\bullet
 involve

 a journal of mathematicsAffine hyperbolic toral automorphisms
Colin Thomson and Donna K. Molinek

Affine hyperbolic toral automorphisms

Colin Thomson and Donna K. Molinek
(Communicated by Michael E. Zieve)

Abstract

A hyperbolic transformation of the torus is an example of a function that is Devaney chaotic; that is, it is topologically transitive and has dense periodic points. An irrational rotation of the torus, on the other hand, is not chaotic because it has no periodic points. We show that a hyperbolic transformation of the torus followed by a translation (an affine hyperbolic toral automorphism) has dense periodic points and maintains transitivity. As a consequence, affine toral automorphisms are chaotic, even when the translation is an irrational rotation.

1. Introduction

Değirmenci and Koçak [2010] showed that the cross-product of the double-angle map and an irrational rotation, which is a function on the torus, is transitive and has sensitive dependence to initial conditions, but no periodic points, and therefore is not chaotic. Linear hyperbolic toral automorphisms are known to be chaotic, so a natural question in light of [Değirmenci and Koçak 2010] (and the generalizations in [Li and Zhou 2013]) is whether a linear hyperbolic toral automorphism plus a translation is still chaotic. We will refer to such functions as affine hyperbolic toral automorphisms to indicate the translation. Our main goal will be to determine whether such an affine map has periodic points, even in the event that the rotation is irrational.

We find that affine hyperbolic toral automorphisms are chaotic; in fact, we can find the precise locations of periodic points in relation to the periodic points of the corresponding linear map. In this respect, we generalize statements about the transitivity and periodic points of linear hyperbolic toral automorphisms to affine hyperbolic toral automorphisms.

2. Definitions

Throughout this paper, $f: X \rightarrow X$ will be a continuous function on a complete metric space (X, d). We will examine the iterates of f using the notation f^{n} to represent the n-th iterate of f; that is, $f^{1}=f$ and $f^{n+1} \equiv f \circ f^{n}$. The composition

[^0]of f is still a continuous function from X to X. For a specific point $x \in X$, we may refer to the n-th iterate of x under f by x^{n}, which means $x^{0}=x$ is the initial point. In this paper, all points in the space will be specified as vectors, and as such the superscript notation will unambiguously denote an iterate, not raising to a power. In addition, subscripts on points in the space will refer to the corresponding coordinate value, with the basis specified in the case that it is unclear.

A function is transitive if for every pair of nonempty open sets $U, V \subseteq X$, there exists a positive integer n such that $f^{n}(U) \cap V \neq \varnothing$. An example of a transitive function is the irrational rotation on the circle. An irrational rotation is actually totally transitive, by which we mean that f^{m} is transitive for every positive integer m. A property of the irrational rotation that makes it useful for counterexamples is that it is transitive, but has no periodic points.

A periodic point $p \in X$ is one for which $f^{n}(p)=p$ for some n, a positive integer. The least such n is called the period of p, and if $n=1$, we say that p is a fixed point. We can locate points with a given period m by finding fixed points of f^{n}, provided that there is no $k<n$ such that f^{k} also fixes that point.

A function is Devaney chaotic (henceforth, chaotic) if it is transitive, has dense periodic points, and has sensitive dependence to initial conditions. "Dense" refers to the presence of at least one periodic point in every nonempty open set. Sensitivity to initial conditions means that there exists an $\epsilon>0$ so that for all $\delta>0$ and $x \in X$, there exists a $y \in X$ with $d(x, y)<\delta$ and an $n \in \mathbb{N}$ such that $d\left(f^{n}(x), f^{n}(y)\right)>\epsilon$. Banks et al. [1992] proved that the first two hypotheses are sufficient for the third, making transitivity and dense periodic points all that is necessary for chaos. As Crannell [1995] pointed out and by Banks et al. [1992], the elimination of the sensitivity hypothesis makes chaos an entirely topological concept: sensitive dependence on initial conditions is the only hypothesis of the three that relied on the metric.

In general, no other combination of two hypotheses implies the third, but on the unit interval, transitivity guarantees dense periodic points, and is therefore sufficient for chaos [Vellekoop and Berglund 1994]. Contrast this with the irrational rotation on the circle, which is transitive but has no periodic points and is not sensitive to initial conditions.

A torus of d dimensions \mathbb{T}^{d} is the cartesian product of d copies of the circle, $S^{1} \times S^{1} \times \cdots \times S^{1}$. Since $S^{1}=\mathbb{R} / \mathbb{Z}$, coordinates in \mathbb{T}^{d} are real numbers from 0, inclusive, to 1 , exclusive. A linear automorphism of \mathbb{T}^{d} is matrix multiplication of the coordinates in $[0,1) \times[0,1) \times \cdots \times[0,1)$, taken modulo 1 . Since the corners of the unit d-cube are all identified on \mathbb{T}^{d}, their images under matrix multiplication must all have integer entries to ensure they are each mapped to the origin, modulo 1. Thus the matrix representing the linear transformation must have integer entries. In addition, this matrix must have determinant ± 1 so that the map is a bijection.

This paper is concerned with hyperbolic toral automorphisms. If A is the matrix representing the toral automorphism, the product of the d (not necessarily distinct) eigenvalues of A is the determinant, which we require to be ± 1. A toral automorphism is hyperbolic when none of the eigenvalues are equal in magnitude to 1 .

3. Preliminary results

Lemma 3.1 [Katok and Hasselblatt 1995]. Any hyperbolic toral automorphism with a largest eigenvalue whose eigenvector has rationally independent entries is transitive.
Proof. Let $U, V \subset \mathbb{T}^{d}$ be nonempty open sets. The set U must contain a line segment parallel to the eigenvector associated with the largest eigenvalue. Since this eigenvalue is greater than 1 , under iteration the line segment grows without bound while remaining parallel to the eigenvector. Since the line "wraps around" the torus whenever the value of a coordinate exceeds 1 , the distances between points where the line intersects the i-axis take on values that are multiples of the i-th entry in the eigenvector. As with the irrational rotation of the circle, as the number of iterates tends towards infinity, these intersection points are dense on the i-axis. Since the line stays parallel to the eigenvector, and the entries are rationally independent, the orbit of the line is dense in \mathbb{T}^{d}. This guarantees that the line intersects V after a finite number of iterations, and therefore U and V have nontrivial intersection for some number of iterations of f.

Lemma 3.2 [Katok and Hasselblatt 1995]. The rational points on the torus are periodic for any hyperbolic toral automorphism.

Proof. Let

$$
p=\left(\frac{p_{1}}{q}, \ldots, \frac{p_{d}}{q}\right)
$$

with $p_{1}, \ldots, p_{d}, q \in \mathbb{N}$, be a point in \mathbb{T}^{d} with rational coordinates (not necessarily in lowest terms). Since the entries of the matrix corresponding to the hyperbolic toral automorphism are all integers, the image of p is also a rational point with common denominator q. Since there are precisely q^{d} rational points in the unit square with denominator q (again, not necessarily in lowest terms), every such point can take on only finitely many values under iterates of the automorphism. Thus, each rational point is either periodic, or preperiodic (in the sense that p is mapped into a periodic orbit, but that orbit does not contain p). Since the automorphism is invertible, no points are preperiodic and therefore must be periodic, with maximum period q^{d}. \square

In fact, only the rational coordinates are periodic. To see this, consider that periodic points of period n are in the kernel of $A^{n}-I_{d}$, where I_{d} is the identity matrix of dimension d. Since $A^{n}-I_{d}$ has integer entries, its kernel is composed only of vectors with rational entries.

Example 3.3 [Elaydi 2008; Katok and Hasselblatt 1995]. The canonical example of a hyperbolic toral automorphism is the Arnold "cat" map

$$
L_{A}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}, \quad x \mapsto\left[\begin{array}{ll}
2 & 1 \tag{1}\\
1 & 1
\end{array}\right] x \bmod 1
$$

The eigenvalues of the matrix are $\frac{1}{2}(3+\sqrt{5})$ and $\frac{1}{2}(3-\sqrt{5})$ with respective eigenvectors $\left[\frac{1}{2}(1+\sqrt{5}), 1\right]^{\top}$ and $\left[\frac{1}{2}(1-\sqrt{5}), 1\right]^{\top}$. You can see that one of the eigenvalues is larger than 1 and the other less, while both eigenvectors have irrational slope.

4. Main results

With the previous two lemmas, we have enough machinery to prove the main theorem pertaining to affine hyperbolic toral automorphisms. As in the introduction, an affine hyperbolic toral automorphism is a hyperbolic toral automorphism followed by a translation. We give two proofs of the result. The first gives the precise location of periodic points. The second relies on the fact that chaos is entirely topological and uses topological conjugacy.

Theorem 4.1. Any affine hyperbolic toral automorphism is chaotic.
Proof. Let $v_{1}, v_{2}, \ldots, v_{d}$ be the eigenvectors of A associated with $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$, respectively. The eigenvectors form a basis for \mathbb{R}^{d}, so for any translation $b \in \mathbb{R}^{d}$, b can be written as $b=b_{1} v_{1}+b_{2} v_{2}+\cdots+b_{d} v_{d}$ and any point on $x \in \mathbb{T}^{d}$ as $\sum_{i=1}^{d} x_{i} v_{i}$. So instead of $x^{n+1}=A x^{n}+b$, we may write

$$
x^{n+1}=A \sum_{i=1}^{d} x_{i}^{n} v_{i}+\sum_{i=1}^{d} b_{i} v_{i} .
$$

We wish to find a closed form of x^{m}. For any point $x^{0} \in \mathbb{T}^{d}$,

$$
\begin{aligned}
& x^{1}=A x^{0}+b=A \sum_{i=1}^{d} x_{i}^{0}+\sum_{i=1}^{d} b_{i} v_{i}=\sum_{i=1}^{d} \lambda_{i} x_{i}^{0} v_{i}+\sum_{i=1}^{n} b_{i} v_{i} \\
& x^{2}=A x^{1}+b=A\left(\sum_{i=1}^{d} \lambda_{i} x_{i}^{0} v_{i}+\sum_{i=1}^{d} b_{i} v_{i}\right)+\sum_{i=1}^{n} b_{i} v_{i} \\
& =\sum_{i=1}^{d} \lambda_{i}^{2} x_{i}^{0} v_{i}+\sum_{i=1}^{d} \lambda_{i} b_{i} v_{i}+\sum_{i=1}^{d} b_{i} v_{i} \\
& \begin{array}{r}
x^{3}=A x^{2}+b=A\left(\sum_{i=1}^{d} \lambda_{i}^{2} x_{i}^{0} v_{i}+\sum_{i=1}^{d} \lambda_{i} b_{i} v_{i}+\sum_{i=1}^{n} b_{i} v_{i}\right)+\sum_{i=1}^{d} b_{i} v_{i} \\
=\sum_{i=1}^{d} \lambda_{i}^{3} x_{i}^{0} v_{i}+\sum_{i=1}^{d} \lambda_{i}^{2} b_{i} v_{i}+\sum_{i=1}^{d} \lambda_{i} b_{i} v_{i}+\sum_{i=1}^{d} b_{i} v_{i}
\end{array}
\end{aligned}
$$

The first three iterations suggest that

$$
\begin{equation*}
x^{n}=\sum_{i=1}^{d} \lambda_{i}^{n} x_{i}^{0} v_{i}+\sum_{j=1}^{n} \sum_{i=1}^{d} \lambda_{i}^{j-1} b_{i} v_{i} \tag{2}
\end{equation*}
$$

Assume (2) as an induction hypothesis. Then we see that it also holds for $n+1$:

$$
\begin{aligned}
x^{n+1} & =A x^{n}+b=A\left(\sum_{i=1}^{d} \lambda_{i}^{n} x_{i}^{0} v_{i}+\sum_{j=1}^{n} \sum_{i=1}^{d} \lambda_{i}^{j-1} b_{i} v_{i}\right)+\sum_{i=1}^{d} b_{i} v_{i} \\
& =\sum_{i=1}^{d} \lambda_{i}^{n+1} x_{i}^{0} v_{i}+\sum_{j=1}^{n} \sum_{i=1}^{d} \lambda_{i}^{j} b_{i} v_{i}+\sum_{i=1}^{d} b_{i} v_{i} \\
& =\sum_{i=1}^{d} \lambda_{i}^{n+1} x_{i}^{0} v_{i}+\sum_{j=1}^{n+1} \sum_{i=1}^{d} \lambda_{i}^{j-1} b_{i} v_{i}
\end{aligned}
$$

The last expression in (2) is not particularly revealing until we rewrite the double sum as

$$
\sum_{j=1}^{n} \sum_{i=1}^{d} \lambda_{i}^{j-1} b_{i} v_{i}=\sum_{i=1}^{d} b_{i} v_{i} \sum_{j=1}^{n} \lambda_{i}^{j-1}=\sum_{i=1}^{d} b_{i} \frac{1-\lambda_{i}^{n}}{1-\lambda_{i}} v_{i}
$$

and remember that we are looking for periodic points such that $x^{0}=x^{m} \bmod 1$. We are looking for $x=\sum_{i=1}^{n} x_{i} v_{i} \bmod 1$ such that

$$
\sum_{i=1}^{d} x_{i} v_{i}=\sum_{i=1}^{d} \lambda_{i}^{n} x_{i} v_{i}+\sum_{i=1}^{d} b_{i} \frac{1-\lambda_{i}^{n}}{1-\lambda_{i}} v_{i} \bmod 1
$$

which leads to

$$
\begin{aligned}
0 & =\sum_{i=1}^{d} \lambda_{i}^{n} x_{i} v_{i}-\sum_{i=1}^{d} x_{i} v_{i}+\sum_{i=1}^{d} b_{i} \frac{1-\lambda_{i}^{n}}{1-\lambda_{i}} v_{i} \bmod 1 \\
& =\sum_{i=1}^{d}\left(\lambda_{i}^{n} x_{i} v_{i}-x_{i} v_{i}+b_{i} \frac{1-\lambda_{i}^{n}}{1-\lambda_{i}} v_{i}\right) \bmod 1 \\
& =\sum_{i=1}^{d}\left(\left(\lambda_{i}^{n}-1\right) x_{i} v_{i}+b_{i} \frac{1-\lambda_{i}^{n}}{1-\lambda_{i}} v_{i}\right) \bmod 1 \\
& =\sum_{i=1}^{d}\left(\lambda_{i}^{n}-1\right)\left(x_{i} v_{i}+\frac{b_{i}}{\lambda_{i}-1} v_{i}\right) \bmod 1 \\
& =\sum_{i=1}^{d}\left(\lambda_{i}^{n}-1\right)\left(x_{i}+\frac{b_{i}}{\lambda_{i}-1}\right) v_{i} \bmod 1
\end{aligned}
$$

from which we can conclude that the periodic points of the affine map are precisely those of the linear map translated by $\sum_{i=1}^{d}\left(b_{i} /\left(\lambda_{i}-1\right)\right) v_{i}$. Since the periodic points of the linear map are dense, so too are the periodic points of the affine map. In addition, if U, V are open in \mathbb{T}^{d}, then there exists an n such that the n-th iterate of the linear map of U intersects V. Thus, the affine map is chaotic.

There is another proof of the main result that uses far less calculation, but does not give the new locations of periodic points. We use the fact that the linear and affine hyperbolic toral automorphisms $f(x)$ and $g(x)=f(x)+b$ are topologically conjugate, so that the following diagram commutes:

Alternate proof of Theorem 4.1. If we suppose f is defined by multiplication by a matrix A and g is multiplication by A followed by translation by b, we must define the homeomorphism h so that $f=h^{-1} \circ g \circ h$. This homeomorphism h is simply translation by some \tilde{b} :

$$
\begin{aligned}
A x=A(x+\tilde{b})+b-\tilde{b}=A x & +A \tilde{b}+b-\tilde{b}=A x+\left(A-I_{d}\right) \tilde{b}+b \\
& \Rightarrow \quad\left(A-I_{d}\right) \tilde{b}=-b \quad \Longrightarrow \quad \tilde{b}=-\left(A-I_{d}\right)^{-1} b
\end{aligned}
$$

We know $A-I_{d}$ is invertible because A has no eigenvalues equal to 1 .
Since f and g are topologically conjugate, they have the same properties regarding transitivity and periodic points. The transitivity and dense periodic points of linear f are known, so they hold also for the affine g.

Corollary 4.2. Any affine hyperbolic transformation of \mathbb{T}^{2} is chaotic.
Proof. Suppose the linear part of the transformation is multiplication by a matrix A. Then the roots of the characteristic polynomial are

$$
\begin{aligned}
\operatorname{det}\left(A-\lambda I_{2}\right)=\operatorname{det}\left[\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right] & =\lambda^{2}-(a+d) \lambda+(a d-b c) \\
& \Longrightarrow \lambda=\frac{(a+d) \pm \sqrt{(a+d)^{2}-4(a d-b c)}}{2}
\end{aligned}
$$

The discriminant $(a+d)^{2}-4(a d-b c)=(a+d)^{2}-4$ cannot be a perfect square because 2 is not part of any Pythagorean triple. Thus the eigenvalues are irrational, which in turn implies that each of the eigenvectors has irrational slope. This is sufficient since all affine hyperbolic functions on \mathbb{T}^{2} meet the criteria of the main result, and are thus chaotic.

Example 4.3. We now give a specific example of the previous corollary based on Example 3.3. Let $L_{A, b}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be defined as

$$
L_{A, b}\left(\left[\begin{array}{l}
x_{1} \tag{3}\\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
\sqrt{2} / 2 \\
\sqrt{3} / 3
\end{array}\right] .
$$

Recall that the eigenvectors of the matrix A are $v_{1}=\left[\frac{1}{2}(1+\sqrt{5}), 1\right]^{\top}$ and $v_{2}=$ $\left[\frac{1}{2}(1-\sqrt{5}), 1\right]^{\top}$, with eigenvalues $\lambda_{1}=\frac{1}{2}(3+\sqrt{5})$ and $\lambda_{2}=\frac{1}{2}(3-\sqrt{5})$, so that $\lambda_{1}>1>\lambda_{2}>0$. The points

$$
p_{1}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad p_{3}=\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right] \quad \text { and } \quad p_{10}=\left[\begin{array}{l}
1 / 5 \\
3 / 5
\end{array}\right]
$$

are fixed and periodic of periods 3 and 10 respectively under Example 3.3. To find the corresponding periodic points q_{1}, q_{3}, q_{10} under $L_{A, b}$, first calculate b_{1}, b_{2}, which are the projections of b against $v_{1}, v_{2} .{ }^{1}$ Then add the translation prescribed by Theorem 4.1:

$$
\begin{aligned}
& \frac{b_{1}}{1-\lambda_{1}} v_{1}+\frac{b_{2}}{1-\lambda_{2}} v_{2}=\frac{\left\langle b, v_{1}\right\rangle}{1-\lambda_{1}} v_{1}+\frac{\left\langle b, v_{2}\right\rangle}{1-\lambda_{2}} v_{2} \approx\left[\begin{array}{l}
.4227 \\
.8702
\end{array}\right], \\
& q_{1} \approx p_{1}+\left[\begin{array}{l}
.4227 \\
.8702
\end{array}\right]=\left[\begin{array}{l}
.4227 \\
.8702
\end{array}\right], \\
& q_{3} \approx p_{3}+\left[\begin{array}{l}
.4227 \\
.8702
\end{array}\right]=\left[\begin{array}{l}
.9227 \\
.3702
\end{array}\right], \\
& q_{10} \approx p_{10}+\left[\begin{array}{l}
.4227 \\
.8702
\end{array}\right]=\left[\begin{array}{l}
.6227 \\
.4702
\end{array}\right] .
\end{aligned}
$$

One can check numerically that indeed

$$
L_{A, b}\left(q_{1}\right)=q_{1}, \quad L_{A, b}^{3}\left(q_{3}\right)=q_{3}, \quad L_{A, b}^{10}\left(q_{10}\right)=q_{10}
$$

and for each this is the minimum number of iterations required.
Corollary 4.4. Any function $f_{k, \alpha}$ on the circle given by $f_{k, \alpha}: \theta \mapsto k \theta+\alpha$ with $k \in \mathbb{Z} \backslash\{-1,0,1\}$ and $\alpha \in S^{1}$ is chaotic.
Proof. The slope of an eigenvector degenerates for $S^{1}=\mathbb{T}^{1}$, and in any case the function $f_{k, \alpha}$ is not an automorphism. In the sense that $f_{k, \alpha}$ is a function that is known to be chaotic followed by a (possibly irrational) rotation, the main result holds.

First, an alternative explanation for the transitivity of $f_{k, \alpha}$ is in order. Any open set U in S^{1} contains an open arc $\left(\theta_{1}, \theta_{2}\right)$ with length $\theta_{2}-\theta_{1}$. Define $m=2 \pi /\left(\theta_{2}-\theta_{1}\right)$. After $n \geq k^{m}$ iterations of $f_{k, \alpha}$ on U, we have $f_{k, \alpha}^{n}(U)=S^{1}$. (A function with this

[^1]condition is said to be locally eventually onto.) Since every open set is "eventually onto" the circle, any U will certainly have nontrivial intersection with any nonempty open $V \in S^{1}$ after a finite number of iterations.

The periodic points of $f_{k}=f_{k, 0}$ are the rational points in $[0,1)$ with denominator one less than a power of k. Moreover, if this denominator is $q=k^{n}-1$, then the point $p / q \in \mathbb{Q} \cap[0,1)$ will have period n if p / q is fully reduced. To see this, note that
$f_{k}^{n}\left(\frac{p}{q}\right)=k^{n} \frac{p}{k^{n}-1}=\left(k^{n}-1+1\right) \frac{p}{k^{n}-1}=\left(k^{n}-1\right) \frac{p}{k^{n}-1}+\frac{p}{k^{n}-1}=p+\frac{p}{q}=\frac{p}{q}$
because $p \in \mathbb{N}$ and all of our arithmetic is modulo 1 . Since q can be chosen arbitrarily large and $p=0,1, \ldots, q-1$, with p / q evenly spaced about the circle, the periodic points of f_{k} are dense in S^{1}.

We can now use the closed form from the proof of Theorem 4.1 to find the periodic points of $f_{k, \alpha}$. We are searching for points such that $f_{k, \alpha}^{n}(x)=x \bmod 1$, or

$$
\left(k^{n}-1\right)\left(x+\frac{\alpha}{k-1}\right)=x \bmod 1 .
$$

This shows that the periodic points of $f_{k, \alpha}$ are rational points of f_{k} rotated about the circle by $\alpha /(k-1)$. Since the locally eventually onto property is preserved, and periodic points are still dense, $f_{k, \alpha}$ is chaotic.

5. Conclusion

Our main result shows that affine hyperbolic toral automorphisms are chaotic. The added translation by a vector b preserves the transitivity of the map and translates all of the periodic points by $\sum_{i=1}^{d}\left(b_{i} /\left(\lambda_{i}-1\right)\right) v_{i}$, where the v_{i} are eigenvectors, λ_{i} the corresponding eigenvalues, and b_{i} the coordinates of the translation vector b in the basis defined by the eigenvectors. Note that in the case that $b=0$, the periodic points are not translated at all, which coincides with a linear hyperbolic toral automorphism.

Using this translation result, one can construct an automorphism of the torus in which any specified point y has a specified period n : Find an x such that x has period n under a linear hyperbolic toral automorphism. By Lemma 3.2, x will have rational coordinates in the standard basis (but not necessarily in the basis defined by the eigenvectors of the linear automorphism). Then define b such that $b_{i}=\left(\lambda_{i}-1\right)\left(y_{i}-x_{i}\right) \bmod 1$, where b_{i}, x_{i}, y_{i} are the coordinates in the basis defined by the eigenvectors of the linear toral automorphism. The resulting affine hyperbolic toral automorphism will have y as a periodic point with period n.

More generally, the main result shows that the incorporation of an irrational rotation into a toral automorphism does not necessarily eliminate the possibility of periodic points.

References

[Banks et al. 1992] J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, "On Devaney's definition of chaos", Amer. Math. Monthly 99:4 (1992), 332-334. MR 1157223 Zbl 0758.58019
[Crannell 1995] A. Crannell, "The role of transitivity in Devaney's definition of chaos", Amer. Math. Monthly 102:9 (1995), 788-797. MR 1357723 Zbl 0849.58046
[Değirmenci and Koçak 2010] N. Değirmenci and Ş. Koçak, "Chaos in product maps", Turkish J. Math. 34:4 (2010), 593-600. MR 2721970 Zbl 1208.37010
[Elaydi 2008] S. N. Elaydi, Discrete chaos: With applications in science and engineering, 2nd ed., Chapman \& Hall/CRC, Boca Raton, FL, 2008. MR 2364977 Zbl 1153.39002
[Katok and Hasselblatt 1995] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications 54, Cambridge Univ. Press, 1995. MR 1326374 Zbl 0878.58020
[Li and Zhou 2013] R. Li and X. Zhou, "A note on chaos in product maps", Turkish J. Math. 37:4 (2013), 665-675. MR 3070943 Zbl 1293.37015
[Vellekoop and Berglund 1994] M. Vellekoop and R. Berglund, "On intervals, transitivity = chaos", Amer. Math. Monthly 101:4 (1994), 353-355. MR 1270961 Zbl 0886.58033

Received: 2014-01-30 Accepted: 2015-08-17

cfcthomson@gmail.com	University of North Carolina at Chapel Hill, Phillips Hall CB\#3250, Chapel Hill, NC 27599, United States domolinek@davidson.edu
Davidson College, Box 6999, Davidson, NC 28035, United States	

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2016 is US $\$ 160 /$ year for the electronic version, and $\$ 215 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY
mathematical sciences publishers

involve 2016 vol. 9 no. 4

Affine hyperbolic toral automorphisms 541
Colin Thomson and Donna K. Molinek
Rings of invariants for the three-dimensional modular representations of 551elementary abelian p-groups of rank fourThéo Pierron and R. James Shank
Bootstrap techniques for measures of center for three-dimensional rotation data 583
L. Katie Will and Melissa A. Bingham
Graphs on 21 edges that are not 2-apex 591
Jamison Barsotti and Thomas W. Mattman
Mathematical modeling of a surface morphological instability of a thin 623monocrystal film in a strong electric fieldAaron Wingo, Selahittin Cinar, Kurt Woods and MikhailKhenner
Jacobian varieties of Hurwitz curves with automorphism group PSL(2, q) 639Allison Fischer, Mouchen Liu and Jennifer Paulhus
Avoiding approximate repetitions with respect to the longest common 657
subsequence distance
SERINA Camungol and Narad Rampersad
Prime vertex labelings of several families of graphs667
Nathan Diefenderfer, Dana C. Ernst, Michael G. Hastings,Levi N. Heath, Hannah Prawzinsky, Briahna Preston, JeffRushall, Emily White and Alyssa Whittemore
Presentations of Roger and Yang's Kauffman bracket arc algebra 689
Martin Bobb, Dylan Peifer, Stephen Kennedy and Helen
Wong
Arranging kings k-dependently on hexagonal chessboards 699
Robert Doughty, Jessica Gonda, Adriana Morales, Berkeley
Reiswig, Josiah Reiswig, Katherine Slyman and Daniel
Pritikin
Gonality of random graphs715
Andrew Deveau, David Jensen, Jenna Kainic and Dan
Mitropolsky

[^0]: MSC2010: primary 54 H 20 ; secondary 37 B 40 .
 Keywords: topological dynamics, chaos, toral automorphism.

[^1]: ${ }^{1}$ Remember that all arithmetic is performed modulo 1 .

