d∑
i=1

bivi ,

x3
= Ax2

+ b = A
( d∑

i=1

λ2
i x0

i vi +

d∑
i=1

λi bivi +

n∑
i=1

bivi

)
+

d∑
i=1

bivi

=

d∑
i=1

λ3
i x0

i vi +

d∑
i=1

λ2
i bivi +

d∑
i=1

λi bivi +

d∑
i=1

bivi .
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The first three iterations suggest that

xn
=

d∑
i=1

λn
i x0

i vi +

n∑
j=1

d∑
i=1

λ
j−1
i bivi . (2)

Assume (2) as an induction hypothesis. Then we see that it also holds for n+ 1:

xn+1
= Axn

+ b = A
( d∑

i=1

λn
i x0

i vi +

n∑
j=1

d∑
i=1

λ
j−1
i bivi

)
+

d∑
i=1

bivi

=

d∑
i=1

λn+1
i x0

i vi +

n∑
j=1

d∑
i=1

λ
j
i bivi +

d∑
i=1

bivi

=

d∑
i=1

λn+1
i x0

i vi +

n+1∑
j=1

d∑
i=1

λ
j−1
i bivi .

The last expression in (2) is not particularly revealing until we rewrite the double
sum as

n∑
j=1

d∑
i=1

λ
j−1
i bivi =

d∑
i=1

bivi

n∑
j=1

λ
j−1
i =

d∑
i=1

bi
1− λn

i

1− λi
vi

and remember that we are looking for periodic points such that x0
= xm mod 1.

We are looking for x =
∑n

i=1 xivi mod 1 such that

d∑
i=1

xivi =

d∑
i=1

λn
i xivi +

d∑
i=1

bi
1− λn

i

1− λi
vi mod 1,

which leads to

0=
d∑

i=1

λn
i xivi −

d∑
i=1

xivi +

d∑
i=1

bi
1− λn

i

1− λi
vi mod 1

=

d∑
i=1

(
λn

i xivi − xivi + bi
1− λn

i

1− λi
vi

)
mod 1

=

d∑
i=1

(
(λn

i − 1)xivi + bi
1− λn

i

1− λi
vi

)
mod 1

=

d∑
i=1

(λn
i − 1)

(
xivi +

bi

λi − 1
vi

)
mod 1

=

d∑
i=1

(λn
i − 1)

(
xi +

bi

λi − 1

)
vi mod 1,
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from which we can conclude that the periodic points of the affine map are precisely
those of the linear map translated by

∑d
i=1(bi/(λi−1))vi . Since the periodic points

of the linear map are dense, so too are the periodic points of the affine map. In
addition, if U , V are open in Td , then there exists an n such that the n-th iterate of
the linear map of U intersects V . Thus, the affine map is chaotic. �

There is another proof of the main result that uses far less calculation, but does
not give the new locations of periodic points. We use the fact that the linear and
affine hyperbolic toral automorphisms f (x) and g(x)= f (x)+ b are topologically
conjugate, so that the following diagram commutes:

Td f
−−−→ Tdyh

yh

Td g
−−−→ Td

Alternate proof of Theorem 4.1. If we suppose f is defined by multiplication by a
matrix A and g is multiplication by A followed by translation by b, we must define
the homeomorphism h so that f = h−1

◦ g ◦ h. This homeomorphism h is simply
translation by some b̃:

Ax = A(x + b̃)+ b− b̃ = Ax + Ab̃+ b− b̃ = Ax + (A− Id)b̃+ b

=⇒ (A− Id)b̃ =−b =⇒ b̃ =−(A− Id)
−1b.

We know A− Id is invertible because A has no eigenvalues equal to 1.
Since f and g are topologically conjugate, they have the same properties regard-

ing transitivity and periodic points. The transitivity and dense periodic points of
linear f are known, so they hold also for the affine g. �

Corollary 4.2. Any affine hyperbolic transformation of T2 is chaotic.

Proof. Suppose the linear part of the transformation is multiplication by a matrix A.
Then the roots of the characteristic polynomial are

det(A− λI2)= det
[

a− λ b
c d − λ

]
= λ2
− (a+ d)λ+ (ad − bc)

=⇒ λ=
(a+ d)±

√
(a+ d)2− 4(ad − bc)

2
.

The discriminant (a+ d)2− 4(ad − bc)= (a+ d)2− 4 cannot be a perfect square
because 2 is not part of any Pythagorean triple. Thus the eigenvalues are irrational,
which in turn implies that each of the eigenvectors has irrational slope. This is
sufficient since all affine hyperbolic functions on T2 meet the criteria of the main
result, and are thus chaotic. �
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Example 4.3. We now give a specific example of the previous corollary based on
Example 3.3. Let L A,b : T

2
→ T2 be defined as

L A,b

([
x1

x2

])
=

[
2 1
1 1

] [
x1

x2

]
+

[√
2/2
√

3/3

]
. (3)

Recall that the eigenvectors of the matrix A are v1 =
[1

2(1+
√

5), 1
]> and v2 =[ 1

2(1−
√

5), 1
]>, with eigenvalues λ1 =

1
2(3+

√
5) and λ2 =

1
2(3−

√
5), so that

λ1 > 1> λ2 > 0. The points

p1 =

[
0
0

]
, p3 =

[
1/2
1/2

]
and p10 =

[
1/5
3/5

]
are fixed and periodic of periods 3 and 10 respectively under Example 3.3. To
find the corresponding periodic points q1, q3, q10 under L A,b, first calculate b1, b2,
which are the projections of b against v1, v2.1 Then add the translation prescribed
by Theorem 4.1:

b1

1−λ1
v1+

b2

1−λ2
v2=
〈b,v1〉

1−λ1
v1+
〈b,v2〉

1−λ2
v2≈

[
.4227
.8702

]
,

q1≈ p1 +

[
.4227
.8702

]
=

[
.4227
.8702

]
,

q3≈ p3 +

[
.4227
.8702

]
=

[
.9227
.3702

]
,

q10≈ p10+

[
.4227
.8702

]
=

[
.6227
.4702

]
.

One can check numerically that indeed

L A,b(q1)= q1, L3
A,b(q3)= q3, L10

A,b(q10)= q10,

and for each this is the minimum number of iterations required.

Corollary 4.4. Any function fk,α on the circle given by fk,α : θ 7→ kθ + α with
k ∈ Z \ {−1, 0, 1} and α ∈ S1 is chaotic.

Proof. The slope of an eigenvector degenerates for S1
= T1, and in any case

the function fk,α is not an automorphism. In the sense that fk,α is a function
that is known to be chaotic followed by a (possibly irrational) rotation, the main
result holds.

First, an alternative explanation for the transitivity of fk,α is in order. Any open
set U in S1 contains an open arc (θ1, θ2)with length θ2−θ1. Define m=2π/(θ2−θ1).
After n ≥ km iterations of fk,α on U , we have f n

k,α(U )= S1. (A function with this

1Remember that all arithmetic is performed modulo 1.
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condition is said to be locally eventually onto.) Since every open set is “eventually
onto” the circle, any U will certainly have nontrivial intersection with any nonempty
open V ∈ S1 after a finite number of iterations.

The periodic points of fk = fk,0 are the rational points in [0, 1) with denominator
one less than a power of k. Moreover, if this denominator is q= kn

−1, then the point
p/q ∈Q∩ [0, 1) will have period n if p/q is fully reduced. To see this, note that

f n
k

(
p
q

)
= kn p

kn − 1
= (kn

−1+1)
p

kn − 1
= (kn

−1)
p

kn − 1
+

p
kn − 1

= p+
p
q
=

p
q

because p ∈ N and all of our arithmetic is modulo 1. Since q can be chosen
arbitrarily large and p = 0, 1, . . . , q − 1, with p/q evenly spaced about the circle,
the periodic points of fk are dense in S1.

We can now use the closed form from the proof of Theorem 4.1 to find the
periodic points of fk,α . We are searching for points such that f n

k,α(x)= x mod 1, or

(kn
− 1)

(
x +

α

k− 1

)
= x mod 1.

This shows that the periodic points of fk,α are rational points of fk rotated about
the circle by α/(k−1). Since the locally eventually onto property is preserved, and
periodic points are still dense, fk,α is chaotic. �

5. Conclusion

Our main result shows that affine hyperbolic toral automorphisms are chaotic. The
added translation by a vector b preserves the transitivity of the map and translates all
of the periodic points by

∑d
i=1(bi/(λi −1))vi , where the vi are eigenvectors, λi the

corresponding eigenvalues, and bi the coordinates of the translation vector b in the
basis defined by the eigenvectors. Note that in the case that b= 0, the periodic points
are not translated at all, which coincides with a linear hyperbolic toral automorphism.

Using this translation result, one can construct an automorphism of the torus in
which any specified point y has a specified period n: Find an x such that x has
period n under a linear hyperbolic toral automorphism. By Lemma 3.2, x will
have rational coordinates in the standard basis (but not necessarily in the basis
defined by the eigenvectors of the linear automorphism). Then define b such that
bi = (λi−1)(yi−xi ) mod 1, where bi , xi , yi are the coordinates in the basis defined
by the eigenvectors of the linear toral automorphism. The resulting affine hyperbolic
toral automorphism will have y as a periodic point with period n.

More generally, the main result shows that the incorporation of an irrational
rotation into a toral automorphism does not necessarily eliminate the possibility of
periodic points.
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