

Convergence of sequences of polygons Eric Hintikka and Xingping Sun

Convergence of sequences of polygons

Eric Hintikka and Xingping Sun

(Communicated by Zuhair Nashed)

In 1878, Darboux studied the problem of midpoint iteration of polygons. Simply put, he constructed a sequence of polygons $\Pi^{(0)}$, $\Pi^{(1)}$, $\Pi^{(2)}$, ... in which the vertices of a descendant polygon $\Pi^{(k)}$ are the midpoints of its parent polygon $\Pi^{(k-1)}$ and are connected by edges in the same order as those of $\Pi^{(k-1)}$. He showed that such a sequence of polygons converges to their common centroid. In proving this result, Darboux utilized the powerful mathematical tool we know today as the finite Fourier transform. For a long time period, however, neither Darboux's result nor his method was widely known. The same problem was proposed in 1932 by Rosenman as Monthly Problem # 3547 and had been studied by several authors, including I. J. Schoenberg (1950), who also employed the finite Fourier transform technique. In this paper, we study generalizations of this problem. Our scheme for the construction of a polygon sequence not only gives freedom in selecting the vertices of a descendant polygon but also allows the polygon generating procedure itself to vary from one step to another. We show under some mild restrictions that a sequence of polygons thus constructed converges to a single point. Our main mathematical tools are ergodicity coefficients and the Perron-Frobenius theory on nonnegative matrices.

1. Introduction

Jean Gaston Darboux [1878] proposed and solved the following problem. Let $\Pi^{(0)}$ be a closed polygon in the plane with vertices

$$v_0^{(0)}, v_1^{(0)}, \dots, v_{n-1}^{(0)}.$$

 $v_0^{(1)}, v_1^{(1)}, \ldots, v_{n-1}^{(1)},$

Denote by

respectively, the midpoints of the edges $v_0^{(0)}v_1^{(0)}$, $v_1^{(0)}v_2^{(0)}$, ..., $v_{n-1}^{(0)}v_0^{(0)}$. Connecting $v_0^{(1)}$, $v_1^{(1)}$, ..., $v_{n-1}^{(1)}$ in the same order as above, we derive a new polygon, denoted by $\Pi^{(1)}$. Apply the same procedure to derive polygon $\Pi^{(2)}$. After *k* constructions, we obtain polygon $\Pi^{(k)}$. Show that $\Pi^{(k)}$ converges, as $k \to \infty$, to the centroid of the

MSC2010: primary 15A60, 65F35; secondary 15A12, 15A30.

Keywords: polygons, finite Fourier transform, stochastic matrices, ergodicity coefficients.

original points $v_0^{(0)}, v_1^{(0)}, \ldots, v_{n-1}^{(0)}$. We will refer to this problem as "midpoint iteration of polygons". For any given sequence of polygons $\Pi^{(0)}, \Pi^{(1)}, \Pi^{(2)}, \ldots$, we will call $\Pi^{(k)}$ the descendant polygon of $\Pi^{(k-1)}$ and $\Pi^{(k-1)}$ the parent polygon of $\Pi^{(k)}$.

In proving his result, Darboux used the powerful mathematical tool we know today as the finite Fourier transform. This allowed him to establish an exponential rate at which the polygon sequence converges to their common centroid. For a long period of time, however, neither Darboux's result nor his method was widely known. More than half a century later, the same problem, which has since been known as Monthly Problem # 3547, was proposed by Rosenman, and a solution of the problem was given by R. Huston in [Rosenman and Huston 1933].

Unaware of what Darboux had already done, Schoenberg [1950] completely retooled the finite Fourier transform technique to tackle the problem of midpoint iteration of polygons. Schoenberg also generalized the problem by allowing vertices of a descendant polygon to come from convex hulls of consecutive vertices of its parent polygon. Later, Schoenberg [1982] revisited this interesting topic. Terras [1999] summarized Schoenberg's work as an example of applications of the finite Fourier transform. One can approach the problem of midpoint iteration of polygons from other mathematical perspectives. For example, Ding et al. [2003] and Ouyang [2013] considered this problem as a special case of Markov chains, and Treatman and Wickham [2000] studied a logarithmic dual problem in which all the vertices of the polygons are on the unit circle and the convergence is to a regular polygon.

In this paper, we study several generalizations of this problem. In Section 3, we consider cases in which the vertices of a descendant polygon are not necessarily midpoints of the edges of its parent polygon but can be chosen more freely from the edges of its parent polygon. In Section 4, we further generalize the work done in Section 3 by allowing the polygon generating procedure to vary from one step to another. In Section 5, we again elevate the level of freedom in selecting the vertices of a descendant polygon by allowing them to come from convex hulls of some subsets of the vertices of its parent polygon. Technically, Section 4 deals with a special case of what is studied in Section 5. In our opinion, however, the importance of the special case deserves some special attention, as does the mathematical argument employed therein. Furthermore, our results in Section 4 are more quantitative, and their geometric implications more illustrative. In addition, the flow of representation reflects the progressive nature of our research process. Section 2 is devoted to the introduction of frequently used notations and definitions.

To conclude the introduction of this paper, we share with readers a few highlights of this research experience. In the midpoint polygon iteration problem, if we view the collection of vertices of a polygon as a vector $z := (z_0, z_1, \ldots, z_{n-1})^T$ in \mathbb{C}^n ,

then the collection of vertices of the first descendant polygon is Az, where

$$A := \operatorname{circ}(\frac{1}{2}, \frac{1}{2}, 0, \dots, 0),$$

in which $\operatorname{circ}(\frac{1}{2}, \frac{1}{2}, 0, \dots, 0)$ denotes the $n \times n$ circulant matrix¹ whose first row is $(\frac{1}{2}, \frac{1}{2}, 0, \dots, 0)$. Likewise, the *k*-th polygon has vertices $A^k z$. Scrutinizing Darboux and Schoenberg's proofs, we found that they had implicitly established the stronger result that $||A^k - L||_2$ converges to zero exponentially, where $|| \cdot ||_2$ indicates the spectral radius norm for square matrices, and *L* is the rank-one matrix whose entries are all 1/n. It follows that the sequence of the polygons converges to their common centroid. We briefly entertained several possible ways to generalize this problem before we chose to focus on investigating the asymptotic behavior of products of (square) row stochastic matrices and the geometric implications for the corresponding sequence of polygons. Witnessing that the finite Fourier transform works wonderfully with circulant matrices, we tried bounding an arbitrary stochastic matrix by a sum of circulant stochastic matrices. While we have had some success with this strategy in estimating the smallest eigenvalue of a nonsingular stochastic matrix, we have yet to retool the method in a suitable way for the problem in this paper. Our basic tools in this paper are the Perron–Frobenius theorem [Horn and Johnson 1990] on nonnegative matrices and ergodicity coefficients [Ipsen and Selee 2011].

2. Notations and definitions

We will use boldface letters, such as \boldsymbol{v} , to denote vectors in \mathbb{C}^n . The *i*-th component of \boldsymbol{v} is denoted by v_i . When the full form of the vector \boldsymbol{v} is needed in some context, we will write $\boldsymbol{v} = (v_0, v_1, \dots, v_{n-1})^T$.

Let *n* complex numbers (not necessarily distinct) be given. We may connect them in any given order to form a (possibly degenerate) *n*-gon in the complex plane. In this way, an *n*-gon can be identified with a vector in \mathbb{C}^n , and vice versa. Label the *n* complex numbers according to the order in which they are connected by edges: $v_0, v_1, \ldots, v_{n-1}, v_n, \ldots$ That is, two components are adjacent if and only if the corresponding vertices are connected by an edge. To facilitate mathematical exposition, we have here adopted arithmetic modulo *n*. For example, v_0 and v_n are the same vertex. We will use the same modular arithmetic for row and column indices of matrix entries, announcing as we do so.

If A is a matrix, we denote by $(A)_{ij}$ the entry of A located at the *i*-th row and the *j*-th column. If A is a square matrix, then the *spectral radius* of A is denoted by $\rho(A)$, and we define

 $\rho(A) = \max\{|\lambda| : \lambda \text{ is an eigenvalue of } A\}.$

¹The definition of circulant matrices will be given in Section 2.

Definition 1. A matrix *A* is *positive*, denoted by A > 0, if $(A)_{ij} > 0$ for all i, j. Similarly, *A* is *nonnegative*, or $A \ge 0$, if $(A)_{ij} \ge 0$ for all i, j. If, for some $\alpha \in \mathbb{R}$, we have $(A)_{ij} > \alpha$ (respectively, $(A)_{ij} \ge \alpha$) for all i, j, then we will write $A > \alpha$ (respectively, $A \ge \alpha$).

Definition 2. A *stochastic* (or *row-stochastic*) matrix is a real-valued, nonnegative, square matrix whose row sums are all 1.

Definition 3. An $n \times n$ matrix A is *circulant* if for some complex numbers a_i , we have

$$A = \begin{bmatrix} a_0 & a_1 & \cdots & a_{n-2} & a_{n-1} \\ a_{n-1} & a_0 & \cdots & a_{n-3} & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_2 & a_3 & \cdots & a_0 & a_1 \\ a_1 & a_2 & \cdots & a_{n-1} & a_0 \end{bmatrix}$$

In Section 1, we used the notation $\operatorname{circ}(a_0, a_1, \ldots, a_{n-2}, a_{n-1})$ to denote the above circulant matrix. We will continue to do so in appropriate contexts.

Definition 4. We call an $n \times m$ matrix A *k*-banded if

$$(A)_{ij} \neq 0 \iff j \in \{i, i+1, \dots, i+k-1\} \pmod{n}.$$

For example, the matrix $\operatorname{circ}(1/2, 1/2, 0, \dots, 0)$ is a 2-banded matrix.

Definition 5. We say that two $n \times m$ matrices *A* and *B* have the same zero pattern if $(A)_{ij} = 0 \iff (B)_{ij} = 0$ for all *i*, *j*.

Definition 6. We say that an $n \times n$ matrix is *circulant-patterned* if it has the same zero pattern as a circulant matrix.

Definition 7. We say that a sequence of *n*-gons $(\Pi^{(k)})_{k\geq 0}$ converges to a point $q \in \mathbb{C}$ if, for any $1 \leq p \leq \infty$, we have $\lim_{k\to\infty} \|\Pi^{(k)} - \boldsymbol{q}\|_p = 0$, where $\boldsymbol{q} = (q, q, \dots, q)^T$. Here $\|\cdot\|_p$ denotes the *p*-norm on \mathbb{C}^n , that is,

$$\|\boldsymbol{v}\|_{p} = \begin{cases} \left(\sum_{i=1}^{n} |v_{i}|^{p}\right)^{1/p} & \text{if } 1 \le p < \infty, \\ \max_{1 \le i \le n} |v_{i}| & \text{if } p = \infty. \end{cases}$$

In this paper, we primarily work with the 1-norm. To be sure, any two norms on a finite-dimensional normed linear space are topologically equivalent.

3. Polygons derived from a fixed 2-banded matrix

In this section, we suppose that $\Pi^{(0)}$ is an *n*-gon and that its *k*-th descendant polygon is given by $\Pi^{(k)} = A^k \Pi^{(0)}$, where *A* is a fixed 2-banded stochastic matrix. Hence,

for some real $\alpha_0, \alpha_1, \ldots, \alpha_{n-1}$ with $0 < \alpha_i < 1$, we have

$$A = \begin{bmatrix} \alpha_0 & 1 - \alpha_0 & 0 & \cdots & 0 & 0 \\ 0 & \alpha_1 & 1 - \alpha_1 & 0 & \cdots & 0 \\ \vdots & & \ddots & & \vdots \\ 1 - \alpha_{n-1} & 0 & \cdots & 0 & 0 & \alpha_{n-1} \end{bmatrix}.$$
 (3-1)

We are interested in this particular construction because, geometrically speaking, the vertices of $\Pi^{(k+1)}$ are chosen from within the edges of $\Pi^{(k)}$, one vertex per edge. The procedure also allows the choice of any particular vertex in $\Pi^{(k+1)}$ to be independent from the others. We aim to show that $(\Pi^{(k)})_{k\geq 0}$ converges to a predetermined point. In the present section, the theoretic foundation for our argument is Perron's theorem (8.2.11(f) in [Horn and Johnson 1990]), which we state in the following theorem. To be sure, the convergence results in this section follow from the general framework of the Perron–Frobenius theorem. However, the 2-banded structure of our matrices allows us to obtain more nuanced convergence results. In particular, our knowledge of the convergence process is quantitative in the sense that we are able to predetermine the point to which the sequence of polygons converges.

Theorem (Perron). If A is a positive $n \times n$ matrix, then

$$[\rho(A)^{-1}A]^m \to L \quad as \ m \to \infty,$$

where $L = xy^{T}$, $Ax = \rho(A)x$, $A^{T}y = \rho(A)y$, x > 0, y > 0, and $x^{T}y = 1$.

We now derive some quick results and use these, along with Perron's theorem, to show that the sequence $(\Pi^{(k)})_{k\geq 0}$ in fact converges to a point for any choice of *A*. Additionally, we give an expression for that limiting point in terms of the entries of *A*.

Proposition 8. If A and A_i , where $i \in \{0, 1, ..., k - 1\}$, are $n \times n$ stochastic matrices, then we have:

- (1) The spectral radius $\rho(A)$ is 1.
- (2) The product matrix $A_{k-1}A_{k-2}\cdots A_0$ is stochastic.

Proof. These are known results. Part (1) follows from Lemma 8.1.21 in [Horn and Johnson 1990]. We give a short yet entertaining proof to part (2) using the simple fact that an $n \times n$ matrix A is stochastic if and only if Ae = e, where $e \in \mathbb{R}^n$ is the vector with all components 1. We simply write

$$A_{k-1}A_{k-2}\cdots A_0e = A_{k-1}A_{k-2}\cdots A_1e = \cdots = e.$$

Proposition 9. Suppose that A is a 2-banded stochastic matrix as given in (3-1). Then $A^{n-1} > 0$.

This result is stated in [Ouyang 2013] without a proof. We give a complete proof here, as variations of it will become quite useful in the latter part of the paper.

Proof. Throughout the proof, we use arithmetic modulo *n* to track the changes in row and column indices as a result of matrix multiplications. For n = 2, the result is obvious. Suppose that for some $N \in \mathbb{N}$, we have $(A^N)_{ij} > 0$ for all *i* and *j* such that $j \in \{i, i + 1, ..., i + N\} \pmod{n}$. Then for any such *i* and *j*, we have

$$(A^{N+1})_{ij} = \sum_{k=0}^{n-1} (A^N)_{ik} (A)_{kj} \ge (A^N)_{ij} (A)_{jj} > 0.$$

Furthermore, we have

$$(A^{N+1})_{i,i+N+1} = \sum_{k=0}^{n-1} (A)_{ik} (A^N)_{k,i+N+1}$$

= $\alpha_i (A^N)_{i,i+N+1} + (1 - \alpha_i) (A^N)_{i+1,i+N+1}$
 $\ge (1 - \alpha_i) (A^N)_{i+1,i+N+1},$

which is positive by the induction hypothesis. It follows that the matrix A^{N+1} has positive entries at (i, j) whenever $j \in \{i, i + 1, ..., i + N + 1\} \pmod{n}$. Hence A^{n-1} has positive entries everywhere.

Proposition 10. Let A be a matrix as given in (3-1). Then we have

$$\lim_{k \to \infty} A^k = L_k$$

where L is the rank-one matrix given by (3-2) in the proof below.

Proof. Let $B = A^{n-1}$. Since B is the product of (n-1) stochastic matrices, it is itself stochastic by Proposition 8. Furthermore, we have that $\rho(B) = 1$. Let

$$y = ((1 - \alpha_0)^{-1}, (1 - \alpha_1)^{-1}, \dots, (1 - \alpha_{n-1})^{-1})^T.$$

One can verify that $A^T y = y$. Thus, $B^T y = (A^{n-1})^T y = (A^T)^{n-1} y = y = \rho(B)y$. Let $x = \alpha_A (1, ..., 1)^T$, where α_A is the scalar given by $\alpha_A = \left(\sum_{i=0}^{n-1} (1 - \alpha_i)^{-1}\right)^{-1}$. Then we have that $Bx = \rho(B)x$ and that $x^T y = 1$. Let $L = xy^T$. Since x > 0 and y > 0, the rank-one matrix *L* has identical rows. Specifically,

$$L = \begin{bmatrix} \left((1 - \alpha_0) \sum_{i=0}^{n-1} \frac{1}{1 - \alpha_i} \right)^{-1} \cdots \left((1 - \alpha_{n-1}) \sum_{i=0}^{n-1} \frac{1}{1 - \alpha_i} \right)^{-1} \\ \vdots \\ \left((1 - \alpha_0) \sum_{i=0}^{n-1} \frac{1}{1 - \alpha_i} \right)^{-1} \cdots \left((1 - \alpha_{n-1}) \sum_{i=0}^{n-1} \frac{1}{1 - \alpha_i} \right)^{-1} \end{bmatrix}.$$
 (3-2)

By Proposition 9, we have B > 0. Applying Perron's theorem, we conclude that

$$\lim_{k\to\infty}B^k=L.$$

The rest of the proof is devoted to showing that $\lim_{k\to\infty} A^k = L$. Since *L* has identical rows and A^i is a stochastic matrix for any $i \in \{0, 1, ..., n-2\}$, we have,

for all *l*, *m*, that

$$(A^{i}L)_{lm} = \sum_{k=0}^{n-1} (A^{i})_{lk} (L)_{km} = \sum_{k=0}^{n-1} (A^{i})_{lk} (L)_{lm} = (L)_{lm} \sum_{k=0}^{n-1} (A^{i})_{lk} = (L)_{lm}$$

that is, $L = A^i L$. Hence we have

$$L = A^{i} \lim_{k \to \infty} B^{k} = \lim_{k \to \infty} A^{i} A^{k(n-1)} = \lim_{k \to \infty} A^{k(n-1)+i} \quad \text{for } 0 \le i \le n-2.$$

For a given $\epsilon > 0$, let N_i be such that $||A^{m(n-1)+i} - L|| < \epsilon$ for all $m \ge N_i$. Let $N = \max\{N_i : i \in \{0, 1, \dots, n-2\}\}$. Choose $j \ge N(n-1) + (n-2)$. By the division theorem, j = m(n-1)+i for some integer *m* and some fixed $i \in \{0, 1, \dots, n-2\}$. So,

$$j = m(n-1) + i \ge N(n-1) + (n-2) \ge N(n-1) + i \ge N_i(n-1) + i.$$

Hence $m \ge N_i$. Thus we have $||A^j - L|| < \epsilon$. This inequality holds true for all $j \ge N(n-1) + (n-2)$, which proves that $\lim_{k\to\infty} A^k = L$.

As the main theorem of this section, we restate the result of Proposition 10 in terms of convergence of a sequence of polygons.

Theorem 11. Let $(\Pi^{(k)})_{k\geq 0}$ be a polygon sequence constructed by $\Pi^{(k)} = A^k \Pi^{(0)}$, where A is given as in (3-1). Then we have

$$\lim_{k\to\infty}\Pi^{(k)}=(q,\ldots,q)^T,$$

where

$$q = \sum_{j=0}^{n-1} \left((1 - \alpha_j) \sum_{i=0}^{n-1} \frac{1}{1 - \alpha_i} \right)^{-1} \Pi_j^{(0)}.$$

We remind readers that a matrix A given as in (3-1) is circulant if and only if $\alpha_i = \alpha_j$ for all *i*, *j*. When this holds true, we have

$$(q, \dots, q)^T = \frac{1}{n} (\Pi_0^{(0)} + \Pi_1^{(0)} + \dots + \Pi_{n-1}^{(0)}),$$

which is the centroid of the vertices of $\Pi^{(0)}$. The special case that $\alpha_i = \frac{1}{2}$ for all *i* corresponds to the problem of midpoint iteration of polygons.

4. Polygons derived from a sequence of 2-banded matrices

Let $\delta \in (0, \frac{1}{2})$. For each $k \in \mathbb{N}$, we arbitrarily choose *n* numbers $\alpha_0^{(k)}, \alpha_1^{(k)}, \ldots, \alpha_{n-1}^{(k)}$ from the open interval $(\delta, 1 - \delta)$ and form the matrix

$$A_{k} = \begin{bmatrix} \alpha_{0}^{(k)} & 1 - \alpha_{0}^{(k)} & 0 & \cdots & 0 & 0 \\ 0 & \alpha_{1}^{(k)} & 1 - \alpha_{1}^{(k)} & 0 & \cdots & 0 \\ \vdots & & \ddots & & \vdots \\ 1 - \alpha_{n-1}^{(k)} & 0 & \cdots & 0 & 0 & \alpha_{n-1}^{(k)} \end{bmatrix}.$$
 (4-1)

Let $A_k = A_k A_{k-1} \cdots A_1$. Let $\Pi^{(0)}$ be an *n*-gon, and define $\Pi^{(k)} = A_k \Pi^{(0)}$. We will show that the sequence of polygons $(\Pi^{(k)})_{k\geq 1}$ converges to a point. Under these circumstances, Perron's theorem is no longer applicable. Our argument relies on some key properties of ergodicity coefficients thoroughly studied in a recent article by Ipsen and Selee [2011].

Definition 12. The 1-norm ergodicity coefficient $\tau_1(S)$ for an $n \times n$ stochastic matrix *S* is given by

$$\tau_1(S) = \max_{\substack{\|z\|_1 = 1 \\ z^T e = 0}} \|S^T z\|_1,$$

where $e = (1, ..., 1)^T \in \mathbb{R}^n$ and the maximum ranges over $z \in \mathbb{R}^n$. If n = 1, we say that $\tau_1(S) = 0$.

Proposition 13. If S, S_1 , and S_2 are stochastic matrices, then:

- (1) $0 \le \tau_1(S) \le 1$. Furthermore, $\tau_1(S) = 0 \iff S$ is a rank-one matrix.
- (2) $|\lambda| \leq \tau_1(S)$ for all eigenvalues $\lambda < 1$ of S.
- (3) $\tau_1(S) = \frac{1}{2} \max_{i,j} \sum_{k=1}^n |(S)_{ik} (S)_{jk}|.$
- (4) $\tau_1(S_1S_2) \leq \tau_1(S_1)\tau_1(S_2).$

Proof. Part (1) is from Theorem 3.4 in [Ipsen and Selee 2011], while parts (2) and (4) are the results of Theorem 3.6, and part (3) is the result of Theorem 3.7, of the same work. \Box

Ergodicity coefficients can be defined and studied for all *p*-norms and even more general metrics under broad matrix analysis settings. For our purpose, however, the results in Proposition 13 suffice.

To proceed, we need the following generalization of Proposition 9.

Proposition 14. For $1 \le k \le n-1$, let A_k be as defined in (4-1). Then

$$\mathcal{A}_{n-1} > \delta^{n-1}.$$

Proof. The proof can be considered as a quantification of that of Proposition 9. Arithmetic modulo *n* will be used to track the changes in row and column indices stemming from matrix multiplications. Suppose that for some $N \in \{1, 2, ..., n-2\}$ we have $(\mathcal{A}_N)_{ij} > \delta^N$ for all $i \in \{1, 2, ..., n\}$ and $j \in \{i, i + 1, ..., i + N\}$. Then, for all such *i* and *j*,

$$(\mathcal{A}_{N+1})_{ij} = \sum_{k=1}^{n} (A_{N+1})_{ik} (\mathcal{A}_N)_{kj}$$

$$\geq (A_{N+1})_{ii} (\mathcal{A}_N)_{ij} > \delta \cdot \delta^N = \delta^{N+1},$$

that is, $(\mathcal{A}_{N+1})_{ij} > \delta^{N+1}$. Also,

$$(\mathcal{A}_{N+1})_{i,(i+N+1)} = \alpha_i^{(N+1)} \cdot (\mathcal{A}_N)_{i,(i+N+1)} + (1 - \alpha_i^{(N+1)}) \cdot (\mathcal{A}_N)_{(i+1),(i+N+1)} \\ \ge (1 - \alpha_i^{(N+1)}) \cdot (\mathcal{A}_N)_{(i+1),(i+N+1)} > \delta \cdot \delta^N = \delta^{N+1}.$$

Thus $(A_{N+1})_{ij} > \delta^{N+1}$ for all $i \in \{1, 2, ..., n\}$ and $j \in \{i, i+1, ..., i+N+1\}$.

Since in the case N = 1 it is clearly true that $(\mathcal{A}_N)_{ij} > \delta^N$ for all $i \in \{1, 2, ..., n\}$ and $j \in \{i, (i \mod n) + 1\}$, it follows from the principle of mathematical induction that $(\mathcal{A}_{n-1})_{ij} > \delta^{n-1}$ for all $i, j \in \{1, 2, ..., n\}$.

Proposition 15. If S is a positive $n \times n$ stochastic matrix and

$$\epsilon := \min_{i,j} (S)_{ij},$$

then

$$\tau_1(S) \le 1 - n\epsilon.$$

Proof. We first point out that under the conditions specified in Proposition 15, we have $n\epsilon \leq 1$. Therefore, the number on the right-hand side of the above inequality is nonnegative. Let S_0 be the $n \times n$ matrix defined by $(S_0)_{ij} = (S)_{ij} - \epsilon$ for all i, j. Then S_0 is nonnegative, and the row sums of S_0 are all $1 - n\epsilon$. More pertinently, we have $\tau_1(S) = \tau_1(S_0)$. To calculate $\tau_1(S_0)$, we write, for all $i, j \in \{1, 2, ..., n\}$, that

$$\sum_{k=1}^{n} |(S_0)_{ik} - (S_0)_{jk}| \le \sum_{k=1}^{n} |(S_0)_{ik}| + \sum_{k=1}^{n} |(S_0)_{jk}| \le 2(1 - n\epsilon).$$

The desired result then follows from part (3) of Proposition 15.

We state our main result of this section in the following theorem.

Theorem 16. Let A_{ℓ} $(0 \le \ell < \infty)$ be a sequence of matrices as given in (4-1), and let $A_k = A_0 A_1 \cdots A_k$. Then we have

$$\lim_{k\to\infty}\mathcal{A}_k=L,$$

where L is a rank-one stochastic matrix with identical rows. Hence if $\Pi^{(k)}$ is the corresponding sequence of polygons, we have

$$\lim_{k \to \infty} \Pi^{(k)} = L \Pi^{(0)},$$

and thus $(\Pi^{(k)})_{k\geq 0}$ converges to a point.

Proof. Let $(A_{\ell})_{\ell>0}$ be matrices as given in (4-1). For each $k \ge 1$, define

$$\mathcal{B}_k = A_{kn-1}A_{kn-2}\cdots A_{(k-1)n}.$$

Then by Propositions 14 and 15, we have

$$\tau_1(\mathcal{B}_k) \le 1 - n\delta^{n-1}$$
 for $k \ge 1$.

For a given $k \ge 1$, let $m = \max\{j : jn-1 \le k\}$. By parts (1) and (4) of Proposition 13, we have

$$\tau_{1}(\mathcal{A}_{k}) = \tau_{1}(A_{k}A_{k-1}\cdots A_{mn}\mathcal{B}_{m}\mathcal{B}_{m-1}\cdots\mathcal{B}_{1})$$

$$\leq \tau_{1}(\mathcal{B}_{m}\mathcal{B}_{m-1}\cdots\mathcal{B}_{1})$$

$$\leq \tau_{1}(\mathcal{B}_{m})\tau_{1}(\mathcal{B}_{m-1})\cdots\tau_{1}(\mathcal{B}_{1})$$

$$\leq (1-n\delta^{n-1})^{m}.$$

Note that $m \to \infty$ when k does. Thus we have

$$\lim_{k \to \infty} \tau_1(\mathcal{A}_k) \le \lim_{k \to \infty} (1 - n\delta^{n-1})^m = 0.$$

It follows from part (1) of Proposition 13 that A_k converges to a rank-one matrix. To show that *L* has identical rows, we use a Cauchy sequence argument. For any given $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all $m \ge N$, we have

$$\frac{1}{2}\max_{i,j}\sum_{l=1}^n |(\mathcal{A}_m)_{il} - (\mathcal{A}_m)_{jl}| < \frac{\epsilon}{4}.$$

This implies that

$$\max_{i,j} |(\mathcal{A}_m)_{ij} - (\mathcal{A}_m)_{1j}| < \frac{\epsilon}{2}.$$
(4-2)

This allows us to write

$$(\mathcal{A}_m)_{ij} = a_j + \delta_{ij}^{(m)} \quad \text{for } 1 \le i, j \le n,$$

in which a_j is fixed for each $1 \le j \le n$, and

$$|\delta_{ij}^{(m)}| \le \frac{\epsilon}{2}$$
 for $1 \le j \le n$ and $m > N$.

Upon writing $A_{m+k} = S_k A_m$, where S_k is a stochastic matrix, we have

$$(\mathcal{A}_{m+k})_{ij} = \sum_{l=1}^{n} (S_k)_{il} (\mathcal{A}_m)_{lj} = \sum_{l=1}^{n} (S_k)_{il} (a_j + \delta_{lj}^{(m)})$$
$$= a_j \sum_{l=1}^{n} (S_k)_{il} + \sum_{l=1}^{n} (S)_{il} \delta_{lj}^{(m)}$$
$$= a_j + \sum_{l=1}^{n} (S_k)_{il} \delta_{lj}^{(m)}.$$

We also have that

$$-\frac{\epsilon}{2} = -\frac{\epsilon}{2} \sum_{l=1}^{n} (S_k)_{il} < \sum_{l=1}^{n} (S_k)_{il} \delta_{lj}^{(m)} < \frac{\epsilon}{2} \sum_{l=1}^{n} (S_k)_{il} = \frac{\epsilon}{2}.$$

Hence we have $|(A_{m+k})_{ij} - a_j| < \epsilon/2$, that is,

$$|(\mathcal{A}_{m+k})_{ij} - (\mathcal{A}_m)_{1j}| < \frac{\epsilon}{2}.$$
(4-3)

We combine inequalities (4-2) and (4-3) to have

$$\begin{aligned} |(\mathcal{A}_{m+k})_{ij} - (\mathcal{A}_m)_{i'j}| &= |(\mathcal{A}_{m+k})_{ij} - (\mathcal{A}_m)_{1j} + (\mathcal{A}_m)_{1j} - (\mathcal{A}_m)_{i'j}| \\ &\leq |(\mathcal{A}_{m+k})_{ij} - (\mathcal{A}_m)_{1j}| + |(\mathcal{A}_m)_{1j} - (\mathcal{A}_m)_{i'j}| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon, \end{aligned}$$

which is true for all m > N, $k \ge 0$, and all $0 \le i, i', j \le n - 1$. The above inequality shows that for each fixed *i* and *j*, the sequence $(\mathcal{A}_k)_{ij}$ is Cauchy, and that for each fixed $0 \le j \le n - 1$, the limits of the sequences $(\mathcal{A}_k)_{ij}$ are the same for all $0 \le i \le n - 1$. Thus, for each $0 \le j \le n - 1$, there exists a real number q_j such that $\lim_{k\to\infty} (\mathcal{A}_k)_{ij} = q_j$ for all $0 \le i \le n - 1$. Hence \mathcal{A}_k converges to the rank-one matrix

$$\begin{bmatrix} q_0 & q_1 & \dots & q_{n-1} \\ q_0 & q_1 & \dots & q_{n-1} \\ \vdots & \vdots & & \vdots \\ q_0 & q_1 & \dots & q_{n-1} \end{bmatrix}.$$

In the above proof, the *ij*-entries of the rank-one matrix *L* are given as limits of the sequences $(A_k)_{ij}$. Since they determine the position where the sequence of the polygons converges, a certain effort should be devoted to finding the limits. Doing so, however, would have gone beyond the scope of this paper.

5. Polygons derived from a sequence of circulant-patterned matrices

In the previous two sections, we were concerned specifically with polygons derived from sequences of 2-banded stochastic matrices. Each descendant polygon thus generated is inscribed in its parent polygon, a fact which may be utilized to control polygons of other types. In this section, we broaden our scope and consider polygons derived from sequences of matrices of a more general class, namely, stochastic circulant-patterned matrices.

Proposition 17. Suppose that $(A_{\ell})_{\ell \geq 0}$ and $(B_{\ell})_{\ell \geq 0}$ are two sequences of nonnegative $n \times n$ matrices such that A_{ℓ} and B_{ℓ} have the same zero pattern for each ℓ . Then for each $k \in \mathbb{N}$, the two matrices $\mathcal{A}_k = A_{k-1}A_{k-2}\cdots A_0$ and $\mathcal{B}_k = B_{k-1}B_{k-2}\cdots B_0$ share a zero pattern for any k.

Proof. The proof is by induction. Suppose that A_k and B_k have the same zero pattern from some k. For any i, j, we know that $(A_{k+1})_{ij} = 0$ if and only if, for each l, either $(A_k)_{il} = 0$ or $(A_k)_{lj} = 0$. But this is the case if and only if $(B_k)_{il} = 0$ or $(B_k)_{lj} = 0$ for each l, i.e., if and only if $(B_{k+1})_{ij} = 0$. Since A_0 and B_0 have a common zero pattern, the result follows.

Proposition 18. Let $k \in \mathbb{N}$ be given. For each $\ell \in \{0, 1, \dots, k-1\}$, let A_{ℓ} be a nonnegative $n \times n$ matrix, and let $\mathcal{A}_{\ell+1} = A_{\ell}A_{\ell-1} \cdots A_0$. Assume that both sets $\{(A_{\ell})_{ij} : (A_{\ell})_{ij} > 0, 0 \le \ell \le k-1\}$ and $\{(\mathcal{A}_k)_{ij} : (\mathcal{A}_k)_{ij} > 0\}$ are nonempty. Let

$$\epsilon := \min_{i,j,\ell} \{ (A_{\ell})_{ij} : (A_{\ell})_{ij} > 0, \ 0 \le \ell \le k-1 \}.$$

Then the following inequality holds true:

$$\min_{i,j} \{ (\mathcal{A}_k)_{ij} : (\mathcal{A}_k)_{ij} > 0 \} \ge \epsilon^k.$$

Proof. We again prove by induction. The result is obviously true for k = 1. Now suppose that k > 1 and that for some $\ell < k$ we have $(\mathcal{A}_{\ell})_{lm} \neq 0 \implies (\mathcal{A}_i)_{lm} \geq \epsilon^i$. We write down the *lm*-entry of the matrix $(\mathcal{A}_{\ell+1})$:

$$(\mathcal{A}_{\ell+1})_{lm} = \sum_{j=1}^n (A_{\ell+1})_{lj} (\mathcal{A}_{\ell})_{jm}.$$

If $(\mathcal{A}_{\ell+1})_{lm}$ is positive, then there exists a j such that both $(\mathcal{A}_{\ell+1})_{lj}$ and $(\mathcal{A}_{\ell})_{jm}$ are positive. Since $(\mathcal{A}_{\ell+1})_{lj} \ge \epsilon$ and $(\mathcal{A}_{\ell})_{jm} \ge \epsilon^{\ell}$, we have $(\mathcal{A}_{\ell+1})_{lm} \ge \epsilon^{\ell+1}$. That is, $(\mathcal{A}_{\ell+1})_{lm} \ne 0 \implies (\mathcal{A}_{\ell+1})_{lm} \ge \epsilon^{\ell+1}$. The induction process is complete. \Box

The following result is due to Tollisen and Lengyel [2008].

Proposition 19. *Let A be an* $n \times n$ *circulant matrix with first row* $(c_0, c_1, ..., c_{n-1})$. *Let* $L = \{i : c_i > 0\}, u = \min L, L' = \{i - u : c_i > 0\}, and g = gcd(L')$. *Then*

$$(A^k)_{ij} \approx \begin{cases} \frac{1}{n} \gcd(n, g) & \text{if } j - i \equiv ku \pmod{\gcd(n, g)}, \\ 0 & \text{otherwise} \end{cases}$$

as $k \to \infty$.

The rest of this section is devoted to statements and proofs of the main result.

Proposition 20. Let A be a stochastic circulant matrix such that the sequence A^k converges to a rank-one matrix L. Let $(A_\ell)_{\ell \ge 0}$ be a sequence of stochastic matrices having the same zero pattern as A. Moreover, assume that there exists an $\epsilon > 0$ such that

$$\min_{i,j,\ell} \{ (A_\ell)_{ij} : (A_\ell)_{ij} > 0 \} \ge \epsilon.$$

Then the sequence of matrices $A_k A_{k-1} \cdots A_1 A_0$ converges to a rank-one matrix L' with identical rows.

Proof. A result from [Kra and Simanca 2012] asserts that the product of circulant matrices is circulant. Hence A^k is a sequence of stochastic circulant matrices, and so is their limit *L*. Proposition 19 assures us that each entry of *L* is either zero or gcd(n, g)/n. Suppose that for some *i* and *j*, we have $(L)_{ij} = 0$. Since *L* is stochastic, we must have $(L)_{ij'} > 0$ for some $j' \neq j$. Using arithmetic modulo *n* to denote

row and column indices, we can identify an ℓ such that $(L)_{i\ell} = 0$ and $(L)_{i,\ell+1} > 0$. Since *L* is circulant, we have $(L)_{(i+1),(\ell+1)} = (L)_{i\ell} = 0$. Therefore, the *i*-th and the (i+1)-th rows of *L* must be linearly independent. This contradicts the fact that *L* is rank-one. Therefore the entries $(L)_{ij}$ are either all zero or all equal to gcd(n, g)/n. That *L* is stochastic rules out the former. In fact, all entries $(L)_{ij}$ are 1/n, which implies that gcd(n, g) = 1. It follows that, for *k* sufficiently large, $A^k > 0$.

Define $\mathcal{B}_{\ell} = A_{\ell k-1} A_{\ell k-2} \cdots A_{(\ell-1)k}$ for $\ell \ge 1$. Then by Proposition 17, each \mathcal{B}_{ℓ} has the same zero pattern as A^k . That is, $\mathcal{B}_{\ell} > 0$ for all ℓ . Furthermore, by Proposition 18 we know that $\mathcal{B}_{\ell} \ge \epsilon^k$. By Proposition 15, we have that

$$\tau_1(\mathcal{B}_\ell) \leq 1 - n\epsilon^k \quad \text{for } \ell \geq 0.$$

It follows that

$$\tau_1(A_{\ell}A_{\ell-1}\cdots A_0) \leq \tau_1(\mathcal{B}_{\ell}\mathcal{B}_{\ell-1}\cdots \mathcal{B}_1)$$

$$\leq \tau_1(\mathcal{B}_{\ell})\tau_1(\mathcal{B}_{\ell-1})\cdots \tau_1(\mathcal{B}_1) \leq (1-n\epsilon^k)^{\ell},$$

which implies that the sequence $A_k A_{k-1} \cdots A_1 A_0$ converges to a rank-one matrix L'. Moreover, we can use the same Cauchy sequence argument as in the proof of Theorem 16 to show that the matrix L' has identical rows.

The following result is worth mentioning.

Proposition 21. If A is a stochastic circulant matrix, then A^k converges to a rankone matrix as $k \to \infty$ if and only if gcd(n, g) = 1.

Proof. On the one hand, as we observed in the previous proof, if *A* is a stochastic circulant matrix such that A^k converges to a rank-one matrix *L* as $k \to \infty$, then *L* must be strictly positive, and hence gcd(n, g) = 1. On the other hand, if *A* is a stochastic circulant matrix such that gcd(n, g) = 1, then $j - i \equiv ku \pmod{gcd(n, g)}$. Thus, $\lim_{k\to\infty} (A^k)_{ij} = 1/n$. That is, A^k converges to the rank-one matrix whose entries are all 1/n as $k \to \infty$.

We state the main result of this section in terms of convergent sequences of polygons.

Theorem 22. Suppose that $(A_{\ell})_{\ell \ge 0}$ is a sequence of stochastic, circulant-patterned, $n \times n$ matrices that all have a common zero pattern. Let gcd(n, g) = 1, where $u = min\{i : a_i > 0\}$ and $g = gcd\{i - u : a_i > 0\}$. Here, $(a_0, a_1, \ldots, a_{n-1})$ is the first row of A_0 . Assume that there exists an $\epsilon > 0$ such that

$$\min_{i,j,k} \{ (A_k)_{ij} : (A_k)_{ij} > 0 \} \ge \epsilon.$$

Then the sequence of matrices $A_k A_{k-1} \cdots A_0$ converges to a rank-one matrix L that has identical rows. Hence, if $\Pi^{(k)} = A_k A_{k-1} \cdots A_1 \Pi^{(0)}$, then

$$\lim_{k \to \infty} \Pi^{(k)} = L \Pi^{(0)}.$$

That is, the sequence of polygons $(\Pi^{(k)})_{k\geq 0}$ converges to the point $L\Pi^{(0)}$.

Acknowledgment

The authors thank Alvin Moon, University of California, Davis, for calling their attention to G. Darboux's work, which predated Schoenberg's by more than 70 years.

References

- [Darboux 1878] G. Darboux, "Sur un problème de gèométrie élémentaire", *Bull. Sci. Math. Astron.* (2) **2**:1 (1878), 298–304.
- [Ding et al. 2003] J. Ding, L. R. Hitt, and X.-M. Zhang, "Markov chains and dynamic geometry of polygons", *Linear Algebra Appl.* **367** (2003), 255–270. MR Zbl
- [Horn and Johnson 1990] R. A. Horn and C. R. Johnson, *Matrix analysis*, corrected reprint of 1st ed., Cambridge University Press, 1990. Zbl
- [Ipsen and Selee 2011] I. C. F. Ipsen and T. M. Selee, "Ergodicity coefficients defined by vector norms", *SIAM J. Matrix Anal. Appl.* **32**:1 (2011), 153–200. MR Zbl

[Kra and Simanca 2012] I. Kra and S. R. Simanca, "On circulant matrices", *Notices Amer. Math. Soc.* **59**:3 (2012), 368–377. MR Zbl

[Ouyang 2013] C. Ouyang, "A problem concerning the dynamic geometry of polygons", unpublished manuscript, 2013.

- [Rosenman and Huston 1933] M. Rosenman and R. E. Huston, "3547", *The American Mathematical Monthly* **40**:3 (1933), 184–185. MR
- [Schoenberg 1950] I. J. Schoenberg, "The finite Fourier series and elementary geometry", *Amer. Math. Monthly* **57** (1950), 390–404. MR Zbl
- [Schoenberg 1982] I. J. Schoenberg, *Mathematical time exposures*, Mathematical Association of America, Washington, DC, 1982. MR Zbl
- [Terras 1999] A. Terras, *Fourier analysis on finite groups and applications*, London Mathematical Society Student Texts **43**, Cambridge University Press, 1999. MR Zbl
- [Tollisen and Lengyel 2008] G. P. Tollisen and T. Lengyel, "Intermediate and limiting behavior of powers of some circulant matrices", *Ars Combin.* **88** (2008), 229–255. MR Zbl
- [Treatman and Wickham 2000] S. Treatman and C. Wickham, "Constructible approximations of regular polygons", *Amer. Math. Monthly* **107**:10 (2000), 911–922. MR Zbl

Received: 2015-03-04	Accepted: 2015-09-17
ehintikka@rice.edu	Department of Mathematics, MS 136, Rice University, P. O. Box 1892, Houston, TX 77005, United States
xsun@missouristate.edu	Department of Mathematics, Missouri State University, Springfield, MO 65897, United States

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, *Involve* provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

	BUARD	JF EDITORS	
Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology, U	JSA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA M	Aohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	YF. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University, USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2016 is US \$160/year for the electronic version, and \$215/year (+\$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing

http://msp.org/ © 2016 Mathematical Sciences Publishers

2016 vol. 9 no. 5

An iterative strategy for Lights Out on Petersen graphs	721	
BRUCE TORRENCE AND ROBERT TORRENCE	733	
A family of elliptic curves of rank ≥ 4		
Farzali Izadi and Kamran Nabardi		
Splitting techniques and Betti numbers of secant powers		
Reza Akhtar, Brittany Burns, Haley Dohrmann, Hannah		
HOGANSON, OLA SOBIESKA AND ZEROTTI WOODS		
Convergence of sequences of polygons		
ERIC HINTIKKA AND XINGPING SUN		
On the Chermak–Delgado lattices of split metacyclic <i>p</i> -groups		
ERIN BRUSH, JILL DIETZ, KENDRA JOHNSON-TESCH AND BRIANNE		
Power		
The left greedy Lie algebra basis and star graphs	783	
Benjamin Walter and Aminreza Shiri		
Note on superpatterns		
DANIEL GRAY AND HUA WANG		
Lifting representations of finite reductive groups: a character relation		
Jeffrey D. Adler, Michael Cassel, Joshua M. Lansky, Emma		
Morgan and Yifei Zhao		
Spectrum of a composition operator with automorphic symbol	813	
ROBERT F. ALLEN, THONG M. LE AND MATTHEW A. PONS		
On nonabelian representations of twist knots	831	
JAMES C. DEAN AND ANH T. TRAN		
Envelope curves and equidistant sets	839	
MARK HUIBREGTSE AND ADAM WINCHELL		
New examples of Brunnian theta graphs	857	
BYOUNGWOOK JANG, ANNA KRONAEUR, PRATAP LUITEL, DANIEL		
MEDICI, SCOTT A. TAYLOR AND ALEXANDER ZUPAN		
Some nonsimple modules for centralizer algebras of the symmetric group	877	
CRAIG DODGE, HARALD ELLERS, YUKIHIDE NAKADA AND KELLY		
Pohland		
Acknowledgement	899	