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We construct a basis for free Lie algebras via a left greedy bracketing algorithm
on Lyndon–Shirshov words. We use a new tool — the configuration pairing
between Lie brackets and graphs of Sinha and Walter — to show that the left
greedy brackets form a basis. Our constructions further equip the left greedy
brackets with a dual monomial Lie coalgebra basis of star graphs. We end with a
brief example using the dual basis of star graphs in a Lie algebra computation.

1. Introduction

Lie algebras are classical objects with applications in differential geometry, theoret-
ical physics, and computer science. A Lie algebra is a vector space which has an
extra nonassociative (bilinear) operation called a Lie bracket, written [a, b]. The
Lie bracket operation satisfies anticommutativity and Jacobi relations:

(anticommutativity) 0= [a, b] + [b, a],

(Jacobi) 0= [a, [b, c]] + [c, [a, b]] + [b, [c, a]].

A free Lie algebra is a Lie algebra whose bracket operation satisfies no extra
relations — only the two written above and any relations which can be generated
by combining them together. For example,

[a, [b, c]] − [[a, b], c] = [[c, a], b]

is a relation for free Lie algebras since [c, [a, b]]=−[[a, b], c] by anticommutativity,
and similarly for [b, [c, a]]. Free Lie algebras are fundamental in that every Lie
algebra can be written via generators and relations as a free Lie algebra with extra
relations placed on its bracket operation.

Recall that a set of elements generates an algebra if all other elements in the
algebra can be obtained via sums of products of elements from the set. A minimal
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generating set is called an algebra basis. We are interested in linear bases for
algebras — these are minimal sets consisting of an algebra basis along with enough
products of these so that all further algebra elements can be reached using only sums.

The current work describes a new linear basis for free Lie algebras, along with
a new method for finding, computing with, and proving theorems about general
free Lie algebra bases. Our method uses the graph/tree pairing developed in [Sinha
2005; 2006], which yields a new way to describe Lie coalgebras via graphs as
applied in [Sinha and Walter 2011] and explained further in [Walter 2010]. Since
we introduce a new and different way to perform calculations in free Lie algebras,
we give many detailed examples throughout. For readers interested in a history of
bases of free Lie algebras, we suggest [Bokut and Chibrikov 2006, §3.2].

2. Notation and classical constructions

In this paper we will say alphabet for a collection of abstract letters (or variables). A
word in an alphabet is a (noncommutative, associative) string (or product) of letters
from the alphabet. An ordering on an alphabet (such as the standard alphabetical
ordering in English) induces an ordering on words called the lexicographical (or
dictionary) ordering. The cyclic permutations of a word are given by removing
letters from the beginning of the word and moving them to the end.

Example 2.1. The cyclic permutations of the word abcd are bcda, cdab, dabc.
The cyclic permutations of the word aaabb are aabba, abbaa, bbaaa and baaab.

A word that is lexicographically strictly less than all its cyclic permutations is
called a Lyndon–Shirshov word (or just a Lyndon word). For instance, aaabb is a
Lyndon–Shirshov word, but aabba and abbaa are not. Neither is abab, since it
equals one of its cyclic permutations.

A linear basis for the free Lie algebra on an alphabet can be built on Lyndon–
Shirshov words using standard bracketing [Reutenauer 1993]i (see [Melançon
and Reutenauer 1989; Chibrikov 2006; Stöhr 2008] for other methods). Given a
Lyndon–Shirshov word w, its standard bracketing [w] is recursively defined by
[w] = w if w has length 1, and by [w] = [uv] = [[u], [v]] if v is a maximally long
Lyndon–Shirshov suffix of w = uv, with u nonempty.

Example 2.2. The standard bracketing of aaabb is

[aaabb] =
[
[a], [aabb]

]
=
[
a, [ [a], [abb]]

]
=
[
a, [a, [[ab], [b]]]

]
=
[
a, [a, [[a, b], b]]

]
.

The collection of all standard bracketings of Lyndon–Shirshov words gives a
linear basis for the free Lie algebra on the underlying alphabet.
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The standard bracketing of a Lyndon–Shirshov word can also be described
recursively from the innermost brackets to the outermost roughly as follows: Read
the letters of a Lyndon–Shirshov word from right to left looking for the first occur-
rence of consecutive letters, . . . ai ai+1 . . ., where ai < ai+1 (called the rightmost
inversion). Replace ai ai+1 by the bracket [ai , ai+1], which we will consider to
be a new letter placed in the ordered alphabet in the lexicographical position of
the word ai ai+1. Repeat. (For a more detailed description see [Melançon and
Reutenauer 1989, §2].)

Our construction of left greedy brackets will also proceed from the innermost
bracket the to outermost bracket, similar to the rewriting system presented above.
However, just as with the standard bracketing, left greedy brackets can also be
described from the outermost to the innermost brackets.

3. Left greedy brackets and star graphs

Simple words.

Definition 3.1. Given a fixed letter a in an alphabet, an a-simple word is a word
of the form w = aa · · · ax (written w = anx for short), where x is any single letter
not equal to a. The single-letter word w = x (i.e., w = a0x) is also an a-simple
word (for x 6= a).

The collection of all words in an alphabet is itself an (infinite) ordered alphabet
(with the lexicographical ordering). A word in the alphabet whose letters are words
in another alphabet will be casually referred to as a word of words. Note that
such an expression of a word as a product of subwords is equivalent to a partition
of the word. Considering words as ordered sets of letters, partitions are order-
preserving surjections of sets; hence our notation for partitioning a word will be a
double-headed arrow,�, as defined below.

Remark 3.2. A partition of a word is equivalent to a rewriting which combines
multiple subwords in parallel (compare [Mélançon 1997]). For our construction
and proofs we will critically make use of the levels of nesting of partitions. We use
the term partition so that our notation and our terminology reflect this emphasis.

Definition 3.3. A simple partition of a word w is an expression of w as subwords
w = α1α2 · · ·αk where each αi is an a-simple word and a is the first letter of w.
We will write w� α1α2 · · ·αk .

Note that words have at most one simple partition. The subword α1 must consist
of the initial string of a’s as well as the first letter of w other than a. If the letter
in w following α1 is a, then α2 must consist of the next string of a’s as well as the
next letter other than a. If the letter following α1 is not a, then α2 will consist of
only that one letter. (See the first line of Example 3.6.)
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Remark 3.4. A simple partition of a word is equivalent to performing Lazard
elimination [Lothaire 1997, Chapter 5] on the word, eliminating the first letter a
via the bisection (a∗(A\a), a). It appears likely that the constructions of nested
partitions and fully partitioned words which will follow may also be performed via
a recursive series of Lazard elimination steps along the lines of: Order all words
lexicographically. Eliminate them, one at time, beginning with the least ordered
word a. (Possibly it will be best to restrict to words of length ≤ n at first.)

This would give an alternate proof that the left greedy brackets form a basis.
However, making the previous statement precise and showing that it gives a well-
defined recursive operation which will terminate is complicated. Also, following
such a path would not yield the dual basis of star graphs, which we wish to exploit
in later work.

Given a simple partition w� α1α2 · · ·αk , we may recurse: The a-simple sub-
words α1, α2, etc. are letters in the alphabet of words. They may have a further
simple partition (now as α1-simple words). This process constructs a unique nested
partition of a word such that each nested level is a simple partition.

Definition 3.5. A word fully partitions if it has a series of simple partitions,

w� ω1� · · ·� ω`,

where ω` is the trivial coarse partition.

Colloquially, a word fully partitions if it is a simple word of simple words of
simple words etc.

Example 3.6. Words fully partition as follows (for clarity we will use distinct
delimiters (, [ and { to indicate different nested levels of partition):

• aaaab� (aaaab).

• ababb� (ab) (ab) (b)� [(ab)(ab)(b)].

• aabcb� (aab) (c) (b)� [(aab)(c)] [(b)]�
{
[(aab)(c)] [(b)]

}
.

• ababbabaab� (ab) (ab) (b) (ab) (aab)� [(ab)(ab)(b)] [(ab)(aab)]
�
{
[(aab)(b)] [(ab)(aab)]

}
.

For visual clarity, we have found that indicating nested partitions via underlining is
often more understandable than using nested parentheses:

aaaab� aaaab, ababb� ab ab b,

aabcb� aab c b, ababbabaab� ab ab b ab aab,

abcabcabbabcaab� ab c ab c ab b ab c aab.

Example 3.7. Some words do not fully partition:
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• aaaa contains repetitions of only one letter.

• aaba has the same initial and final letter.

• abab� (ab)(ab), which is a repetition of a single subword (ab).

• abaabab� (ab)(aab)(ab), which has the same initial and final subword (ab).

• ababbcababb� [(ab)(ab)(b)][(c)][(ab)(ab)(b)], which has the same initial
and final subword [(ab)(ab)(b)].

The following simple lemma follows immediately from standard facts about
Lyndon–Shirshov words. We give a proof below for completeness.

Lemma 3.8. Every Lyndon–Shirshov word fully partitions.

Proof. Fix a word w with initial letter a. The only obstacle to the partition of w
into a-simple words is whether the final letter and the initial letter match. More
generally, each step of the recursive partitioning can be completed as long as the
initial and final subword do not match. This fails only if the word has the form
w= αχα, where α and χ are subwords (the subword χ may be empty and is likely
not simple).

However no Lyndon–Shirshov word has this form. If χ is empty then w = αα,
which is not Lyndon–Shirshov. If χ is nonempty, then one of the cyclic reorderings
of w is lexicographically lower: either ααχ < αχα (if α < χ ) or else χαα < αχα
(if χ < α). �

Remark 3.9. Many non-Lyndon–Shirshov words also fully partition. The require-
ment that w 6= αχα for any subwords α and χ is much weaker than the Lyndon–
Shirshov requirement. Via some experimentation, we have found that it is possible
to use methods similar to those presented in the current work to find new bases
for Lie algebras which are constructed from sets of words other than the Lyndon–
Shirshov words. It is unclear if these sets of words are also bases for the shuffle
algebra.

Left greedy brackets.

Definition 3.10. The left greedy bracketing of the a-simple word w = anx , which
we denote by bbwcc, is bbanxcc=[a, [a, · · · [a, [a, x]] · · · ]], the standard right-normed
bracketing. The left greedy bracketing of a simple word of simple words (and, more
generally, any fully partitioned word) is defined recursively:

bbαnχcc =
[
bbαcc, [bbαcc, . . . [bbαcc, [bbαcc, bbχcc]] · · · ]

]
.

Example 3.11. Following are some examples of left greedy bracketings of fully
partitioned words. To aid understanding in the examples below, we underline to
indicate their full partition into simple words. (Note that we do not require words
to be Lyndon–Shirshov in order to define their left greedy bracketing.)
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• bbaaabcc =
[
a, [a, [a, b]]

]
.

• bb ab ab b cc =
[
[a, b], [[a, b], b]

]
.

• bb aab c b cc =
[
[[a, [a, b]], c], b

]
.

• bb ab ab b ab aab cc =
[
[[a, b], [[a, b], b]], [[a, b], [a, [a, b]]]

]
.

Remark 3.12. The name left greedy is due to the fact that the bracketing of the
word aaabcd begins with innermost bracket [a, b] and then brackets leftwards
i.e., [a, [a, [a, b]]] before bracketing to the right. An alternative right greedy
bracketing, would go to the right i.e., [[[a, b], c], d] before bracketing leftwards.
Both of these yield free Lie algebra bases, but the left greedy bracketing has a
cleaner basis proof and appears to have better properties. We leave the discussion
of the beneficial properties of the left greedy bracketing to a later paper.

Remark 3.13. Left greedy bracketing of Lyndon–Shirshov words is different than
other bracketing methods considered in the literature. We give a few examples for
comparison with other methods. Consider the Lyndon–Shirshov word w= aababb:

• bbaababbcc =
[
[[a, [a, b]], [a, b]], b

]
, the left greedy bracketing.

• [aababb] =
[
a, [[a, b], [[a, b], b]]

]
, the standard Lyndon–Shirshov bracket-

ing [Reutenauer 1993].

• [aababb] =
[
[a, [a, b]], [[a, b], b]

]
, the bracketing of [Chibrikov 2006, §4].

Star graphs. By a graph we mean a finite directed graph whose vertices are labeled
by letters.

Definition 3.14. The star graph of the a-simple word w = anx , denoted F(w), is
the graph with n vertices: labeled a, one vertex labeled x , and an edge from each a
vertex to the vertex x :

F(anx)= x
a a
a a

a

66 hh
(( vv�� .

The vertex x is called the anchor vertex. The star graph of a simple word of simple
words (and, more generally, any fully partitioned word) is defined recursively. The
graph F(αnχ) consists of n disjoint subgraphs F(α) and one disjoint subgraph
F(χ) with edges connecting the anchor vertices of the F(α) to the anchor vertex
of F(χ):

F(αnχ)= Fχ

Fα Fα

Fα Fα

Fα

;; cc
)) uu��

.

The anchor vertex of the subgraph F(χ) serves as the anchor vertex of the star
graph F(αnχ).
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Remark 3.15. The star graph of an a-simple word consisting of one letterw= x 6=a
is a single anchor vertex:

F(x)= x .

Example 3.16. Following are some examples of star graphs. In the examples below,
the anchor vertex of the subgraphs are indicated with dotted circles and the anchor
vertex of the entire graph is indicated with a solid circle.

F(aaab)= b
a a

a

:: dd
��

F(ab ab b)= b
bba a-- --

)) ss

F(aab c b)= c bb
a a** tt

,, 11

F(ab ab b ab aab)= b
bba a-- --

)) uu
b a

a
ba

mm(( xx

--

Remark 3.17. The name star graph comes from imagining the graph F(anb) as
a sun (b) with planets (a) orbiting around it. The recursive construction of star
graphs then composes suns and their planetary systems into orbiting star clusters,
into galaxies, etc.

4. Configuration pairing

Throughout, assume that all graphs and Lie bracket expressions have labels and
letters from the same alphabet.

Definition 4.1. Given a graph G and Lie bracket expression L , a bijection σ :G↔ L
is a bijection between the vertices of G and the positions in L compatible with
labels and letters (vertices of G are sent to positions in L labeled with the identical
letter).

Example 4.2. Following are some basic examples investigating bijections between
graphs and Lie bracket expressions:

• There are no bijections a
b

a
::
$$ ↔ [a, b] because there are three vertices in

the graph but only two positions in the Lie bracket expression. Similarly, there
are no bijections a

b::
↔ [[a, b], a].

• There are no bijections a
b

c
::
$$ ↔ [[a, b], a] because there is no letter c in

the Lie bracket expression.
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• There is only one bijection a
b

c
::
$$ ↔ [[b, c], a] given by identifying each

vertex with the correspondingly labeled position in the bracket expression.

• There are two bijections a
b

a
::
$$ ↔ [[a, b], a] since there are two ways

to choose an identification between the two vertices a and the two bracket
positions a.

• More generally, there are n! bijections F(anb)↔bbanbcc.

Given a graph G and a subset V of the vertices of G, write |V | for the full
subgraph of G with vertices from V — i.e., two vertices are connected by an edge
in |V | if and only if they are connected by an edge in G. Recall that a graph is
connected if every two vertices can be connected by a path of edges. We will say
that directed graphs are connected if they are connected, ignoring edge directions.

The configuration pairing defined in [Sinha 2006] between directed graphs and
rooted trees gives a pairing between graphs and Lie bracket expressions which can
be defined as follows [Walter 2010].

Definition 4.3. Given a graph G and a Lie bracket expression L as well as a
bijection σ : G↔ L , the σ -configuration pairing of G and L is

〈G, L〉σ =



0 if L contains a subbracket expression [H, K ] so
that the corresponding subgraphs |σ−1 H | and
|σ−1K | are not connected graphs with exactly one
edge between them in G,

(−1)n otherwise (where n is the number of edges of G
whose orientation corresponds under σ to the right-
to-left orientation of positions in L).

The configuration pairing of G and L is the sum over all bijections σ ,

〈G, L〉 =
∑

σ :G↔L

〈G, L〉σ .

Casually, we will say that an edge a
b:: in G whose orientation corresponds

under σ to the right-to-left orientation of L (i.e., σ(a) is to the right of σ(b) in L)
moves leftwards in L under σ .

Example 4.4. Following are some example computations of configuration pairings.
•

〈
a

b
c

::
$$ , [[b, c], a]

〉
=−1. There is only one bijection. In this bijection only

the edge a
b:: moves leftwards in [[b, c], a].

•

〈
a

a

b
::
$$ , [[a, b], a]

〉
=−1− 1=−2.

•

〈
a

b
a

::
$$ , [[a, a], b]

〉
= 0. For each of the two bijections,

∣∣σ−1
(
[a, a]

)∣∣ (the
subgraph) is disconnected in G.
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•

〈
a

b
c

a::
$$
::
, [[a, b], [a, c]]

〉
= −1+ 1 = 0. There are two bijections. One

bijection makes c
a:: go leftwards. The other bijection makes a

b:: and also

c
a:: go leftwards.

• The pairing of a linear (or long) graph a1

a2

···

an::
$$
:: with a bracket expres-

sion L is equal to the coefficient of the term (a1a2 · · · an) in the associative
polynomial for L [Walter 2010].

The configuration pairing encodes a duality between free Lie algebras and graphs
modulo the Arnold and arrow-reversing identities [Sinha and Walter 2011]. In the
current work we will use only that the configuration pairing is well-defined on Lie
algebras — i.e., the configuration pairing vanishes on Jacobi and anticommutativity
Lie bracket expressions. Thus the configuration pairing with graphs can be used to
distinguish Lie bracket expressions, and in particular can be used to establish linear
independence.

The main theorem will be proven essentially via recursive application of the
following proposition, whose proof is trivial.

Proposition 4.5. Letw1 andw2 be Lyndon–Shirshov words. Ifw1=anb is a-simple
then 〈

F(w1), bbw2cc
〉
=

{
n! if w2 = w1,

0 otherwise.

A similar result holds if w2 is a-simple.

Proof. Suppose thatw1 andw2 are Lyndon–Shirshov words with
〈
F(w1), bbw2cc

〉
6=0.

Note that w1 and w2 must be written with the same letters for any bijections
σ : F(w1)↔ bbw2cc to exist. Furthermore w1 and w2 must share the same initial
letter, since Lyndon–Shirshov words always begin with their lowest-ordered letter.
Thus w1 = w2.

If w1 = w2, then there are n! possible bijections σ : F(anb)↔bbanbcc. For each
of these

〈
F(anb), bbanbcc

〉
σ
= 1. �

5. The basis theorem

Theorem 5.1. If w1 and w2 are Lyndon–Shirshov words, then
〈
F(w1), bbw2cc

〉
6= 0

if and only if w1 = w2 (in this case it is a product of factorials).

Our desired result follows as a simple corollary.

Corollary 5.2. The left greedy bracketing of Lyndon–Shirshov words gives a basis
for free Lie algebras.

Proof. A perfect pairing of graphs with left greedy brackets of Lyndon–Shirshov
words implies that the left greedy brackets of Lyndon–Shirshov words are linearly
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independent. Since the number of Lyndon–Shirshov words of length n equals the
dimension of the vector space of length-n Lie bracket expressions, this is enough
to show that left greedy brackets of Lyndon–Shirshov words form a basis for the
free Lie algebra. �

Proof of Theorem 5.1. Suppose that w1 and w2 are Lyndon–Shirshov words with
nonzero pairing: 〈

F(w1), bbw2cc
〉
6= 0.

Fix a bijection σ :F(w1)↔bbw2cc. We will show that w1 =w2 by inducting on the
depth of the nested partition resulting from fully partitioning the Lyndon–Shirshov
words w1 and w2.

First note, as in the proof of Proposition 4.5, that w1 and w2 must be written
with the same letters and must share the same initial letter, call it a. Thus w1 and
w2 both fully partition, where the innermost partitions are a-simple words.

Write w2 � (an1b1)(an2b2) · · · (ank bk) for the innermost partition of w2. Ac-
cording to its recursive definition, the bracket expression bbw2cc will have subbracket
expressions bbani bicc. From the definition of the configuration pairing, these must
correspond under σ to connected, disjoint subgraphs of F(w1). However, the only
possible connected subgraph of a star graph (with initial letter a) using the letters
ani bi is F(ani bi ). Note that this implies w1 is composed of the subwords (ani bi )

(though possibly written in a different order). Furthermore, the first subword of w1

must be (an1b1) (just as in w2), because Lyndon–Shirshov words must begin with
their lexicographically least subword.

The induction step is equivalent to the previous case, treating subwords as letters.
At the end of the previous case, for each simple subword u of w2 the subbracket
expressions bbucc of bbw2cc correspond to disjoint connected subgraphsF(u) ofF(w1).
Furthermore, the initial subword of w2 coincides with the initial subword of w1.

To finish the proof, we must note that
〈
F(w), bbwcc

〉
6= 0 when w is a Lyndon–

Shirshov word, since all bijections σ : F(w)↔ bbwcc have
〈
F(w), bbwcc

〉
σ
> 0. In

fact, a few short computations show that〈
F(anb), bbanbcc

〉
= n!,〈

F
(
(an1b1)

m(an2b2)
)
, bb(an1b1)

m(an2b2)cc
〉
= m!(n1!)

mn2!,

... �

6. Projection onto the left greedy basis

Theorem 5.1 is of independent interest because it gives a direct, computational
method for writing Lie bracket elements in terms of the left greedy Lyndon–Shirshov
basis via projection.
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Given a Lie bracket expression L , write {wk} for the set of Lyndon–Shirshov
words written using the letters in L (with multiplicity). Left greedy brackets of
Lyndon–Shirshov words form a linear basis, so it is possible to write L as a linear
combination of the bbwkcc:

L = c1bbw1cc+ · · · + cnbbwncc.

We may compute the constants ck by pairing with F(wk) since 〈F(wk), bbw jcc〉 = 0
for j 6= k by Theorem 5.1. This proves the following.

Corollary 6.1. Given a Lie bracket expression L ,

L =
∑

Lyndon–Shirshov
words w

〈F(w), L〉
〈F(w), bbwcc〉

bbwcc.

Recall that the denominators 〈F(w), bbwcc〉 are products of factorials. Interest-
ingly, each coefficient in the expression above must be an integer (despite their
large denominators).

Pairing computations are aided by the bracket/cobracket compatibility property
of the configuration pairing. Bracket/cobracket compatibility states that pairings
of a graph G with a bracket expression [L , K ] may be computed by calculating
pairings of L and K with the subgraphs obtained by cutting G into two pieces by
removing an edge. The following is Proposition 3.14 of [Sinha and Walter 2011].

Proposition 6.2. Bracketing Lie expressions is dual to cutting graphs:

〈G, [H, K ]〉 =
∑

e

〈G ê
1, H〉 · 〈G ê

2, K 〉 − 〈G ê
1, K 〉 · 〈G ê

2, H〉,

Where G ê
1 and G ê

2 are the graphs obtained by removing edge e from G, ordered so
that e pointed from G ê

1 to G ê
2 in G.

Remark 6.3. Applying bracket/cobracket duality and the definition of the configu-
ration pairing yields a recursive method for computation of 〈G, L〉. Consider the
outermost bracketing L = [H, K ]. Look for edges of G which can be removed to
separate G into subgraphs G ê

1 and G ê
2 whose sizes matches that of H and K , and

check that the subgraphs are written using the same letters as H and K . If this is not
possible, then the bracketing is 0. Otherwise the bracketing is given by summing
〈G ê

1, H〉 · 〈G ê
2, K 〉 (or the negative − 〈G ê

1, K 〉 · 〈G ê
2, H〉 if e pointed so that G ê

1
corresponded to K instead of H ) over all such edges. Recurse. Note that removing
an edge from a star graph will always result in subgraphs which are themselves star
graphs (though possibly not star graphs of Lyndon–Shirshov words).

Example 6.4. Consider the Lie bracket expression L =
[
[[a, b], b], [[a, b], a]

]
.

There are three Lyndon–Shirshov words with the letters aaabbb. These words,
along with their partition, left greedy bracketings, and values of 〈F(w), bbwcc〉 are:
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• aaabbb which, partitions as aaab b b with

bbaaabbbcc =
[
[[a, [a, [a, b]]], b], b

]
and 〈F(aaabbb), bbaaabbbcc〉 = 3!.

• aababb which, partitions as aab ab b with

bbaababbcc =
[
[[a, [a, b]], [a, b]], b

]
and 〈F(aababb), bbaababbcc〉 = 2!.

• aabbab which, partitions as aab b ab with

bbaabbabcc =
[
[[a, [a, b]], b], [a, b]

]
and 〈F(aabbab), bbaabbabcc〉 = 2!.

The configuration pairings with L are as follows:

•

〈
F(aaabbb),

[
[[a, b], b], [[a, b], a]

]〉
= 0, because no edge of F(aaabbb) can

be removed to separate it into subgraphs one of which has a single a and
two b’s (corresponding to the subbracket

[
[a, b], b

]
).

•

〈
F(aababb),

[
[[a, b], b], [[a, b], a]

]〉
= 2, because only the edge connecting

F(aab) to the remainder of the graph cuts F(aababb) appropriately. This
reduces the computation to

−
〈
F(aab),

[
[a, b], a

]〉
·
〈
F(abb),

[
[a, b], b

]〉
=−(−2) · 1= 2.

•

〈
F(aabbab),

[
[[a, b], b], [[a, b], a]

]〉
=−2, because only the edge connecting

F(aab) to the remainder of the graph cuts F(aabbab) appropriately. The
computation reduces similarly.

Thus L = bbaababbcc− bbaabbabcc.
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