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The Chermak–Delgado measure of a subgroup H of a finite group G is defined
as mG(H) = |H ||CG(H)|. The subgroups with maximal Chermak–Delgado
measure form a poset and corresponding lattice, known as the CD-lattice of G.
We describe the symmetric nature of CD-lattices in general, and use information
about centrally large subgroups to determine the CD-lattices of split metacyclic
p-groups in particular. We also describe a rank-symmetric sublattice of the
CD-lattice of split metacyclic p-groups.

1. Introduction

A. Chermak and A. Delgado [1989] developed a “measuring argument” for a finite
group G acting on a finite group H to prove, as G. Glauberman [2006] put it,
“remarkably beautiful results and powerful applications.” Glauberman extended
Chermak and Delgado’s work to obtain, among other things, results about centrally
large subgroups of p-groups. A subgroup H of a finite p-group P is centrally large
if |H ||Z(H)| ≥ |H∗||Z(H∗)| for every subgroup H∗ of P.

For any positive real number α, Chermak and Delgado defined the measure

mα(G, H)= Sup{|A|α |CH (A)|}A∈S(G),

where S(G) is the set of all nontrivial subgroups of G. In his book, I. M. Isaacs
[2008] focused on the case where α = 1 and H is a subgroup of the finite group G.
He defined the Chermak–Delgado measure of a subgroup H of G as mG(H) =
|H ||CG(H)|. In a definition analogous to Glauberman’s centrally large subgroups,
Isaacs defined a subgroup H of G to have maximal Chermak–Delgado measure if
|H ||CG(H)| ≥ |H∗||CG(H∗)| for every subgroup H∗ of G. Finally, Isaacs showed
that the subgroups with maximal Chermak–Delgado measure form a sublattice of the
lattice of all subgroups of G, which he termed the Chermak–Delgado lattice of G.
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Not only are the definitions similar, but one can see that H is centrally large in a
p-group P if and only if H is in the Chermak–Delgado lattice of P and CP(H)≤ H
[Glauberman 2006]. Thus, the study of Chermak–Delgado lattices may shed light on
the subgroup structure of finite groups in general, and on centrally large subgroups
in particular.

Not much is known about Chermak–Delgado lattices. To date, there are only
four published papers on the subject. B. Brewster and E. Wilcox [2012] studied
the connection between Chermak–Delgado lattices of direct and wreath products
of groups and the Chermak–Delgado lattices of their components. Together with
P. Hauck they constructed a class of p-groups whose Chermak–Delgado lattice is a
chain [Brewster et al. 2014a]. Later the trio studied quasiantichains in Chermak–
Delgado lattices, proving that if there is a quasiantichain interval between subgroups
L and H of G, with L ≤ H , then H/L is an elementary abelian p-group for some
prime p [Brewster et al. 2014b]. The most recent contribution to the subject is
a paper by L. An, J. Brennan, H. Qu, and Wilcox [An et al. 2015], who further
studied groups for which the Chermak–Delgado lattice is a chain of diamonds.

The structure of a Chermak–Delgado lattice varies greatly among finite groups.
For example, it is easy to see that the Chermak–Delgado lattice of an abelian
group G consists of just G. There are groups whose Chermak–Delgado lattices are
chains of any length, diamonds of any width, and chains of diamonds; see [Brewster
et al. 2014a; An et al. 2015]. These two papers construct groups that have particular
Chermak–Delgado lattice shapes, whereas we start with general split metacyclic
p-groups, p > 2, and construct their associated Chermak–Delgado lattices.

The structure of this paper is as follows. In Section 2, we define some terms
and describe the symmetry of Chermak–Delgado lattices in general. In Section 3,
we give a full treatment of split metacyclic p-groups, p > 2, from describing their
subgroup structure to determining their Chermak–Delgado measure and lattices. In
Section 4, we define a rank-symmetric subposet of the poset of all subgroups of a
split metacyclic p-group with maximal Chermak–Delgado measure; sometimes its
corresponding lattice has the same structure as the full Chermak–Delgado lattice.
Finally, in Section 5, we construct two complete Chermak–Delgado lattices using
the theorems developed in Section 3.

2. Chermak–Delgado lattices and their symmetry

A good reference for Chermak–Delgado measures and lattices is [Isaacs 2008],
where we find some of the definitions and properties below.

As above, if G is a finite group with subgroup H , then the Chermak–Delgado
measure (or CD-measure) of H in G is mG(H)= |H ||CG(H)|, where CG(H) is
the centralizer of H in G. We will denote the maximum possible CD-measure in a
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group G as m∗(G). The set of all subgroups of G that have maximal measure is a
poset called the Chermak–Delgado set of G (or CD-set) and denoted CD(G).

As with any poset, we are interested in smallest and largest elements. The
greatest lower bound for the entirety of CD(G) is the intersection of all members
of the set, which is called the Chermak–Delgado subgroup of G and denoted MG .
Isaacs proved that Z(G) ≤ MG . It follows that Z(G) ≤ H for any H ∈ CD(G).
Isaacs further proved that if H ∈ CD(G), then CG(CG(H)) = H ; hence CG(H)
is also in CD(G). In particular, MG

= CG(MG) is the least upper bound for the
entirety of CD(G) and m∗(G)= |MG ||MG

|.
The Chermak–Delgado lattice of G (or CD-lattice) consisting of subgroups from

CD(G) is a modular, self-dual lattice [Brewster et al. 2014b]. Usually this lattice is
also denoted by CD(G), but we will use the notation L(G) to specifically denote the
Hasse diagram drawn from the CD-set such that there is an edge between subgroups
H1, H2 ∈ CD(G) if and only if H1 covers H2, meaning that H2 < H1 and there
does not exist a subgroup K ∈ CD(G) for which H2 < K < H1. Although subgroup
order does not necessarily define a rank function on CD(G), we will see that the
lattice L(G) has several interesting properties.

Define the height of a subgroup H in the lattice L(G) as simply |H |. If H1

and H2 are two subgroups in L(G) of orders n1 and n2 respectively, with n1 ≥ n2,
we will call n1/n2 the distance between H1 and H2 and denote it d(H1, H2). In
our scheme, we have d(H, K )≥ 1 for all H, K ∈ CD(G).

The next theorem says CD(G) is order symmetric and L(G) can be displayed
having a horizontal line of symmetry.

Theorem 2.1. Let G be a finite group. Then L(G) is graph isomorphic to a lattice
that is symmetric across a horizontal line of symmetry at height

√
m∗(G).

Proof. To prove the symmetry, we will show that the bijective correspondence
H 7→ CG(H), for H ∈ CD(G), satisfies three properties:

(1) If H lies above the line of symmetry, then the distance between the top of the
lattice and H is equal to the distance between CG(H) and the bottom of the
lattice (by duality, the analogous property will hold for any H lying below the
line of symmetry).

(2) If H lies on the line of symmetry, then so does CG(H).

(3) Subgroup inclusion relationships above the line of symmetry are mirrored
below the line.

Thus, a symmetric lattice can be drawn with H ∈ L(G) and its partner CG(H)
placed on a vertical line above and below the line of symmetry, or both exactly
on the line. (Figure 1 shows the same portion of the CD-lattice for the metacyclic
p-group P(4, 2, 2, 0) as described in (3-1) below. The lattice on the right is drawn
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Z(P)=〈x p2
〉

〈x p2
, y p
〉 〈x p

〉

〈x p, y p
〉〈x p2

, y〉 〈x〉

〈x, y p
〉 〈x p, y〉

〈x, y〉

Z(P)=〈x p2
〉

〈x p2
, y p
〉 〈x p

〉

〈x p, y p
〉〈x p2

, y〉 〈x〉

〈x, y p
〉〈x p, y〉

〈x, y〉

Figure 1. Isomorphic portions of the CD-lattice for P(4, 2, 2, 0).

with its symmetry highlighted, and dashed lines connecting a subgroup to its
centralizer.)

Proof of (1): Let H ∈ CD(G) and assume |H |>
√

m∗(G). Note that

|H ||CG(H)| = m∗(G)= |MG ||MG
|.

It follows that
|CG(H)|
|MG |

=
|MG
|

|H |
.

Hence, d(CG(H),MG)= d(MG, H).

Proof of (2): Assume H ∈ CD(G) lies on the line of symmetry, so |H | =
√

m∗(G).
Since |H ||CG(H)| = m∗(G), we must have |CG(H)| =

√
m∗(G), so CG(H) also

lies on the line of symmetry.

Proof of (3): Assume H, K ∈ CD(G) and H ≤ K . It follows that CG(K )≤CG(H).
Thus, subgroup inclusion relationships above the line of symmetry are mirrored
below the line, and vice versa. �

3. Subgroup and CD-lattices of split metacyclic p-groups

Presentations of metacyclic p-groups, p > 2. A group is metacyclic if it has a
cyclic normal subgroup whose corresponding quotient is also cyclic. The group
splits if it is a semidirect product of the form Zm oZn . It is well known that every
noncyclic metacyclic p-group, p > 2, has a presentation of the form

P = P(m, n, c, s)= 〈x, y | x pm
= 1, y pn

= x pm−s
, yxy−1

= x1+pm−c
〉, (3-1)

where 1 ≤ m, n, 0 ≤ c ≤ min{m − 1, n}, and 0 ≤ s ≤ m − c.1 Note that the
parameter s measures how far the group is from splitting (if s = 0, then P is split

1Presentations of metacyclic 2-groups are also known, but we restrict to odd primes throughout.
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P(m,n,c,s)

P(m,n,c,0) ·

P(m,n,c,0) ·

P(n+s,m−s,c,0) nonsplit

s= 0 s> 0

s ≤m−n s>m−n

s ≥ c s< c

Figure 2. Conditions under which P(m, n, c, s) splits.

and P ∼= 〈x〉o 〈y〉), and the parameter c measures how far the group is from being
commutative (if c = 0, then P is abelian). We have |P| = pm+n and every element
of P can be written uniquely as x i y j for some 0≤ i < pm and 0≤ j < pn.

Note 3.1. For the rest of this paper, we will use the term “metacyclic p-group” to
mean a finite, nonabelian, noncyclic metacyclic p-group, where p > 2.

Depending on the relative sizes of the four parameters, it is sometimes possible
to find a different set of generators that yields a split presentation with s = 0.

Proposition 3.2 [Dietz 1993]. Let P(m, n, c, s) be as in (3-1).

(1) If s = 0, then P is split.

(2) If s 6= 0 and m−s ≥ n, then we can find an element y∗ such that P ∼= 〈x, y∗〉 =
P(m, n, c, 0) and thus P splits.

(3) If s 6= 0 and m− s <min{n, m− c+ 1}, then we can find elements x∗ and y∗

such that P ∼= 〈y∗, x∗〉 = P(n+ s, m− s, c, 0) and thus P splits.

(4) If s 6= 0 and m− c < m− s < n, then P is nonsplit.

See Figure 2 for a decision tree illustrating this proposition.
Furthermore, we can put restrictions on the parameters in such a way that different

values of s and c for a fixed pair m and n describe unique isomorphism types. We
have the following isomorphism classes that we will say are in reduced metacyclic
form.

Proposition 3.3 [King 1973]. Every metacyclic p-group is isomorphic to exactly
one of the following reduced forms:

(1) Split: P(m, n, c, s) with 0= s ≤ c ≤min{n, m− 1}.

(2) Nonsplit: P(m, n, c, s) with max{1, m− n+ 1} ≤ s ≤min{c− 1, m− c}.
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CD-measure and CD-lattice of P(m, n, c, s). We first establish the CD-measures
of split metacyclic p-groups, and then determine their CD-lattices.

Proposition 3.4. Let P = P(m, n, c, 0) be a split metacyclic p-group. Then
m∗(P)= p2(m+n−c).

Proof. By [Héthelyi and Külshammer 2011, Lemma 4.1], we have m∗(P)=[P :P ′]2.
Lemma 2.5 in [Bidwell and Curran 2010] shows that P ′ = 〈x pm−c

〉 ∼= Zpc . Hence
m∗(P)= (pm+n−c)2. �

Theorem 3.5. Let P = P(m, n, c, 0). Then CD(P) consists of the maximal abelian
subgroups of P, all nonabelian subgroups of P, and all centralizers of the nonabelian
subgroups.

Proof. First, we show that CD(P) contains the subgroups mentioned in the theorem;
second, we show that no other subgroups are in CD(P).

Proposition 2.4 in [Glauberman 2006] shows that all centrally large subgroups
of a finite p-group have maximal CD-measure. Corollary 4.4 in [Héthelyi and
Külshammer 2011] shows that all maximal abelian and nonabelian subgroups
of P are centrally large; hence all are in CD(P). By duality, centralizers of these
subgroups are also in CD(P). We will show that the maximal abelian subgroups
are equal to their centralizers.

Let A be a maximal abelian subgroup of P. By Lemma 2.8 in [Héthelyi and
Külshammer 2011], |A| = [P : P ′] = pm+n−c. Since A has maximal CD-measure,
we know |CP(A)| = pm+n−c. Finally, A ≤ CP(A) implies A = CP(A).

Next, we must show that no other subgroups of P are contained in CD(P). Let H
be an abelian subgroup of P that is not maximal abelian and is not the centralizer
of a nonabelian subgroup of P. If CP(H) is nonabelian, then CP(H) ∈ CD(P). By
duality, CP(CP(H))= H , but this contradicts the fact that H is not the centralizer
of a nonabelian subgroup of P. If CP(H) is abelian, then neither H nor CP(H) is
maximal abelian. We see that

mP(H)= |H ||CP(H)|< (pm+n−c)2 ≤ m∗(P),

so H 6∈ CD(P). �

A few things from the theorem and its proof are worthy of note.

• P is itself a member of CD(P), hence Z(P) is too.

• By Theorem 2.1, the line of symmetry of L(P) is at height
√

m∗(P)= pm+n−c,
which is the height of the maximal abelian subgroups of P. Thus, it makes sense
that the maximal abelian subgroups of P are equal to their own centralizers.

• All nonabelian subgroups of P lie above the line of symmetry in L(P) and have
order greater than all abelian subgroups of P (this is in Proposition 3.3 of [Berkovich
2013] too).
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• All nonabelian subgroups of P have abelian centralizers (that are not maximal).
In fact, the proposition below shows that centralizers of nonabelian subgroups equal
their centers.

• All nonabelian subgroups of P contain the center of P.

We have two further results about abelian and nonabelian subgroups of P =
P(m, n, c, 0).

Proposition 3.6. Let H be a nonabelian subgroup of P. Then CP(H)= Z(H).

Proof. As we saw in the proof above, H is centrally large, so |H ||Z(H)| ≥
|H∗||Z(H∗)| for all H∗ ≤ P. Since a maximal abelian subgroup A of P is equal
to its own centralizer, we see that |A||CP(A)| = |A||Z(A)| is maximal too. Then

|H ||Z(H)| ≥ |A||Z(A)| = |A||CP(A)| = |H ||CP(H)|

implies CP(H)= Z(H). �

Proposition 3.7. Not every nonmaximal abelian subgroup A of P with |A|≥|Z(P)|
is in CD(P).

Proof. First some notation: let sj denote the total number of subgroups of P of
order p j , and let scd

j denote the total number of subgroups of order p j that are
in CD(P).

From Theorem 3.5 we know that if a nonmaximal abelian subgroup of P is in
CD(P), then it has order pk , where m+ n− 2c ≤ k < m+ n− c. Thus, if we can
show sk > scd

k for all such k, then we will have proved the proposition.
By duality, scd

k = scd
i , where i = 2(m + n − c)− k. Since every nonabelian

subgroup of P is in CD(P), we know scd
i = si . By a result of A. Mann [2010], the

number of subgroups of P of order pi , where m+ n− c < i ≤ m+ n, is

si =
pm+n−i+1

− 1
p− 1

.

The same theorem in [Mann 2010] shows that the size of sk depends on the size
of k relative to m and n.

Assume m ≥ n.

(1) If k ≥ m, then sk = (pm+n−k+1
− 1)/(p− 1). Since k < i , we have sk > si .

(2) If n ≤ k ≤m, then sk = (pn+1
−1)/(p−1). Since m+n− c< i ≤m+n and

c ≤ n, we have i > m. Thus n+ 1> m+ n− i + 1 and sk > si .

(3) If k ≤ n, then sk = (pk+1
− 1)/(p− 1). Since c ≤ min{m − 1, n}, we have

m+ n− 2c > 0. Thus

k+ 1= 2(m+ n− c)− i + 1> m+ n− i + 1,

and sk > si .
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In each case, the total number of abelian subgroups of order pk is greater than the
number of abelian subgroups of order pk that appear in CD(P).

A similar result holds if m < n. �

By duality, we need only determine the upper half of the CD-lattice in order
to at least know its complete structure (if not the precise subgroups). The next
subsection gives us tools for determining the nonabelian subgroups of P(m, n, c, 0)
in a regressive manner.

Subgroups of metacyclic p-groups. It is well known that subgroups of metacyclic
groups are either cyclic or metacyclic. In this section we determine the precise
metacyclic structure of the maximal subgroups of P = P(m, n, c, s). First we need
some computational lemmas from [Schulte 2001] and [Bidwell and Curran 2010].2

Lemma 3.8 [Schulte 2001]. Let P = P(m, n, c, s) be as in (3-1).

(1) We have y j x i
= x i(1+pm−c) j

y j , where i, j ≥ 0.

(2) Let α = 1+ pm−c and k ∈ N. Then (x i y j )k = x i3( j,k)y jk, where

3( j, k)= 1+α j
+α2 j

+ · · ·+α(k−1) j for i, j, k ≥ 0.

Lemma 3.9 [Bidwell and Curran 2010]. For any positive integers a and b and an
odd prime p, we have (1+ pa)pb

≡ 1 mod pa+b.

From the proof of Proposition 3.7, the number of proper subgroups of P of
maximal order is si = p+ 1, where i = m+ n− 1.

Theorem 3.10. The p+1 maximal proper subgroups of P=P(m,n,c,s)=〈x,y〉 are

L = 〈x p, y〉, Mi = 〈x p, x i y〉 for i = 1, . . . , p− 1, R = 〈x, y p
〉.

Proof. It is clear that L and R each have order pm+n−1 and are distinct from one
another. L and Mi are distinct because y ∈ Mi only if i ≡ 0 mod p. Similarly, R
and Mi are distinct because x 6∈ Mi . To show the Mi are distinct from one another,
suppose that x i y ∈ Mj for some i 6= j . Then for some u, v ∈ Z, we have

x i y = (x p)u(x j y)v = x pu+ j3(1,v)yv

by Lemma 3.8. We must have v ≡ 1 mod pn so there exists w ∈ Z such that
v = 1+wpn. Now

x i y = x pu+ j3(1,v)y1+wpn
= x pu+ j3(1,v)+wpm−s

y,

hence i ≡ pu + j3(1, v) + wpm−s mod pm. By Lemma 3.9 we can see that
3(1, v)≡ 1 mod p. Thus i ≡ j mod p, which is a contradiction.

2Schulte [2001] focuses on a particular family of split metacyclic p-groups, but the result stated
here clearly holds more generally.
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It remains to show that |Mi | = pm+n−1. Because the Mi are metacyclic, we know
that

|Mi | =
|〈x p
〉||〈x i y〉|

|〈x p〉 ∩ 〈x i y〉|
.

Using Lemmas 3.8 and 3.9, we can show that |x i y| ≥ |y| = pn+s . Using similar
computations, we can show that 〈x p

〉 ∩ 〈x i y〉 ≤ 〈x pm−s
〉. Thus

|〈x p
〉||〈x i y〉|

|〈x p〉 ∩ 〈x i y〉|
≥

pm−1 pn+s

ps = pm+n−1.

Certainly Mi is a proper subgroup of P, so we must have |Mi | = pm+n−1. �

Next we identify the metacyclic structure of the p+ 1 maximal subgroups of a
metacyclic p-group, but separate the split and nonsplit cases.

Theorem 3.11. The metacyclic forms of the maximal subgroups of the split meta-
cyclic p-group P = P(m, n, c, 0) are

(1) L = 〈x p, y〉 ∼= P(m−1, n, c−1, 0),

(2) Mi = 〈x p, x i y〉 ∼=


P(m−1, n, c−1, 0)∼= L if m ≤ n,
P(m, n−1, c−1, 0)∼= R if m > n and n ≤ m−c+1,
P(m−1, n, c−1, m−n) if m > n > m−c+1,

(3) R = 〈x, y p
〉 ∼= P(m, n−1, c−1, 0).

Proof. The order relations in L are clear, so we need only check the degree of
commutativity. We have

yx p y−1
= (yxy−1)p

= (x1+pm−c
)p
= (x p)1+pm−c

.

Since m− c = (m− 1)− (c− 1), we have our result.
In R we see that y pxy−p

= x (1+pm−c)p
by Lemma 3.8. By Lemma 3.9 we

know that (1+ pm−c)p
≡ 1 mod pm−c+1. By [King 1973, Proposition 2.3], we can

replace x and y p with x∗ and y∗ respectively so that 〈x∗〉 = 〈x〉, 〈y∗〉 = 〈y p
〉 and

y∗x∗(y∗)−1
= (x∗)1+pm−c+1

. Since m− c+ 1= m− (c− 1), we have our result.
In Mi we have

(x i y)x p(x i y)−1
= x i (yx p y−1)x−i

= x i (x1+pm−c
)px−i

= (x p)1+pm−c
.

Next, we compute the splitting degree. Since P is regular (see [Davitt 1970,
Corollary 1]), we know

(x i y)pn
= x i pn

y pn
z pn

for some z ∈ [P, P] = 〈x pm−c
〉. Suppose z = xapm−c

for some a ∈ Z. Then

(x i y)pn
= x i pn

+apm−c+n
.
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If m ≤ n, we see that x i y has order pn and Mi = P(m− 1, n, c− 1, 0). If m > n,
then

(x i y)pn
= (x p)i pn−1

+apm−c+n−1
= (x p)pn−1(i+ai−1 pm−c).

Since i + ai−1 pm−c is a unit modulo pm, [King 1973] again tells us that we can
choose new generators x∗ and y∗ so that 〈x∗〉 = 〈x p

〉, 〈y∗〉 = 〈x i y〉, y∗x∗(y∗)−1
=

(x∗)1+pm−c
, and (y∗)pn

= (x∗)pn−1
. Hence we get Mi = P(m− 1, n, c− 1, m− n).

Finally, by Proposition 3.2 we see that the reduced metacyclic form of Mi depends
on whether m− n < c− 1. �

Theorem 3.12. The metacyclic forms of the maximal subgroups of the nonsplit
metacyclic p-group P= P(m,n,c,s), max{1,m−n+1}≤ s≤min{c−1,m−c}, are

(1) L = 〈x p, y〉 ∼=
{

P(n+ s, m− s− 1, c− 1, 0) if s = c− 1,
P(m− 1, n, c− 1, s) if s < c− 1,

(2) Mi = 〈x p, x i y〉 ∼= L for i = 1, . . . , p− 1,

(3) R = 〈x, y p
〉 ∼=


P(m, n− 1, c− 1, 0) if s = m− n+ 1,
P(n+ s− 1, m− s, c− 1, 0) if m− n+ 1< s = c− 1,
P(m, n− 1, c− 1, s) if m− n+ 1< s < c− 1.

Proof. Consider the subgroup L first. As in the proof of Theorem 3.11, we have
the commutativity degree is c−1. Since y pn

= (x p)pm−1−s
, we see that the splitting

degree is s. Thus L = P(m−1, n, c−1, s). By Proposition 3.2 and the subsequent
decision tree, we know s > 0 and s ≥m−n+1> (m−1)−n, so that the structure
of L depends on whether s ≥ c− 1. We already have s ≤ c− 1, so s ≥ c− 1 if and
only if s = c− 1.

Next we consider R. As in the proof of Theorem 3.11, we can replace x and y p

with x∗ and y∗ respectively so that y∗x∗(y∗)−1
= (x∗)1+pm−c+1

. Furthermore, the
splitting degree remains unchanged, so (y p)pn−1

= x pm−s
implies (y∗)pn−1

= (x∗)pm−s
.

Hence R = P(m, n − 1, c − 1, s). From the decision tree, we see that R =
P(m, n− 1, c− 1, 0) if s ≤ m− (n− 1). We already have m− n+ 1≤ s, so this
form occurs exactly when s = m− n+ 1. Finally, the structure of R depends on
whether s ≥ c− 1 (which happens if and only if s = c− 1) or s < c− 1.

Lastly, we consider the subgroups Mi . We compute x i yx p y−1x−p
= (x p)1+pm−c

so the commutativity degree is c−1. The splitting degree is determined by computing
(x i y)pn

= x i3(1,pn)+pm−s
, where 3(1, pn) is as in Lemma 3.8. Now

3(1, pn)= 1+α+α2
+ · · ·+α pn

−1
=
α pn
− 1

α− 1
.

Since α pn
≡ 1 mod pm−c+n by Lemma 3.9, there exists a ∈ Z such that α pn

=

1+ apm−c+n. Thus 3(1, pn)= apn and we have

(x i y)pn
= x iapn

+pm−s
= x pm−s(iapn−m+s

+1)
= (x p)pm−s−1(iapn−m+s

+1).



ON THE CHERMAK–DELGADO LATTICES OF SPLIT METACYCLIC p-GROUPS 775

Once again by [King 1973] we can replace x p and x i y with generators x∗ and y∗

satisfying the same order and commutator relations, and further satisfying (y∗)pn
=

(x∗)pm−1−s
. Hence Mi = P(m− 1, n, c− 1, s) and has the same structure as L . �

With Theorems 3.5, 3.11, and 3.12 in hand, we can construct the subgroup lattice
of a split metacyclic p-group, and hence construct its CD-lattice. In practice, even
small-order metacyclic p-groups will have complicated lattices with split subgroups
spawning nonsplit subgroups, and vice versa (see one example in Section 5). How-
ever, there are certain conditions under which we get particularly nice CD-lattices,
including some quasiantichains as discussed in [Brewster et al. 2014b]. This is
what we will describe in the next section.

4. Diamonds in the rough: the BEK-lattice

We begin with some notation. Let P = P(m, n, c, 0) = 〈x, y〉, and set Hab =

〈x pa
, y pb
〉, where 0≤ a≤m and 0≤ b≤ n. These subgroups are the L- and R-types

from Theorems 3.11 and 3.12, and sometimes the Mi subgroups are isomorphic
to these. The set of the Hab will form a sublattice of L(P), which we will denote
BEK(P), and under the right circumstances L(P) will “collapse” to BEK(P).
Before getting to these results, we delve into the structure of the Hab.

Lemma 4.1 [Bidwell and Curran 2010]. Let P = P(m, n, c, s) be as in (3-1). Then

(1) C〈x〉(〈y〉)= 〈x pc
〉,

(2) C〈y〉(〈x〉)= 〈y pc
〉,

(3) Z(P)= 〈x pc
, y pc
〉 and |Z(P)| = pm+n−2c.

By the third property above, we have Z(P)≤ Hab for all 0≤ a, b ≤ c.
We know the metacyclic forms of the subgroups Hab.

Proposition 4.2. Let P = P(m, n, c, 0) and consider Hab ≤ P, where 0 ≤ a ≤ m
and 0≤ b ≤ n. Then

Hab ∼=

{
P(m− a, n− b, c− (a+ b), 0) if a+ b < c,
Zpm−a ×Zpn−b if a+ b ≥ c.

In particular, |Hab| = pm+n−a−b.

Proof. By repeated applications of Theorem 3.11, we see that

〈x pa
, y pb
〉 = P(m− a, n− b, c− (a+ b), 0)

as long as c− (a+ b) > 0. On the other hand, by Lemma 3.8

y pb
x pa
= x pa(1+pm−c)pb

y pb
.
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Z(P)

Hc(c−1) H(c−1)c

H(c−1)(c−1)Hc(c−2) H(c−2)c

. . .. . . . . . . .
.

. . .Hc 0 H0 c

. . .. .
. . . . . . .

H11H20 H02

H10 H01

P

H(c−1)1 H1(c−1)

Figure 3. The BEK-lattice of a split metacyclic p-group.

By Lemma 3.9, (1+ pm−c)pb
≡ 1 mod pm−c+b. Thus

x pa(1+pm−c)pb

= x pa(1+dpm−c+b)

for some d ∈ Z. If a + b ≥ c, we can see that Hab is abelian and isomorphic to
Zpm−a ×Zpn−b . �

Theorem 4.3. Let CDbek(P)= {Hab | 0≤ a, b ≤ c}. Then CDbek(P) is a subposet
of CD(P) that is rank-symmetric, and its corresponding lattice, BEK(P), is shown
in Figure 3.

To show that each Hab is in CD(P), we will show that the centralizers of the
nonabelian Hab are the abelian ones.

Proposition 4.4. CP(Hab)= Hc−b,c−a .

Proof. When a + b < c, we know Hab is nonabelian and thus is in CD(P) by
Theorem 3.5. Therefore, mP(Hab) = p2(m+n−c). Since |Hab| = pm+n−a−b, it
follows that |CP(Hab)| = pm+n−2c+a+b. By Lemma 4.1,

Z(Hab)= Z(P(m− a, n− b, c− a− b, 0))= 〈x pc−b
, y pc−a

〉 = Hc−b,c−a

and therefore |Z(Hab)| = pm+n−2c+a+b. We have |CP(Hab)| = |Z(Hab)| and so
CP(Hab)= Z(Hab)= Hc−b,c−a .

When a + b = c, we know |Hab| = pm+n−c, so it is maximal abelian. From
Theorem 3.5 we know CP(Hab)= Hab = Hc−b,c−a .
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Let a+ b > c. Then by Lemma 3.8,

y pb
x pc−b

= x pc−b(1+pm−c)pb

y pb
= x pc−b

y pb
,

so x pc−b
∈ CP(Hab). Similarly,

y pc−a
x pa
= x pa(1+pm−c)pc−a

y pc−a
= x pa

y pc−a
,

so y pc−a
∈ CP(Hab). Thus Hc−b,c−a ≤ CP(Hab). We have

|Hab||CP(Hab)| ≥ |Hab||Hc−b,c−a| = p2m+2n−2c.

Since this is the maximal possible measure, we have Hc−b,c−a = CP(Hab). �

The next corollary follows immediately.

Corollary 4.5. Hab ∈ CD(P) for all 0≤ a, b ≤ c.

Proposition 4.6. Hab covers Ha′b′ if and only if a + b + 1 = a′ + b′ and either
a′ = a+ 1 or b′ = b+ 1.

Proof. First suppose Ha′b′ < Hab. The generators of Ha′b′ must be in Hab, so there
exist i, j, u, v ∈ Z such that

x pa′

= (x pa
)i (y pb

) j, (4-1)

y pb′

= (x pa
)u(y pb

)v. (4-2)

From (4-1) we see that pa′
= i pa , so a′ ≥ a. From (4-2) we have b′ ≥ b. If

a+b= a′+b′−1, then there are exactly two groups that cover Ha′b′ as stated in the
proposition. If a+b< a′+b′−1, then one of three cases can occur: (i) a ≤ a′−2,
(ii) b≤ b′−2, or (iii) a ≤ a′−1 and b≤ b′−1. In turn, we will have the three cases

(i) Ha′b′ < Ha′−1,b′ < Ha′−2,b′ ≤ Hab,

(ii) Ha′b′ < Ha′,b′−1 < Ha′,b′−2 ≤ Hab,

(iii) Ha′b′ < Ha′−1,b′ < Ha′−1,b′−1 ≤ Hab,

contradicting the fact that Hab covers Ha′b′ .
Conversely, if a+b+1= a′+b′ and a′ = a+1, then it is clear that Ha′b′ < Hab

and there does not exist Hcd such that Ha′b′ < Hcd < Hab. We have a similar result
if b′ = b+ 1. �

The proposition above proves that BEK(P) has the structure illustrated in
Figure 3.

Finally, we define a rank function ρ : CDbek(P)→N by ρ(Hab)=m+n−a−b.
Then ρ(Hab)= ρ(Ha′b′)+ 1 when Hab covers Ha′b′ and we see that CDbek(P) is a
ranked poset that is clearly rank-symmetric from its definition, proving Theorem 4.3.
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H21(p2)H30(p3) H12(p) H03(1)

H11(p)H20(p2) H02(1)

H10(p) H01(1)

P

H22(p)H31(p2) H13(1)

H32(p) H23(1)

Z(P)

p 1

p p1 1

p p p1 1 1

1 p

1 1p p

1 1 1p p 1

Figure 4. The CD-lattice of P(4, 6, 3, 0).

As we will prove below, there are conditions on the parameters of P(m, n, c, 0)
that guarantee its CD-lattice “collapses” to the BEK-lattice. That is, all subgroups
in CD(P) will be isomorphic to Hab for some 0≤ a, b ≤ c. There will be multiple
copies of some Hab in CD(P)— for example, in P(3, 4, 1, 0) there will be p copies
of H10 by Theorem 3.11 — so that the edges in L(P) will be weighted versions of
those in BEK(P).
Theorem 4.7. Let P = P(m, n, c, 0), with m ≤ n and c ≤ n−m+ 1. Then every
subgroup in CD(P) is isomorphic to Hab for some 0≤ a, b ≤ c.3

Proof. We begin by showing that all the nonabelian subgroups in the upper half
of L(P) are isomorphic to some Hab.

By Theorem 3.11, the maximal subgroups of P are isomorphic to H10 and H01.
Thereafter, as the order of the subgroups decreases, they are split and of the form
Hab = P(m−a, n−b, c−a−b, 0) as long as m−a ≤ n−b. Suppose m+k = n
for some k ≥ 0. The first possibility for a nonsplit subgroup to appear is when
m−a > n−b, or b−a > k. Thus H0,k+1 is the first subgroup of P that might have
a nonsplit subgroup (none of the other Hab of the same order satisfy b−a = k+1).
However, k+ 1≥ c implies H0,k+1 is abelian so we have reached the lower half of
the lattice and all subgroups in the upper half are split and isomorphic to some Hab.

Next we must show that centralizers of all nonabelian subgroups of P are
isomorphic to some Ha′b′ with a′+b′> c. Proposition 4.4 shows that the centralizers
of those nonabelian subgroups of P exactly equal to Hab, where a + b < c, are
equal to Hc−b,c−a .

3These are not the only conditions on the metacyclic parameters under which the result of the
theorem holds, but they are the most succinct.
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Now suppose that M ≤ P is isomorphic to Hab, where a + b < c, and let
M = P(m−a, n−b, c−a−b, 0)=〈s, t〉 as in (3-1). By Lemma 4.1, Z(M) =
〈s pc−a−b

, t pc−a−b
〉, which has order pm+n−2c+a+b, and, therefore, must be equal

to CP(M). Thus CP(M)= P(c− b, c− a, 0, 0)∼= Hc−b,c−a . �

Example 4.8. In Figure 4 we illustrate the CD-lattice for P(4, 6, 3, 0), where m<n
and c ≤ n−m+ 1. The weights on the edges indicate the number of isomorphic
copies of a particular subgroup coming from a parent Hab (for example, each copy
of H10 has p subgroups isomorphic to H20), and the numbers in parentheses indicate
the number of distinct subgroups of a particular form (for example, even though
there are 2p2 paths from P to H21, there are only p2 distinct copies of H21 in P).
Except for the weights, one can see that L(P) looks like BEK(P).

5. Two complete CD-lattices

We begin by applying the theory of Section 3 to a particular family of split metacyclic
p-groups whose Chermak–Delgado lattices we can determine completely.

Theorem 5.1. The Chermak–Delgado lattice of P(m, n, 1, 0) is as illustrated in
Figure 5.

Proof. Since |Z(P)| = pm+n−2, we know the only subgroups in L(P) other than
Z(P) and P are the maximal proper subgroups, which coincide with the maximal
abelian subgroups on the line of symmetry at height pm+n−1. From Theorem 3.11
we have

(1) L = 〈x p, y〉 = P(m− 1, n, 0, 0)∼= Zpm−1 ×Zp,

(2) Mi = 〈x p, x i y〉 =
{

P(m− 1, n, 0, 0)∼= Zpm−1 ×Zpn if m ≤ n,
P(m, n− 1, 0, 0)∼= Zpm ×Zpn−1 if m > n,

(3) R = 〈x, y p
〉 = P(m, n− 1, 0, 0)∼= Zpm ×Zpn−1 .

Note that if n = 1, then Mi = 〈x i y〉 ∼= Zpm and R = 〈x〉 ∼= Zpm . �

Z(P)= 〈x p, y p
〉

. . .〈x p, x2 y〉〈x p, xy〉〈x p, y〉 〈x p, x p−2 y〉 〈x p, x p−1 y〉 〈x, y p
〉

P

Figure 5. The Chermak–Delgado lattice of P(m, n, 1, 0).
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The theorem above shows that the CD-lattice of P(m, n, 1, 0) is a quasiantichain
in the sense of [Brewster et al. 2014b]. Indeed, while L(P) contains many intervals
that are quasiantichains, the work in Section 3 shows that the whole CD-lattice of
P(m, n, c, 0) is a quasiantichain (of width p+ 1) if and only if c = 1.

The next example shows how some nonsplit subgroups can appear in CD(P),
but modulo these irregular groups the CD-lattice looks like the BEK-lattice.

We build the CD-lattice of P = P(6, 5, 4, 0) one level at a time, using Theorems
3.11 and 3.12. Lowercase letters such as m, n, c, and s will always refer to the
original group P, while uppercase letters such as M , N , C , and S will refer to the
parameters of the particular subgroup in question:

• Order p10. Since m > n > m − c + 1, there are p − 1 subgroups of type
J1 = P(5, 5, 3, 1) together with H10 and H01 at the maximal level.

• Order p9. Since H10 = P(5, 5, 3, 0) has M ≤ N , it has p subgroups isomorphic
to type L and one of type R. That is, we have p copies of H20 and one of H11.

Since H01 = P(6, 4, 3, 0) has M > N and N ≤ M −C + 1, it has p subgroups
isomorphic to type R and one of type L . That is, we have p copies of H02 and one
of H11.

Since J1 = P(5, 5, 3, 1) has S < C − 1, it has p subgroups isomorphic to type
L = P(4, 5, 2, 1) = J2. Since S = M − N + 1, we know J1 has one subgroup of
type R = P(5, 4, 2, 0)= H11.

There are only p2
+ p+1 subgroups of P of order p9, so there must be intersec-

tions among the p2
+ 2p+ 1 subgroups listed above. The intersections can be hard

to track because we often use [King 1973] to show the existence of alternative gener-
ators having nice properties. Although King shows how to construct the alternative
generators, tracking all of them is a mind-numbing task that we will not illustrate.

• Order p8. Since H20 = P(4, 5, 2, 0) has M ≤ N , it has p subgroups isomorphic
to type L = P(3, 5, 1, 0)= H30 and one of type R = P(4, 4, 1, 0)= H21.

Since H11 = P(5, 4, 2, 0) has M > N and N ≤ M −C + 1, it has p subgroups
isomorphic to type R= P(5, 3, 1, 0)= H12 and one of type L= P(4, 4, 1, 0)= H21.

Since H02 = P(6, 3, 2, 0) has M > N and N ≤ M −C + 1, it has p subgroups
isomorphic to type R= P(6, 2, 1, 0)= H03 and one of type L= P(5, 3, 1, 0)= H12.

Since J2 = P(4, 5, 2, 1) has S = C − 1, it has p subgroups isomorphic to type
L = P(6, 2, 1, 0) = H03. Since M − N + 1 < S = C − 1, we know J2 has one
subgroup of type R = P(5, 3, 1, 0)= H12.

• Order p7. Since H30 = P(3, 5, 1, 0) has M ≤ N , it has p subgroups isomorphic
to type L = P(2, 5, 0, 0)= H40 and one of type R = P(3, 4, 0, 0)= H31.

Since H21 = P(4, 4, 1, 0) has M ≤ N , it has p subgroups isomorphic to type
L = P(3, 4, 0, 0)= H31 and one of type R = P(4, 3, 0, 0)= H22.
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H22H31H40 H13 H04

H21H30 H12 H03

H32H41 H23 H14

H11H20 J2 H02

H33H42 H ′24 H24

J1H10 H01

H ′34H43 H34

P(6, 5, 4, 0)

Z(P)

Figure 6. The collapsed CD-lattice of P(6, 5, 4, 0).

Since H12 = P(5, 3, 1, 0) has M > N and N ≤ M −C + 1, it has p subgroups
isomorphic to type R= P(5, 2, 0, 0)= H13 and one of type L= P(4, 3, 0, 0)= H22.

Since H03 = P(6, 2, 1, 0) has M > N and N ≤ M −C + 1, it has p subgroups
isomorphic to type R= P(6, 1, 0, 0)= H04 and one of type L= P(5, 2, 0, 0)= H13.

• Order ≤ p6. Notice that all of the subgroups of order p7 are abelian, so
that is the row of maximal abelian subgroups of P. The rest of the CD-lattice
consists of centralizers of the groups above. From Proposition 4.4 we know that
CP(Hab)= Hc−b,c−a . Suppose J1 = P(5, 5, 3, 1)= 〈s, t〉. Then Lemma 4.1 says
that Z(J1) = 〈s p3

, t p3
〉 = P(2, 2, 0, 1). This has order p4, which is the order of

CP(J1), so Z(J1) = CP(J1). By the decision tree in Figure 2, we see that Z(J1)

has an alternative presentation of the form P(3, 1, 0, 0), making it isomorphic to
H34.

Similarly, the center of J2 coincides with its centralizer in P and is of the form
P(2, 3, 0, 1). This subgroup has an alternative presentation as P(4, 1, 0, 0), which
is isomorphic to H24.

A collapsed version of L(P) is shown in Figure 6, where multiple copies of
subgroups are not indicated.
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