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The Jones polynomial for knots and links was a breakthrough discovery in the
early 1980s. Since then, it’s been generalized in many ways; in particular, by
considering knots and links which live in thickened surfaces and by allowing arcs
between punctures or marked points on the boundary of the surface. One such
generalization was recently introduced by Roger and Yang and has connections
with hyperbolic geometry. We provide generators and relations for Roger and
Yang’s Kauffman bracket arc algebra of the torus with one puncture and the
sphere with three or fewer punctures.

Roger and Yang’s Kauffman bracket arc algebra is a generalization of the well-
known Kauffman bracket skein algebra of a surface, whose definition in [Turaev
1988; Przytycki 1991] is based on Kauffman’s skein theoretic description of the
Jones polynomial for knots and links [Jones 1985; Kauffman 1987]. Later, the
skein algebra of a hyperbolic surface was interpreted as a quantization of the
surface’s Teichmüller space from hyperbolic geometry [Turaev 1991; Bullock et al.
1999; Przytycki and Sikora 2000]. Interest thus grew for the skein algebra, as a
construction important in the Jones polynomial skein theory but also deeply related
to Teichmüller theory.

Following this body of work on the skein algebra, Roger and Yang introduced a
“skein algebra of arcs” to be a skein theory version of Penner’s decorated Teichmüller
space. Penner [1987] defined the decorated Teichmüller space as an alternate way to
describe the hyperbolic structures of a surface using lengths of both simple closed
curves and arcs between punctures on the surface (each decorated with a choice of
horoball). Roger and Yang defined their arc algebra as a quantization of Penner’s
decorated Teichmüller space, roughly in the same way that the skein algebra is a
quantization of the usual Teichmüller space. The arc algebra includes both simple
closed curves and arcs between punctures on the surface. In addition to the two
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usual bracket skein relations for framed links, there are two extra relations for arcs
and loops near the punctures.

Understanding the algebraic structure of Roger and Yang’s arc algebra is an im-
portant first step to exploring its role as an intermediary between quantum topology
and hyperbolic geometry. Here, we seek finite presentations of the arc algebra for
some simple surfaces, namely for spheres with three or fewer punctures and for tori
with one or no punctures. In the companion paper [Bobb et al. 2016], we show that
the arc algebra is finitely generated. Our work is inspired by analogous statements
for the skein algebra found in [Bullock and Przytycki 2000; Bullock 1999].

1. The Kauffman bracket arc algebra

Let Fg,n denote a compact, orientable surface of genus g with n points p1, p2, . . . , pn

removed. The points removed are the punctures. Let A be an indeterminate, with
formal square roots A

1
2 and A−

1
2 . In addition, let there be an indeterminate vi

associated to each puncture pi , and let Rn = Z[A±
1
2 ][v±1

1 , v±1
2 , . . . , v±1

n ] denote
the ring of Laurent polynomials in the commuting variables A

1
2 and v1, . . . , vn .

A framed curve in the thickened surface Fg,n × [0, 1] is the union of framed
knots and framed arcs that go from puncture to puncture. (See [Roger and Yang
2014] for a precise definition.) Let G(Fg,n) be the Rn-module freely generated by
the framed curves in Fg,n ×[0, 1], up to isotopy, and let K(Fg,n) be the submodule
generated by terms of the following four forms:

(1) skein relation: −

(
A + A−1

)
,

(2) puncture-skein relation on i-th puncture: vi −

(
A

1
2 +A−

1
2

)
,

(3) framing relation: − (−A2
− A−2),

(4) puncture-framing relation: − (A+ A−1),

where the diagrams in each form are assumed to be identical outside of the small
balls depicted. Let A(Fg,n) denote the quotient G(Fg,n)/K(Fg,n).

There is a natural stacking operation for framed curves in the thickened sur-
face Fg,n × [0, 1] which extends to A(Fg,n). That is, if [L1], [L2] ∈ A(Fg,n) are
respectively represented by framed curves L1, L2 in Fg,n ×[0, 1], the product

[L1] ∗ [L2] = [L ′1 ∪ L ′2] ∈A(Fg,n)
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1

2

Figure 1. A framed curve with three components on F0,2.

is represented by the union of the framed curve L ′1 ⊂ Fg,n ×
[
0, 1

2

]
(obtained

by rescaling L1 in Fg,n × [0, 1]) and the framed curve L ′2 ⊂ Fg,n ×
[ 1

2 , 1
]

(ob-
tained by rescaling L2 in Fg,n × [0, 1]). This stacking operation makes A(Fg,n)

into an algebra, called the Kauffman bracket arc algebra of the surface Fg,n .
Diagrams in this paper represent projections of framed curves onto Fg,n with

over- and under-crossing information depicted by breaks in the projection at double-
points in the projection, and where the framing of curves is vertical, at right angles
to the plane of the paper. Although more than one component of a framed curve can
end at any puncture, they must do so at different heights. Diagrams will indicate
the order in height of the crossings as necessary. Figure 1 shows a framed curve
consisting of three components (two framed arcs and a framed knot) in a sphere
with two punctures. No further labeling at punctures is necessary in Figure 1 since
arcs intersect each puncture only twice.

Figure 2 shows a product of two framed curves on a twice-punctured torus. The
product can be simplified by using a Reidemeister 2 move followed by relation (2)
(puncture-skein relation) to “pull off” a pair of strands that meet at a puncture and

1 2 ∗ 1 2 = 1 2 = 1 2

= v−1
1

A
1
2 1 2 +A−

1
2 1 2



= v−1
1 (A+A−1)

A
1
2 1 2 +A−

1
2 1 2


Figure 2. Rewriting a framed curve in A(F1,2).
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relation (4) (puncture-framing relation) to “remove” trivial components enclosing
a puncture.

The Kauffman bracket skein algebra S(Fg,n) defined by Turaev [1988] and
Przytycki [1991] is closely related to the arc algebra A(Fg,n). Recall that the skein
algebra S(Fg,n) can be constructed by considering the quotient G0(Fg,n)/K0(Fg,n),
where G0(Fg,n) is the Z[A, A−1

]-module generated by the framed links in the
thickened surface Fg,n ×[0, 1] and K0(Fg,n) is the submodule generated by only
relation (1) (the skein relation) and relation (3) (the framing relation) from above.
Again, multiplication is induced by the stacking of framed links in the thickened
surface. Compared with the skein algebra S(Fg,n), the definition of the arc algebra
A(Fg,n) differs in two ways: in the choice of a larger ring and in the inclusion of
two extra relations.

Lemma 1.1. There exists a well-defined nontrivial algebra homomorphism

ψ : S(Fg,n)→A(Fg,n)

so that ψ([K ])= [K ] for a framed link K in Fg,n .

Proof. Consider the map i : G0(Fg,n)→ Rn ⊗ G0(Fg,n) with i(x) = 1⊗ x that
changes the scalars, and the map j : Rn⊗G0(Fg,n)→ G(Fg,n) with j (p⊗x)= p ·x
that includes the framed links into the framed curves. Let ψ̂ = j ◦ i . Notice
that ψ̂(K0(Fg,n)) ⊆ K(Fg,n). Thus ψ̂ : G0(Fg,n)→ G(Fg,n) descends to a map
ψ : G0(Fg,n)/K0(Fg,n)→ G(Fg,n)/K(Fg,n). �

We are interested in the image of ψ . In certain small cases, it generates A(Fg,n),
a fact we will exploit later on page 697.

2. Generators and relations for the arc algebra

A general strategy for finding generating sets for A(Fg,n) is to rewrite framed curves
using ones with fewer crossings. We say that a framed knot is a simple knot if it
allows a projection onto Fg,n ×{0} without any crossings and it does not bound a
disk containing one or no punctures. A framed arc is a simple arc if its endpoints
are at distinct punctures and it allows a projection without any crossings. A simple
curve is either a simple knot or a simple arc.

Lemma 2.1. If a set of elements {x1, x2, . . . , xm} generates the simple curves then
it generates all of A(Fg,n).

Proof. Suppose we have a basis element [L] ∈ A(Fg,n) represented by a framed
curve L ⊂ Fg,n×[0, 1]. By application of the skein relation and the puncture-skein
relation, [L]may be written as a linear combination of skeins represented by framed
curves each of which has no crossings and intersects a puncture at most once. In
particular, the connected components of each framed curve can be isotoped to be at
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...1 2 k

K
α

β

Figure 3. A neighborhood of K in F0,n .

different heights, so [L] is a linear combination of products of simple knots, simple
arcs, and possibly some loops that bound disks containing one or no punctures.
Those latter loops may be removed by application of the framing and puncture
relations. Thus [L] is a linear combination of simple curves. Since {x1, x2, . . . , xm}

generate the simple curves, [L] is also in the set generated by {x1, x2, . . . , xm}. �

Remark. Observe that if (A2
− 1) is invertible, then the puncture-skein relation

implies that

= vi A
1
2 (A2
− 1)−1

(
− + A

)
and

= vi A−
1
2 (A−2

− 1)−1

(
− + A−1

)
.

So when A2
−1 is invertible, if a set of elements generates only the simple arcs, then it

generates all of A(Fg,n) by Lemma 2.1. However, in the following examples, we will
work under the most general set-up, and we will not assume that A2

−1 is invertible.

Arc algebra of punctured spheres. We begin by a refinement of Lemma 2.1 in the
case of punctured spheres, F0,n with n ≥ 2.

Proposition 2.2. If a set of elements {x1, x2, . . . , xn} of the arc algebra A(F0,n)

generates the simple arcs, then it generates the entire algebra.

Proof. By Lemma 2.1, it suffices to show that any simple knot can be rewritten in
terms of simple arcs. Given a simple knot K ⊆ F0,n × [0, 1], notice that it has a
projection which separates F0,n into two punctured disks. Let D be the punctured
disk bounded by K with the smaller number of punctures, say p1, . . . , pk .

Since K is a simple knot, k ≥ 2. There exist two disjoint simple arcs from p1

to pk such that the union of their projections onto F0,n encloses the remaining
punctures p2, . . . , pk−1. Let α and β be the skeins represented by these two arcs,
respectively. See Figure 3.
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Consider the product α∗β ∈A(F0,n) and apply the puncture-skein relation twice:

α ∗β = ...1

α

β

2 k

=
1
v1vk

A ...1 2 k + ...1 2 k + ...1 2 k

K

+ A−1 ...1 2 k

 .
Thus [K ] can be rewritten as a linear combination involving the product of two
simple arcs (α and β) and three knots bounding disks with strictly fewer punctures.
Notice also that a knot bounding a disk with one or no punctures can be removed
using the puncture relation or the framing relation, respectively. Thus by induction,
we are done. �

Sphere with two punctures.

Theorem 2.3. A(F0,2)= R2
〈
α |α2

=−v−1
1 v−1

2 (A−A−1)2
〉
, where α is represented

by a simple arc between the two punctures of F0,2.

Proof. On F0,2, any simple arc must start at one puncture and end at the other
without intersecting itself. Up to isotopy, there is only one such arc, and let α be
the skein represented by that arc. By Proposition 2.2, α generates the algebra. Note
that in the arc algebra,

α2
= 1 2 =

1
v1v2

A 1 2 + 2 1 2 + A−1
1 2


= v−1

1 v−1
2

(
(A+ A−1)(A+ A−1)+ 2(−A2

− A−2)
)

=−v−1
1 v−1

2 (A− A−1)2.

In particular, this shows that α2 is not linearly independent from 1 and α. As α is
the only generator, this is the only relation of A(F0,2). �

Sphere with three punctures. To determine the arc algebra A(F0,3), we will need
the following lemma from algebra.

Lemma 2.4. Let A and B be R-algebras. Suppose x1, x2, . . . , xn are elements of
the algebra A and ρ is some algebra homomorphism of A to the algebra B. If the
elements ρ(x1), ρ(x2), . . . , ρ(xn) are linearly independent in B, then x1, x2, . . . , xn

are linearly independent in A.
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Proof. We prove the contrapositive. Suppose x1, x2, . . . , xn are linearly dependent
in A. Then there exist coefficients k1, k2, . . . , kn ∈ R so that

k1x1+ k2x2+ · · ·+ knxn = 0

and at least one ki is nonzero. Since ρ is an R-algebra homomorphism,

k1ρ(x1)+ k2ρ(x2)+ · · ·+ knρ(xn)= 0.

So ρ(x1), ρ(x2), . . . , ρ(xn) are linearly dependent in B as well. �

Theorem 2.5.

A(F0,3)= R3
〈
α1, α2, α3 | αiαi+1 = αi+1αi = v

−1
i+2δ αi+2, vi+1vi+2α

2
i = δ

2〉,
where αi is represented by the simple arc connecting the punctures pi+1 to pi+2 in
the thrice-punctured sphere F0,3, with i = 1, 2, 3 and indices interpreted modulo 3,
and where δ = (A

1
2 + A−

1
2 ).

Proof. Since the only simple arcs in F0,3 are those connecting distinct punctures, it
follows that α1, α2, and α3 generate the arc algebra K [F0,3]. Observe that

α2
i = i+1

i

i+2

= v−1
i+1v

−1
i+2

A
i+1

i

i+2
+

i+1

i

i+2
+

i+1

i

i+2
+ A−1

i+1

i

i+2


= v−1

i+1v
−1
i+2

(
A(A+ A−1)+ (−A2

− A−2)+ (A+ A−1)+ A−1(A+ A−1)
)

= v−1
i+1v

−1
i+2(A

1
2 + A−

1
2 )2

= v−1
i+1v

−1
i+2δ

2.

Also,

αi ∗αi+1 = i+1

i

i+2
= v−1

i+2

A
1
2

i+1

i

i+2
+ A−

1
2

i+1

i

i+2


= v−1

i+2(A
1
2 + A−

1
2 )αi+2

= v−1
i+2δαi+2
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and similarly

αi+1 ∗αi = i+1

i

i+2
= v−1

i+2

A
1
2

i+1

i

i+2
+ A−

1
2

i+1

i

i+2


= v−1

i+2(A
1
2 + A−

1
2 )αi+2

= v−1
i+2δαi+2.

We next show that these are the only relations. Notice that the relations above
imply that any product αi ∗ α j can be rewritten as either a scalar multiple when
i = j or as a multiple of the remaining αk for k 6= i, j . Thus any word in α1, α2,
and α3 can be rewritten in terms of a scalar multiple of one or zero generators. So
any other relation among the generators α1, α2, and α3 can be expressed in the form

k0+ k1α1+ k2α2+ k3α3 = 0,

where ki ∈ R3. We will show that 1, α1, α2, α3 are linearly independent, so that the
ki = 0.

Recall that a left regular representation of a group is the linear representation
provided by multiplication of group elements on the left. Based on the similarity of
the algebra elements 1, α1, α2, α3 from A(F0,3) with the group elements of Z2×Z2,
we define a left regular representation ρ for A(F0,3) by

ρ(1)=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , ρ(α1)=


0 v−1

2 v−1
3 δ2 0 0

1 0 0 0
0 0 0 v−1

2 δ

0 0 v−1
3 δ 0

 ,

ρ(α2)=


0 0 v−1

1 v−1
3 δ2 0

0 0 0 v−1
1 δ

1 0 0 0
0 v−1

3 δ 0 0

 , ρ(α3)=


0 0 0 v−1

1 v−1
2 δ2

0 0 v−1
1 δ 0

0 v−1
2 δ 0 0

1 0 0 0

 .
Note that the coefficients from each column are exactly those given by the equations
describing left multiplication by αi . In particular, they are the coefficients in the
equations αi ∗1=αi , αi ∗αi = v

−1
i+1v

−1
i+2δ

2, and αi ∗αi+1=αi+1∗αi = v
−1
i+2δαi+2 for

all i . The matrices ρ(1), ρ(α1), ρ(α2) and ρ(α3) are clearly linearly independent,
as can be determined by looking at their first columns. Thus by Lemma 2.4, we have
that 1, α1, α2, α3 are linearly independent. Hence there are no more relations to be
found in K (F0,3). This also shows that {α1, α2, α3} is a minimal set of generators. �
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Surfaces with zero or one punctures. Recall that R = Z[A, A−1
] is a subring of

Rn=Z[A
1
2 , A−

1
2 ][v±1

1 , v±1
2 , . . . , v±1

n ], and from Lemma 1.1, there exists an algebra
homomorphism ψ , which maps the R-algebra S(Fg,n) to the Rn-algebra A(Fg,n).

First observe that when n=0, the relations in S(Fg,0) are exactly those in A(Fg,0).
That is, R0⊗K0(Fg,0)∼=K(Fg,0). Moreover, the mapψ from the proof of Lemma 1.1
is injective when n = 0 and acts as the identity on simple knots. Since all simple
curves are simple knots in this case and the image of ψ contains all simple knots,
the image of ψ generates all of the arc algebra A(Fg,0) by Lemma 2.1. Thus
R0⊗S(Fg,0)∼=A(Fg,0), and any presentation of S(Fg,0) provides a presentation
of A(Fg,0).

When n = 1, again there are no simple arcs, so that the image of ψ generates all
of the arc algebra A(Fg,1). So any set generating S(Fg,1) also generates A(Fg,1).
However, the map ψ is no longer injective. Specifically, the relations for the
Kauffman skein algebra and the relations for the Kauffman arc algebra will differ;
the puncture-framing relation from the Kauffman arc algebra is not a relation
in the Kauffman skein algebra. However, this is the only difference. Hence
R1⊗S(Fg,1)/Kpfr(Fg,1)∼=A(Fg,1), where Kpfr(Fg,1) is the submodule generated
by only the puncture-framing relation. In summary, the generators of A(Fg,1) are
generators of S(Fg,1), but the relations of A(Fg,1) are relations of S(Fg,1) along
with one corresponding to the puncture-framing relation.

Torus with zero or one punctures. As an example, let us examine the cases of the
closed torus and the torus with one puncture. From [Bullock and Przytycki 2000],
we have that the Kauffman skein algebras S(F1,0) and S(F1,1) are both generated
as Z[A, A−1

]-modules by three simple closed curves γ1, γ2, γ3 such that γ1 and γ2

intersect once and γ3 is one of two curves that meet both γ1 and γ2 once. Moreover,
if ∂ represents a small loop around the puncture of F1,1, then

∂ = Aγ1γ2γ3− A2γ 2
1 − A−2γ 2

2 − A2γ 2
3 + A2

+ A−2. (1)

In the skein algebra S(F1,0), we have ∂ =−A2
− A−2. Up to a change in scalars

from R to R0, a presentation of the arc algebra A(F1,0) is the same as the presentation
of the skein algebra S(F1,0). That is,

A(F1,0)= R0
〈
γ1, γ2, γ3 | Aγiγi+1− A−1γi+1γi = (A2

− A−2)γi+1 and

−A2
− A−2

= Aγ1γ2γ3− A2γ 2
1 − A−2γ 2

2 − A2γ 2
3 + A2

+ A−2〉,
where the indices are interpreted modulo 3. On the other hand, in the once-punctured
torus, we have ∂ = A+ A−1 in the arc algebra. Thus

A(F1,1)= R1
〈
γ1, γ2, γ3 | Aγiγi+1− A−1γi+1γi = (A2

− A−2)γi+1 and

A+ A−1
= Aγ1γ2γ3− A2γ 2

1 − A−2γ 2
2 − A2γ 2

3 + A2
+ A−2〉.
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